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ABSTRACT

In this text, a bifilar helical antenna with an outer layer of ferrite is
studied. Both the characteristic equation and the far field patterns are inves-
tigated.

The characteristic equation is found to have different branches of roots as
in the case of the unloaded helix. The correct branch of roots is identified both
on a theoretical basis and on an experimental basis. The calculated
patterns based on this particular branch of roots are found to be in good agree-
ment with the measured patterns, The antenna is found to be backfire over a
wide band if properly designed. Tested models show sizable reduction in
diameter results from the loading when compared with unloaded helical antennas,

The analysis in this work also establishes important conditions on the back-
fire and endfire operations of the class of antennas that have a wave-like source

distribution function along the axis,
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I
INTRODUCTION

The work on the helix antenna dates back as early as 1897, when
Pockling'i:on11 formulated an integral equation for the structure and obtained
two approximate solutions. After the use of the structure as a slow wave
device in traveling wave tubes and as an antenna, the literature on the
helix becomes very large. An extensive bibliography on the work before
1955 can be found in Sensiper ™’

In dealing with the boundary value problem associated with an infinite
helix, two models are generally used. These are the sheath model and the
tape model. In the sheath model, the helix winding is assumed to be infini-
tesimally thin. Each of the wave functions in cylindrical coordinates is
found to satisfy the boundary conditions . Each can therefore be referred to
as a mode of the infinite helix. In the tape mode , the finite width of the helix
winding is taken into consideration. No single mode can satisfy the corres-
ponding boundary value problem. An infinite series of all the wave functions
is required to satisfy the boundary conditions.

Prior to 1962, the solutions to the characteristic equation were restricted
to real roots. Complex roots were thought to be non-existentz. Mittra3
was first in suggesting the existence of the complex roots and their impor-
tance in the radiation phenomenon of the helical antenna. Subsequently,
Klock4 made an extensive study on these complex roots based on the tape
model. He found, among other things, thatthere were many different branches
of roots to the equation.

Rassweilers, with an eye on size reduction, worked on the problem of the
loaded helical antenna, or more specifically, on infinite helix with a solid core

of ferrite or dielectric material.



Another class of work on the helix as a radiator deals with the far field
patterns of a finite helix. Kraus and Williamson12 calculated the far fields
of the helical antenna from the current wave on the winding. An empirically
determined phase constant was used for the current. Patton13 also ob-
tained the far field pattern, using a transform method.

Also relevant to the present work is the extensive collection of research
results on tube antennas and rod antennas. Different approaches were used to
calculate the radiation patterns of these antennas. A careful survey of the
various approaches is given by Cheng. The endfire radiation mechanism of
these antennas is attributed to the HE ;1 mode excited on the structure.

The present work deals with a helical antenna loaded with an outer layer
of ferrite. From another point of view, the structure can equally well be de-
scribed as a tube antenna excited by helical windings inside.

It is interesting to note that present explanations of the radiation pro-
cess of helical antennas are different from those of tube and rod antennas.
The radiation of helical antennas is explained by a wave traveling along
the helical winding with a phase velocity of the order of the free space
light velocity. The radiation of a tube or a rod antenna is explained, on the
other hand, by a wave traveling along the axis of the antenna with a velocity

close to the free space light velocity.

With a wave-like source distribution, the radiation pattern is determined
largely by a propagation constant of the wave which comes from the solution
to the characteristic equation. The characteristic equation for either the
tube antenna or the helical antenna is very complicated and involves some
transcendental functions. It is found that the characteristic equation to the
helix has many roots. This multi-root situation is quite common to equations
involving transcendental functions. Inasmuch as all the roots are valid mathe-
matical solutions to the characteristic equation, it remains to be decided

which are responsible for the far field radiation phenomenon of the antenna.



This critical question is answered for the particular type of antennas con-

sidered in this text.

The radiation pattern is then calculated based on the knowledge of the
propagation constant. It is obvious that the method of direct integration
of the current on the helical winding is not applicable in the present case.
The fields on the outer surface of the ferrite layer are integrated instead,
using Schelkunoff's Equivalence Principle 7 . The contributions to the far
fields from the end faces and from the side cylindrical surface are looked at
separately. It is found that the side cylindrical surface is mainly responsible
for the radiation phenomenon of the antenna through a factor A(6). The
factor A(0) is, in turn, largely determined by the complex propagation

constant 3 .



II

THE SHEATH HELIX

2.1 Models for Solving the Propagation Constant of Helices

There are two models that can be used to solve the propagation constant
of the helical structure. These are the sheath model and the tape model. The
sheath model assumes infinitesimal width for the helical winding. Using this
model, cylindrical wave functions corresponding to any integer n can be used
to meet the boundary conditions. The resultant characteristic equation con-
sists of modified Bessel function of n~th order and some other elementary
functions. The tape model takes into account the finite width of the helical
winding. An infinite series of wave functions corresponding to all integers
n have to be used to satisfy the boundary conditions. The resultant charac-
teristic equation consists of an infinite sum of modified Bessel functions of
integer orders. The tape model, while a more realistic physical model, poses
a considerably more difficult task in the numerical calculation than the sheath
model. For thin helical windings, the numerical results of both models have
been found to be in close agreement.

The characteristic equation of the helix as a transcendental equation has
many branches of roots as noted before. These roots are normally obtained
numerically by a trial and error (or iteration) process. The selected initial
trial values for the process have much to do with the final result, Obviously,
different initial trial values might well lead to roots on different branches of the
k-$ diagram. For example, Klock4 has found at least five different branches
of roots and numbered these mode 1 to mode 5. Raussweiler5 also reported the
existence of a high attenuation mode in addition to the so called '"'slow wave
approximation' solutions which he placed much emphasis on. There is no doubt
that all these roots are valid mathematical solutions to the characteristic equa-

tion., It is also possible that many of them can be excited by proper feeding



techniques. The question remains as to which of these roots would be respon-
sible for the endfire operation of the helical antenna. Amazingly, very little
work has been done toward answering this important question. One unfortunate
result is that some roots that are taken for granted to be responsible for the
radiation phenomenon of loaded helical antennas do not really have anything to
do with the mechanism,

The critical problem facing the solution of the characteristic equation is
therefore the determination of the right branch of roots. It is felt that the use
of the sheath model is adequate for this purpose. This is especially true if one
is mainly interested in the far fields, which do not change much with small
variations of the source distribution. The use of the more rigorous but also
much more complicated tape model for pattern calculation would hardly be worth-
while. The misuse of a wrong mode, on the other hand, would cause drastic
changes in both the source distribution and the far fields.

In the next section, a characteristic equation for a helical antenna with
an outer layer of ferrite loading will be given based on the sheath model, followed

by results of numerical calculation.

2.2 An Infinite Helix with an Outer Layer of Loading Material; The Sheath Model

Figure 2-1 shows an infinite helix with an outer layer of loading material.

The wave functions E and fI-, which satisfy the wave equation

(vZ+k?d <E>=o (2.1)
H

will be given in cylindrical coordinates, Only two of the six components of E
and H are independent in each region. We will pick Ez and Hz as these two
independent components, Other components can then be expressed as a combin-
ation of EZ and Hz' The functions In and Kn in the expressions of the fields are
Bessel functions as defined in Watson. Omitting the time harmonic factor ejwt,

the wave functions are:
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FIG.2-1: An Infinite Helix with an Outer Layer of Ferrite.
The helix winding is on the cylindrical surface r=a .




Region I:
jng - B z)
E =F K (P1re (2.2)
ZzZn N n n
i(ng-B_z)
n
H =GK (I"r)e (2.3)
ZzZn nn n
where F , G are constants,
n’ n
r = fs?-1’ (2.4)
n n

n is any integer.

Region II:
ing- an)
ezn:fn [In( 'an) * Cann('Y nr)] © (2.5)
jng-B2)
hznzgn [In( 'ynr) + Cann(’ynr)]e (2.6)
fYn:‘/an—kzue (2-7)
Region III:
jng-pB 2z
- (r e . (2.8)
zn n n n
jng- B z)
8P-c¥1 (rn e " (2.9)
zn n n n
ing-B 2

For wave functions EZ and Hz of the form Zn('yr) e n ", where Zn( )

is any linear combination of In('yr) and Kn('yr), the other components are given

by:
Y OH
zn

9 (vr)

Bn g +('jw“ (2.10)
zn

Y




. OE
H¢n.—.1‘2§ x z) _% Hz s (2.11)
Y YT v°n
.o OE
_dB z _ WK
0H
. _ Wen iB zZ
Hrn_ 2 Ez+ v 3—('Yr) . (2.13)

For the sheath helix, it is found that each set of the vectors En and ﬁn corres-
ponding to any integer n are sufficient to meet the boundary conditions of the
structure under consideration by themselves in the absence of a source. Each
set of these vectors are therefore a solution to the source free boundary value
problem and may be referred to as a mode. In the presence of a source, a
solution can in principle be found as a linear combination of all these modes. In
the subsequent derivation of the characteristic equation for the sheath helix, we
shall suppress the subscript n in connection with the quantities Ty I"n, Fn"
Gn’ etc. and the functions In and Kn' Making use of (2.10) through (2.13), the

(ot + "~
other components are found as, suppressing the factor eJ(wt nf-p nz):

Region I:
. WM D
Er=]1_,BF SaK((PI'rr))_ 2° GK(Tr) (2.14)
D r
Gjuwu
(. Fn§p _ o O9K(Ir)
E¢ (l)Per(I‘r) T 5(T 1) (2.15)
we nF .
H - —2g(rp+ B8 2K{yx) (2.16)
r 1"2r r 9(vyr) :
jwe
R R E LI
I r



Region II:
) jgf[a I(yr) aK(yr)] W8
e = +C - I (yr)+C_K(vr) (2.18)
r v | &vr) 1 3(yr) ,YZ r [ 2 ]
- (B _ B, o L (yr), . 9K(yr)
°p ( )721. [I(yrHClK(w)] v o + %2 o | 219
h =w " [1( H+C K( >] +iBg(oLlm), o OKiy) (2.20)
r 1(21‘ L ate z | 0(yr) 2 Ayr) :
jwee
_ o|dI(yr) 9K(yr)| gnp
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o l3) WU N
(3) _jBF " 9K Tr) o ~(3)
Er = aTr) - 1-2r G I(I'r) (2.22)
(3),
(3) G ju
3) _ F 'nf o 0I(I'r)
E¢ =(-) pzr I(Tr) - = 2 (I'r) (2.23)
(3)
(3) Y F 8 a1 (rr)
Hr -————Pzr I(Pr) + = 5 (I (2.24)
(3),
Fjwe (3)
H;s) e 0 aal((;'rx)*) _ Gan 1(Tr) (2.25)
'r

There are four independent boundary conditions on each boundary. For

E¢ = e¢ (2.26)

EZ = e, (2.27)
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H,=h (2.28)
g ¢
H =h (2.29)
Z Z
can be used. For r = a,
(3)
= E 2,30
_ (3)
e = EZ (2.31)
e, + ey) cot y =0 (2.32)
hZ + h¢ cot Y - H(ZS) - H(¢3) coty =0 (2.33)

can be used. The angle ¥ in (2.32) and (2.33) is the pitch angle of the helix.
Note that (2.32) says the component of E tangential to the helical winding is
zero, (2.33) says the component of H parallel to the winding is continuous.

(2.26) through (2.33) form a set of eight homogeneous equations for the

eight undetermined coefficients F, G, §f, g, fCl’ gC F(S) and G(s). For non-

’
trivial solution to exist, the determinant of the coefzficients must be zero. This

condition would yield the characteristic equation for the infinite helix. We will,

however, follow a more detailed elimination process which would provide values
of the undetermined coefficients f, g, etc., Substitute the wave functions into

(2.27), we get

FK(Th) =£[1yB) +C K (vb)] . (2.34)
Substitute the wave functions into (2.29), we get
GK (rb) = g [1(vb) + C K (vb)] . (2.35)

Substituting (2.34), (2.35), and the wave functions,(2.26) becomes, after collect-

ing terms,
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pl(fcl) + ql(gcz) = slf + tlg
The same process for (2.28) gives

Po(fC)) + q (8C,) = s,f+t,8
where

(1 1

(Tb

A

—
=
A
=
1
M-
A

A

'(I'b

. 1 ) B o
t1'3“"“o[r‘1<(tt'1o) Iyb) - 0 1 (Vb)]

_ 1 K'(Th) €1
p2—Jw€0[ K(vyb) ,YK('yb)],

I' K(T'b)
q2=p1 )

1 K' (T'b)

=3 £
Sz‘]w€o ['YI ('Yb)-r K(I'b) I(’Yb)]:

t2=s1 ,

f and g can now be solved in terms of fC1 and gC
£ = pMsc)) + p¥gc,)

g = D)) + D*%gC,) |

(rn) * "’b’] '

20

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

36)

37)

.38)

39)

40)

.41)

42)

43)

44)

45)

46)

47)
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where Dpt » Dqt, Dsp, Dsq are given by the formula

>

p?P . _8b , (2.48)
A
st
A_ab = a1b2 - azb1 ’ (2.49)
Ast = slt2 - BZtl . (2.50)
. _ (3) (3)
Substitute (2.30) and (2,31) in (2.33) to eliminate F " and G ',
jwee
t——2fparc, Kiym)] cot v+ [1(arc,Kial Q . cotw)
va

[I (7a)+ClK('ya)] jwe
- = I(ra) r

2 11 (Pa) cot ¢

np ) T
+{1 - coty) I(I'a) - -
( I‘za quol (Ta)

: _ﬁi&(ﬁé - ig) [I('ya)+ClK('ya)]- gj:w° [I'('ya)+CzK'(7a)]

=0 . (2.51)
Substitute (2.46) and (2.47) in (2.51). After rearranging terms,

pt sp
(AlD +A_D +A3) (fcl)

2

+ (Aqut +a,0%+4)@gC)=0 . (2.52)

2



Substitute (2.46) and (2.47) in (2.32) and rearrange terms,
AS(fCI) + A6(g02) =0 . (2,53)

The coefficients Ai's are given by

jwee
OI'(ya)cotq//-—((ﬂl) I(I‘a)cotg[/

A1=

_n8_ I I(Ta) ngf1 1
+(1 pza cotlﬂ)jw“ I'(ra) a(rz_ 2) I(va) , (2.54)

o Y

-{1-RB _[1 -8 pri(ta) .,
A, (1 q(Zacotzz)l('ya) (1 o2 cotw) ” I' (Ta) (va)  (2.55)

jweeo jwe K (va)
A3= K' (ya) cot ¢ - T I_(%ET I' (I'a) cot ¥

+(1 ’lﬁ—cow L _1(ra) l‘§<1—2—-13>K(~ya) (2.56)

1
quOI(l‘a) a\ p N

_ 8 uTI I(Ta)
A, (1 cot !ﬁ)K('Ya) (1 2, cot ‘//> v T (Ta) K (va)
(2.57)

( cot w) [Dptl (ya) + K ('ya)]

Joms

- -,Y— I' (ya) cot ¢ D°P (2.58)

Jwpu
Ag = p® (1 - ﬁzicot w) - 2 cot y [1' (ya) D°? + K ('ya)] (2.59)
Y a
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(2.52) and (2.53) are two homogeneous equations for fC1 and gCZ. The
condition for nontrivial solutions to exist is the determinant of the coefficients
to be zero. Or,

(4, pPts A DSP+A3) . A

2 6

-(Aqut+A Dsq+A4)'A =0 ) (2. 60)

2 5

(2.60) is the characteristic equation for the infinite helix with an outer layer

of loading. We will look at some limit cases in the next section.

2.3 The Unloaded Sheath Helices

The dispersion equation for the unloaded helices can be obtained from
(2.60). This is done by putting © =1 and € =1. From (2.4) and (2.7),

vy=T=yYpB -k . (2,61)

From (2,.61) and (2.38) - (2.45), it is not hard to see that the D's in

(2.48) also reduce to zero.

pP-pPt-pT-pse. (2.62)

Making use of (2.61) and (2. 62), (2.60) becomes

w2 €
“0 (0]

1_‘2

K'(I'r)

cot2¢/ [K' (Pr) I1(Pr) -I'(Pra) K (I‘r)] 1D

= (1 - E%cotﬁp)z [K(I‘r) I'(Pr) - I(I'r) K'(Pr)] %{'_((r—rr:)

I'a
(2.63)
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This can be simplified further by recognizing the factor in the square brackets

as the Wronskian of the Bessel equation

I(2) K!(2) - I'(2) K (2) = -;l . (2.64)
Using (2.64), (2.63) reduces to

(1"2 a2 - nBa cota//)2

k0 al 1"2 az cot2 ]

I'(Tr)K' (I'r)
KTr)K(I'r)

=(-) (2.65)

(2.65) is the unloaded sheath helix dispersion equation found in the literaturez' S

2.4 The Very Slow Wave Approximation

In the case B >>/ue ko >ko , itis seen Ba~T A~y . If the slow wave
approximation, as defined in Rassweiler,

B=D= v (2.66)

is used, the characteristic equation (2,60) can be simplified a great deal.

r - = = -
P; =0Qy =8) =ty =0

jweo

]

jwp
( 9 - B (u-1) K' (Bb) (2.67)
L 1Y% cKBHT(ED-K (BB
2" B K(B b)

MoK (BB 1B - uI (BB K(BD)
L1 B K (B D)
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{ p-p%-0 (2.68)

From (2.66) - (2,68), (2.60) becomes
pt . _ 8q . -
(AD"+A) - A -(A,D T +A,) A =0 (2.69)

with Ai's also simplified by (2.66) - (2.68). It can be shown, after lengthy
algebra, (2.69) can also be put in the form

I' (Ba) K' (Ba) _ (-) (Ba - n cot v)? (2.69a)
I K@) 2,22 2 '
(o]

where
I' (Ba) + ClK' (Ba) 1(Ba)

€ XBa) + C,K(Ba) I'(Ba)” !

2 K(Ba)I' (Ba)
C MK () T(Ba)  ; 1(Fa) * C, K (Fa) (2.70)
- T Ga~ C, K' (a)

K" (Bb) 1(Bb) - I' ( Bb) K (Bb)
Ci = T{e-D) K (B K' (Bb) . (2.71)
_ K'(Bb) 1(Bb) -uK (BT (Bb) .12

Cy * = (-1 K (8D) X' (Bb)

(2.69a) is in a form similar to the dispersion equations for the solid core loaded

helical antennas and the inner layer loaded helical antennas in Rassweilers.
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The factor C in (2.70) would be referred to as the reduction factor using the
terminology of the same reference.

It should be pointed out that solutions to the dispersion equations of the
helices by various workers mostly fall into the very slow wave category. That
is, B> >Jﬁ'€| ko for the loaded helices and 8 >> k0 for the unloaded helices.
This result is mainly due to the fact that the very high frequency asymptotic
solution B =k/ sin ¢ is used as the starting point for the k - 8 curve. Most
workers, however, did not impose the slow wave approximation 3 = T'= v used

by Rassweiler.

2.5 Two Bases for the Selection of the Right Branch of Roots

Two ways have been used in this text to single out the right branch of roots
that are responsible for the radiation phenomenon of the helical antenna with an
outer layer of ferrite loading.

The first is through probing the near fields of the antenna. This is
described in Chapter IV, the experimental part of this work.,

The second method is an indirect one. The roots found from the character-
istic equation can be used to compute the radiation pattern. The calculated
patterns are then compared with the experimental patterns. The ones that do not
give correct patterns can then be thrown out. Fortunately, for the type of
antennas considered in this work, it is found that the pattern calculation can be
replaced by the calculation of a relatively simple factor A (0) for the purpose
of sorting out the correct B that is responsible for the radiation mechanism

of the antenna.

2,6 Numerical Solutions to the Characteristic Equations

The numerical solutions to the characteristic equation of the helical
antenna with an outer layer of ferrite loading will be presented in this section.
All results are based on the following parameters which correspond to the
electrical and physical constants associated with the model antennas and the

loading material used in this work.
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(u =2.2
€ =3.8
v =6.4°

< a =0.054 m (2.73)
b =0.060 m

(o =1

Now, the two bases for selecting the right root out of several known roots can
as well be used as guide lines to pick proper initial trial values. This was
found to result in great saving of computing time.

Results of the near field measurements are presented in Chapter IV. It
is found that the near fields of the loaded helical antenna bear a resemblance
to those of the unloaded helical antenna . The phase is found to increase
almost linearly with distance as the probe goes away from the feeding point.
The amplitude is found to decrease as the probe goes away from the feeding

point. One way this kind of field can be described is

( E)Ne-jﬁ 2 (2.74)
with

B =B+,

Br <0 (2.75)

B, <0

assuming the feeding point to be z=0 and the antenna extends along the positive
z-axis.. Equation (2.75) immediately puts a restraint on the solutions to the
characteristic equation, i.e., B is in the third quadrant onthe complex B
plane. Furthermore, the approximate value of Br is found to be near the free
space wave number k. The first of the two bases set forth in Section 2,5,

therefore, seems to point to a value for 3 as
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Br-k+iB
(2.76)

B, <0

In Chapter III, it will be seen that the radiation pattern of the antenna is mainly
determined by a factor A (0), studied in great detail in Appendix C. Extensive
calculations of A(@) were made using different values of Br and Bi' It is found

that the only values of 3 that A(8) can be backfire is when

Bas(-) k (2,77)

in the complex S plane. Equation (2.77) can be replaced by a set of two real

relations
Br~(—) k
(2.77a)
IBi / Brl <<1
On the basis of both (2, 76) and (2.77), an initial value of B with
B, = -k
’ (2.78)
B, = - 0.1k

was fed in the program to obtain the propagation constant B at different
frequencies. The result is shown in Fig, 2-2. Also shown in Fig. 2-2 is the

result when the initial trial value of B is

B =k

r

Bi=—0.lk

(2.79)

Only Br is shown in Fig, 2-2, Bi is found to be zero for all values of k that
the program was run. Note only part of the roots found with either (2.78) or
(2,79) seem to be on the same branch. They are connected by solid straight

lines in the order of increasing k. The two groups of connected points are
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- marked ""Backfire'' and ""Endfire' because they would give these kinds of
radiation patterns. The real antenna, as said before, is found to be backfire.
Two scattered roots are found with either (2.78) or (2.79) as the initial trial
value, Since these points correspond to the two smallest values of k in each
case, the question arises as to whether this would indicate the end of the two
branches and hence the low frequency cut-off point for each of the two modes.
This important question, along with a few others, cannot be answered without
going into a study of the numerical techniques used to solve the characteristic
equation. One fundamental difficulty with the present program is that it does
not ensure any initial trial value would converge to the nearest root in the com-
plex B plane. For instance, for k=27r(m_1),B=(-) k + jO is found to be a root

to the characteristic equation. This is indicated by the small triangle in Fig.
2-2, However, also for k=27(m™)), aninitial trial value given by (2.78) is found
to converge to the point B8 =(-) 18.2 + jO instead of B = (-)k + jO by the present
program. Another interesting question, also of importance, is whether the
roots show any symmetry on the complex 3 plane. For example, would the
existence of 8 = Br + jBi as a root imply that 8 = - Br + jBi orf3 = Br - jBi is
also a root? Again, no generalized conclusion can be made. Figure 2-3 shows
the roots found from some random choices of initial trial values. A straight
line is used to connect an initial trial value and the root it converges to. The
line, however, has nothing to do with the actual path of convergence in the
complex [ plane. The program is made to stop if no root is reached after 30
iterations. This was the case with one trial value, although the path was
definitely leading to a root. It should be apparent from this figure that, for

the most part, better initial trial values save computer time due to the faster
converging rate . It should be emphasized at this point that the actual number
of roots is likely to be much larger than those shown in Fig, 2-3. No attempt
was made to obtain more roots since it was felt that no purpose would be served.

In Chapter III, the radiation patterns will be calculated using the backfire
mode shown in Fig, 2-2.
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Bi/k

5N 8 /k

18 4

FIG.2-3: Some Roots to the Characteristic Equation, k=2r(m-1). An
initial trial value and the root it converges to are connected
by a straight line. The number by the straight line indicates
the number of iterations required for convergence to the root.
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THE RADIATION PATTERNS OF THE TUBE ANTENNA
EXCITED BY A BIFILAR HELIX

3.1 The Equivalence Principle

The radiation patterns of a tube antenna can be evaluated by means of
the Equivalence Principles’ 7.8 . The knowledge of the fields on the surface
of the antenna is required. The tangential component of the magnetic field
on the surface of the antenna is replaced by an equivalent electric surface
current

K=hxH' (3.1)

where fi is the outward pointing unit normal vector to the surface. The
tangential component of the electric field on the surface is replaced by a

fictitious magnetic surface current

K_=() AxE" . (3.2)
The Equivalence Principle states that the fields exterior to the antenna sur-
face would remain unchanged if the surface fields H' and E" were replaced
by the two equivalent surface currents. The two surface currents are to

be treated as independent sources. The resultant far fields would be the

superposition of the fields generated by each source;

(3.3)

where E, H are the resultant fields s
E', H' are the fields generated by I'Z,
E", H" are the fields generated by I?m .

23
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The fields E', H' are related to the vector potential A

A - u [f REIGE, R as'
where. G(R, R') is the free space Green's function

__ il R
GR,R') = ————
ar| R-RY|

(3.

(3.

The unprimed coordinate variables will be used throughout this Chapter

as the field point coordinates. The primed variables will be used as the

source point coordinates. The integral (3.4) is over the surface of the

antenna,
_|=..'£. A
E'= (-)j 1{2VxVxA
- 1 -
H'=—VxA.
M

o

The fields E'"" and H" are related to the magnetic vector potential Km

i -e Jf® @R Eas

E" = (-)-—1- Vx A
€ m
o
- LW -
H'"=(-)j —= VxVxA
k2 m

For the far fields, it can be shown
M8 0(R) N(6, §)

-
Km =€ ng, (R) M (6,9)

ﬁ=ffl-{-(1_l')eﬂk R R ds'

where

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

4)

5)

10)

11)

12)

13)
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N S
Moo f f R_(®e ds (3. 14)

and go(R) is the free space Green's function

1 e_ij
go(r) = -4—1-r R (3. 15)

N and M are known as the electric and magnetic radiation vectors respectively.
Note that the vector M as defined in (3. 14) differs from the Schelkunoff ex-
pression by the factor 1/ My - E and H in the far fields can be expressed in

terms of M and N s
E=ik [ﬁ +R ﬁ] [R) (3. 16)
TN, TN TR XM 18, :
H=(-)jk [ﬁt+ﬁx NJ g, (R) (3.17)

where M ¢ and ﬁt are the components of M and N perpendicular to the direction

of propagation ﬁ . In the following sections, the surface fields pertaining to
the infinite tube will be used as the surface fields on the finite tube to find the

far field expressions for ﬁ, N, EandH .

3.2 Radiation from the Side Surface of a Cylinder

Consider the cylinder in Fig. 3-1 . We will look at the radiation due
to the cylindrical side surface r = b in this section. The equivalent surface

currents are

K= (H,2 -H 6)| (3.18)
g r

= A

K -(-E¢z+EZ6)| . (3.19)

Using the field expressions (3.3), (3.17) for H¢ and Hz in (3.18), it is found
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FIG. 3-1: A Helical Antenna Loaded with a Layer of Ferrite.
Radius of the helical wire is a .
Ferrite layer is between r=a and r=b.
Antenna length is L.
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L 27

KRR _jn'-B2")
NX=GK(’I'b) e e (sinp*)b dp* dz' (3.20)
0 %o
L 27
jkﬁ'-ﬁ\ j(ng-pz")
Ny=-GK(’l‘b) e e (cos@*)bdp* dz' (3.21)
0 0
jwe L 2r _ A
: 1. 5 1_Ro!
N = E«* 1_,° K'(Pb)-G n23 K(szl : f KRR JOP'=B2)y 460
b o Y0
(3.22)
The components of M can be found similarly. It can be seen
N
X _ G
= -0 = (3.23)
X
N
Y-, 8
T n,F (3. 24)
’ Jw o npf
N F K'(I'b)-G-—z- K(Tb)
z b
= =1 n (3.25)
Mz ° nf YK,
F ——K(Tb)+ G —~ K'(Tb)
b r

It is necessary, therefore, to carry out only three integrations to obtain

all six components of M and N ,

R' = (bcos §', bsinf' , z') (3. 26)
ﬁ = (sin@cos @, sinOsinP, cos6) (3.27)
. o= A
.« R'*“ R =bsin6cos(@-p")+z' cos 6 . (3.28)

Using (3.28), each of the three integrations (3.20) — (3.22) can be expressed

as a product of two factors ;

Ny~ A(6) C_(6.0) (3.29)
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where a can be x, y or z.

The factor A(f) results from the z' integration

> . ' -- '
a@ =L [ 006 I gy . (3. 30)
0
A(6) may be viewed as the array factor in the array theory. The factor

C 6, @) results from the @' integration and may be viewed as the individual

element pattern in the array theory.

2T
C, (6, $)=()ibLGK(TD) f Glikbsinbeos@-p") i . g 41 (3.31)
0
27
C, 0, )=bLGK(Tb) f oJkbsinbeos@-p1) jnd’ gy 40 (3.32)
0
c = E Zo wipnpe 2o k (‘l‘bEl bL-
Z T o sz
: f o Jibsinboos-9') jnf' (3.33)
0

Carrying out the integration, (3.30) becomes

__=ju(6)
A(6) = L%(_G-)_- (3. 34)
where
u(6) = (lé -cos@) k L . (3.35)

The integrations for the C a's can be carried out by using the Bessel-Fourier
series,
ejkbsin@cos’?!=

Q0
J_(kbsine) + %; 2(j)mJn(kbsin6)cosm¢ (3.36)

and the orthogonality property of the sinusoidal functions,
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27
f sinmf cosn@dp = 0
0
27
f cosmPcosnpdp = 7 8 o’ m#0 (3.37)
0
2w

f sinmf sinnfdp = mé . m #0
0

where & is the Kronecker delta.
mn

For example, o
CX(9,¢)=(-) jbLGK(Tb) * f ejkbsinecos(¢-¢') . % sin(nH)@P'-sin(n-1)@’
0

~jcos(n+) @'+ COS(n-l)[b'_]dsb' =(-) jnﬂnbLGK('rb) :

, [J (kbsing)el W95 (kbsine)ej(n'l)¢].
n+ n-1
(3.38)
Similarly,
C,(6.$=()i" T LGK(Fb) 5., (bsinere! CHP_;  wbsimere!®DP ] .39
W€ n B n .n¢
c, (6. 9)- [:F—i-_‘iK'(Tb)-l-jG L K('rbﬂ ‘J'2abL e J_(bsind)e’™ , (3.40)
r2,

and (3.38) - (3.40) are valid also whenn =0, T 1 . This can be seen by
actually doing the integrations for these values of n.
In order for the antenna to be endfire, both A(6) and ca(e, @) would have
to be endfire. It is obvious from (3. 38) - (3.40) that
n=%1 (3.41)

are the only cases the antenna would be endfire. Along the axis 6=0, Mt
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and -ﬁt are composed of Cx and Cy only. Both of these are non-zero only

when n = ¥ 1, since

J ) =6 . (3.42)
n no

In order that the n = ¥ 1 mode can be excited, it is a common practice to
make the circumference of the antenna the order of one free space wavelength.

Thus, for the type of antennas under consideration, we have
kba1 (3.43)

Figure 3-2 shows the normalized patterns for C, and Cy in the plane @ = 0
under conditions (3.41) and (3.43). The antenna axis 6 = 0 is shown in Fig.3-2a.
This will not be shown for other figures in the text. It is seen for the range of
kb indicated by (3.43), that Cx and Cy have almost no preferred direction of
radiation.

The endfire condition of A(6) is less well known. Extensive study of this
factor by analytical and numerical means was made in Appendix C. After
examination of the factor for all possible values of the parameters Br’ Bi and L,

it may be concluded that the endfire condition for A(0) is
B~k . (3.44)

Since the B in (3.44) is complex, (3.44) can be replaced by a set of two real
relations

B K (3. 44a)

|BI/Br| 1

It should be noted here that neither (3.44) nor (3.44a) is an identity
relation. How close Br should be to k depends on the length L of the antenna,
and the value of Bi / B, - A more elaborate endfire condition can be found

in Appendix C as
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(E-nE~o (. 41)
where B is the complex propagation constant. The relation (3.44) or (3. 44a)
however, is sufficient when the length L is a few wavelengths. Figure 3-3
shows |A(6)| for different values of B, when B;=0 and L= 6\ . The only end-
fire case is seen to be when Br~k . Figures for cases with non-zero Bi can
be found in Appendix C.

The conclusion (3.44) is very important. It lends a decisive clue as to
what is the correct branch of roots of the characteristic equation that would
account for the end-fire operation. As wasseen in Chapter II, the charac-
teristic equation has many different branches of roots. In fact, Eq. (3. 44)
would serve as the basis for selecting initial trial values of 8 in the numerical
process, since most programs to solve the transcendental characteristic
equation would definitely be iteration processes.

In summary, the radiation patterns determined by the product factors
C,(6,9) A(6), are mainly determined by the factor A(6). The propagation
constant 3 does not appear in the factors C,, . It is, however, the single most
important factor determining the radiation pattern through its great influence
on the factor A(6). The endfire conditions for antennas with a source function
of the form F(x,y)e'jBZ are (3.41) , (3.43) and (3.44) .

It should be pointed out that the condition (3.44) has been used in the cal-
culation of the radiation patterns of rod antennas and tube antennas 9 . It was
not known, however, that (3.44) gives the only values of 8 that antennas with
the aforementioned source distribution function would endfire. In Chapter IV
it will be seen that current probe measurements on a loaded helical antenna
operating in the endfire mode, indeed, bear out a propagation constant 3 as
indicated by (3.44).

So far, it has tacitly been assumed that the side cylindrical sur-

face is the more important radiator in the endfire operation of the antenna.
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(@) B./k=0.8 () B./k=0.9
(c) B,/k=1.0 (B, /k=1.1 | (e) Bp/k = 1.5

FIG.3-3: lA(O)‘ for Different Values of B;; Bi =0, kL=127 .
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This is partially justified by noting that under the endfire condition (3.44), the
radiation in the 6=0 direction from any source point on the cylindrical surface
r=b is in phase. Also, the total area of the cylindrical surface is substantially
larger than the area of the ends. Therefore, the radiation from the cylindrical
side surface is much more important than the radiation from the ends. The
only exceptions are short antennas for which the area of the end faces is com-

parable with the side cylindrical surface area.

3.3 Radiation from the Ends of a Cylinder

First, consider the end z = 0.

R' = (r'cos ', r'sin@’, 0) (3.45)
ﬁ = (sinf cos@, sin6 sinP, cosb) (3. 46)
R' - R = r'sin@cos (@-p") (3.47)
K =(Eﬁ-E¢i§ (3.48)
Z:
K = (-H ﬁ-H ) (3.49)
T ¢ ‘Z= . .
For the area 0 <r'<a

- f f [: @ ¢ing1-5 @ os ¢.)| ]

. fkr'sinfeos@-p1) 1qg. 4. (3.50)

(3

Using the field expressions (2.22) and (2. 23) for E (3)

and E¢ , and Euler's

formula

sin = o (eJ¢ ¢
(3.51)

cosf = 5 (eJ¢+ e ¢)

and the recursion formulas for Bessel function In(z)
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] n =
I (z) - -1 (2)<L ,(z) (3.52)
n —
L+-1 @)1 _(2) (3.53)

Eq. (3.50) reduces to, after some algebra

M(3)= nﬂ " (- BF(S) ¥ WOG(S)) o) (n+l)¢jn+1L(3)

X o I(n+1)
(3.54)
T (3) s (3), in-1)pn-1_(3)
+ —
ﬂor BF“YHwu,G)e j LI(n—l)
where L(3) and L(S) are the Lommel integrals for the region 0 < r<a.
I(nH) I(n-1) - =
These are defined in this text as
_a
L(S) = (Ir')J (kr'sing)r'dr! (3.55)
In In n :
0

where In and Jn are Bessel functions. The Lommel integrals for a<r<b

are similarly defined as

b
(2) _ .
LZn —f Zn('yr') Jn(kr'sme)r'dr' (3.56)
a

where Zn can be In or Kn . The Lommel integrals can be integrated out

in terms of Bessel functions,

(2) _ r' ) ' :
L =73 +k2$in26 [‘k sin6 In(Y r )Jn_l(kr sin6)
Y r'=b
| T [}
+vy Jn(kr smG)In_l(yr )_-l (3.57)

ri=a
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(2)_ -r' . .
LKn- R [ksinGKn(‘{r )Jn_l(kr'sme)
v Hsin 6
r'=b
-l-'an(kr'smB)Kn_l('yr'z' g (3.58)
r'=a
Lf’) = ——5— [-ksino_(r 2)7__ (kasine)
n r +k sin 6

+ Jn(ka sinG)In_l(I" a)] . (3.59)

These can be derived easily. The case when n = 1 can be obtained from
Chen's thesis 9 on ferrite tube antennas. The same derivation also applies
to all other integer values of n. M, for the regiona <r <b can now be

obtained simply by making the following substitutions in (3.54)

(KB ~ HH,
€ €€
(o] (o]
r 0%
a b
< 0 a
(3)1 > ﬁ fI +fC.K (3.60)
n n 1n
G(3)In gl +gC K
(3). (3) (2) (2)
P Lint1) Lrn+1) - Cilgm+)
(3). (3)
G"'L (2) (2
- I 21) \ 8Lty ~ EColkm+y)

Using (3.54) and (3.60), M, for the region a <r <b is found as
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(2. 7 jaH)PnH 2 ...
Mx - ﬁ: e ] {(- B) fLI(n-l-l) fClLK(n-l-l

. (2) (2)
Houy, [gLI(n+l)_gC2LK(n+l) }

m _j-DPn-1 [ @ . -2 J
¥ n_ © ) {B fLI(n-l) fCILK(n-l

o

. (2) (2)
+jw BE gLI(n-l)-gchK(n-l) } (3.61)
The sum of (3. 54) and (361) then gives Mx forthe end z = 0 ,
M_= M(2)+ M(S) . (3.62)
p3 X X

Similarly, My for z =0 is the sum of M;Z) and M;B) due, respectively,

to the regions a<r<b and r< a,

M =M@ u® (3.63)
y y y
where
@ _ 7 .03 (3)y.0H _jnH)P_ (3)
My - nol" GBF +wqu ))J © LI(n+1)

n-1_j(n-1)¢_(3)
© LI(n--l)

@)_ 7 o jot)p | [ . (2 ;I
Yy Taad e {JB Ly ik @u

(2) (2) 7_ o=l jin-1)f
tou Ko I:gLI(n+l)_gC2LK(n+l-)] }+ 7;0_7 Ioe

. (2) (2) (2) (2)
. { iB fLI(n-l)_fClLK(n-l) “WHH gLI(n-l)—gCZLK(n-l) } (3.65)

+ T;;—r‘ BF D0, B); (3.64)

Mz is zero, since both J and J m have no z component on the end z =0 .

MZ =0 . (3.66)
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The components of the vector N are found from J in a similar way;

N =N (3.67)
X X X

N =N(2)+N(3) (3.68)
y'y 'y

N =0, (3.69)

where

N(3)= _;:_ G eOF(3) 18 G(3)) ej(n+1)¢ n+ (3)

X Litm+)
+ 1 (e FO)-p6H) el @By ;2_1) (3.70)
N;3)=% W €, F BG(3)) i) g, (nﬂ)LSI: )
-F W eoF(3)+J 8 Y)e (n—1)¢‘(n-1)L;2_1) (3.71)
(2) and N; ) are obtained by making the substitution (3.60) in (3.70) and (3.71)
respectwely.

@_ 71 ol () (2) )]
N jw €€, fLI(n+1) fCILK(n+1

X Y
@) 2 RESVES!
-'-B[ I(n+1) gC2LK(n+1)] }+

(2) (2) ( (2)
{3‘*’“ -y itk (n 1)}‘3[ 1tn-1) 821K (n-1) } (3.72)
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(2) (2
€% (fLI(n-l-l) lLK( +l)

2 j(nH -
Nl(r )=.$ J )P0 l{w

(2) (2) r j(n-1) n-l
~IBELyg )78 CZLK(n-l-l)}-_ e ]

(2) (2) (2) (2)
' {“’“ EL 1) L (rey’ 1 B @Lygy)8C,L K(n-l))}‘ 3.73)

The vectors M and N due to the other end z = L can now be considered.

ﬁ'l = (r'cos@', r'sind*, L) (3.74)

z=L

A

R = (sinBcosf, sinfsinf, cos6) (3.75)

- A - A

R'-R = r'sinfcos (f-@*)+L cos6= R' + R +L cos6 .  (3.76)
z=L z=0

The equivalent surface currents on z=L is the same as those on z=0, except
for a factor (—)e'jB L The factor e~IBL is the delay factor of the wave on
the antenna. The minus sign arises because the two planes have opposite
normal vectors.

K

) A A _ A -jBL
= _(Er¢-E¢r)| -(Era-Efbr)lz: (~e IPH)

m|z=L z=L

- (§m|z=0) (-e~3RL) (3.77)

The vectors M and N due to z=L can therefore be related to M and N due to

z=0. For example

o [T R oL [, )

-jkL ( g -cos6) _ -jkL( [-; -cos6)
[—e ]= (ML=0)[-e ] . (3.78)
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The combined contribution of the two ends z=0 and z=L to M is

M=Mlz=O+M|z=L= (M|, _,) B(6) (3.79)
where

B(9)= 1-¢ 4O (3. 80)

u(8)= (g -cos@)kL . (3.35)

The other radiation vector N due to the two ends can be expressed similarly as

N=(N| _)B6) . (3.81)

The vectors ﬁ|z=0 and ﬁ|z=0 in (3.79) and (3. 81) are given by (3.62), (3.63),
(3.66) - (3.69) and may again be looked upon as the element factor, while B(6)
may be looked upon as the array factor for the two ends. The 6 dependence
of M and N , which determines the far fields, is in the Lommel integrals
(3.57) - (3.59). These integrals vary slowly with 6 through the Bessel
functions of the first kind Jj, (ka sin6) and J,(kb sinf). A comparison of
these integrals with the element factors C,(6, §) for the cylindrical surface
shows that the functional dependence of the Lommel integrals (3.57) - (3.59)
on 6 is analogous to that of the factors C,(6, @) in (3.38) - (3.40). Hence, it
may be concluded that the element pattern for the ends are not very directional
provided ka and kb are both close to unity as in (3.43). The result is not
surprising when one recalls that the § variation of the source function for

the ends is the same as that for the cylindrical side surface.

We will now look at the array factor B(6). In the case Bi=0,

|B(6)] = 2|sin (x (6) )| (3.82)
where

x (6) = 5 u(6) = (é ~cos) 52 . (3. 83)

It is shown in Appendix C that Eq. (3. 83) maps the interval [0, 1[] for 6 onto

[x(O), X(?f)] , continuously and monotonically where



42

x(0) = (£ -n 52

(3.84)
nﬂ=<§+n%;

Thus, [B(6)l on [0,7] may be plotted out point by point from 2sinx on
[x(0), x(1r)] . The number of lobes of B(6) on [0, 7] is equal to the number
of maxima of |sinX | on[x(0), x(x)] , or, roughly

71r [x(n)-x(0)] = -@”1“- . (3. 85)

Since long endfire antennas are usually a few free space wavelengths
in length, (3. 85) shows B(6) would have several lobes at least, assuming
the endfire condition S~k . Furthermore, all these lobes have the same
magnitude. The pattern for B(6), therefore, cannot be endfire. Figure 3-4
shows this multi-lobe situation for B(6) for different lengths of the antenna
assuming Br =k and Bi = 0 . The patterns for B(6) in the presence of a non-
ZETO0 Bi are shown in Figs. 3-5 and 3-6. Although these are different from
Fig. 3-4, the conclusion that B(6) is not endfire can be seen to remain un-

changed.

3.4 The Backfire Bifilar Helix

In Section 3.2, theendfire condition for a wave F(r,¢)e"jBz was intro-
duced in Eq.(3.44). The bifilar helix, however, usually operates on a
peculiar mode known as the backfire mode. This was not mentioned in
Section 3.2 so as to avoid undue confusion. The situation will be clarified
now before we look at the calculated patterns.

For the purposes of illustration, it will be assumed in this section that
the feeding point of the antenna is at z=0 and the physical structure of the
antenna extends along the positive z-axis. Ordinary endfire mode corres-
ponds to a source distribution whose phase decreases along the antenna,

relative to the feeding point. This situation can be represented by e-]B z
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(b) kKL = 87

FIG.3-5: |B(0) for B,=k, B; = -0.1k .

N
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FIG.3-6: |B() for B =k, ; = -0.2k.
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with Br >0, or, by ejB z with Br < 0. The backfire bifilar helix, on the other
hand, has a source distribution whose phase increases along the antenna
structure. This can be represented by e-jB z with Br< 0 or, by esz with

Br> 0. For consistency, the e_jBz representation has been used through-
out this text. There is, of course, no fundamental objection against the use
of the ejB z_representation. The main difference in the radiation patterns of
the two cases comes from the factor A(6). In Appendix C, it is shown that

| A)] on[0, 7] is given by |£(x)] on l:x(O), x(r)] , where

_ B kL
X(O) = (E —l) -E-
xm = £+ %

It is also shown in Appendix C that the endfire condition is

x 0)VO0 . (c.41)
Note that since B,> 0, both x(0) and x(7) are greater than zero. The in-
terval [x(O), x(7r)] is to the right of x =0 This is shown by the interval
[a,b] in Fig. C-2. A backfire condition can likewise be established. Since

now, Br <0,
x(0) < x(71) <0

the interval [a,h] in Fig. C-2 would be displaced to the left of the origin
x=0 . Suppose

x(m)~O0 , (3. 86)
the interval [x(0), x(wﬂ would then be like the interval [c, d] in Fig. C-2.
This obviously shows that |A(6) is backfire. Equation (3. 86) can therefore
be regarded as the backfire condition. For antennas whose length is a few
free space wavelengths, (3. 86) can be replaced by

B~k

(3.86a)
<1

, Pirg.
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by analogy with the endfire case. It should be clear from Fig. C-2, that
|A(6)] for the backfire case is exactly the same as |A (6)] for the endfire
case except for a 180° rotation in the physical space. Or, |A(6)| for the
endfire antenna has its main lobe at =0 and A(6) for the backfire antenna
has its main lobe at 6=7 .

In establishing the backfire condition (3.86), the factors B(6), LZn(9,¢)
and Ca,(6,¢) were completely neglected. No more justification will be given
since it would simply be a reproduction of the previous work leading to the
establishment of (C.44) as the endfire condition.

Finally, it is worth noting that the word 'backfire' as used in backfire
antennas describes a totally different phenomenon from that described by the
word 'backward' as used in backward wave tubes. By definition (probably
by microwave tube people), a forward wave is one whose phase and group
velocities are in the same direction. A backward wave is one whose group
velocity is in the opposite direction to its phase velocity. The wave on a
backfire antenna would be a forward wave since its group and phase
velocities are in the same direction, along the negative z-axis for our

antenna.

3.5 Numerical Results of the Pattern Calculation

The radiation patterns in the x-z plane, or ¢=0 plane, are calculated
for the case n = 1. The coordinate transformation formulas
Ay= (A_cosf +Aysm¢)cosG-Azsm6

- . (3.87)
A¢ = (=) A sin@ + Aycos¢

are used in obtaining the 6 and § components of M and N from the X,¥,2
components. I\—/I, of course, is the sum of the two M's found from the two
equivalent surface currents K and Em . N is the sum of the two N's
found from K and Km . The electric field E and the magnetic field H are
then calculated from M and N using (3. 16) and (3. 17).
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Two different lengths, 0.381 m. (15'"") and 0.635 m. (25'"), and three
different frequencies, 400 to 600 MHz at 100 MHz intervals, are used in
the calculation. The lengths correspond to the lengths of the actual model
antennas. The frequencies correspond to the range where the actual models
have the best backfire performance.

The backfire mode in Fig. 2-2 is used to calculate the radiation pat-
tern. Calculations are also made using values of 8 that are slightly dif-
ferent from the 8 given by the characteristic equation. This is done to
confirm our previous assumption that small variations in the value of 8
would not affect the far field patterns to any significant extent. The use of
the sheath model is therefore adequate for the description of the far fields.

It is important to note that 8, <0, B; <0 in reading the patterns below.
These choices for Br and Bi are consistent with the facts that the physical
antenna extends from z=0 to z=L and the feeding point is at z=0. Since we
have adopted the e_jB z representation in this text, such choices of Br and
Bi would indicate a source function with increasing phase but decreasing
amplitude going away from the feeding point, in accord with experiments.

Figure 3-7 gives a comparison of the field components E(C) (c)

E] E k) E 3
(c) (c) 0 g 9
0 and E¢ are the calculated field components due

E¢ and A(6), where E
to the radiation of the cylindrical surface alone. These are found from the
vectors M and N due to the cylindrical surface. E 6 and E¢ are the field
components when the radiation of the ends are also taken into consideration.
The striking similarity of these patterns is no coincidence. It reflects the
important role the cylindrical surface plays in the backfire operation of the
antenna. Above all, it shows the dominant influences of the factor A(6)
on the radiation patterns of the antenna.

Figure 3-8 shows the influence on the radiation patterns due to small
variations of Br' Figure 3-9 shows the effects on the radiation patterns due

to small variations of Bi. It should be evident from these figures that the



(c
(@) E, (b) E¢

(e) A(6)

FIG.3-7: Calculated Patterns; =500 MHz, L=0.635 m. (25 in.),
- -1.0 k, Bi= -0.1k.
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() B,=-1.0k

(b) Br= -1.1k

(c) B.=-1.2k

FIG. 3-8: Influences of Br on the Patterns.
Eg, =500 MHz, L=0.635m (251n.), §;=-0.1k.
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(a) Bi=0k

(b) B.=-0. 1k

i

(c) Bi=-0. 2k

FIG 3-9: Influence of Bi on the Patterns. E o
f= 500 MHz, L=0.635 m. (25in.), Br=-1. 1k .
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radiation patterns are indeed quite insensitive to small changes in the values
of Br and Bi .
A comparison between the calculated patterns and the measured patterns

will be given in Chapter IV.



v
EXPERIMENTS

In this chapter, the experimental results are presented. Some technical
data on designing practical antennas are supplied. Perhaps more importantly,
measuréments have been made to support assumptions and to confirm results

of the theoretical work.

4,1 The Model Antennas

Many models had to be built to find the proper values for the various
parameters of the antenna. These include the radius of the helical winding a,
the thickness of the loading material (b-a), the pitch angle ¥ and the length L.
Of these, the pitch angle ¢ is the most critical parameter affecting the perfor-
mance of the antenna. The ferrite used as the loading material is E.A.F,2
with M, = 2.2 and €. 3.8as supplied by the manufacturer. Models with
pitch angles equal to 6.40, 12, 50, 25° were built and tested. For the particular
loading material used, only the ones with y = 6.4o give good backfire radia-
tion over a wide band. Four antennas with ¢ = 6.4° but of different length
are made in order to study the effects of the length. A comparison of the radia-
tion patterns between these antennas of different length can be found in Section
4,3. All models are bifilar helices with infinite balun feeding. The thickness
of the loading layer is 0.5 in. Thié is made as thin as possible to reduce the
loss in the ferrite. All measurements presented in the subsequent sections

are based on the following parameter values:

v=6.4° ,

a-= 2% in. ,

b = Z%in. ,

L =9", 15", 25",
M=2.2,

€ =3.8.

53
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4.2 The Near Field Measurements

Two near field measurements were performed in the anechoic chamber.
Both E and H field probes are used. As the probe moves parallel to the axis
of the antenna at a certain height, the amplitude and phase are read on a vector
voltmeter. The probe height over the antenna is of vital importance in obtaining
good data. Many of the error sources can be minimized by a proper probe
height. Efror arises due to the inability to align the probe in proper direction
or failure to maintain the probe at a constant height over the antenna at different
locations along the antenna. The discontinuity of the physical structure at both
ends and the reflection from the chamber walls also causes disturbances in the
measurements. Except for the reflection from the walls, all the errors above
can be minimized by using an appreciable separation between the probe and the
antenna. However, the input signal to the vector voltmeter would be weaker
for higher probe altitude. This would lead to internal error in the vector
voltmeter. The best compromise probe height is found to be around a quarter
wavelength above the antenna surface.

Figure 4-1 shows the result of the first near field measurement. The
antenna, with a length of 15", sits horizontally in the chamber. An E-field
probe hangs down vertically from the ceiling of the chamber and moves along
the axial direction of the antenna at a height of 51/2'" . Although taken at
f=500 MHz, Fig. 4-1 represents a typical near field measurement. This is the
case for all frequencies that the antenna operates on the backfire mode. The
amplitude of the field decays away from the feeding point. The phase, on the
other hand, increases as the probe moves away from the feeding point. Further,
the phase increase is seen to be almost linear. The measurement may, there-
fore,be viewed as the foundation of the assumption that the surface field of the
antenna can be represented by a wave e'jBZ with 'Br<0’ Bi<0. Ideally, one would

be able to figure out the guided wavelength )tg along the z-axis by the length
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that the wave has a 360° phase shift, Br could then be calculated by

_2m
B =i . (4.1)

¢ °]

Unfortunately, this is not possible in the case of the ferrite loaded helical
antenna. The phase reading in Fig, 4-1 stops at z = 11 inches. This is be-
cause the amplitude of the wave has decreased to the point that no stable phase
reading can be obtained from the vector voltmeter. The total phase shift of
about 190° from z = 0 to z = 11 inches falls much short of the 360° that would
be required to calculate Br. As the real part Br of the propagation constant
B is of vital importance in determining the correct root of the characteristic
equation and in the calculation of the radiation pattern, a second near field

measurement was done, following Barlow and Brownlo.

The set-up is shown
in Fig. 4-2, Two vertical 4' x 4' metal plates were placed in the chamber,
parallel to each other. The antenna was at a position about half way in between
the two metal plates, with its axis passing through the center of each metal
plate if extended. For afixed separation of the two metal plates, the frequency was
varied at 20 MHz intervals. The amplitude of the near field was again probed
along the axial direction of the antenna, When, at some frequency, the separa-
tion between the two plates became a multiple of one half the guided wave-
length, a resonance would occur. The vector voltmeter would then record a
standing wave pattern. The peak to peak distance is equal to one half the guided
wavelength at the resonant frequency. Br at that particular frequency is cal-
culated from (4.1). The separation was then changed and the process repeated
to obtain Br at some other frequency. Figure 4-3 shows the result of such a
measurement when the separation between the two plates is 22 inches. The
resonance is seen to be not very sharp and occurs at f =480, 500, 520 MHz.

This is due to the fact that the metal plates are relatively small in terms of
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FIG.4-2: The Set-up for Measurement of . The E-field
probe, which is not shown on the ggure, hangs down
vertically (along the x axis) and probes E. along the
z axis.
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wavelength. The average of the frequencies where near resonance is observed will
be taken as the resonént frequency for the plate-to-plate separation which was used.
The error in the computed value for ;. using this average resonant frequency is
only a few percent. This is more than sufficient for the purpose of determining
the correct branch of roots to the characteristic equation that lead to backfire
radiation, as the roots are quite far apart from one another. For instance, if

f = 500 MHz is taken to be the resonant frequency for a plate-to-plate separation
of 22 inches, or 0.56m, Br can be calculated by

A
B =3C0_ k . (4.2)

r
g

This gives Br =1,07 k. If either f = 480 MHz or 520 MHz is instead, the

difference in percentage is 20/500 or just 4 percent. In addition to Fig. 4-3,

measurements were also taken with the two metal plates separated by 19 inches

and 25 inches. The result is summarized in Table 4-1.

Separation (in.) 19 22 25
Separation (m.) 0.482 0.560 0.635
f = MHz 540 500 460
Ck (m} 11.3 10.5 9.65
B /x 1.15 1.07 1.02
B, (m~1) 13 11.2 9.85
TABLE 4-1

It may therefore be concluded that the‘ magnitude of Br is near k, the free space

wave number

|Br |~k (4.3)
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Figure 4-1 seems to point to the need of a non-zero Bi in the e-jBz
representation for the surface fields., This non-zero imaginary part of B is
not provided by the solution to the characteristic equation. The discrepancy
is at least partly due to the values u = 2.2, € = 3.8 used in the computation.
It is only reasonable to expect that complex values should be used with these

electric constants of the ferrite to account for the loss in the material.

4,3 The Radiation Pattern

The radiation patterns for antennas with parameter values as shown in
Section 4.1 are given below. Figure 4-4 shows the pattern@ for L =15 inches,
Figure 4-5 shows the patterns for L = 25 inches. Only’Eel is shown as the

patterns for lE¢ |2 are similar to the ones shown here for |E 6' 2. All patterns
are in the x-z plane, or @ = 0 plane.

Also shown on Figs. 4-4 and 4-5 are the calculated patterns based on the
roots to the characteristic equation. The calculation takes into account the
contribution due to both ends as well as the cylindrical surface. It is made
only for f =500 MHz and 600 MHz, The agreement between the calculated
patterns and the experimental patterns is seen to be fairly good. The most
important source contributing to the disagreement between the calculation
and the measurement is probably the use of real values for 4 and € in the
calculation which ignores the loss in the ferrite material.

Figure 4-6 shows the radiation patterns of the 25-inch antenna without
loading. It is seen that the unloaded antenna operates on the backfire mode
at much higher frequencies. This indicates a substantial reduction in the
diameter of the antenna. For instance, Kraus' formula for the low fre-

quency limit of the unloaded mono-filar helix is

(4.4)

where c is the free space light velocity. For 2b =5 inches, which is the

outer diameter of the ferrite loaded antennas used in this work, (4.4) gives
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fm = 530 MHz. This is more than 30 percent higher than the low frequency
limit for the loaded antennas seen from Figs. 4-4 and 4-5.

For the same diameter, the operating frequencies of the helical antenna
with an outer layer of ferrite are also considerably lower than those of the
ferrite fube antennas. This can be seen by direct comparison of the radiation

patterns of the two kinds of antennasg.



\'4
CONCLUSIONS AND RECOMMENDATIONS

5.1 General
A large part of the present work can be applied to explain the radiation

phenomenon of tube antennas and rod antennas operating in the end-fire mode.

-iBz

Assuming an axial dependence of e , it is found that the radiation patterns

are largely determined by the factor A(6),

-ju(6)
le -
A(Q) = ) , (5.1)
u(6) {E - cos 9>kL . (5.2)
The end-fire condition is given by
1 { B_,)kL
x0) =2 u o) o £ 1) &g (5.3)
The backfire condition is given by
_1 B kL
x(?r)—zu(w)ﬂ(k+1) V0 . (5.4)
For L equal to a few wavelength, (5.3) and (5.4) can be replaced by
B~k (5.3a)
Bas(-) k , (5.4a)

respectifely. Note that B is complex.
On the characteristi¢c equation, the following conclusions may be given:
(1) The characteristic equation has many different roots.

(2) Initial trial values and the iteration program used have
much to do with the values of B eventually obtained.
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(3) The results of near field measurements may be used
as a basis to determine the correct branch of roots
that account for the radiation phenomenon of the
antenna,

(4) If the radiation patterns of the antenna are endfire,
(5.3) may be used to furnish initial trial values for
the characteristic equation, If the radiation patterns
are backfire, (5.4) may be used to give the initial
trial values. '

On the radiation patterns, the following conclusions may be given:

(1) The important contribution to either the backfire
radiation or the endfire radiation is from the
cylindrical surface for antennas with a surface
field described by (5.3a) or (5.4a), provided the
antenna length is over one free space wavelength.

(2) The pattern is relatively insensitive to small varia-
tions in Br and Bi.

5.2 Conclusions Pertaining to the Helical Antenna with an Outer Layer of
Ferrite

(1) The near field measurements of the helical antenna with an outer layer
of ferrite show that the surface fields of the antenna can be approximated by
e—sz.

(2) The real part Br of the propagation constant is found to be near (-)k.

The minus sign arises due to the fact that the phase of the surface field
increases as the probe moves away from the feeding end toward the open end
of the antenna.

(3) One branch of roots to the characteristic equation is

Br(-) k .

(4) Calculated patterns based on the branch of roots above show good
agreement with the experimental patterns, which are backfire.

(5) For the same diameter, the bifilar helical antenna with an outer layer
of ferrite operates at considerably lower frequencies than either the unloaded

helical antenna or the ferrite tube antenna.
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5.3 Suggestions for Future Efforts

There appear to be many worthwhile undertakings with the characteristic
equations. For simplicity, it is suggested that the unloaded sheath helix be
used for the study.

(1) Investigation of the conditions that conjugate roots to the character-
istic equation exist.

(2) Investigation of the number of complex roots in a certain region, e.g.,
the number of roots Withl Bls 2.

(3) Study of the existing iteration programs in connection with the solution
of complex roots to any equation. In particular, the possibility that these pro-
grams may be modified to control the iteration process in some desirable
fashion, e.g., an initial trial value always goes to the nearest root.

On the radiation patterns of the unloaded helical antenna, there are also
a few problems of fundamental importance that can be explored further. The
present work finds that the branch Br ~(-)k gives the correct roots that are
responsible for the backfire radiation of the bifilar helix with an outer layer of
ferrite, While this is consistent with the general experiences on the rod and
tube antennas, it differs ffom the branch B~ (-) k/sin ¢ commonly accepted
as the correct branch of roots for the unloaded backfire bifilar helix, The
easiest answer to this would appear to be that the loaded antenna operates on
a mode that is different from that of the unloaded antenna. It is worth noting
that there has been little work on calculation of the far field patterns, making
use of the solutions to the characteristic equation, in the case of the unloaded
helical antenna. Some efforts along this line appear to be well justified. In
particular, it is recommended that the following subjects be explored further:

(4) Whether the Equivalence Principle approach used in the present
analysis is applicable to the case of unloaded helical antennas.

(5) Actual calculation of the current on the winding of the helix, starting

from the solution to the characteristic equation,
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APPENDIX A

SOME USEFUL RELATIONS INVOLVING THE BESSEL
FUNCTIONS WITH COMPLEX ARGUMENT

The Bessel functions In(z) and Kn(z) used in this text are as defined in
Watson. Some of the relations that are used involving these functions are

given below.

1. Bessel-Fourier series:

e;|kb sin 6 cos @ - Jo(kb sin 6)

®
+ Z 2 Y™ Jm(kb sin 6) cos mf (A.1)

m=1

2. Some reduction formulas:

n
n

! — =

In z In+1 (A.2)
nIn

' — = .

L+ =L, (A.3)
nKn

L =(~

K - ( )Kn+1 (A.4)
n K

(A.5)
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3. Lommel integrals:

b
f z Zn(az) Jn (Bz) dz (a, b, a, z complex)
a

b

=5 3 LB‘Zn (az) J!'1 Bz)-a Jn (Bz) ZI'1 (azﬂ

2 b

(A.6)

I LB Zn (az) Jn-l (Bz) - a Jn (Bz) Zn-l (az;]

a
where

_ (1) _(2)
Zp=dpe Np Hyo Hy

Using the relation,

gm=mf%um (A.7)

(A.8)

between different kinds' of Bessel functions, the following Lommel's integrals
for In(z) and Kn(z) may be obtained

fz I (z) I (Bz) dz

Z

a2+[32

fz Kn (az) Jn (Bz) dz

-Z

az A [32 [B Kn(az)Jn_l(Bz) + aJn(Bz) Kn_‘l(az)] (A.10)

[— B In(az) Jn_l(Bz) +a Jn(Bz) In—l (arz)] (A.9)
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4, Other integrals:
27
: ~0Y snd!
f ejkbsmecos(¢ ¢)e]n¢ sin ¢ d g
0

= [JnH b sin 0) ™ i 5 (b sng) &Y ¢] (A.11)

27
f ejkb sin 9 cos § ejn(¢-¢')cos pr d
J

0

" g [Jn_l(kb sin 0) 1) £ J_,,(kb sin 6) e+t ¢] (A.12)

27T

f Kb sin 8 cos (¢-—¢')e]n @ af
0

=27 §° J_ (kb sin 0) LY . (A.13)



APPENDIX B

EVALUATION OF THE UNDETERMINED COEFFICIENTS IN
CONNECTION WITH THE FIELDS ON THE ANTENNA

The coefficients f, g, F, G, etc., are needed in the calculation of the
far field patterns. These are evaluated after the value of B is obtained from
the characteristic equation. Since (2.52) and (2.53) are homogeneous equa-
tions for (fCl) and (ng), one of these two coefficients can be set arbitrarily.

Let

fC1 =1 . (B.1)

Then, from (2.53),

gC, = -A /A, (B.2)
From (2. 46),
A
p=pP-2p* . (B.3)
6
From (2.47),
s A5 S
g=Dp-A— D¢ | (B.4)
6
F, G are obtained from (2. 34) and (2. 35) respectively,
_ 1
F ~%(rD) [fl(yb)+fclK(yb)] (B.5)
_ 1
G_K(I'b) [I(—yb)g+K('yb)gCZ] . (B.6)
Finally, from (2.31),
(3) 1
F “1(Ta) [fI('ya)+fCIK('ya)] (B.7)
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and from (2. 30) and (2.31),

3. -D {nB( 1 1
3 = : = -l (ya) £
jwuol (T'a) a I‘2 _}12)J

r 0%

J‘wu.uo
- I'(ya
” va)g

jwupa
- " K' (va) g CZ (B.8)



APPENDIX C
A FACTOR A(6) FOR THE FAR FIELDS
OF SOME LONG ANTENNAS

C. 1 Introduction

In considering the far field patterns of long antennas with a source dis-
tribution of the form F(r,f)e -iBz , a factor A(6) appears after integration of
the above source function. The two factors in the source function are separable

-jiBz

and may be viewed as the array factor in the array theory. The integration of

in the integration process. The factor A(6) comes out of the e integration
the transverse distribution factor F(r,@#) may be viewed as the element factor
in the array theory. The total pattern is then found as the product of the in-
dividual element factor and the array factor. The factor A(6) is often a very
directional factor, or, A(6) changes a great deal with 6. This is the case,

for example, when the long antennas are operating in the endfire mode. It

is, therefore, the dominant factor determining the far field pattern in many

cases,

C. 2 The Factor A(6)

The factor A(0) is a complex composite function of 6

_ l—e-j u(6)
A(6) = —FG-)—— ‘ (C.1)
where
u(6) = (g -cos )KL (C.2)
B=B_+iB,

k = free space wave number
L = length of the antenna

6 = angle measured from the axis of the antenna.
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A(6) may be written as a product of an amplitude function and a phase

function. Let

Br
w(0) = 'k——cose kL ,

(C.3)
then
u=v+jBiL (C.4)
Note v is a real function of 9.
A9) =| £ <15 v(e)) o 18(v(0) (C.5)
Both the amplitude function f(é v (0)) and the phase function g(v(0)) are real
functions.
2
1 BiL BiL 2 v
Z l1-e +e sin -2-
'f(§)|= 5 (C.6)
2 B.L)
A'A IR B S
3+
[ B.L 7
. B.L
e sin v i
B.L
-1] 1-¢ ! COS V
g (v) = tan (C.7n
B.L
i . B.L
1+ sin v i
B.L v
i
l1-e CcosS Vv
. —
An important case is when B is real. Then,
B=8,
B =0
u=v=(€-cos€) kL (C.8)
sin—
2
f (§)= (C.9)
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g(v) =

(CTE)

v
-3 (C.10)

For convenience, we will introduce a new variable x,

x () = 22 (C.11)

Then,
la@)] = | (xton] (c.12)

Before going into the pattern study, it is necessary to study the function f(x) in
detail.

C.3 Properties of the Real Function f (x).

sin x

f(x) = (C.13)
The function f (x) has the following properties:

1.) f(x) is even,

2.) The absolute maximum of f(x) is 1atx=0 ,

£(0) =1 . (C.14)

3.) Other extremums of f(x) occ'qrs at the roots to the equation
X =tan x , (C.15)

other than x = 0 which is the absolute maximum.

Fig. C-1 shows the roots to the equation graphically. It is seen from the

figure that there is one and only one root in the interval

- +
[_2nT_1 T, 2n2 lﬂ], where n=+1, +2, +3,.......

This root will be written as xn. The only exception is the interval [— T, w] ,

where there is the root x = 0, This root will be written as xo.
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9.4y2

FIG.C-1: Graphical Solution of the Equation x=tanx. Maximums of |f(x)!

are indicated by crosses; zeros by circles.
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The following properties of the roots are obvious from Fig. C-1.

...<x n<x_EH<... <x_1<x0<x1<...<xn_1<xn<... (C.16)

X =-X (c.17)

X Mo + 7—;— for large n . (C.18)

The first few positive roots are

fxl - 4,493
x2 =7.,725
< X, = 10,90 (C.19)
x, = 14,07
x5 =17.22

-

For n =5, the large n approximation for x_ gives x_a/ 5,5 7 = 17,30 com-

5 5
pared with the correct value of Xg = 17,22, The value of the function f (v) at

these extremums is

sin x n
fx )= — = (1) > (C.20)
n 1+x
n
n n
f(xn)N(_l) ~ (-1)1 large n . (C.21)
n (n +—)7r
2
The first few f(x ) are
p n
f(xl) =(-) 0.217
f(x2) =0,128
f(x3) =(-) 0.0915 (C.22)
f(x4) =0,0711
f(x5) =(-) 0.0581

-
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c’
For n =5, the formula for large n yields f(xs)ﬂ 557 (-) 0.0579, compared

with the correct value of f(x5) =(-) 0.0581. The values of f(x) at the roots

X have the property .

'f(xo)l > lf(xl)l >...2 |f(xn_1)| > If(xn) | >e s (C.23)

as a result of (C.16) and (C.20).

4.) Zeros of f(x) are the roots to the equations

sinx =0

x 30

The roots are x = n 7, where n is any integer other than zero.

(C.24)

The roots will be denoted by Yy

y =nm
{“ (C.25)

n = any integer other than 0.

5.) The zeros and extremums of f{x) are interlaced in the following

way:

LN ] 0‘.< < <.l.
. <x_n<y_n<x_ y_, <x v, <x

1 0 nl<yn<xn<""

(C.26)

n+l

Fig. C-2 shows If (x)l as a function of x. The inequality (C.26) is also shown
graphically in Fig. C-1.

C.4 The Mapping x (0) and its Inverse for a Real 8

We will investigate the properties of the mapping x (6),

x(9)=%v(6) =(1€—cos 9) 1_1_2_1_. (C.11)

The domain of x is{elee L_Oq]} . The range is R1={xlx real} . Since cos 6
is continuous and monotonically decreasing on [0,7], the mapping x : 6 - x

is continuous and monotonically increasing, or,
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£0x)

E]

FIG. C-2: § _8IDX  and Its Zeros and Extremums.
(x) ==

Circles show positions of zeros y, =nw, n#0 . Crosses
show positions of extremums x,, n# 0 and the absolute

maximum x =0
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91>62=:>x1=x(91)>x2=X(92)... (c.27)

Furthermore, [0, 1r] is mapped into another closed interval [x (0), x (w)] s

x(0)=(§—1) k2_L_

where

k

x () =(g+ 1) l‘%

(C.28)

We can therefore define an inverse mapping

0 :x—=0

xe[x(O), x(7r)] € R

0 € [0, 7r_]

6 = cos“1 (g —%%) . (C.29)

1

by

The inverse mapping is also continuous and monotonically increasing,

X >x2=>91 = 6(x1) >0

1 =0 (x2) . (C.30)

2
The mapping properties of x(6) and its inverse are very useful. The shape
of the factor lA (6) | for any pair of B/k and kL can be determined graphically
using these properties and Fig. C-2. This is because {6 I 0 € [:0, ﬂ} will be
mapped to a closed interval {x I X€ [x (0), x (7r):|}by the mapping properties.
The shape of |A(9)| is then determined by |f (x)| on this closed interval. For
instance, if [0, 7r] is mapped onto [a,b]on Fig. C-2, this would represent an
endfire pattern. The main lobe level would be 'f (a)l . The back lobe would be
the only minor lobe and its level would be | £ (b)) .
We are now in a position to estimate the number of lobes of A (). Obviously,
the number of lobes of A(6) is equal to the number of maximums of | f (x)‘ on
[x (0), x (w):l. While it is possible to give precise formulas governing differ-

ent cases, it will suffice here by presenting a simple but revealing
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approximate formula. The exact number of lobes is not of much concern in
most cases. Figure C-2 shows there is one maximum X in any interval A x
of length 7, except near x = 0, The number of xn's in [x (0), x (7r)J is there-
fore approximately (1/7r)[:x (7) - x (O)] . Using (C.28), the number of lobes N
of A(9) is

- [o

NNEL+(1) (C.31)

7’ 2
The choice of 0, 1, 2 is determined by considerations as to whether any or all of
the two end points x (0) and x (7) are maximums and the inaccuracy of the

kL/7 term. For long antennas,

NN%TL +1 (C.31a)

appears to be adequate for an estimation in most cases. (C.31) and (C.31a) clearly
indicate that the number of lobes of A(6) is almost entirely determined by the
length L, with longer antennas having more lobes. The value of B affects the
positions of x(0) and x(7). Its effect on N is only in the choice of 0,1, or2in (C.31).

C.5 The Factor A(0) for a Real Propagation 8

In the case f3 = Br’ Bi =0

x(0) =%9) =(€—cos G)k?L (C.11)
a0 = |10y JEV O] (C.5)

| @) | =]t (xto0 | (C.12)
£(x) = SX (C.13)

The phase function g(v(8)) will not affect the shape of the pattern. We will now
look into the composite amplitude function |f (x(0)) | in detail.
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1.) The function f(x(6)) has an absolute maximum equal to 1 at x (9) = 0.
This happens at an angle

= E ‘ :
= . 32

It is seen that 00 can be found only for the case 8 <k. The angle 00 is

independent of the antenna length L.
2.) The other maximums for |A(6)| occur at angles 6 such that f (x(6))

has an extremum (maximum or minimum),
x(0) =x
n

where xn's are the roots to (C.15), From (C.29), we have,

2x
s l[B__m
Gxn—cos (k_ kL\)

(C.33)
n=+1, +2, +3 ...,
Since the argument of the function arc - cosine is between -1 and 1, only a finite
number of xn's would yield an angle 6 by (C.33) for a certain pair of S8/k and

kL. These angles, unlike 6 _, depend on the length of the antenna as well as the

0,
propagation constant 3. The values of these extremums are given by (C. 20)

to (C.22). The largest of these relative extremums is l f (xl)l = 0,217 as com-

pared with f(0) = 1 for the absolute maximum.

INCRIEN N (C.34)

3.) The zeros of lA (G)I are found by
la@] = |2 xten] = o.

From (C.25), for the zeros of f(x), and (C.29)

2y
- eos L [B_ B|. (B _ 207
Oyn'—cos (k kL)—cos (k KL

S~———

(C.35)
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Again, only a finite number of 6 can be found by (C.35) for a given pair of
B/k and kL. All these zeros are dependent on the antenna length L and the
propagation constant f.

|A(6yn)| = |ty)] =0 (C.36)

4,) The angle Gxn at which A(9) has maximums are interlaced with the
- angles at which IA(G)I = 0 in the following way:

0<6 <6, <0y <.

w(-n) < Open) SOx(emtr) < ov <91)

<.. <0 <.....&nw (C.37)

6x(n—1)< yn xn

(C.37) is a direct result of the inequality (C.26) and the order preserving prop-
erty of the inverse mapping 0 : x —» 0 as given (C.30). The end values O and 7
in (C.37) are the lower and upper bound of the inverse mapping .

Figure C-3 shows the relative positions of the angles Oxn's and Oyn's. It
should be cautioned again that only a finite number of the Oxn's and Gyn's can
be found for given values of B/k and kL. An important observation with (C.37)
is that if two 0's in (C.37) are known to exist, then every 6 between the two in
the sequence of (C.37) also exists. Figure C-4 shows the relative levels of
| A(6)|at an's and Gyn's.

C.6 Classification of Waves

A wave of the form F(x,y) e-jB z along the z-axis is often referred to as a
fast wave if 3 <k or a slow wave if 8 > k. It is generally accepted that fast
waves radiate mainly at an angle 90 = cos"1 g) given by (C.32) and slow waves
radiate mainly along the z-axis, The directivity of such a traveling wave antenna
is thought to be better for longer antennas. The real picture is more complicated,

as will be seen in the following sections.
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60=cos"1 (g)
2x

6 =cos 1 (g-k—g)
2y

6 =cos 1 (ﬁ- H? )

FIG.C-3: Relative Positions of Maximums and Zeros of IA(O)I .

Maximums are indicated by crosses; zeros by circles.

The spacing between 0's is not the real spacing.
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A

Lok

0.84

0.6 1

0.4 1

0.2 4
1 FanY " FAR\ . 1 \n[} 1 7 "
-5 ;J =37 - ﬁr ;’j om
P m 2 T 3

FIG.C-4: Relative Levels of |A(6)] .

A maximum is represented by a cross; a zero by a circle.
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C.7 Fast Waves with a Real Propagation Constant

The direction of maximum radiation of fast waves B < 1) is along

k
-1 (B
= . 2
90 cos (k) (C.32)
The zeros about 00 are 6_1 and 61, from (C. 35),
- cos! (B 22)
Gyl cos (k kL

(C.38)
_ B 27r>
ey(—l) = cos (k kL

For antennas with a length of one free space wavelength (kL = 27) or longer,

eyl always exists. The existence of 6 ¥(-1) would require a longer antenna (for
the same B/k) as can be seen from (C.38). Figure C-5a shows the case where only
eyl exists. The region (Gyl, 7), marked S.L. in the figure, indicates the region
where minor lobes exist. Figure C-5b shows the case when both 9 and 6 (-1)
exist. There are two regions that minor lobes can exist in this case These

are (0, Oy(-l)) and (9y1, 7). The minor lobes are found by (C.33) and zeros

by (C.35). They are ordered by (C.37),

2x
4 é___q)
an = cos (k T (C.33)
2y
- oo LB __n)
eyn = cos (k L (C.35)
y( 1)<e <6 1<ex1<ey2<....<7r (C.37)

The minor lobe level is given by

a6, )| =|£ )| | (c.34)
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|a (0|
(a)
S.La
A6
0 Gy(_l)
eyl %
S.L.
\_
(b)

FIG. C-5: Factor IA(O)‘ for fast waves.
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The largest minor lobe level is
£ | =|8x_ )| = 0.217

for exl and 0 x(-1)" This compares with the main lobe level of lf(0)| =1. The

end points 6 =0 and 6 = 7 may also be minor lobes. It is obvious that if the

smallest of the 6 'sand 0 'sisa 0 , then6 =0 is also a minor lobe. Like-
Xn yn yn

wise, if the largest of the Gxn's and@ 'sisaf _, thenO =7 is also a minor

lobe. Whether 6 =0 and 6 = 7 are minor lobes or not, it can be shown the

following is always true:

|4 6|>|a 6 )]>...>|a6, )| > |a ()|

(C.39)
|atog)|>ate, _|>... >4 (ex(_q)|3|A )| %

where 6__ is the largest ofthe 6 's, 0 is the smallest of the 6 's.
Xp xn x(-q) xn
p, q are non-negative integers.(C.39) ensures that the largest minor lobe level
is only 0.217 time of the main lobe level. A numerical example of the preced-
ing result is given below.
If B/k=0.6, kL =27 (L =), then,

_(B_ ) kL |
x(0) -(k- ) 5 =-1.26 ,

sin (-1.26)
-1.26

x(r) = (E+ 1).152L = 5,03,

| £ o] = | EREB g 4,

0. = cos":l (%) = 53° ,

0

2y
_ -1 (B __1_> - 11a°
9y1 - cos (k KL 116

E (x(0))] =l |= 0.76,
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2x
_-1(B_ __1) _ 1460
Oxl—cos (k KL 146" .

These are the only Gxn's and Gyn's that can be found for the values of B/k
and kL given. The results may now be tabulated.

(o} o (o) (0] (]

8 0 53 116 146 180
|a(®)] o076 1 0 0.217  0.19

Figure C-6 shows IA(G)I for B/k = 0.6 and four different kL's, The
numerical example above with kL = 27 corresponds to Fig. C-6a. One can see
clearly in these figures how the length of the antenna affects the beam width of
the main lobe and the number of minor lobes. Incidentally, the beamwidth of
the main lobe for long antennas is found by

sl (B_2r) _ 1(B, 2
Gyl-ey(_l)—cos ( - )-cos (k+kL)’ (C.40)

if it is defined as the angle between the two nulls adjacent to the beam. It is not
hard to see from (C.40) that the main lobe beam width decreases with increasing
length of the antenna.

Finally, it may be remarked that fast waves can be essentially endfire.
This is the case when B approaches k and the angle of maximum radiation

90 = cos“1 ‘E) becomes smaller and smaller.

C.8 Slow Waves with a Real Propagation Constant B

For the slow waves ( B >k), the angle

6, = cos™! (é)

does not exist. Since

-(B _ ) kL
x(O)—(k 1) 5 >0,



(e) kL = 87

(d) kKL = 127

FIG. C-6: IA(G)I for Fast Waves, B/k = 0,86,
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the interval [x (0), x(7r)] is to the right of the origin x = O on x-axis. From
Fig. C-2, it can be seen that the only case |A(0)| has just one main lobe is

when

_(B )@
x(0) -(k- 1 2~o . (C.41)

In this case,

| A0) | = | £ (x(OD)|~1

and 0 = 0 is the absolute maximum on [0, 1r] . The highest side lobe level is

I f (x1)| =0.217at 6 = Gx The factor A(6) is therefore endfire. Equation

(C.41) may therefore be iooked upon as the endfire condition for A(6). The case
(C.41) is satisfied will henceforth be referred to as the endfire slow wave case.
The case (C.41) is not satisfied will be referred to as the non-endfire slow wave
case. We will look into these two cases separately. Again, an antenna length
of at least one free space wavelength will be assumed.

1. Endfire slow waves:

When the endfire condition (C.41) is satisfied, the main beam is in the end-

fire direction, 6 = 0. The beamwidth is

-1 (B 2w .
2 = —— .4
eyl 2 cos (k kL) (C.42)

For antennas with a length of at least one free space wavelength, the angle le

always exists. This is also the side lobe with the highest side lobe level. The end

point 6 = 7 is a back lobe if the largest of the 6_ 's and 6 isa@__. Whether
Xn yn yn

's

06 = 7w is a minor lobe or not,

0<9x1<0x2<...<6xp<7r | (C.37)

| a(0)] >|A‘ (Bxl)l >...>|a (exp)l >|a (m)| (C.43)
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a6, )| = lsee)l (C.34)

where pr is the largest of the Gxn's. Equation (C.43) can be normalized,

|A(9 )| |ate )|
x1 Xp A (7r)|

Since A(0) < 1, the highest side lobe level 0.217/ |A(0)| is now greater than
0.217 after normalization. How well the highest side lobe level can be held
close to this value depends on how well the endfire condition (C.41) is satisfied.
Length of the antenna: We will now consider the long-standing question
whether better directivity can be achieved through the use of longer antennas.
The following points all have a bearing in determining the length of the antenna.

(a). A longer antenna would have a narrower beamwidth for the
main lobe. This is seen from (C.42).

(b). A longer antenna would have more side lobes. This is seen
from (C.31).

(c). A longer antenna would have higher side lobe levels. This
is seen from (C.43a). A larger L leads to a larger x(0)
and hence a smaller |f (x(0))].

(d). In the case Bi = 0, the wave on the antenna would attenuate
along the structure.

While (a) favors a longer antenna for better directivity, (b) and (c) are against a
very long antenna for better directivity. (d) simply says there is little sense in
making the antenna longer after it reaches a certain length. It would appear,
therefore, that there should be a limit to the length of the antenna for optimum
endfire operation. This limit, however, depends very much on the value of B/k,
as will be seen later. For B/k~1, it will also be seen that the limit is very
large.

Figure (C-7) shows |A (6)| for slow waves. Figures(C-7a) and (C-Tb)

show the case when the endfire condition (C.41) is satisfied. (C-7d) shows a
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(a) kL =27 (b) kL = 4x

o

(c) kKL = 87 (d) kL =127

FIG, C-7: |A(6)] for Slow Waves B/k = 1.3.
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typical pattern for |A(6)| where (C.41) is violated. Figure (C-7c)is an in-between
case. One can see clearly from these figures the effects of increasing the
antenna length, specifically in regard to the number of side lobes, the side lobe
levels and the beamwidth of the main beam,

2. Non-endfire Slow Waves:

If the endfire condition (C.41) is not satisfied, |A(6)| is multi-lobed for
antennas with a length at least one free space wavelength, This happens when
B/k increases to a certain value depending on kL. The interval [x(O), X(Tl')]
now contains some of the maximums, the xn's, for |f(x)| . Each of these forms
a lobe for |A (6)| . In addition, 6 = 0 and 6 = 7 can also be lobes depending on
whether they are next to a eyn or a an.

Relative magnitude of lobes: Assume the Oxn's that can be found are

6xm < 9x(m+1) <. < Bx(M—l) <exM ’

then the level of the lobe at eyn is

1

|t )| Ny

n
The front lobe level lA(O)I satisfies

0< |a] < |f(xm_1)|

The back lobe level |A(7r)l satisfies

0< |am| < |t ).

M+1

The maximum lobe is therefore either |A(0)| or |f(xm)‘ . In any case, the
largest lobe will be only slightly larger than the first few other lobes. This is

therefore a multi-lobe situation. Figure (C-7d) shows a typical pattern for
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| A(6) | when x(0) =(E - ) k—ZI‘ is not near 0. The value of B/k is 1.3 in this
particular figure. For larger values of B/k, the shape of | A(O)l is strikingly
similar to Fig, C-7d, provided the value of kL remains unchanged. This is
due to the fact that the number of lobes as predicted by (C.31) is essentially
independent of 8/k. Figure C-8 shows |A(9)| for some different values of
B/k. These should be compared with Fig. C-7d.

Propagation constant B: The endfire condition (C.41) puts a restraint also

on the value of B. For antennas whose lengths are not too short, (C.41) implies
B~k (C.44)

as the endfire condition for slow waves. Since this same limit also implies
essentially endfire radiation for fast waves, it appears that the transition region
from fast waves to slow waves 3~ k in(C.44) is the endfire range for B.
The ideal endfire operation from the point of view of the factor A(6) would be
when B = k. In this case, x(0) = 0 regardless of the value of kL. In theory,
the beamwidth of the main lobe for A(6) could be made arbitrarily small by
using very long antennas. The maximum side lobe level would remain at 0.213
the main lobe level, though the number of side lobes would increase, with in-
creasing length L.

Figure C-9 shows IA(6)| for kL = 127 and different values of B/k. It should
be evident from the figures that the transition region B~ k is indeed the range

for endfire operation.

C.9 The Factor A(6) with a Complex Propagation Constant B = Br + jBi

In the case 8 = Br +j Bi, Bi # 0, the amplitude function If (x)| becomes

2y ¥
1+e“Y -2 2
£ x, 9| =\/ SR (C.6)

4x +y

where y = Bi L. This function, owing to its complicated form, can best be



(a) B/k =3.0
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\/ |
(d B/k = 1.1v

(a) B/k =0.8

(¢) B/k=1.0

FIG. C-9: Effects of B/k on |A(6)|, KL = 127,
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studied graphically. Figure C-10 shows the function f{x) with y as a para-
meter. It is seen from these figures that the main effect of Bi is to fill the nulls
and bring down the peaks.

By means of Fig. C-10 and the mapping function

B
v=(f\) - cos (C.3)

it is possible to study the pattern |A(9)| graphically. The interval [0, 1r] is
mapped continuously onto [x(O) , x(ﬂ)] . For small values of l Bi LI , it is
seen from Fig. C-10 that the effects of Bi on fast waves and endfire slow waves
are small. On the other hand, the effect of the same small | Bil on ]A(G)I for
non-endfire slow wave waves may be quite dramatic., Figure C-11 - C-13
shows some effects of B, on IA(9)| for the various cases discussed above.
Figure C-11 shows IA(B) I for fast waves, Figure C-12 shows the transition
case 3 =k. Figure C-13 shows the case for slow waves when the endfire con-
dition is not satisfied. It can be concluded that the only range of f3 that IA (6)'

is endfire is still around (k, 0) in the complex f plane.
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FIG. C-10: The Function F(x,y) in Eq.(C.86).
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FIG, C-10: Continued.
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W N7

(2 B, /B, =0 (b B, [B, =-0.1
\\
\ y
\‘/ \-\\x_/
(c) B, /Br =-0.2 (@ B, [B,=-0.3

FIG, C-11: Effect of Bi on 'A (9)' , Br/k =0.8, kL =127,
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9

() B, [B, =0 () B, [B,=-0

()
o/

(c) Bi/ B, =-0.2 (@ B, /Br = -0.3

FIG. C-12: Effects of Bi on IA(G),I Br/k =1,0, kL =127.
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(b) B /k=1.3 Bi/Br =-0.1

(c) B /k=3.0 B, [B =0 (@) B_/k=3.0 Bi/3r=-o.1

1 r

FIG, C-13: Effects of Bi on IA(O)' kL = 127,
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