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NOMENCLATURE

|

Vector constant. Subscript may be dropped.
Scalar constant.

The nth time derivative of T .
p.P.
~ 2 -
Dr and D r are the velocity
pipj pipj
and acceleration of point p. relative to
i

point pj and the ground reference frame.

- The nth time derivative of U Dow..

1) 1)
is the angular acceleration of body i
relative to body j.

Force exerted on body i, by body j,
at point Py - Drop the subscript Py if

only one force is exerted on i by j.
Drop all subscripts if there is only one
force in the linkage.

Inertial Force exerted on link 1

—_— 2——»
(g.= -mDr )
, i c.p

1 O

Moment of momentum of body 1 about its
center of mass.

Unit vectors of the ground reference frame.

- Mass of link 1i.

Dummy position vectors. Subscript may
be dropped.

Position vector to point P, from point pj.

xi



ij

pij

NOMENCLATURE CONT'D

Azimuthal angle of a vector relative to
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1 1 1

EN

Unit vectors of the ith dummy reference

~

frame. Orientation relative to 1, f, k
is always known.

Coefficient of Coulomb friction for trans-
lational motion of body i relative to
body j. (Unitless)

Coefficient of Coulomb friction for rota-
tional motion of body i relative to body
j-  (Units of length)

Inertial Torque exerted on link i

(3= -DH.).
1 1

Torque exerted on body i by body j at
point Py - Drop the Py subscript if
only one torque is exerted on i by j.
Polar angle of a vector relative to ii’

~ ~

V.-
K Y

Angular velocity of body i relative to
body j.
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1.0 INTRODUCTION

Kinematic analysis is an old but important subject in many areas
of engineering. It is a. much simpler subject than dynamics because it
assumes input motion instead of input force; problems can therefore be
represented by algebraic equations instead of differential equations.
From another viewpoint kinematics is an input to dynamics, because
the kinetic and potential energy terms in Lagrange's Equations are
kinematic expressions.

Vector analysis was created in the 1870's by J. Willard Gibbs
[41] in response to the need for a succinct, natural mathematics for
the problems of science and engineering. Perhaps this mathematics
was partly inspired by problems in Gibbs' own thesis work--the first
doctoral thesis in engineering in the United States: ''On the Form of
the Teeth of Wheels in Spur Gearing.' [4]1] Vector analysis has become
increasingly popular and is now part of the background of most scientists
and engineers.

It seems inevitable that kinematic analysis should be pursued by
vector methods. Almost every quantity involved in kinematics is a vec-
tor or the magnitude of a vector. (Angular quantities are exceptions,
but all orders of their derivatives are vectors.) Most kinematic prob-
lems can be formulated as single or simultaneous vector equations,

and these equations can usually be solved through use of vector operations.

-1-
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However, conventional vector analysis has not been cmployed in kine-
matic analysis to nearly the extent possible. Instead, graphics, com-
plex numbers, matrices, dual numbers, and quaternion algebra have
been predominant tools.

Graphics and related methods have been important because they
avoid detailed computation and provide a visual perspective. Much of
this work has been done in Germany by Altman [2-4], Beyer [7- 18],
Federhofer [39], Hein [44], Keler [45], and others. With the advent
of the digital computer the computational advantage of graphical methods
is diminished. Of course, it has always been difficult to apply graphi-
cal methods to three-dimensional analysis.

Analysis and synthesis by conventional complex mathematics
has been very successful for two-dimensional problems, partly because
of the convenience of polar notation. Work by this method has been
done by Freudenstein, McLarnan, Raven [61], Roth, Sandor, and
others. Extension to three-dimensional analysis was suggested by
Raven, but otherwise conventional complex mathematics has remained
a two-dimensional tool.

Matrix methods have been developed and applied by Hartenberg,
Denavit, and Uicker [26-31, 71-73]. A computer program, based on
this mathematics, will obtain position, motion, and force solutions for
the complete motion cycle of any single loop, three-dimensional

mechanism connected by lower pairs. Two or three minutes (IBM 7090)
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are required for a cycle. The method has not been extended to complex
spatial mechanisms and is more detailed than necessary for mechanisms
of four links or less. Iteration is required for the position solutions,and
interpretation of the matrix equations is difficult. However, it is a
beautifully formulated approach and it affords the only immediately avail-
able numerical solution to an important category of mechanisms.

Dual numbers, quaternions,and other less familiar mathematics
have been applied to three-dimensional mechanism analysis. Diment-
berg [31-33], Denavit [26,27] and Dobrovolskii [35,36] have done work
.VVith dual numbers. More recently, Yang has developed an approach
based on dual quaternions [79,80]. These approaches have advantages
in the representation of spatial problems, but any advantages they may
have for obtaining solutions have not been made clear.

The most difficult problem in kinematic analysis is determina-
tion of position; all other problems except frictional force analysis are
linear. Physically, a mechanism may have two, four, eight, or many
possible positions--depending on its complexity. Which position it
actually takes depends on its initial assembly and subsequent behavior
at locking positions. Because of these physical effects, probably the
simplest position solution for any given mechanism is an algebraic
polynomial of degree equal to the number of possible positions. No
matter how the solution is formulated, there is the basic difficulty of

obtaining the roots of this polynomial.
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However, there are practical difficulties associated with ad-
vanced systems of mathematics. In obtaining polynomial solutions, it
is of critical importance to fully exploit the symmetry of the problem.
Otherwise a polynomial of artificially high degree must be generated.
There is a danger that the mathematics itself will obscure the symme-
try. Also, the very familiarity of the mathematics becomes important
if no one method affords relative advantages in solution.

There have been many other contributions to three-dimensional
kinematics besides those mentioned here. Several involve use of con-
ventional vector mathematics--particularly those of Beggs [5],

Kislitsin [47], Mangeron and Dragan [50-53], and Rim [64]. These do
not overlap material in this thesis, but are included in the reference
section as a convenience to those with general interest. In addition,
there is probably a large amount of proprietary work that is unavailable.
Several texts are included because of their usefulness as references.

The author's interest in three-dimensional kinematics was
initiated by simultaneous exposure to the theory of vector analysis and
Professor J. E. Shigley's practical observations on the ''unit vector
method' [67]. It has always been clear that mechanism problems can
be represented by vector equations, but emphasis on the idea of factor-
ing magnitude and unit vector leads to convenient means of solving the
equations. Some of the author's preliminary work was published [21-23]

and served as a basis for discussion and further generation of ideas.
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Method; of analysis are described in later sections; a summary
of the motives of analysis is appropriate here:

1) The wide range of current mechanism problems and the avail-
ability of the digital computer suggest a need for more uniform, familiar,
definitive methods for kinematic analysis. The same approach should
apply to two- and three-dimensional mechanisms, connected by lower
or higher pairs into any number of loops. The mathematiés should
be simple and familiar, so that it can be interpreted, taught, and pro-
grammed easily. Solutions should be exact, or at most require itera-
tion on only one variable.

2) Position solutions are inherently difficult because of their
nonlinearity. However, direct solutions are important for purposes
of interpretation, reliability, computation speed, and obtaining all the
real roots. Emphasis is therefore placed on obtaining solutions as
single polynomials. Optimum solutions to relatively simple, common
conditions are derived é.nd categorized. These include the Tetra-
hedron Solutions--a ''complete' set of sclutions to the single equation,
sum of vectors is zero. The Tetrahedron Solutions apply to most prac-
tical three-dimensional mechanisms of four links or less. Most of the
solutions are interpretable and can reasonably be evaluated by hand
computation; all can be evaluated by the digital computer in hundredths
of a second. More complicated conditions reduce to the problem of

simultaneous solution of polynomials in two or more variables, even
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when maximum use has been made of problem symmetry. An approach
to these problems utilizing tensor formulation, the eliminant, and digi-
tal computation is described. At present capability any two low-degree
polynomials can be reduced to a single resultant polynomial in a few
minutes or seconds. Extension to the solution of more than two simul-
taneous polynomials of higher degree will require statistical methods,
iteration, and/or a clearer insight to the nature of systems of poly-
nomials.

3) Motion solutions are intrinsically linear. Moreover, they
are dependent only on input motions of the same order, all lower order
motions and position. This basic simplicity should be exploited, so
that the means are clear for calculating velocity, acceleration, and
higher order motions for any mechanism. In particular, direct differ-
entiation of position solutions must be avoided.

4) Force solutions are intrinsically linear when the joints are
frictionless. However, they are more detailed than motion solutions
because two vector equations must be written for every link but one in
the mechanism. A method for reducing these vector equations to a de-
terminate set of simultaneous linear algebraic equations must be made
clear. Also, specialized procedures for obtaining more interpretable

solutions should be investigated.



2.0 METHOD OFf ANALYSIS

2.1 Terminology and Basic Operations

The fundamentals of vector analysis are clearly explained in
many texts. Notation and terminology vary; Table 2.1 and the nomen-
clature section (p. Xi ) explain that employed here. In particular,
the symbols ;, 4, and a, respectively, denote vector, unit
vector, and magnitude of a. Table 2.2 defines kinematic terminol-

ogy. Table 2.3 summarizes important vector relations.

2.2 Outline of Method

Sections 3.0 through 5.0 are devoted to an ordered development
of vector methods for the analysis of linkages in general. Before this
is begun the essentials of the approach will be illustrated via application
to a simple planar example.

2.2.1 Problem Formulation

Consider the two-dimensional, offset, slider-crank mechanism

shown in Figure 2.1:

Known Design Constants:

Vector: ?
PPy

Unit vectors: ; ; all w..,, Dw,., ;
P4P3 1] 1] 1]
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TABLE 2.1

VECTOR TERMINOLOGY

Item

Addition and sub-
traction of
vectors

Component

Coordinate frame

Dummy reference
frame

Equivalence

Ground reference
frame

Magnitude

Explanation

Perform by adding or
subtracting correspond-
ing components

Magnitude of the pro-
jection of a vector on
the component direction.

Three mutually perpen-
dicular unit vectors
(reference frame), plus
a point considered as an
origin.

Reference frame with
orientation defined rel-
ative to ground refer-
ence frame. Fits natu-
ral geometry of
problem.

Two vectors are equal
provided only that they
have the same magni-
tude and direction.
Vectors are unchanged
by relocation with fixed
orientation.

Reference frame which
is considered fixed.
Express numerical re-
sults in terms. of this
frame.

Scalar quantity (no di-
rection). The magnitude
of a vector is always
positive. If a solution
for magnitude is nega-
tive, the associated unit
vector is reversed.

3
o
u
’111 2
~ K
T " j
/\-»“ ~
N / i
2
\ b -
= a
= /4 T

Representation

-

\

+ &~ + by
(ai bi)l +(a;j bj)J
+ (@t b))k

T 7

li

-~ i
~u /

~ o
a~Gj\7/\\~\ —

41;.

a = (lé-'». 3.)1/2
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TABLE 2.1 CONT'D

Item , Explanation
Parallel vectors Vectors which are

either co-directed or
oppositely directed.

Reference frame Three mutually perp-
endicular unit vectors.
No origin. Right-
handed if the rotation
of the first unit vector
into the second is co-
directed with the third.

Rotation Angular displacement
or motion. A vector
quantity with unit vec-
tor directed perpen-
dicularly to the instan-

taneous plane of motion.

Magnitude positive if
counter-clockwise; neg-
ative if clockwise.

Scalar (dot) A scalar product of the

product magnitudes of two vec-
tors and the cosine of
the smallest angle be-
tween them.

Unit vector The basic directional

quantity. A vector of
unit magnitude.

Vector Product of magnitude

Representation

—

~Z__

Y3
-~ u
2
|
W
a(t) a(t+At)

—
b =ab cos «

[\

[\
]
fo—

Q)
1

= sin ¢[cos 6 A +
sin 1] + ¢os ¢ v

X, o, v right-hand
dummy reference
frame

0, ¢: azimuthal and
polar angles

—_— ~
a=aa

;]ibia

a

S L= .b.

a-b (a'ibi)+(a3 J)+(akbk)
a

—
C



Item

Vector (cross)

-106=
TARILE 2.1 CONT'D

Exglanation

A vector. Magnitude
equals the product of

the magnitudes of two

vectors and the sine
of the smallest angle
between them. Unit
vector directed ac-
cording to positive
rotation of first vec-
tor into second.

Representation

aXb = (absin @) &

(¢ directed according
to positive rotation

of a into Y;.)
i 5 k

aXb =§ai aj ak
b, b. b
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TABLE 2.2

KINEMATIC TERMINOLOGY

Item

Dwell position

Force

Link
Linkage

Locking position

Moment

Motion

Pair

Position

Rotational or angular
motion

Torque

Translational motion

Definition

Mechanism position at which a zero
velocity occurs with finite input velocity.

Fundamental. Two uses: (l) Pure
translational force; (2) Both translational
and rotational force.

Rigid body. A component of a mechanism.

A system of interconnected links. Simple
linkage if only one closed loop of links;
complex linkage if more than one closed
loop.

Mechanism position at which output power
is zero, regardless of the magnitude of
input force.

Rotational force from both torque and
(? X ?) terms.
All orders of the time derivative of

position. Includes translational and
angular velocity and acceleration.

Joint connecting and constraining rela-
tive motion between adjacent links.
Higher pair: line or point contact.
Lower pair: area contact.

Instantaneous geometric configuration.
Defined by position vectors between
essential points.

Motion of one reference frame relative
to another

Pure rotational force.

Motion of one point relative to another.



la, b

5

6a, b
7a, b, c
8a

8b

9

10

1lla

11b
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TABLE 2.3

VECTOR RELATIONS

Algebraic Operations

—
a

t b= b3 + b )3 + .
b (a.i bi)1+(aj bj)_]+(ak bk)k

2 b= (ab) + @b) + (a,b)

JJ
A Ao~
i J k
aXb= a, aj a | (ajbk - akbj)l + (akbi - aibk)_]
'bi b. bk .
) + (a.b, - a.b.)k
i ji

2=aa

2 z=a’ axXa=0

a+b=b+a; a-b=b a; aXbs=-(bXa)
aX(bXc)=(a c)b-(- b ec
(aXB)Xc=(a c)b-(c-b)a

(aXB) (cXd)=(a c)b.d)- @ d)b- c)
(aXb) a=0 (aXbB) b=0

a - (—l-;x t?) changes sign if the cyclic order of the vectors
is changed (e.g., a, b, c to a c, b). Otherwise,
the value is unaffected by interchange of vectors and/or by
exchange of cross and dot.

[a - (b X Ei]z=(ubc)2{z<:~; BB E)E - A) - (3 B) (B - &)

- & -8 +1}
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13

14

15

16

17

18

19

20
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TABLE 2.3 CONT'D

Differentiation Formulas

D =
dt

n
n d
n

~
-

n s n ~ I
D u= (D ui)l + (D uj)J + (D uk)K

Du =L_0>X1A1

D(u +v)=Du +Dv

D(xu ) = (Dx)u +x(Du)
D(u-v)=(Du)¢«v+ur (Dv)
D(uXv)=(Du)Xv+uX (Dv)

Du=D(u )= (Dui+ (o Xa)

22— —_— ~ —_— — —_— —_— — —_— ~
D u'—‘D(Du):(DZu)u +w X(wX u)+(DwXu)+2[wX (Du)u ]

n=1, 2, 3 ...
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Figure 2.1 Planar Offset Slider- Crank Mechanism
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Magnitudes: r ) T
PPy P3P

Pairs: (21), (32) hinge; (43) turn-slide
Mass distribution

Frictional characteristics (linear)
Negligible elastic effects

Known functions of time:

-~

Vectors: Wy Dle’ 51 (all in k direction)
Unit vector: =
P2P)
Unknown:
Unit vector: r , all f,
P3P, 1)
2
Magnitudes: r ; w31, Dr ; Dw31, Dr ;
all fij and Tij (except 'er)

This is a kinematic problem, in which the forces are dependent on input
positions and motions. Such problems are much simpler than dynamic
problems (positions and motions dependent on input forces),and their so-

lution can be obtained in an ordered, compartmented manner:

)

(1) Determine the unknown key positions (f‘ , T
P4P3  P4P3

)s

(2) Determine the unknown key velocities (w,., Dr
31 P,4P;

regarding all positions as known and expressed as

single symbols.
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2
(3) Determine the unknown key accelerations (Dw,., D r ),
31 P,P
473
regarding all positions and velccities as known and
expressed as single symbols.
(4) Determine any higher crder key motions desired, regard-

ing all lower order motions as known.

(5) Determine the position and motion of any point'in the
mechanism (besides Py» Pys Pyo p4), regarding the
design of the individual links and the key positions and
motions as known.

(6) Determine the force and torque.exérted at the mechanism
joints, regarding joint .design and the kegr positions,
velocitie_g, and accelerations as known.

2.2.2 Positign Solution

In general, mechanism position solutions are nonlinear and
require solution of simultaneous vector and scalar equations. The

present solution is of second degree and is determined from a single

vector equation:

— —r —n e
r +r +r T 2 0 (2.1)
P1Py PPy P3Py PPy
At a given instant T and are both known and
PPy PPy
can be summed into a single constant, C. Vectors -;p p and
372
rp P are factored into magnitude and unit vector (a very frequent
473

and convenient operation).
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r 1 +rr +C =0 (2.2)

P3Py P3Py PyP3 PyPy

c=7~r + T 2.3)

P1Py PP
Equation (2.2) contains two scalar unknowns, rp p and the angle
473
defining rp .’ The equation represents two scalar equations,
372
being a two-dimensional vector equation, and is therefore a sufficient
condition for the determination of r and r .  The actual
P4P3 P3P,

solution proceeds as follows:

-~ ~ —

r r (r r + C) (2.4)
P3P, P3P, PPy PP,

Take the scalar product of each side of Equation (2.2) with itself,

thereby eliminating r

P3P,
r’ - vy ¢ty ' C) (2.5)
P3Py P4Ps P4P3
Rearrange and factor,
2w 2(f. o)+t - )=0 2.6
P4P3 P4P3 4P3 P3P,
From the quadratic formula,
~ — ~ -2 2 2 1/2
r = -(r «C)i(r «C) -(C -r )]/
P4P3 P4P3 P4P3 P3P,
(2.7)
Vectors r. and r can now be explicitly expressed in

P4P3 P3P,
terms of known quantities.



o

P,
A\
intersection for

solution

ey

intersection for spurious solution

Figure 2.2 Graphical Solution to Two-Dimensional
Offset Slider Crank-Mechanism



|

r =
P3P,

Observations:

(1)

(2)

(3)

1/2
{-(r c)t[(r L) - (¢t - % )] }r 2.8)
P4P3 P4P; 3P, P4P3
- . . 1/2 .
{ & Hilr - C)y-(c®-22 ] }r _-C @.9)
P4P3 P4P3 3Pz PyP3

Graphically, the solutions to Equation (2.2) are obtained
simply as the intersections of a straight line with a
circle (Figure 2.2).

Both the graphical and analytical solutions show that
two physically real solutions exist--the first because

of dual intersections, the second because of'dual signs.
More complicated mechanisms may have several
physically real solutions. This poses the intrinsic
difficulty that any solution in polynomial form must have
a degree equalt(;r greater than the number of physically
real solutions. The higher the degree of the polynomial,
the more difficult it is to obtain the solutions. Of
course, a given mechanism can only have a single in-
stantaneous position, depending on how it was initially
assembled and its subsequent behavior at locking
positions.

Complex roots (negative radicals in Equations (2. 8)

and (2.9) ) indicate that the design parameters prohibit
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TABLE 2.4

SOLUTIONS TO THE VECTOR TRIANGLE EQUATION -

T +s +C =0
Case Unknown Known Solution
1 r, 6 C, s T =-(s +C)
2a r, s 6 , Os, E_S’ = [M.Z.(_k_)]
* ' r *(s X k)
' . 1
— — — ~ 2 — ~ 21 —1 A
2b 6 . s C,r, 6 5= -(C es)t {s"-[Ce+(sxKk)]"}2[s
| |
f | 2 2 2
B L — 2 CT+s" " 2.1/2 4 =
, 0 ' , T, ‘s = 1
2¢ 91_ . | C, r, s ; s Tls ( Yo )] (C Xk)
, : 2 2 2



-21-
assembly. Such a situation results here if r
P3P,
is made small relative to C.

(4) In the analysis of simple planar mechanisms, an equation
of the form of Equation (2.1) is very often the only equa-
tion that must be solved. There are cnly four unique
arrangements of two unknown scalars in this equation,
assuming that each unknown occurs in only cne term.
The solutions for each of these arrangements are sum-
marized in Table 2.4. Note that thé solution for the
present mechanism corresponds to case 3.

(5) Conceivably, expressions for velocity and acceleration
could be obtained by differentiating Equations (2.8) and
(2.9) with respect to time. This would be difficult even
for the explicit second degree solution obtained here.
Explicit solutions to third and fourth degree polynomials
are very detailed; for degrees higher than four they are
theoretically impossible [75]. Thus, a more practical

means for expressing motions is required.

2.3 Motion Solutions

Equation (2. 1) can be differentiated as cften as desired

— — —

Dr + DT +Dr +Dr =0 (2.10)
P P, P,P, P;P, PPy
D r +D r + D r +D2r =0 (2.11)

PPy PP P3P, P4P3
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—

In .Equations 19 and 20, Table 2.3, the quantities u and :; can

be physically interpreted as the position vector r and the
P. . P.
- i+1%14
angular velocity vector w 1 In three dimensions the unit vectors
i

of angular velocity are time-dependent, and a certain development is
required because of this. In two dimensions these vectors all have

direction k (perpendicular to the plane of motion), and

Equations 19 and 20, Table 2.3, become

Dr = (Dr )7 o, (k Xt ) (2.12)
Piy1P; Piy1Py PPy ° Piy1P;
2—> 2 2 -~
Dr =[(Dr : )-w-lr ]r
P 1P Pin1P PP PPy
(2.13)
+ [(Dw, Nr ) +2(w.,)(Dr (k X r )
177 p; 1Py il P 1P Pi1P;

To obtain a solution for the key velocities substitute Equation (2. 12)

into Equation (2. 10) term by term. Note that physically Dr s

PPy
Dr , Dr , and w are zero.
PP, P3P, 41
w, (KXt )+w, (kXz _)+(Dr )7 =0 (2. 14)
21
PPy 31 P3P, P4P3 PyP3

There are only two unknowns in Equation (2.14): w and Dr .

31 P4P3

Equation (2. 14) can be reduced to two scalar equations in these

unknowns simply by taking the scalar product throughout--first with

~ ~

i, then with j . However, a more direct solution is obtained

A

by taking scalar products throughout with k X r and r .
P4P4 P3P,
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w, (kXr ) ¢ (kX T )+ w (kX r Jrk Xz )+0=0
21 P,P, P4P; 31 P,P, P4P;
(2.15)
T (r . )
21'p,py PPy PyPs
W - (2.16)
3 PP (v r )
e P3Py P4P3
w, [(kX* )7 1+0+ (Dr )(r L7 )= 0 (2.17)
el PP P3P P4P3 P4P3 P3P
(kXr _)er ]
[ PPy P3P,
Dr = - (wZIr ) (2.18)
P4P3 PP (3 e )
P3Py P4Ps3
Equations (2.17) and (2. 18) would have been much more detailed
if rp o had been expressed in full, via Equation (2.9). Instead,
372
it is assumed to be completely known--having been determined in the
position solution. Now, with w and Dr determined, a
31 P4P3
very similar solution for the key accelerations can be cbtained.
Substitute Equation (2.13) into Equation (2.11) term by term.
(0 )E o+ (Du, ) NkXEP - (wir )7
(W r r T+ r r =
21 p,py PPy 217 p,p) PPy 31 P3P, P3Py
~ N 2 ~
+(Dw31)(r )k X r )+ (D r )r = 0 (2.19)
P3P P3P, PyP3 P4P3

For convenience, sum the three known terms into a single constant

—_

CZ' The equation is then so similar to Equation (2. 14) that the
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solution can be written by comparison. Formally, it is obtained from

-~
-~

scalar products with the same two quantities (k X r ) and
P4P3
r :
P3P,
—_— -~ —_— 2 -~
C2+(Dw31)(k><r ) + (D r )r =0
P3P, P4P3  P4P3
C.= -w T W T +Du (kXT )
= - - w r
2 21 P,P, 31 P,P, 21 pr1
C, oe(kX1 )
2 P,P
372
Dw,, = -
31 - ~
r (r or )
P3Py P3P  PyP3
-C, e1
2_ B 2 P3P,
P4P3 (7 er )
P3Py Py4P3
Suggested Generalizations:
(1) Kinematic motion solutions will alway‘s be linear.

Equations (2.12) and (2.13) can never introduce
unknown unit vectors into Equations sueh as (2.10)
and (2.11), and the unknowns that are introduced
occur in additive terms, not in products with each
other.

(2) The denominators of the motion solutions will be
the same regardless of the order of motion. Thus

in Equations (2.14), (2.19), and corresponding

(2.

2.

2.

.20)

21)

22)

23)
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higher order equations, the directions associated with
terms of pos sible unknown magnitude will always cor-
respond from order to order. Here W51 and Do.)21

have vector (k X rpzpl); Wiy and Dw31,

- 2 -

T ); Dr and Dr , T .
P3P, P4P3 P4P; P4P3

Mechanism locking positions can be identified by the

(k X

zeros of the motion denominator. Here all output
motions approach infinity, but input motion and out-

put power approach zero.

2.4. Position and Motion of Any Point

With the essential positions and motions determined, the posi-
tion and motion of any point fixed anywhere in the mechanism can be
determined. For example, consider a point 1q fixed in link 3,

Figure 2.3. The position of this point relative to link 3 is specified

—

by the design of the link. That is, in the following equation Tap
2
is dependent upon r » by the design constants ¢ and «c,.
P,P 1 2
372
r._ =c.t +te (kX7 ) (2.24)
ap, 1 psp, 2 P3P,
The vector r. can be determined by a vector sum of known
1
vectors:
T =r  +r (2.25)

. r
qpl qu p2p1
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Figure 2.3 Dummy Reference Frame for Determination
of Position and Motion of an Arbitrary Point,
Given Essential Positions and Motions
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Motion can be determined by differentiating Equation (2.25) and

substituting Equations (2.12) and (2. 13).

—_— — ——

Dr X = Dr +Dr
Dr = w. (kX1  )+w,  (KxT )
ap, 31 ap, 21 P,P;
2—> — 2—»
Dr =D r + D" r
2— — A~ . 2 —
Dr E wilr (Dw3l)(k><r ) - Wy, T
apr, ap, ap, P,P,
+ (DwZI)(k X rpzpl)

2.5 Force Solutions

The force equilibrium solution to the mechanism of Figure 2.

will be obtained assuming Coulomb friction in the pairs and signifi-
cant link mass. This will illustrate that frictional effects can intro-
duce nonlinearity and that inertial effects introduce only additional
detail.

Figure 2.4 is an equilibrium diagram for the mechanism of
Figure 2.1. The mechanism is driven against a known force,

A~

-(1140) s , by means of an input torque, ('7'2li

varies in response to output, frictional and inertial forces.

Equilibrium conditions:

(2.26)

2.27)

(2.28)

(2.29)

1

)k . The input torque
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Figure 2.4 Equilibrium Diagram for an Offset
Slider- Crank Mechanism



PIRENRTS .
E.:,z '?13 +§3 w0 €20
”13-¥;1+"g’1.—=o )
_>21 ) ;;2 (?;I X?Pzpl) ' (EZ X?pzcz) +'?;2 -0 @22
Tt st (0, X?P;;Pz) c ><?Pa%) Heyno e
E +(¥’13><?p1p3a%+(—g'l ><—r'plcl)+'<}'l =0 (2.35)

A force and moment equilibrium equation has been written
for each link in the mechanism, iﬁcluding the ground link. Of the
three equations in each set, only two are independent. A solution
can be obtained from any four equations, two from each set. The

terms g‘i and o, are inertial forces and torques. The;e must
be included even for the ground link.-l-/
Pairs (21), (32), ‘an.d (43) are affected by Coulomb friction,
The direction of the frictional torqﬁe is opposite to the direction of
rotation ( ;i'j = -0 ij) and the magnitude is proportional to the

transmitted force.

1Ma.themaﬂc:ically, any one equation in a set must be the sum of
the other two. Physically, the acceleration of the ground link approaches
zero, but its mass approaches infinity. The product, mass times accel-
eration, will in general be comparable in magnitude to the inertial terms
of the other links. :
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—

T = - . 2.36
217 T21i T Pa1fa1)vy) (2.36€)
- . - 2.37
T3z = ~(P3pf35) 03, (2.37)
P " 2.38
13 = T(Prgfi3)egs (2.38)

The force E;:‘ is the sum of three terms: output force,

(f )E ; reaction force, (f )(12 X s ); and frictional force,

130 13r
gty )
‘ 'f13=f13r[(k><s)- p13s]+(f13o)s (2.39)

If Equations (2.36) through (2.39) are substituted into Equations (2.30)

through (2.35), the only unknowns in the resulting equations are

— —

f

f21, 32 721i These amount to six scalar unknowns.

and f13r°
Only four of the equations are independent. Of these, the two force
vector equations are each two-dimensional ({, 3); the two
moment equations are each one-dimensional (11). Thus, six
scalar conditions are available for determining the six unknown
scalars. |

A procedure for reducing equilibrium conditions to simulta-
neous linear algebraic equations in a determinate number of unknowns
is explained in Section 5.0. Such a reduction i"_s. impossible here be-
cause of the frictional terms. Instead, a specialized approach is

—

taken. Use Equations (2.31) and (2.32) to express f32 and —f’Zl

in terms of f1 This effectively eliminates four unknown scalars

3
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at the expense of four scalar cond.tions.

t.=f_ -1 2.40
f30 71137 33 (2.40)
T =1 vg 2.41
21~ 13 7€) (2.41)
Two unknown scalars remain: and 17,,.. Fortunately,
13r 21i
513 does not occur in Equaticn (2.34); to obtain f13r’ only one
equation must be solved. Substitute Equations (2.37) and (2.38)
into Equation (2. 34).
_ ~ ~ —_— —_— — —_— — _ 0
(Pypfzplwsy T (P gt gwyg #(E 3 Xr ) )+ (gg Xr )+ 0y
372 2°3
(2.42)
Nonlinearity is introduced when f32, fl3’ and f 13 are
expressed in terms of f13r. Using Equations (2.31) and (2. 39),
. . 1/2 > 1/2
f._=(f, °f = - (2 2.
32 = 37 135) [f)5 - (2e5)f)5 + 8] (2.43)
£ =(f .« f )1/2 Y T S A o ]1/Z
13 137 713 = [0+ wE 5, 13713077 13r 130
(2.44)

Substitute Equations (2.39), (2.43), and (2.44) into Equation (2.42),

and take the scalar product with k  throughout.
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2 2 2

3 " IO+ )5, - @uygfyg s, + 1)

2 2
) - @
2g L1+ p ) 5 - Qupgfyg My + 1), ]

ol

1/2 5 1/2
e

1/2

~ - 2 2 2
. + - @ 2.
t oy g0y e RN+ gy - Quygfyg g+ f) 5 ] (2.45)
+-f13r{[(k X'8)-ups1X rp3p2}' k+f, [(sX rp3p2)- k]

gy X )k ]4—(8} s k)=0

PyP3

If all frictional and inertial terms are retained, Equation (2.45) can

at best be developed into a fourth degree polynomial in {

P32

is zero the problem is s=2cond degree; if both P35

are zero the problem is linear. The terms PEY g3,

have no influence on the degree of the solution.

Suggested generalizations:

(1)

(2)

The equilibrium solutions for mechanisms

137 If
and p13

and 03
with rigid

links and no friction can always be obtained via a set

of simultaneous linear algebraic equations.

The num-

ber of sirnultaneous equations can be substantially re-

duced if the mechanism is simple, possibly to the

point that the solution can easily be physically interp-

reted.

Inertial terms introduce more detail, but the solution

remains linear.
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Frictional terms may introduce nonlinearity if the
magnitudes of the frictional forces are dependent on
the magnitudes of the transmitted forces. This
would be the case with journal bearings, but not with

ideal roller bearings.



3.0 DIRECT SOLUTION OF THREE-
DIMENSIONAL VECTOR
EQUATIONS

Kinematic problems in position, motion, and force can usually
be represented by single or simultaneous vector equations. The un-
known quantities in these equations may not be distributed in a simple
manner, especially in position problems. This section discusses two
means by which direct (noniterative) solutions can be obtained:
(1) use of symmetry, as in the Tetrahedron Solutions; (2) use of the
eliminant, for more complicated problems. Examples are présented

of the application of these techniques to position solutions of actual

mechanisms.

3.1 Symmetry Solutions

The -known unit vectors in a set of vector equations define a
natural geometry or symmetry. Exploitation of this symmetry
usually reduces the degree and number of algebraic polynomials in

the eventual solution. Symmetry soiutions are those which are obtained

in general terms entirely by exploitation of symmetry. Typically such

solutions are of first, second, fourth, or eighth degree in a single

variable, and the expressions for the coefficients are interpretable.
Several important symmetry solutions are obtained and cate-

gorized in this section. Outlines of derivations and geometric

-34-
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interpretations are included to explain techniques of identifying and
exploiting symmetry. When only a few quantities are known, symme-
try is strong, because there is little conflict over which quantities
should define the orientation of a dummy reference frame. When
many quantities are known, more than one frame may be required
and symmetry is weaker. Symmetry solutions to more than one or
two vector equations are usually prohibitively difficult.

3.1.1 The Tetrahedron Solutions

The most common condition in kinematic analysis is the

equation, sum of vectors equals zero:
T+s+t+C=0 (3.1)

Equation (3.1) is named the Vector Tetrahedron Equation because,
geometrically, it outlines four of the six edges of a tetrahedron.
This is analogous to the Vector Triangle Eguation in two dimensions
(Table 2.4). .The utility is also analogous; in many situations a
single Vector Tetrahedron Equation is either the only condition im-
posed or it can be solved independently of other conditions

Equation (3.1) is limited to four terms because,as a three-
dimensional equation, it can determine only three scalar unknowns.
These unknowns can be distributed throughout at most three vectors,
provided no unknown occurs in more than one term. All other vectors
must then be known and can be summed into the single vector con-

—

stant C,
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TABLE 3.1

CATEGORIZATION OF SOLUTIONS TO THE
VECTOR TETRAHEDRON EQUATION

—

T+s+t+C=0
Degree of
Case Unknown Known . Polynomial
Number Vectors | Unit Vectors Scalars Solution
, 9 , - 1 . .
1 r, 0 d>r (trivial)
2a r,0 ; s c s, W ¢ 2
T T r
2b , 656 c ©_, s, 4
t T s c wr ws ¢r S ¢s
2c e , d)r; s 6 s by 2
| 6, ¢;06 c o s, 2
24 r ¢r s | C W r; s ¢S
3a r; s; t E r, §, £ 1
M M 6 c ’ A! % t’ Z
3b r; s; t C r, s wt ¢t
!
: i — ~ -~ ~
3c . Gs; 9t C T, W, W, s, Bsit, B | 4
| .
i — ‘ -~ -~ -~ N
' 6;60 ;6 ! , s T, ;S | 8
3d 506, C | W W W (T $ri S s
| ' t, ¢
t | Tt
Remarks:
(1) Unit vectors Z)r, Z)s, bt are the known directions

from which the known angles d’f’ d)s, and qSt are
measured.
(2) Whenever any of the vectors r, s, or t are com-

pletely known they are added into the single constant

c.
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Different solutions are obtained to Equation (3.1) for different

—_— — —
t

distributions of the three unknowns. Vectors r, s, and are
expressed in spherical coordinates, so that the unknowns may be any
three of the nine coordinates-%/ r, 06 ,¢; s,0,¢; t, 0, ¢,.

r r S S t t
(The angular coordinates can be measured from any known unit vector,
not just from the ground reference frame.) It will be shown that there
are only nine basic distribut'ions of unknowns that lead to distinctly
different solutions. These are called cases and are summarized in
Table 3. 1.

Two effects limit the number of cases in Table 3. 1:

(1) The terms in Equation (3.1) are commutative. Combinations
of unknowns such as r; GS; Ot and 0r; s; Bt are therefore in the
same case.

(2) When only one angle of a vector is unknown, it may be
either the azimuthal or the polar angle. However, the same solution
suffices for both situations. Combinations such as 0r, ¢r; 9s and
Gr, qu; ¢s are therefore in the same case. To see this, assume
that a solution to Equation (3.1) has been obtained with Br unknown,
qu known. The unit vector r_  may be written,

1 1

T, = {sin d)rl[cos Grl)\l + sin Brlu 1] + cos ¢rlvl} (3.2)

2 . .
In listing coordinates, semicolons are used to separate co-
ordinates from different vectors. Commas separate coordinates
from the same vector.
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Now assume a solution is desired for the situation d)r un-
2
known, Gr known. The remaining two unknowns are the same as
2

in the first solution. The unit vector ;2 is written,

r, = {s1n qu [cos Gr Al + sin 91_ ul] + cos d)r vl} (3.3)

2 2 2 2

Define a second dummy reference frame.in terms of the first.

i = o X inf g :

Hy [cos L N Tsin b “1] (3.4)

2 2
A= v :
2 vl (3.5)

v, = AZX“Z . (3.6)
Unit vector ;2 can now be expressed in exactly the same form'
as ;1 in Equation (3. 2).

2 = fain T A tsine o T

r, = {sin > [cos ¢r27\2 + sin ¢r2u2] + (cos 2) v, } (3.7)
Thus the same general solution for which Br was unknown will

1
suffice for unknown d)r » provided the following replacement of
2

constants is made: ¢rl<— /2, AT A THy VTV,
In fact, solutions for unknown ¢ are simple special cases of
solutions for unknown 6, because of the simplifications introduced

by the angle /2.
Each of the Table 3.1 cases has its own symmetry. This

symmetry is strong for cases in which few knowns enter (1, 2c, 2d)
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but becomes weaker as the number of known quantities increases
(2b, 3c, 3d). As the symmetry weakens, the solutions become more
difficult as indicated by the degree of the polynomial from which the
solution is obtained.

An outline of the derivation and the solution for each of the
nine cases will now be presented. The derivations are included to
provide insight into the use of vector methods for identifying and ex-
ploiting symmetry. In most cases, if symmetry is ignored, a general

solution is prohibitively difficult.

Casel. r, 6 , ¢ Unknown.
—_— r r

The unknowns all occur in the single vector r. Vectors s and

? are known and are added into E Equation (3.1) becomes

T +C =0 (3. 8)
Solution:

¥ =-C (3.9)

Cases 2a - 2d.

The unknowns are distributed throughout only two vectors r and
s. Vector t is known and is added into C. The geometry of

the individual cases is shown in Figures 3.1 through 3.4 .

Equation (3.1) becomes
T +s +C =0 (3.10)
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2a., r, Gr; s Unknown.

Expand Equation (3.10), expressing T ina dummy reference

~ ~

frame ’i, M, V.

r{sin ¢r[cos Gr'i + sin Orﬁ] + cos ¢r§} +85+C =0 (3.11)

—

Define a unit vector, p, perpendicular to vectors C and

®»)>

1O

X

P E i (3.12)
| € X sl
Take the scalar product throughout Equation (3.11) with f) .
r{u‘in ¢r[(cos ér)(i ' f)) + sin Or(ﬁ p)] + cos ¢ . p)} =0 (3.13)

Provided r is non-zero, Equation (3.13) is a condition involving
only one unknown, Or. This condition can be made even simpler
by suitably defining A, 4, ¥. Theangle ¢_ between F and
z"r is known; therefore, v is set equal to Gr‘ However, A

can still be defined to cause the product (i ' 5) to be zero. The

definition of ﬁ follows from that of v and A .

yu wr (3.14)
. PXU
e 519
lpX w,l
W . . Pl DU
umUX A= l“r ‘l" (3.16)
pX W
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\ j
i ’/ Figure 3.1 Case 2a. r,0r;s Unknown.

Two Solutions Possible.

Figure 3.2 Case 2b. r,é)r;GS Unknown.

Four Solutions Possible
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Equation (3.13) can now be solved directly for sin Gr because

the term involving cos 6 is zero.
r

sin 8 =-&- Bl (o ¢ (3.17)
r ~ ~ r
(u - p)

-~

An explicit expression for r can now be written in terms of the
A, W, v frame and the vector 13, using the form of

Equation (3.2). Express cos Or by means of Equation (3.17)

and the identity cos Gr =% [1- Sinzer]l/z-

Solution:
N Z (1’; . “)2 2 I/ZA (“ . A) ~ -
r=i{sin¢ --——;——P——cos ¢} YL - 5 (cos ¢ Ju + (cos ¢ v
r ~2 r -~ - r r
(u - p) - p)

(3.18)

Unknowns r and s can now be obtained from cases 2a and 1,

-~

Table 2.4, where k is identifiedas bp .

o [c:*-ufxf)]; (3.19)
[r: (pXs)]
s=-(C+r) G.20)

2b. r, 0 ; 6 Unknown.
r s ———
In this case it is impossible to eliminate two of the unknowns
with a single scalar product. Instead, two scalar products must be
taken, each eliminating the same unknown, Or. A second unknown,

r, is eliminated between the two equations resulting from the scalar
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products. Finally, the equation resulting from the elimination is
6

transformed to a fourth degree polynomial in tan (—é-s-).

Expand Equation (3.10), expressing T and s interms

A ~ -~ ~ -~ -~
of dummy reference frames A , u , Vv and A, u , v _.
r "r r s s s

For convenience represent groups of known terms by single constants

S and CZ.

. 9 ~ . -~ -~ -
r{sm d)r[cos rhr + sin Grur] + cos quvr}

(3.21)
_ % +sin6n]1-C
S[cos GS tsin Gsus] c,
v, = W (3.22)
S = s sin ¢S
CZE C +(s cos ¢S) W (3.23)
Eliminate Gr for the first time by taking the scalar products of
both sides of Equation (3.21) by themselves.
P25t +ct +28[(C. X Ycos 6 +(C. - 4 )sin6 ] (3.24)
- 2 2 s s 2 " Hs s '

Eliminate Gr for the second time by taking the scalar product

throughout Equation (3.21) with :ur. The two terms involving Gr

~

~ -~ -~
will be zero, because A - wr and u ° W are zero. (Unit
r r by

-~

vectors A, 4, Dr are mutually perpendicular and v = wr.)
r r

>
6]

The term involving cos GS can be made zero by defining

~

Mg ;s as in Equations (3.26) through (3.28).
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r cos d)r = --[S(uS . wr) sin Os + (C2 o wr)] (3.25)
vV = 0 (3.26)
S s
. 0, X ©
A= — (3.27)
|w X w_|
r s

5 (3.28)

T
]
<>
X
>
i

Square both sides of Equation (3.25), then divide by cos d)r.

Subtract the resulting equation from Equation (3.24), to eliminate
. , 2

r. The difference is an equation involving only OS, in sin Gs,

sin Gs, and cos Os terms. Transform these terms by the

identities
1 - u2
cos 6 = (3.29)
l1+u
sin § = —23 (3.30)
2
l14+u
es
u = tan (—2~) (3.31)

A fourth degree polynomial in u is generated by multiplying

throughout by (1 + uZ)Z:
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Solution:
Pput+pP 4P ul +Pu+P =0 (3.32)
4 3 2 1" 0 T '

SE 22 2 s = 2

P, =(C, " w)-cos ¢ [s" -25(x, - C,)+C;] (3.33)
— A -~ g ~ 2 ~ . —

P3 = 4S[(/.¢s (,.)r)(C2 -wr) - cos ¢r(us CZ)] (3.34)
_ 2~ A2 = a2 2 2 2

P, = 2[28"@_ - w)"+(C, - )" - cos 4 (s” +C)) (3.35)

Pl = P3 . (3-36)
= A2 2 2 & — 2

PO = (G- wr) - cos qu[S + ?.S()&s . CZ) + CZ] (3.37)

- sin ¢>s 2 - . .

s = s{ > [(1 - ))\S + (Zu)us] + cos d)sws} (3.38)

l+u
T=-(s +C) (3.39)

2c. 6 ,¢ ;s Unknown.
r'r —_—
Rearrénge Equation (3.10) explicitly in terms of r and
eliminate r by taking the scalar product of both sides of the
equation with themselves.

2 2 -~ ol
r2=8t+c?+2sc(3- &) | (3.40)

Equation (3.40) is a second degree polynomial in s and can be

—

solved by means of the quadratic formula. The full vector s

is expressed-as the product of s and the known unit vector 8.
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Figure 3.3 Case 2c. 91" ¢r; s Unknown.

Two Solutions Pos sible.

Figure 3.4 Case 2d. Or, d)r; GS Unknown.

Two Solutions Pos sible,



-47-

Solution:
- 1/2 -
— N 2 2 Soa2 ~
s = [-(C-s)t {r - C[1-(C~ s) ]} Js (3.41)
T=-(s4+C) (3.42)
2d. 6 , & ;6 Unknown.
T r § ——————
Obtain Equation (3.40) as in case 2c. Two conditions on
s are now known:
2 2 2
‘ r -s -C .
= 3.43
(s C)= [ oG ] ( )
s W )= 3.44
(s ws) cos d)s ( )

The solution to a set of equations of this form is obtained in Section 3.1.2,
Equafion (3.131). Some rearrangements are made so that s can be

evaluated with a minimum number of operations.

Solution:
— ~ ~ ~ 2
s =(scos ¢ Jw + 1 i{sz[l—coszqﬁ][l—(C'w)]
s s ~ a2 S S
[1-(C" w)]
s
C2 + SZ _ rZ + 25(6. J)S)(cos qSS) 2 1/2 . R
- ‘ (C Xw))
2C s
(3.45)
CZ + s2 - rZ + 25(6‘ @S)(cos d)s) . . R !
+ [ 3C ][(Cst)st]g
T =-(s +C) (3.46)
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Cases 3a-3d.

Here the unknowns are distributed throughout all three vectors
?, g, and T Therefore, Equation (3.1) is employed as stated.
The geometry of the individual cases is shown in Figures 3.5 through
3.8 .
3a. r; s; t Unknown.

Restate Equation (3.1) with r, s, and t factored into

magnitude and unit vector.

—

rr +ss+tt+C =0 (3.47)
Equation (3.47) can immediately be reduced to three simultaneous
linear algebraic equations in three unknowns simply by taking scalar
products throughout with any three known, non-parallel vectors,
such as ;, ;, k. However, for purposes of interpretation and
ease of computation it is preferable to take these products with the

vectors (s Xt), (EtX=zr) and (% X 8). The resulting equations

will contain only r, s, and t, respectively.
Solution:

-[C: (s Xt)]r

[t (8X¢t)]

—_
I

i

(3.48)

P R (. J) (3.49)
[* - (s Xt)]

_ -[C - (r X s)]t (3.50)

[7 - (38 X1)

-



Figure 3.5 Case 3a. r,s,t Unknown.

Figure 3.6 Case 3b. r,s, Gt Unknown.

Two Solutions Possible.
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with r and s known, t may be found most easily by
r+s

t=-(r+s+C) (3.51)

3b. r; s; Gt Unknown.

—

Expand Equation (3.1), expressing t interms of a dummy

~
~ ~
reference frame A, u, V.

rr+s5+tfsingfcos 08 + sin6p]}+ C, =0 (3.52)
C2 = (t cos ¢t)wt + C (3.53)
Define a unit vector, 13 » perpendicular to r and s.
b= L XS (3.54)
|r X s I

Both r and s can be eliminated from Equation (3.52) by taking a
scalar product throughout with }3 . Moreover, the Ai, G, VU,

frame can be defined so that A - f) is zero and the term involving

cos Ot drops out.

t(sin ¢)(sin 0,) (i - ) + 6’2 cp =0 (3.55)

VE D (3.56)

. P XG

Ag—— b (3.57)
1P X W,

-~ ~ ~ 5- ((:)t ) ﬁ)bt

uEVXA= ‘ (3.57)

lp X & |



Equation (3.55) can be solved for sin Gt, and cos Gt can be
. : + .2, 41/2
expressed by the identity cos 9t =< [1 - sin Ot] . These expres-
sions are substituted in the spherical coordinate expansion of f in
the X 5 /:I , v frame. A few rearrangements are made for com-
putational convenience.
Solution:
- 1 * A ~ . 2 - A 211/2 A~ 4
t=s ——— {[tlw X p| sin ¢]" - (C 'p)}/(pr)
~ ~12 t t 2 t
| o, Xp|™L

t (3.58)

— -~ -~ -~ ~ ~ 2 " — R .
[(C2 . p)(wt - p)t t[ th p[(cos ¢t)(sin ¢t)]wt - (CZ - PP

With ? determined, Equation (3. 1) reduces to the plane Vector

Triangle Equation. Unknowns r and s can therefore be obtained

A~

from cases 2aandl, Table 2.4, where k is identifiedas p.

?=‘_L’c+C)° (p X s) (3.59)
[r - (pX5)]
s=-(r+t+C) (3. 60)
3c. r; 6 ; 8 Unknown.
s t —m—

In this case, as in case 2b, it is impossible to eliminate two
of the unknowns with a single scalar product. However, two scalar
products can be taken to eliminate the unknown r. By careful defi-
nition of reference frames the first result will contain Gs only in
the form cos 05; the second only in the form sin Gs. The unknown

95 can be eliminated by squarihg and adding. Finally, the equation



Figure 3.7 Case 3c.

Figure 3.8 Case 3d.
Possible.

0

r,6 , 6
s

r

’

=52«

0,86
s

t

Unknown.

Four Solutions Possible.

Four Real Solutions
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resulting from the addition is transformed to a fourth degree polynomial

Ot
in tan (—2- ).

Expand Equation (3.1), expressing s and t interms of

~ A

dummy reference frames KS, ;,ts, v and A?ut, Moo Ve For

convenience represent groups of known terms by single constants

—_—

S, T, and CZ'

: 6 X+ sin 6 0% +sin6i ]+C, =0
rr + S[cos Mg tsin sMS]+T[cos Ny tosin é.tt] C

2
(3.61)
S = s sin d)s (3.62)
T =t sin ¢, (3. 63)
C‘2 = (s cos d)s) Wy + (t cos ¢t)wt + C (3. 64)
Define the dummy reference frames and the vector p as
follows:
Vg = W (3. 65)
A rX o
A= (3.66)
S 1E x|
s
r- (W < )0
A A & S s
M = v XA = (3.67)
s s s
lr X o |
s
v, = G (3. 68)
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)\t = (3.69)
A' ~ .
| . th[
R N ("R Y™
hgS v XA = L st (3.70)
[KSX wt[
p= 1t X Xs (3.71)
Take scalar products throughout equation (3. 62), first with Xs’
then with f)
Q- A ) si C, A )= 3.72
S cos Os + T(;,tt >Ls) sin Bt + (CZ )xs) 0 ( )

A ~

* p) sin 6 AP i+ p) sin® C . 5)=0
S(;,tS p) sin ¢t T[(A.t p) cos Ot + (ut p) sin t] + (C2 p)
(3.73)

Multiply through Equation (3. 72) by (ﬁs . p). Transfer the second
and third terms in Equations (3. 72) and (3. 73) to the right side. Then
square both sides of botﬁ equations and add to eliminate GS. The
sum is an equation involving only Gt, in 'sinZBt, (sin Ot cos Gt),

sin Ot and cos 0t terms. Transform these by the identities.

-
cos 0, = 4 (3. 74)
t 2
1 +u
sin § = —29__ (3.75)
t 2
1 +u
0t

u® tan (T) (3.76)
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A fourth degree polynomial in u is generated by multiplying through-

2
out by (I +u )2.

Solution: 4 3 5
P,u +P,u + P,u” + Plut Py=0 (3.77)
P, = (u -‘f[(c?-i)z-szh[ﬂi 5 - (S, - B (3.78)
g = g PG, - A t P 2 P '
P, =4T{(_- p G, - A)C, - )+ G, - BIC, - B) - TR, - M1}
(3.79)
A A2 e 2 20 = A2 24 A2
P,=2{(_ - p)UC, - X )" - 8"1+[(C, - p) - T"(A - p)7]
2.~ ~l A ~ 2 N -
+2T [, " P) (- ks)-+(ut‘p)]} (3. 80)

-~ ~ Z A & - N ~ ~ g A -~
Py = 4T{(, BTG A NG, A )+ G BIC, B+ TR B

(3.81)

A A 2 - > '2’ < -~ - -~
Po=(h,  BIEC, - A= 1+ (TR, - 51+ (S, - p)F G.82)

{sin qSt > . }
=t [1-u" )X + @2ua]+cos ¢ w (3.83)
(1+u2) t t tt

t

g N -~ ~
Expand s in spherical coordinates in the )\s, My vs frame,

then substitute expressions for cos 05 and sin 98 from

Equations (3.74) and (3. 75).

= - ’[T(ut . hs) sin Ot + (C2 . As)]ks (3. 85)

—
S

1 > -~ A PS
1 . 9 .- in
+ (“s - p){T()\t p) cos ¢ + (ut p) sin t]

+(C, - ﬁ)}ﬁ-SJ + (s cos ¢)b_
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T=-(s+t+C)- (3. 86)

3d. Gr; GS; Ot Unknown.
This case has so liftle symmetry that three dummy reference
frames are required, one each for —;, ; and t. A general
solution can be obtained, but the difficulty involved suggests that a
practical upper limit has been reached. Beyond this limit the exploi-
tation of symmetry is helpful, but if is not sufficient for obtaining
a complete solution. Additional tools are required, such as those of
Denavit, Hartenburg, Razi, and Uicker [29? 63, 73], or the approach
discussed in Section 3.2.
To obtain the present solution, three scalar products are taken.
This yields three scalar trigonometric equations in (Or; 0 ),

S

(Gr; Gt), and (Gr; 95; 9t), respectively. The second equation

contains ‘Gt only in the form cos Gt; the third only in sin Gt.
The unknown Gt can therefore be eliminated by squaring and adding,
although this causes a large build-up of terms. The equation formed
by the sum and the first equation from the scalar product contain only
9r and Os. The latter equation is simple in form and is solved for
cos Os in terms of cos Br; the result is then substituted for all

,es terms in the former equation, using the identity,

1/2.

sin OS =% [1- cos’6 The resulting equation contains only OS

5]

but must be squared again to eliminate square roots from the . sin Bs
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substitution. The last equation is transformed to an eighth degree
polynomial in tan (—Zz) .  Even this tenuous solution would be pro-
hibitively difficult without careful definition of the three dummy reference

frames to minimize the number of terms and prepare for the elimination

of 6 and 0

t s’
Expand Equation (3.1), expressing r, s, and t interms
of dummy reference frames A a . U i s 4, U 7: s B DL
y r’ “r Ur s “s Vs t “t t

For convenience represent groups of known terms by single constants

R, S, T, and C,.
o A in 6 [ ) ing .
R[cos RO er“r] + S[cos es)\s + smesus] (3.87)

+ T[cos Gtxt + sin ot“t] + C2 = 0

R 2 r sin d)r (3.88)
S = s sin d)s (3.89)
T =t sin ¢t (3.90)
C,=r cos ¢rwr+scos ¢Sws+tcos ¢twt+c (3.91)

Define the dummy reference frames as follows:

Vo= 0 (3.92)
r r

?arx&t
P S— (3.93)
r ~ ~

lw X w|

r t



A=l XD o= t (3.94)
oo F 16 % 6.1
r t
Vo= W (3.95)
s s
. C)s X E)t
o= - (3.96)
lws X wtl
A= opoxp =Bt (et eeg (3.97)
5 5 8 - -
[ws X wt[
S = A 3.98
v, w, (3.98)
. o, X 0,
M= (3.99)
i lo X @]
s t
(w WO, -
A= i Xp e—S_t t 8 (3.100)
t £t 1B X &
s t
Take scalar products throughout Equation (3,87) with ‘:“t' C)s,
and us.
a, cos Gr+0+a13coses+0+0+0+a17‘-'0 (3.101)
a, cos Sr + a,,s8in Gr +0+0+ a,5CO8 6t + 0 + CO 0 (3.102)
aalcosBr-+a3zs¥16r-+0A+a349n195-+0 +a365h16t+-a37= 0

(3.

103)
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The definitions of all constants, including the aij’ are included in
Table 3.2. The solution itself proceeds as described above. The
equation resulting from the final squaring operation has the following

form:
4 3 3 - 2
in 8 .
g,cos Gr + g,cos Or sin 0_ + g,cos Br + g, cos Grsm Gr
+ cosze + g cos B sinf +g_c 6 + in 6
€s T g6 S T S Y, T Bgcos r g851n r
+g9=0 _ (3.104)

Transform this equation by the identities,

1 - u2
cos 6 = (3.105)
r 2
1 +u
sin 0_ = 2u > (3.106)
1 +u
0
u = tan (Tr) (3.107)

An eighth degree polynomial in u 1is generated by multiplying
throughout the transformed equation by (1 + u2)4‘

Solution:

8 7 6 5 4 3 2
P . -
P8u + P7u + P6u + 5u + P4u + P3u + PZu + Plu + PO 0

(3.108)
Pg=g)-8;3+tg;-8,*¢g (3.109)

P, =2[-g, +g, - g +gg] (3. 110)
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TABLE 3.2

DEFINITION OF CONSTANTS USED IN CASE 3d.

r sin ¢
r

S=581n¢s

=T COS A+scos W +tcos Zo+€
CZ ¢rwr qu s ¢tt

11

21

25

31

34

i

v = W "
r r K
v £ W "
S S H
vV = w o
t t K

R[wI;th| a

RIG, "~ by - (o

r

1}

o, X o]

-T| v, X w|

“Ro_ - w)o, (0 X o)

|wr><wt|[ws><wt|

S a

36

T

T =t sin qﬁt
sz wt- (wr wt)wr
[wr X wt[
A at - (&S at) ‘35
X_= -
|ws X wtl
‘o oS Wl
Xt _ (W wt)th W
[ws X wt[
a7 = (Cym w)
R[ ((:)S X wt)]
o, X o
(C2 ‘ ws)
R[(w W) - (wr wt)(ws w,)
Iwrx wtl [ws X wtl
a37 = 2 ' “s)
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TABLE 3.2 CONT'D

- oy X wlag, by, =7 o, X w2z,
o X by lag, by, = - lw X wlasg
4 a4 = 8 4 = 4@>. - b))
411 2 = %1% 3= *@177 P34
®e . - b2) = 2b..b e = 2b..b
31 °32 €, = “P31732 3 - “P31737
2 = (b2 2
LPLEY e, = (b3, * byq)
2 2 2 2 ~
(@,; Tbyym 21173227 by,) 1, = 20,025 by P35)
2(a,,2,7 T Py P37 " 29217 4T 2(ay,2,7 T P35P57)
2 2 2 2 2 2
(ay, t by, T by, tay, Thyp ~ g a)s)
2 2
dle1 + f1 - f2
dlez + Zflfz
a e, +dye + 261y - 208,
dle4 + dzez + 2f1f4 + 2f2f3
> 2 2
d1e5 + d2e3 + d3e1 + 2f1f5 + f3 - f4 + fz
dze4 + d3e2 + 2f2f5 + 2f3f4
dye, +dge, + 26,0 + 208,
2f f
d3e4 + f4 5
2 2
de +
385 T Ty



=7[- - 3.111
P, 2[ 2g, tgy - g, t Zgg] ( )

= - 3.112
P, ?.[3gZ gy g6+3g8] ( )
P, =2[3g, - g, + 38 (3.113)
P, =2[-3g, - g, * g *3g,] (3.114)
P2 = 2[-2g1 - 85 tgo t Zgg] (3 115)
P1—=-2[g2+g4+g6+g8] (3.116)
PO=[gl+g3+g5+g7+g9] (3.117)
- sin ¢ 5
r = 1] L1 -u"M +(@upa ]+cosdd } (3.118)

2 r r T T
(1 +u’)

s = sfsi R in 0 [i 5 11
s = s{sin qu[cos shs + sin Gsus] + cos d)sws} (3.119)

In Equation (3.119), cos Os and sin 95 are determined
from Equation (3.101) and the equation resulting from the elimination

of Gt between Equations (3.102) and (3.103).

- a - a. (cos 6 )
cos 0_ = 17 11 - (3.120)
213
az -(a,,cos@ + sin + )Z- (b,,cosf +b,. sinf +b )2
sin 6= 25?21 r 322500 T3, 31 r P35 R T Psg
s 2b34(b3lcos Br + b3231n 9r + b37)
b (1 - cos?0 )
- 34 = } (3.121)
2 . .
byylby cos 6+ Dby, sin 6 +b,y)
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t=(r+s+0Q) (3.122)

3.1.2 Supplemental Solutions

In many position problems, conditions are imposed which cannot
be stated in the form of Equation (3.1). These are difficult to categorize.
However, two cases are of particular importance and their solution
will be discussed here. The geometry of these solutions is shown in
Figures 3.9 and 3.10.

(1) Two simultaneous scalar products containing an unknown

unit vector.

(a-r)= ¢, (3.123)
b 7= c, (3.124)
Here a and ’; are known unit vectors; c1 and c:2 are

known scalar constants. Unit vector r is completely unknown.
Expand r in spherical coordinates in a dummy A, ;,Ac )

v reference frame:

r = sin ¢>r[cos Gri + sin Grﬁ] + cos d)rwj (3.125)

Define vV so that only cos d)r will remain when the scalar product
indicated in Equation (3.124) is performed. Define W so that the

L: term will be zero in the scalar product of Equation (3.123).

7=b (3.126)
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™
I}

Figure 3.9 Geometry of Solution for Simultaneous

Scalar Products

WH)

Figure 3.10 Geometry of Solution for Five Scalar

12

%3

a
34

%41
A4

= cos (c41)

unknown

Products between Four Unit Vectors,

Sixth Product Unknown
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;={aXxXb) (3.127)
la X B |
f=iaxp-la-blb-a (3.128)
la X b |
Perform the scalar products,
- sin ¢r e'oser |5.><B| + cos ¢r($.' B)=C1 (3.129)
cos ¢r = c2 (3.130)
Equations (3.129) and (3.130) are the source of expressions for
sin Or, cos 9r; sin d)r, cos qu. These are substituted back into
Equation (3. 125).
Solution:
r= - lA 21/2 {[cz(a - b) - cl]i + [Z(CI)(CZ):{'E- b)
[1-(a-Db)]
-cz—cz-(£-£)2+1]l/2ﬁ} +c. b (3.13))

1 2 2

(2) Five scalar products between four unit vectors, sixth
product unknown.

Given:

r) =<,
r3) = cyq
Ty =cqy

(3.132)

(3.133)

(3.134)



Determine

T =y
r3)=cyy
(r.2 r4)
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Using Equation (3.131), first express

ClZ] A t [2¢

c12, c23,, and c13;
034, c41, and c13.
“ 1
2= (- 2.2 {leg3e)s -
13
2 2 1/2
" Cyp " €3 + 1] L
i - r X r,
1, A -
Irl X r3|
o mporgdrg T
A=
~ X -~
17, X 5,
“ 1
ETIEE flegiens -
_ 13
2 1/2
cg1 " S3 UM,
Koy = Ky
o=

1-f-

€2

A
r

3 B

then express

3

in terms of the constants c_..

-~

r

r

1)
2 in terms of
in terms of
4 in te

12%23%13 ©

gty l2e5 0, 005 "

+cC

34

A
r

3

2
“12

34

(3.135)

(3.136)

(3.

(3.

(3.

(3.

(3.

(3.

137)

138)

139)

140)

141)

142)
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Obtain (fz . §4) as the scalar product of Equations (3.137) and
(3.140).
Solution:
-§=-——'1~—{[cc -c Jle,.c,, -c. ] F[2c,  c, . c
4 2 2313 127741 13 347 — 12 23 13
[1- ¢4l
13
2 2 2 1/2 2 2 2
TC2 7 %3 cp3 P TReg0 005 7 05y T S T O

1/2
+1] /} +eyyCay (3.143)

3.2 The Eliminant

The solution of difficult vector equations is likely to require
simultaneous solution of algebraic polynomials. This is éugge sted by
the solutions to cases 2b, 3c, and 3d of the Tetrahedron Equation.

In each of these cases the solution can be obtained as a polynomial

in a single unknown. However, in more complicated problems it might
only be feasible to reduce the problem to two polynomials, each in the
same two unknowns. The direct mathematical approach to obtaining
roots in such a situation involves use of the eliminant (also known as
the resultant determinant or Sylvester's determinant). Several texts
on algebra derive and discuss the eliminant [75]; only its use will be
described here.

Development of the eliminant approach as a major tool for the
solution of three or more simultaneous polynomials is yet to be achieved.

This will probably require use of statistical or iterative methods,
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because of the astronomical number of operations involved in an exact
procedure. The present development is a reasonable tool for simul-
taneous solution of two polynomials of low degree, but is primarily an
exploratory device.

Consider the problem of obtaining the same y rootin e=ch
of the following two equations.

m . m-1
fmy +f;n_1y + ... +f1}r+ fO-O (3. 144)

n
gy +gn_1y +... +g1y+g0-—0 (3.145)
A necessary and sufficient condition for this is that the following

determinant be zero:

< t=m +n »{
fm fIn—l fm-Z f0
n N S ST S £
fm fn-1 fm-2 £ =0
(3.146)
gn. gn-l g.n-Z g0
m 0
| €n €rn-1 Bn-2 &€o
|
| 8n  Bn-1 En-2 €0
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In Equation (3.146) all blanks should be filled with zeros. For example,

when m=3 and n =2, Equation (3.146) becomes

0
3
0 =0 (3.147)

0

In Equation (3.146), the quantities fi and gi may be functions

of any number of variables (u, v, W, x, ...). However, for

present purposes let the fi all be kth degree polynomials in x;

the g, all g¢th degree polynomials in x. The result of expanding

Equation (3. 146) is therefore a single polynomial in x, of degree

(nk + ml). However,; the number of multipliéations involved in the

expansion prohibits doing it by hand, unless all but a few of the coef-

ficients of Athc? fi and g; polynomials are zero. This presents two

‘ alternatives, both of which require the digital computer.

(1) Determine the roots of Equation (3. 146) by iteration on
the determinant itself. Equation (3. l4§) is identical in
form to the determinant that must be solved in an eigen-
value problem, such as that of a multidegree-of-freedom
vibrating system. Well-developed iterative methods

exist for determining the roots [60].
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(2) Derive a tensor expression for the coefficients of the
resultant polynomial and evaluate the coefficiznts-exactly
or statistically. Determine the roots by iteration on the
resultant polynomial.

The latter approach is taken here because it seems easier to

extend to the solution of more than two simultaneous polynomials.

In tensor notation [69], a determinant [h; [ is written
INE N (3. 148)
j i, l(t)
t=m +n (3.149)
11, fl(t) . . .
€ is a permutation symbol and takes the following values:
(1) +1 when ili?_' . 'i(t) is an even permutation of the
numbers 1, 2, ..., t.
(2) . -1 when iliz' . 'i(t) is an odd permutation of the
numbers 1, 2, ..., t.
(3) 0 in all other cases. (Other cases occur when there
are two or more duplicate integers among the iliz- . 'i(t))'
In Equation (3.148), each of the h']]( ) terms is a polynomial in x.
J

(The zero terms are regarded as polynomials with all zero coefficients.)

T s e k Iy

S i @ (3.150)
OIS (el ‘

) Gy Q)
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The c',I K correspond to coefficients inthe f or g polynomials
i,.:k;
() ()
(Equations (3.144) and (3.145)), depending on whether i(j) exceeds
or is less than m, in Equation (3.146). Substitute Equation (3.150)

into Equation (3. 148).

e”nlz"‘l(t)c1 2 k) Ry kg (3.151)
ik ik, Fofe™ X

|n] =
J

The 2t summations indicated in Equation (3.151) may be carried out
by whatever procedure is most convenient. The following approach is
designed to compute the individual coefficients of the resultant polyno-
mial in the course of the summation.

(1) Increment an integer p, in steps of one, over the

range Oé P < (nk + myg).
(2) At each value of p, evaluate Equation (3.151) for

H k 2

21in
1’ ¥ ""k(t) totaling p.

every combination of k
Each such evaluation can be performed by a standard

k..
determinant routine. This is because the x G) terms

can be factored out as x', and because the remaining
terms have the form of Equation (3. 148) when the k(j)
are fixed.

(3) For each value of p, sum all of the determinant

values obtained in (2). This sum is the pth coeffi-

cient of the resultant polynomial in x.
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(4) When p has completed its range, all coefficients of
the resultant polynomial in x will be available. Solve
this polynomial for 21l [nk +m¢) x roots (a standard
routine may be employed)}. Substitute each of these roots,
one at a time, back intoc both Equations (3. 144) and (3. 145),
to evaluate the f and g coefficients. Then for each
x root, Equations (3.144) and (3. 145) are solved for
their several roots. Ordinarily one and only one paixr
of the y roots from Equations (3.144) and (3. 145)
will match, for any one ¢ root. The x rootand
the matching y root will constitute one of the
(nk + mé) solutions to Equations (3. 144) and (3. 145).

A computer subprogram written to perform this
work is described in Apperdix A.3.3. Results {from
two example problems are presented in Table 3. 3.
In theory there is no limit to the degree or the number of simul-
taneous polynomials that can be solved by an approach of this kind.
The present program has no theoretical restriction on the degrees of
the polynomials. (This is suggested by Example 2, Table 3.3.) More
than two simultaneous polynomials can be solved by a Gauss-Jordon
kind of reduction process, pairing one polynomial against all the others
to eliminate an unknown throughou@ then repeating until all but one

unknown is eliminated. Of course, the eliminant (Equation 3.151) )
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TABLE 3.3

EXAMPLES OF SOLUTION OF
SIMULTANEOUS POLYNOMIALS

Execution Time = 5. 12 sec.

2 2 2 2
(3x  +2x + 1)y + (bx - 1x+3)y +(x +5x-1)=0

2 2 2
(x +5x - 3)y 4(3x2+1x+2)y+(x -2x+1)=0

|

Coefficient of

Deg. of | Resultant x
Coeff. Polynomial

2 e
8 %—S.OOOOOOXIOO
7 : C).100000><101
6 -5. 820000><102
5 1. 794:000)(103
4 —1.089000><103
3 2.220000)(101
2 4.400001)(101
1 - L 610000><102
0 j -5.100000%10"

Root

3,4

5,6

7,8

|
I

X

roots

y _xToots

i

real part
imag. part

.876584X10°

.833163X10

S S

866105X10°

1

.811290x10°
. 748579X10°
.283790X10™ "
. 626602X10"
.402081X10"

1

1

real part
| imag. part

-3.017123X10" !

.809936X10

.463227X10°
.414708X10°

8.034719X10
3.

-7.141178X10

1

1
1

931192><1o'2

1

1

18.829509x10"
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TABLE 3.3 CONT'D

Execution Time = 49, 6 sec,

(7x = 9)‘)’4 + (0% +5)y3 + (=% + Z)yz =(*3x = 9)y + =5x + 2) = 0

(%0 +B8%2 + 0x = B)y% 4 (x> + 1x> + 5x - 1)y + (Tx° 4 6x° = 3x 4 5) = 0

Coefficient of

Root

x__roots
Deg. of | Resultant x No. real part
Coeff. Polynomial imag. part
14 1.323100x10° || 1 |}3.301638x10
13 2.024010X10° 0
12 -9,715408X10° || 2 |7.172048X10
11 -6.582907x10* 0
10 1.989712x10% || 3,4 [1.232323%10
9 -3.348428X10° t4.584016X10
8 a1.235512x1o§ 5,6 | 1.483417X10
7 1,371025%10° 16.324904X10°
6 -4.126216X10° 7,8 | 6,743634X10
5 8.232079x10% £3.781570X10
4 -1.085100%10° || 9,10[ 3.279200%10
3 . 3,719302%10° 17.156668X10
2 j 2.529590%10° || 11,12]-3. 084983%10
1 61‘522590x105 16.224477X10
0 2.468700x10* || 13, 14| 2. 996680x10

+9.074256X10

o

-1

o
-1
o
1
-1

o

-1
-1
-1
-1
.li
-2

.y __roots
real part
imag. part

-1.053711X10°
0
8.797837X10
0

1

1‘432858X10-1
-1
t7.117867X10 -
-7.254179X10" "

t1.445311x10°
' 5,733167X10°
t1.454501%10°
-1.994073X10"
72.938320X10
+9, 671565X10
73.212334X10
-9,472472X10
+9,358603X10

1

2

1
1
1
1
3
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is required for each pairing rather than the multiply-through-and-
subtract—OpeI_'ation used with simultaneous linear equations. The
coefficients of the’eliminant are polynomials of more than one variable,
unfil the very last elimination. There are probably other more efficient
procedures, but this is at least one possibility.

In practice, there are several effects which severely limit
application:

(1) Time required for exact computation. The coefficients
of the resultant polynomial are computed by successive evaluation of
determinants. Even when only two simultaneous polynomials must be
'solved, a total of (k + l)n(g + l)m determinants must be evaluated,
each of size (m + n) X (m +n), The approximate IBM 7090 time

required per determinant is,

At=56(m+n)3 + 72(m +n)2 +320(m + n) + 157 (3.152)
(At in microseconds)

Figure 3.11 is a plot of the time required for determinant evaluation
alone, versus m, for several combinations of n, k, ¢. Significant
additional Itime is required for the iterative solution of the single-
variable polynomials obtaiﬁed in the procedure. Clearly, the compu-
tational time can become excessive. it may be that the computation
time limitation can be substantially eased by a Monte Carlo procedure.

Equation (3.151) is then evaluated for many sets of indices, chosen
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T T T T T

X (4,4,4)
10000 E
® 4,4,3)
® (2,2,2)
® (2,4,8)
1000 J
® (6,5,6)
(2,2,2
® (2,4,4) ® 2)
100 4
®(3,3,3)
o
Q
& ® (2,8,8)
w
_f_ ® (2,1,3)
®(2,8,4)
10 R
®(2,8,2)
L ®(2,4,2) 1
® (2,2,2)
m m-1 .
fmy +fm_1y + ... +f,y+fo-0, fi of kth degreein x
"y n-ly + +g =0 of gth degreein x
gnY 8,17 g8y TE, TV gi £ g
Numbers in brackets = (n, k, ()
O.I 1 1 1 1 1 1 1
[ 2 3 4 5 6 7 8
m —————e
Figure 3.11 Computer Time Required for Exact

Computation of Determinants in Si-
multaneous Solution of Two
Polynomials
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at random. The coefficients of the resultant polynomial are then
statistical estimates (except for the very high and very low degree
coefficients, which can be obtained exactly with the evaluation of only
a few determinants). Approximate roots can be obtained, then used
as initial approximations for an iterative procedure.

(2) Round-off error. This has not been a problem for exact
computation (involving degrees less than 3 or 4) performed so far.
However, such difficulty is expected in view of the amount of multi-
plication and subtraction that takes place.

(3) Excessive degree of the resultant polynomial.  For simul-
taneous solution of only two polynomials the resultant polynomial has
degree p=nk +mg. In general, p will rapidly increase with
increase in the number of polynomials to be solved. For p > 1000
the iteration time to obtain the roots may become a serious limitation.
Perhaps larger polynomials must be represented by power series
approximations in a smaller number of terms, before being used in

the eliminant,

3.3 AEEIication

3.3.1 Direct use of the Tetrahedron Solutions

Figure 3.12 is a schematic of the front independent suspension
and steering system of a conventional automobile. To achieve good

handling characteristics the automotive designer must have a means
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of calculating all the position vectors in this sytem, given a steering
angle and some input suspension parameter.

Assume that the instantaneous position of the automobile frame

—

relative to the road is known. If this is so, vectors ? , T , s
L PgP7  P20'Pi9
Weyr Wyg 2aTe all known. For evaluating the

r ) W y W ’
21 41
P19Ps

performance of the linkage system itself, the two input quantities can

be the azimuthal angles of the rotations of T and T
P16P20 PePg

about their respective axes, and 618' These angles

We1

determine r and T because the corresponding magni-
P16P20 PePg
tudes and polar angles are known from design.

The solution can begin with loop Pyo’ Prg’ As

P17° P1g°

a three-dimensional linkage this loop is over-determined. However,
it is very nearly two-dimensional in its motion, and the hinge pairs
at p16 and P,, are slightly elastic. The solution is obtained

from case 2d-of the Tetrahedron Solutions, because only r
P, P
- 17716
and the azimuthal angle of r are unknown. The vector
PioP17 X
is then determined from r , W
P17P16

—

r
* P1gP1e

constants c1 s C

76 and design

2 and c3.

+c : (3.153)
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Case 2d also solves the loop Py’ Pg’ Py’ Pg because the

only unknowns there are r and the azimuthal angle of «r.
This determines r and r , but cannot determine the

rotation of link 3 in the two spherical pairs at P and Pg- In fact,
this loop would thereby be underdetermined, if not for the constraint
from link 5.

A third loop can be solved, using information

Pig P11’ Py
from the results of the first two solutions. Here the unknowns are

~

r and the 6 of r , and case 2d again applies. Two
P11Pg PeP11
king-pin unit vectors, r . and T , are now known. The
N PsPe P11Pe
spindle vector r can therefore be determined froim these unit
P10P9
vectors and the design constants Cy4r S50 S
(;p p, < ;p p)
¥ =c,f +c.r +c ,~56\A116 (3. 154)
P1oPg % PsPe > Pp)Pg lrp5p6 X "p1Pg

All unknown vectors have now been determined. However, other quan-
tities such as camber, castor, and toe angle are of importance to the
automotive designer. These can €asily be calculated from the vector

output as follows:

1 . .
Camber angle = cos ) ) (3.155)
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Castor angle = cos (3.156)

Toe angle = cos [7 - (3.157)

A computer program was written on the basis of these solutions
to evaluate all unknown positions for several input sets of the azimuthal
angles of r and r . Design constants were evaluated

P16P20 PePg
from the ''static position' of a 1962 Ford Galaxy. Figure 3.13 shows

families of curves based on results of the computer program.é/
Camber, castor, and toe angles are plotted versus Pitman arm angle,
for constant values of the azimutl;.al angle of the lower hinged link.

Of course, much more information than shown is required in actual
design work. Figure 3.13 only suggests that concrete results are

in fact obtained and that high accuracy is required to correctly predict

the small variations in angles.

3.3.2 A Four-Bar Linkage with Turn-Slide Pairs

Figure 3. 14 shows a three-dimensional four-bar linkage with
one hinge pair and three turning and sliding pairs. The axes of the
pairs are skew and all links are ''"bent.! There are several reasons

why this linkage was chosen as an example.

Most of the programming of this computer work was performed
by Mr. De Witt Cooper of the IBM Automotive and Machine Design
Project, and his assistance here is especially appreciated.
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The linkage has so far found no use in practical design,

to the author's knowledge. It may be that availability

of its position, motion, and force solutions--in terms

of conventional mathematics--will encourage such ap-
plication. Only the position solution is derived in this
section. Motion and force solutions are derived in
Sections 4.0 and 5. 0.

Solution of combined vector and scalar conditions is
required. This suggests a source of difficulty in linkages -
with higher numbers of links, but does not prevent a
relatively simple solution here.

Position, velocity,and force solutions have been explored
by A. T. Yang, by use of quaternion mathematics [79, 80].-
This may provide a common basis of comparison between
the use of quaternion and ordinary vector mathematics

in the analysis of three-dimensional mechanisms.

All terms are present in the motion analysis, because

the link motion involves both relative rotation and relative
slide. Likewise power is transmitted through the three
turn-slide joints by both force and torque, so that the
force equilibrium analysis has a generalized nature.

The example is therefore valuable as a check against the
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vector approach itself, especially against the accelera-
tion and force equilibrium methods.

Three conditions govern the position of the linkage in Figure 3. 14:

1‘1+(P2+q2)+(P3+q3)+(p4+q4)=0 (3.158)
(w32 . w43)=c1 (3.159)

~ A

(W5 ° w41)=c2 (3.160)

In Equations (3.159) and (3. 160), < and c, are design constants.

For example, c, can be determined from bench measurements of

link 3 before the linkage is assembled.
Fortunately Equations (3.159) and (3.160) can be solved inde-
pendently of Equation (3.158); otherwise a symmetry solution would

not be feasible. The input angle is 021 (the azimuthal angle of

rotation of pZ about ). This determines ;2, because p2

21

and the polar angle are already known.

¢21

P, = pz{sm ¢21[cos GZIXZI + sin 621;,;21] + cos 03211/21} (3.161)

215 W54 (3.162)
T X4
N, =—L 2l (3.163)
2 1T x4
17 %
u21=(v21 XAZI) (3.164)
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The orientation of (332 relative to ;2 and (521 is known from

the design of link 2. With ;2 and (321 both known, c:)32 is also known.
~ - . ~ . ~ ~ ) 165
Wy, = sin ¢32[cos 032)\32 + sin 932;432] + cos ¢32V32 (3 )
V.= & .16
V32~ Y1 (3.166)
. Py X0
§ =2 2l (3.167)
32 l’v X -~ |
Py X W)
i = Vao XA32 (3.168)
(932 and ¢32 are design constants.)
The unit vector is known, because it is fixed in orientation

14
relative to ground. Equations (3.159) and (3.160) therefore have the

form required for solution by Equation (3.131), because only 4343

~

is unknown, of the three unit vectors w3z. w43. w14.

Determine @ from Equation (3.131), The plus or minus

43
sign is chosen plus if (3)43 ' ﬁ) is plus, minus if (643 ' 4) is
minus-~-for the mechanism as initially assembled.

In Equation (3.158), vectors ?Z‘ ?3, and ?4 have been
expressed as sums of component vectors: (;2 + c];). (fa; + a;).

(1;; +;4). This is done because the pair axes are skew. The ;1

vectors are defined parallel to the slide axes, 6i+1 . but are
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unknown in length. The P, vectors are directed to any given point

on the axes of slide,from the preceding pair. With (332, 3043 and

—_—

Wy, determined, the vectors P,» Pj and p, are all known.

This is suggested by the following equations:

(W, X 0,,)
g ~ 21 32
P2 = 2191 T %22 o X o] - (3.169)
21 32
(.. X &)
— ~ 32 43
= 3.170
P3 = 314, * %3, 5. XD ( )
32 7 Y43
(W, . X o, )
g ~ 43 14
= 3.171
Py=C1%3 % T ( )
Y43 14
(021, Cypr €317 €357 C4pv €4y 3TE design
constants.)
Equation (3. 158) can be restated,
-~ A ~ “’: ) 2
q2w32+q3w43+q4w14+c 0 (3.172)
CEr1+p2-§~p3+p4 (3.173)

Equation (3.172) has the form of case 3a of the Tetrahedron Solutions,

because only 9, 4y and q, are unknown. Vectors EZ’ ?q’3, :1,4
T, T, T

are determined from Equation (3.173), then 20 Tgr Ty

are found

from the sums, (;. +—CI.)-
1 1
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TABLE 3.4
INPUT PARAMETERS FOR EXAMPLE
FOUR-BAR LINKAGE WITH ONE

HINGE PAIR AND THREE
TURN-SLIDE PAIRS

Design Constants:

"r’l=o.o‘i+1.03+o.of< in

~ 1 ~ -~
0y, = (1.01 +3.0j + 4.0k)
N26.0
- 1 - - «
Wiy = (-1.0i-1.0j- 6.0k)
N38.0
(0., X ©..)
g ~ . g 21 32 . PN -
(pZ : w21)=3.01n, P, T — = -2.01in, cos (w21 : w32) = .5 radians
0y X 65,1
(Wyy X ©,,)
g ~ ; - 32 43 . -1 ~
(p3 . w32) =2.0in Py o ———— = -4.0in cos 32 w43) = 1.2 radians
w3y X G5
(0, X ©.,)
g ~ : g 43 14 . -1 A “
(P4' (,_,43):1.0111 Py~ ——= _=3.0in cos (wyy + Gp,) = 1.9 radians
6455 w0yl
Initial position, motion, and torque on link 2:
021_=0.0 radians, measured from XZ in the +r’;2 direction:
i
T X0
~ _ 1 21 A < A _ oA
rp = T X o | M= Wy XAy 1 E 0y
17 Y21
Wyps = .1 radians/sec.
Duw = .01 radians/(sec)2
21i
= 1b,-i
o1 2.0 bf in

Relation between output force and torque:

T140~ S1t140 * 2
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Variation of Position Vectors ?1, Ty r4

for a Complete Cycle of the Mechanism
of Figure 3. 14
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Figure 3.15 shows the variation of the i, 3, k components

of position vectors r_, Ty T,

2 as the mechanism of Figure 3. 14

is moved through a complete cycle. Input parameters for this example
are summarized in Table 3,4. Computations were performed by digital
computer, using a program written to evaluate and check the position,
motion, and fofce in any mechanism of this type.

The position singularities evident in Figure 3. 15 occur

-~

when w,.,, w

32 =1.407, 1.437).

and W become co-planar (6

43’ 21

In this situation the quantity [ Wiy (w43 X w 14)] is zero, and this

14

quantity happens to be the denominator of the expressions for qZ,'
q3, q4. Geometrically the singularities occur when the two cones

in Figure 3.9 become tangent (unit vectors a, r, b correspond

~ ~ -~

to Waso w43. w respectively). There is a region between the

14’
two tangent positions in which the mechanisn. cannot exist; here this
'is only about five degrees wide.

The motions and forces of this mechanism are discussed

in Sections 4.0 and 5.0. Motion singularities occur at the same

place as position singularities.



4.0 MOTION

4.1 Development

4.1.1 Vector Loop Equations

In kinematic problems each order of motionis dependent
only on motion quantities having the same or lower order. This fact
allows compartmenting the entire solution of a mechanism's motion.
First, the position problem (zeroth order motion) is solved, as dis-
cussed in Section 3. 0. These solutions are usually non-linear and
often difficult to obtain, but they always proceed from single or simul-

taneous conditions of the following form:

n-1 -

[Z = 1+7 =0 (4.1)
i=1 I')1+lpi plpn

0 . = 4.2
(w; 1) (wj’j_l) S (4.2)

A direct approach to obtaining motion solutions is differentiation of
the actual solutions to Equations (4.1) and (4.2). This is rejected
for reasons stated earlier (p. 21 ). Instead, Equation (4. 1) itself
is differentiated and a companion condition on angular velocity is
stated and differentiated. For mth order motion, the forms of

these conditions are

n m-1 m-1
[Z D w . .]+D & =0 (4.3)
i=2 i,i-1 PP

-91-
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n-1
[Z DY 1+ D77 -0 (4. 4)
i=1 PPy PPy

Equation (4.3) with m =1 1is a statement that the sum of the
relative angular velocities of a linkage loop is zero. An appropriate
form of it is written for every closed loop in the mechanism considered.
For illustration, consider the single loop in Figure 4.1. Body 2 rotates

relative to body 1 with angular velocity Z;

21 Similarly, body 3

rotates relative to body 2 with w__. (

32 is the angular velocity

Y32
of body 3 measured relative to a dummy reference frame fixed in
body 2.) Proceeding around the loop, finally body 1 rotates with angu-

—

lar velocity Wi relative to n. A vectorial angular position state-
ment of this form cannot be made [43]. Thus Equation (4.3) must be
considered the fundamental angular condition. Equation (4.1) is the
fundamental linear condition. In three-dimensional motion these con-

ditions are independent.

4.1.2 Expressions for derivatives

Solutions for successive orders of motion can proceed from
equations of the form (4.3) and (4. 4) if general expressions for the
vector derivatives are substituted term by term.

By definition, a vector is différentiated according to Equation 13,
Table 2.3, even if the vector is a unit vector. However, an operator

—

W can be defined such that for a given unit vector, Q= G(t):

Du=u& Xu ) (4.5)
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In mechanism analysis U wusually corresponds to the direction of a

position vector (T ) or an axis of rotation (Zoi.); W corresponds
PiPJ-
to the angular velocity of 1 relative to ground ('C)i'l).

For present purposes Equation (4.5) is specifically siated,

Du=T3,, Xu (4. 6)
il
Here 1u is any unit vector, fixed in a rigid body 1. Body i

rotates relative to ground with angular velocity w. 1
1

Equations 19 and 20, Table 2.3, are derived as follows,

using Equation (4. 6) and Equations 16 and 18, Table 2. 3:

w=ud | (4. 7)
DU = (Du)u + u(Du) (4.8)
DU = (Du)d + (W X @) | (4.9)
péu (Dzu){l + (Du)(Du) + (DWX 1) + (w X Du) (4.10)
D% &= (Duld + wX (9 X ) + (DwX W) +2[3 X (Du)d] (4.11)

Higher order derivatives can be obtained similarly, although the
number of terms increases rapidly with the order. In most kinematic
analysis only the first and second derivatives are of interest.

Replace T with 7 and W with . in Equations (4.9)

Pit1P; il
and (4.11).
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Dr. = (Dr )& +(w.X T ) (4.12)
Pi+1Py PipPy Py D PPy
2-—» 2 ~ —_— e —_—
Dr =(Dr )r t oy X tw X r ) (4.13)
Pi1Py Pip1Pi PiprPy 7 PR
t (Do, Xr )+2[wil><(Dr )T ]

P 1P PinPy Py

—_—

In Equations (4.12) and (4. 13) the terms Wiq and D—csil
are more usefully expressed as summations of relative rotations
because the unit vectors of the relative rotations (axes of rotation)
are always available from the position solution.

From Equation (4.3), with i replacedby j and n re-

placed by i,

) (4.14)

—_— —_

.1
Wi X wj,j—l)] (4.15)

Substitute Equation (4. 14) into Equation (4. 12) and Equation (4. 15)
into Equation (4. 13).
i

= (Dr )T T (o Mg

—

Dr
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i

2— 2. ) . .
Dr =(Dr )r +[Z (Do, ._l)w, ._I]Xr)
Pi11P; Piy1Py PPy y=2  B37H 00D Pip1Py
t o, X(w. X1t _)+2[w, X (Dr T
il il PPy i PPy Py
i ~
+[2 (v, Xw . )Xr (4.17)
ISR Pi+1P;

4.1.3 Solution Procedure

In general a motion solution for a given mechanism
will proceed in the following steps:
(1) At the instant of time considered, assume that all T

PPy
and w. ., vectors are known. These are the pair-to-pair and

i,i-1
axis of rotation vectors that are determined in the position solution.
In addition a number of input motions must be given equal to the degree
of freedom of the linkage.
(2) Write Equations (4.3) and (4.4) once for every independent linkage

loop in the mechanism. In this step a velocity solution is sought and

m equals one (DOZ;, . = Z). )

(3) Substitute Equations (4.14) and (4. 16) respectively for every
term in the equations obtained in step (2).
(4) Identify all unknown quantities. These are necessarily

either .

ii-1 terms, Dr terms, or both. In a determinate
,i-

P;+1P;

problem, the total number of these unknowns must equal the number of

independent loops multiplied by six.
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(5) A set of simultaneous linear algebraic equations in the
unknown terms can be obtained by taking scalar products throughout
each of the vector equations with any three known, non-parallel
unit vectors.

(6) Now assume that all T 5 {i-1
Piy1P ’ Pi+1P;

vectors are known, at the instant of time considered.

(7) Write Equations (4.3) and (4.4) as in step (2), except that
now an acceleration solution is sought, and m equals two.

(8) Substitute Equations (4.15) and (4.17), respectively, for
every term in the equations obtained in step (7). The result can be
reduced to a set of simultaneous linear algebraic equations, just as

in step (5). The unknowns will be either Dwi terms,

2 ,
Dr terms, or both, equal in number to the unknowns in step (4).

P 1P

This procedure provides all the essential unknown linear and

,i-1

angular velocities and accelerations. If any other motions are sought,
they can easily be determined in terms of known position vectors and
the essential motions already obtained. Higher order motions can be
obtained by an identical procedure, except that the derivatives analogous
to Equations (4.15) and (4.17) become much more detailed. However,
the motion solution for any order of motion will always be linear and

of the same form as that of all the other orders.
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4.2 Agglicati on

Consider again the mechanism shown in Figure 3.14. The
position solution has been obtained (Section 3.32). The velocity

conditions from Equations (4.3) and (4.4) are

Wy, Wt Ww,, +w,, =0 (4.18)

—_— —_ —_— — — —_— —_— _ ‘ 1
Dr1 +D(p2 +q2)+D(p3+q3)+D(p4+q4) 0 (4.19)
In Equation (4.18) 321 is an input quantity and the unit vectors
Wiy Wygs Wy, are all known from the position solution.
Equation (4.16) is substituted term-by-term into Equation (4.19),
and zero quantities are dropped out. (D_r’1 and the factors DPZ’
Dp3, Dp4 are zero.) Equations (4.18) and (4.19) become
> 5 5 W = .20
WypWay + WaW a0 W, + W, =0 (4.20)
(Dgy)wz, +(Dag)wys +(Dg)w), + (0, ) X 1))
(4.21)
Py F0gpwsp) Xxg # (0, ) + 035055 W 30,5) X1y =0

The unknown quantities in Equations (4.20) and (4.21) are

w Wy, qu, Dq3, Dq4. A set of six simultaneous

32’ 43’

linear algebraic equations in these six unknowns can easily be obtained

by taking scalar products throughout Equations (4.20) and (4.21) with

~ A

the unit vectors i, j, k. Such a procedure can always be applied,
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regardless of the number of mechanism loops or kinds of pairs. Here,

the solution is even simpler because w,,, W can be de-

32 43’ Y14

termined immediately from Equation (4.20) by means of the case 3a
Tetrahedron Solution (Equations (3.48)-(3.50). When these quantities
are substituted into Equation (4.21) the only remaining unknowns are
Dq

> Dq3, Dq Equation (4.21) can then also be solved by case 3a.

4
The numerators and denominators of these solutions have inter-

esting physical interpretations. Zero numerators identify dwells; a

zero denominator identifies a locking position. All solutions have the

same denominator, [w32 : (w43 X w14)]. The acceleration solution

is completely analogous. Equations (4.3) and (4.4) are written

Dw21+D 32+Dw43+Dw14=0 (4.22)
D2 + DX (5 +q)+ D°(p, +9,) + D°(B, +4,) = 0 4.23

In Equation (4.22), (DwZI) is an input quantity, and in both
equations all positions and velocities are now regarded as known.

Substitute Equations (4.15) and (4.17) term-by-term.

(Dw,,) 0y, + (Dw, o, + (Dw o, + (D, )w,,
(4.24)
+ (w21 X w32) + (w31 X w43) =0
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~ —_—

2 . 2 - 2 .
(D7q,)w,, + (D7gzlw, ;3 + (Dg e, + (Dwy) Hw, ) Xr,)

+[(Dw, )0, + (Duy,lw,,] X ?3

#[(Dw, )0, ) + (Dwyy) 055 + (Du ), ] X T, + 0y X (0 X )
t g, X (331 X 1) + 5’41 X (5’41 X ?4) +2[w,, X (Da,)b,,]
+2[w,) X (Day)0,,] + (0, X wy,lr,

+ [y, X 5’43) + (0, X 0,,)]1XT, =0 (4.'_.2'5)

The unknown quantities in Equations (4.24) and (4. 25) are Dw32,
D D D‘2 D2 DZ The equations are length
Wyz W4 9, 95> - quati gthy,
but only the first three terms in Equation (4.24) and the first six terms
in Equation (4.25) contain unknowns. The remaining terms in each

equation can all be summed into a single vector constant. The

solution is most simply obtained by using Case 3a to determine Duw,__,

32
Dw43, and Dw14 from Equation (4.24), then using case 3a again
to determine quz, D2q3, D‘?'q4 from Equation (4.25). Again,
the denominator of all solutions is [w32 . (w43 X w14)].

-~

Figure 4.2 shows the variation of the 1, f, k components

of velocities D;;, D;;, Dr_;, as the mechanism of Figure 3. 14

is moved through a complete cycle. Similarly, Figure 4.3 shows the

. . . 2--> 2—. 2——>
variation of accelerations D r., D r3, Dr

2 4 Input parameters
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are summarized in Table 3.4. The singularities evident in all the

-~

motions occur when @.,, W,,,» and © become co-planar. In

32 43 14

this situation [w32'(w43 X wl4)] is zero. In other mechanisms of

this type the [w,, e (W 4 X w14)] discontinuity may not be

present.
A dwell occurs in output angular velocity when the

quantity [wz1 . (w32 X w_43)] becomes zero.(0_. = 1.377)., However,

21

this cannot be seen in Figure 4.2 because the output translational

velocity remains finite.



5.0 FORCE

5.1 Development

Mechanisms are inherently statically determinant because
they are designed so that the number of degrees of freedom equals
the number of input motions. Mechanism force analysis is therefore
simpler than that of most structures. The elastic constants of the
individual members need not be considered; instead, the analysis only
requires knowledge of design, position, motion, mass distriBution,
frictional characteristics, and input force.

- Force solutions are obtained from the vector equations of force
and moment equilibrium applied to each link of the given mechanism.
It will be shown that without friction the entire sct of these equations
will always reduce to a set of simultaneous, linear,algebraic equations.
The condition of equal power transmission at each joint can also be
applied, but is usually insufficient for obtaining all unknown forces
and torques. Instead, it is used as a check.

Consider the ith link of a mechanism having n links,
joined in any number of loops. One or more forces and torques can
be exerted on thislink by any of the others. The conditions of force

and moment equilibrium of the ith - link are

-104-
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n m__ -
[Z 2 (f,) ]+g. =0 (5.1)

n q m .
{z [z () + 2w Xr_ )]}
j=1 g=1 HPp p=1 MNP PPy
(5.2)
+ . + . X T =0
o, + (g rp.c“)
11
Interpretation:
(1) The inner summation in Equation (5.1) allows the jth
link alone to exert up to m forces on link i, at points Py’
k=1,2,3,...,m. For example, a single floating link may be sub-

jected to several different forces from the ground link.

(2) The forces discussed in (1) are present in moment terms

—_—

in Equation (5.2). The '"moment arm'' vectors r are always
PPy
directed to the same point p, but originate at the different points
i

of application of forces, P

(3) The inner summation on (7..) in Equation (5.2) allows
Py
the jth link alone to exert upto q torques on link i, at points

(4) The outer summations in Equations (5.1) and (5.2) sum the
forces and moments = exerted on link i by all the other links in
the system. Many of these terms will be zero; ordinarily only the

links adjacent to link i can exert forces or torques on link i.
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— —

(5) The terms g, and o, represent inertial forces and
i i
torques. These are dependent only on position, motion, and mass

distribution and are therefore known. The '"'"moment arm'' vector

X!

is directed to point P, from the center of mass Ci.
(6) Exactly twice as many force and torque terms as necessary
will result when Equations (5.1) and (5.2) are written for every link

in a mechanism. For example, the equations for a link 6 may have

a term, (¥;)5)P , representing the force exerted on link 6 by link 5
3
at point P, But then the equations for link 5 will have a term equal

in magnitude and opposite in direction: ( To avoid this dual

) .
56p3

notation the subscripts are reversed on every term for which 1 1is

less than j, and a negative sign is placed before the term. The
term (? ) is therefore written -(? ) . (In this convention
56 Pj 65 Py
the ground link must have two numbers, | and n+1, so thatif
n =8, the subscripts in a term such as (?18) would not be
P

reversed.)

A total of 2n equations are obtained by writing Equations (5.1)
and (5.2) once for every link in a given n-link mechanism. Only
n-1 of the force equations, and n-1 of the moment equations are
independent; the nth equation in each set is the sum of all the others.
For convenience, the solution may proceed with the n-1 simplest
equations from each set, even if these happen to include the equation

of equilibrium for the ground link. Regardless, a total of 2n-2
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simultaneous vector equations must be solved. In three dimensions
these represent 6n-6 scalar conditions. The effect of frictionless
higher or lower pairs is to prohibit transmission of force and torque

in one, two, or three directions, depending on the design of the pair.
Table 5.1 summarizes these restrictions for several common pairs,
and states ccnsistent expressions for the transmitted force and torque.
When transmission in only one direction is prchibited, the corres-
ponding unknown three-dimensional vector is reduced to an unknown two-
dimensional vector. The two-dimensional vector is expressed in
rectangular coordinates in a plane perpendicular to the prohibited
direction. When transmission in each of two directions is prohibited,
there is a reduction to a one-dimensional vector, directed perpendicu-
larly to the two prohibited directions. Finally, when transmission in
three different directions is prohibited the vectors of transmitted force
and torque must be zero.

There will remain exactly 6n-6 scalar unknowns to match
the 6n-6 scalar conditions, once all pair effects and output condi-
tions have been included. These unknowns can occur only in force or
torque quantities because all positions and motions are predetermined.
In the absence of friction, angular coordinates are never unknown;
they are either known from the position solutions and pair restrictions

or are included in vectors which are entirely unknown. Thus, all
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scalar unknowns can be included as the rectangular coordinates of
one-, two-, or three-dimensional vectors. In general, the one- and
two-dimensional vectors must be expressed in dummy reference
frames, defined in terms of the 1, 3, k ground frame. The
three-dimensional vectors may be expressed directly in the ground
frame because,regardless of the reference frame,three coordinates
will be unknown. Several examples of expressions are included in
Table 5.1. Once all 6n-6 scalar unknowns have been identified
as rectangular coordinates, the 2n-2 vector equations containing
them can be reduced to 6n-6 linear algebraic equations by taking
scalar products throughout with any three non-parallel vectors.

The solution of the 2n-2 vector equations can usually be
simplified if an approach specialized to the particular mechanism is
employed. Frequently unknown vectors can be eliminated by substitu-
tion or subtraction of one equation from another. This may lead to
solutions that can easily be physically interpreted.

Pair friction is likely to introduce unknown angular coordi-
nates. Two such circumstances are shown in Figure 5.1. This may
cause non-linearity in the force solutions in the same way that non-
linearity was caused in the Tetrahedron Solutions (Section 3.1.1).
For simple mechanisms a specialized solution may be obtained in

polynomial form by techniques discussed in Section 3.0. For any
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Hinge Pair
Without friction: (fam)i’ (fzm)j’ (fam)k’ (sz)h’ (Tﬂm)u
unknown
— _ - - -
Lo = Epm)i i ¥ )00+ (€ i K
sz = (Tﬂm)h + (Tm)u
With friction: ffm' Of, ¢£, (sz)k’('rgm )l-t unknown

f£m= fzm[Sin ¢f(cos 0{\ + sin 814) +cos ¢f me]
Tm (sz)h + ('r!Zm )uu (pam !zm)wllm

Turn-Slide Pair

Without friction: (fzm)k’ (fﬂm)“. ('rﬁm )),’ (TEm)/J unknown

—_

fzm = (fzm)k?\ + (fﬂm )uu
Tym = (7 ¥ (7 )

6. (

With friction: fm, f 711!1)7\’ (Tﬂm)u unknown

_ 2 \1/2 ™ ~
fzm—fzm{”l-uqm) [cos 01}+Sm0f“] “Qmwgm}
j Tem™ T A% + Tl ™ P ) o

[T

Figure 5.1 Effect of Pair Friction on Introducing Unknown
Angular Coordinates
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mechanism an iterative solution can be attempted, using the friction-

less solution as an initial approximation.

5.2 AEEIication

Consider the mechanism of Figure 3.14. Position and motion
solutions have already been obtained (Sections 3.3.2 and 4.2) and all

information required for a force and torque analysis is available. To

minimize detail the links are assumed without mass; to retain linearity

the pairs are assumed frictionless.

Conditions of force and moment equilibrium:

£ -¥;2=o ¢
22'53:0 G
23'};4:0 4
};4'21 =0 4
?21'?32+(§1X§;.)"0 (5.
?32—?43+(f;2><?3):o (5.
:43 ) ?14 ¥ (;;3 ><?4)_: 0 (5
?14'?21+(};4X?1)‘0 (5

.3)

.4)

.5)

. 9)

. 10)
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mechanism an iterative solution can be attempted, using the friction-

less solution as an initial approximation.

5.2 Application

Consider the mechanism of Figure 3.14. Position and motion
solutions have already been obtained (Sections 3.3.2 and 4.2) and all
information required for a force and torque analysis is available. To
minimize detail the links are assumed without mass; to retain linearity
the pairs are assumed frictionless.

Conditions of force and moment equilibrium.:

gl -E;_Z:o ®:3)
By Tpeo =
Y o
?14'¥;1 =0 (5.6)
Tp1 7 Tap (B X150 =0 -7
?32- 743+(£'3’2><?3)—.o (5.8)
a3 " Tia * Uy X;:L)_: 0 -9

(5.10)

3
[

3
+
et

N
X
T
i
o

14 21
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The forces and torques of the pairs at P, and’ p, are prohibited from

A

transmission parallel to the respective axes of rotation, wss and
(543. From Table 5.1, these restrictions may be expressed as
follows:
(f5, ¢ w;3,) =0 ( )
-~ A - 5' 1
(T4,  W3,) =0 (5.19)
f - h.)=0 5.20
(f43 7 ©43) (5.20)
e n ) = 5.21
(7437 ©43) =0 (5.21)

Now all unknown force and torque vectors can be expressed in one-,
two-, or three-dimensional rectangular coordinates, consistent with
the number of prohibited directions.

One-dimensional vectors:

—_— _ »~ ' 2
f1a0 = H140)914 (5.22)
T140 = (M140'%14 (5.23)

Two-dimensional vectors:

—

Torr = T21en21 T (210 M20 (5.24)
f35 = 33, * 5, s, (5.25)
T32 = (Tap 3y + (735, M3, (5.26)
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5;3 - “437@43 * (f43u)ﬁ43 (5.27)

—7:13 = (743 )2.43 ¥ (743;1):‘43 (5.28)

f—1’41' - (f14r>u)>tl4 * (f14ru Ju 14 (5.29)

:14r = (T14ma " 14 1 14r/.4)13 14 (5.30)
Three-dimensional vectors:

£, = (fZli)E + (fuj)j + (fuk)ﬂ (5.31)

The iij’ ;"j unit vectors in Equations (5.24) through
1

(5.30) are known. They are only required to be perpendicular to the

corresponding C)ij vector and non-parallel to each other. For

example, XZI and ﬁZl can be expressed,
a X
>\21 = — 21 (5.32)
la X w21|
;‘ = 0. X _\::i_i;.ﬁ. (5.33)
21 21 ,—.x R l
RS

Here a 1is any known vector with direction other than 1 Z‘)Zl'

There is a total of 19 scalar unknowns in Equations (5.22)

through (5.31). But Equations (5.3) through (5. 10) only provide



-117-
(6 X4) - 6 =18 independent scalar conditions. Thus one additional
condition is required. For example, there might be a linear relation

between '7'140 and f140.

Substitute Equations (5.22) through (5.31) into Equations (5.3) through
(5.10). Choose the simplest three vector equations from each of the
two sets and take scalar products throughout with i, f, k or any
three non-parallel unit vectors. Including Equation (5.34), the result
will be nineteen linear algebraic equations in nineteen scalar unknowns.

The foregoing procedure has the advantage of generality and
can easily be programmed for computer solution. However, a much
more interpretable, specialized solution can be obtained for this

particular problem. From Equations (5.3) through (5. 6),

f= E;1:;3:2:5;3:?14 (5.35)
From conditions (5.18) and (5.20)

(f 632)=o (5.36)

(f . &43):0 (5.37)
This defines the direction of f:

f = (‘:’32 X wy3) (5.38)

| @32 % Yy3
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Rewrite Equations (5. 7) through (5. 10), substituting according to

Equations (5.12), (5.15), and (5.35).

o1t Tarr T Tap P EXT,) =0 5:39)
732 - ?43 + (£ X1,)=0 : (5.40)
T43 " Tiae " Tiap t (T X ) =0 (5.41)
*140 ¥ ?14r i ?211 * (?X?l) =0 (-42)

Only three of Equations (5.39) through (5.42) are independent. Here,

Equation (5.39) is dropped. Equations (5.40) through (5.42) can be

— — —

added so that T43' 14y’ and Ty OCCur only once each in

an entire set of three equations.

Typ " 743+[f Xr3]=0 (5.43)
T3z " Tlao” 714r+[f X(r3+r4)]:0 (5.44)
732 T o Taly +[f ><(r3 +r4 +r1)] =0 (5.45)

Equation (5.43) is a restatement of (5.40); Equation (5.44) is the sum

of (5.40) and (5.41); Equation (5.45) is the sum of (5.40), (5.41) and

—

—
and 7T are all two-dimensional

5.42). T
( ). Vectors T 21

43’ Ti14r

and can be eliminated by taking the scalar product throughout

43" Yyq 2nd 0

respectively (ref. Equations (5.21), (5.17), and (5.13) ). This

Equations (5.43), (5.44), and (5.45), with © 21,
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eliminates six scalar unknowns and yields three scalar equations.

No further scalar products need be taken.

(732 B HE{[E X)L B =0 (5.46)

“Tigo * (Tap 0 0 H{IEX (S + 7010} =0 (>-47)

Ty F (e 0, ) HE{IEX(G, T, 4] Oy ) =0 (5.48)
These equations contain only four scalar unknowns: T32)\’ T32,u’

T 140’ and f. An additional condition is required, such as
Equation (5.34). Whatever the additional condition is, it is most

and f , not and f. Because of

1
ikely to relate T 140 l4o

7140
Equations (5.14) and (5.16), { may be replaced in Equations (5.46)

through (5.48) by

f= —222 (5.49)

The problem has nowbeen reduced to four simultaneous linear
algebraic equations in four unknowns, provided the additional condition
has the form of Equation (5.34). However, the additional condition
may be non-linear, or a more interpretable solution may be sought.

This requires reduction of Equations (5.46) through (5.438).
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Define:
74, = (cos o)A + (sin 0)p (5.50)
W,y X W
gy X0yl
A (0, 0, )0, 0
$=g X‘:’3z _ 32 43'%32 43 5.52)
655X 645
[£X 7.]« &
T = 3 43 (5.53)
3 (feh.))
14
[EX (z, +7r)] 0
T = 3 4 14 (5.54)
¢ Fe o)
14
[EX (T, +7, +7.)] - ©
T = 3774771 21 (5.55)
: F -6,
14
Equation (5.46) is solved for T3p!
- T_(f. )
3" 140
T3 (5.56)

|w32>< w43| cos 6

Substitute Equation (5.56) for Tao in Equations (5.47) and

(5.48), then eliminate fl4o by subtraction.
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. - 5.57
Tiao 1217215 22814070 ( )
S0 ]
I e PR
a, = | —— (5.58)
Mo Wo
. G By R G,
T- Tl wy,) - = ] A
‘ G- o, (i 0,
_ 21 14
a, = +T, - T
i |55, X Gy Y d,
32 43 21
(5.59)

Equation (5.57) is independent of the form of the additional condition

between T

and f . Now even if 7 has nonlinear
140 1

40 140

dependence on fl a solution can be obtained by substituting into

40
Equation (5.57) and solving the result by iteration. If the additional

condition has the form of Equation (5.34) the solution for f14o is
a T .. ~-¢C
fla0 = : zf‘a 2 (5. 60)
° ‘17 %

All other unknown forces and torques can be obtained by evaluating

the equations leading to Equation (5.57).

Figures 5.2 and 5.3 show the variation of the i, 3, k

— — —

components of torques Tazt T4z T4 and force f.

Figure 5.4 shows the variation of output torque and force, and

" 140
f140; Figure 5.5 shows the variation of output power transmitted in ro-

tationalandtranslational motion. Inputparameters are summarized in

Table 3.4.
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Singularities occur in force, torque, and power when the

denominator of Equation (5.60) becomes zero ( =.90m, 1.95 7

621

in Figures 5.2 through 5.5). These singularities can be eliminated

by positively increasing the constant, Cl' Additional singularities

occur in  Ta,, Ty Ty, when the quantity [w32 . (w43 X w14)]
becomes zero (921 =1.407, 1.437). In this situation it can be
shown that cos @ becomes zero, in Equation (5.56). This causes
Taz' T43’ and T4 to approach infinity but does not affect £,
Ti4 ' °F f14 .

o o

At all times input and output power must be equal.
However, output power is the algebraic sum of power transmitted
by force plus power transmitted by torque; individually these powers
may take large absolute values, even though their algebraic sum
‘always equals the input power, When [w32 . (w43 X wl4)] becomes

zero, both output powers become infinite because of the correspond-

ing singularities in velocity (Figure 4.2).
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APPENDIX A

COMPUTER PROGRAMMING

A system of simple computer subprograms was written to
facilitate evaluation of vector expressions. From these, larger sub-
progréms were constructed for evaluation of specific solutions ob-
tained in this thesis. All work described here was performed in the
MAD (Michigan Algorithmic Decoder) language [57] and was processed
at the University of Michigan Computing Center on an IBM 7090 com-
puter. However, many of the solutions in this thesis are being pro-

4/

grammed in Fortran.—

A. Preliminary

Languages such as Fortran or MAD allow scalar expressions
to be written directly, in terms of scalar operations such as equality,
addition, subtraction, multiplication, and addition. For example,
the following statement is a permissible part of a program in either
Fortran or MAD:
X = (2.%(A + (B*C)))/D (A.1)
It is possible to extend this facility to allow vector expressions to

be written directly, even when they involve operations such as vector

4
This work is being performed by the IBM Automotive and
Machine Design Project, Dearborn, Michigan.

-134-
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equality, vector addition, vector subtraction, the vector scalar product,
and the vector cross product--besides the usual scalar operations. This
facility requires modification of the language itself and is not available
in Fortran, although it was recently (December, 1963) made available
in MAD [57]. A permissible statement of this kind appears in MAD as
VX = (2, %(VA + (VB.X.VC)))/D (A.2)

Here, VA,VB, VC, and VX are declared as vectors (both
in a dimension statement and a special mode statement) and .X. is
defined as the vector cross product. Operators +, *, and [/
perform according to the type of quantities surrounding them. Thus,
the operator * performs multiplication of a vector by a scalar,
although in other circumstances it performs the vector scalar product
or the product of two scalars.

Vector expressions may also be programmed by use of sub-
programs to represent the individual vector operations. The former
scheme was employed in this thesis, primarily because it was imme-
diately available in both MAD (via the external function) and in Fortran
(via the function subprogram). Here, an operation such as the vector
cross product requires a separate statement:

EVCP.(VB,VC,V1) (A.3)

In statement (A.3) the external function EVCP. performs the
vector cross product VB X VC and stores the result in vector V1.

EVCP. itself can assume only scalar values. EVCP. is therefore
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assigned no value, since the only output quantity involved is a vector.
The program shown in Figure A.1 is needed to define EVCP. and
the binary deck corresponding to the compiled program must accompany
any other program in which EVCP. is employed.

To program an entire solution, a sequence of statements is
required. For example, the following sequence is required for
Equation (A.2) -

EVCP. (VB,VC,Vl)
EVA2.(VA,V1,V2)
EVFP. (V2,2.,V3)
EVFQ. (V3, D, VX)

Here EVA2., EVFP., and EVFQ., respectively,
perform addition of two vectors, multiplication of a vector by a scalar,
and division of a vector by a scalar. Other larger expressions can
be programmed in essentially the same way, as in Figures A.2,

A.3, and A.4.

A.2 Conventions

It was found helpful to employ conventions regarding categoriza-
tion of external functions, names of variables and external functions,
ordering of arguments, etc. These conventions are outlined here and
‘assumed for all subsequent discussion of programming. They are.

consistent with the rules of MAD programming but are in no other
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way a required part of the MAD language.

A.2.1 Categorization of external functions according to task

(1) Basic. Perform elementary vector operations. Do not
rely on any other external functions.

(2) Intermediate. Perform relatively simple, frequently
occurring vector operations. Rely on basic external functions.

(3) Special. Obtain the sdutions to frequently occurring vector
and scalar equations.

(4) Awuxiliary.. Perform conventional tasks in scalar mathe-
matics. Support special external functions.

A.2.2 Names of variables and external functions

By the rules of the MAD language, the names of variables and
external functions may be from one to six letters or digits, the first
of which must be a letter. External function names must be followed
by a period. Within these restrictions the following conventions were
followed.

A.2.2 1 Variables The first letter designates fhe type of quantity
represented by the variable according to Table A.1.

The full name for the magnitude of a vector is the vector name
with the leading V omitted. Derivatives begin witha D followed
by an integer specifying the order of differentiation. (If the integer
is omitted the order is one.) Dummy variable vectors and scalars are

often written Va and Xa@, where a«a is some integer. Otherwise,
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the letters in a variable name are chosen to correspond to the symbols
and subscripts used in the solutions being programmed.

A.2.2.2 External functions

The first letter specifies the language in which the function is
programmed. For MAD, this letter is E (external function). The
second letter specifies the type of output quantity, according to
Table A.1. If there is more than one type of output quantity, the letter
which is highest in Table A.1 is used. Remaining letters and digits
are used to suggest the task performed by the function. The total number
of letters and digits in a function name is as follows:

basic and intermediate functions: four
special functions: five
auxilliary functions: four to six

A.2.3 Order of external function arguments

(1) Input quantities are listed first; output quantities second.
The last letter in the name of an output argument is an X.

(2) Within (1), types of quantities are ordered according to
Table A.1.

(3) Within (1) and (2), identical types of quantities are ordered

alphabetically, then numerically.

Example:

EMG3C. (VC,UPS,UPT,UR,RPS,RPT, S, T, MRX, MSX, MTX)
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TABLE A1

MEANING OF LETTERS IN NAMES

CLemer . TyeeofQuantity

M An array other than an ordinary vector or unit vector.
May have any number of subscripts.

\2 Ordinary three-component vector. A linear array.

8] Ordinary three-component unit vector. A linear
array.

D ! Angle in degrees.

R Angle in radians.

S Ordinary scalar.

E Small scalar used in error or comparison test

I, J, K Integers.

Unlisted |

letters i Ordinary scalar.
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Here the first eight quantities are input the last three output. Of

the input quantities, VC 1is a vector; UPS, UPT, and UR are
unit vectors; RPS and RPT are angles in radians; S and T
are ordinary scalars. The output quantities MRX, MSX and MTX
‘are all four-by-four matrices.

A.2.4 Value of an external function

(1) Whenever an external function has scalar output and
satisfactory operation is certain, the function is assigned the value
of one of the scalar outputs.

(2) Whenever an external function has only array or vector
output the function is assigned a value as follows:

Satisfactory operation certain: No value assigned
Normal operation: 0.
Solution at least partly indeterminate: 1. to 9.
Solution complex: 10. to 19.

+

Solution approaches I«: 20. to 29.

A 2.5 Storage of arrays and vectors

In MAD, a storage location is automatically reserved for the
zeroth element of a linear array. However, as programmed here,
all basic external functions operate only on the first, second, and third
elements of vectors. Therefore, the zeroth element of an ordinary
vector is always unused. However, whenever n vectors are assem-

bled (for convenience) into a single large array, the first element of
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the array is assigned the decimal value of n. The 4ith elements,
i=1,2, 3, ..., are then unused.
A multi- dimensional array can be manipulated by use of a single
"linear'' subscript, regardless of the number of subscripts it is con-
sidered to have. Of course, it can also be manipulated by its multiple

subscripts.

A .3 Description of External Functions

Brief descriptions of all external functions programmed for
this thesis are included below. They are arranged alphabetically
within the categories: basic, intermediate, special, and auxiliary.
Normal operation has been checked numerically for all functions.
Enough functions are included to meet the needs of routine vector
programming and most of the more specialized situations that have
arisen in this thesis.

A complete listing of all programs was not included because
of limitations of space and clarity. However, sample listings of
each category of functions are shown in Figures .A. 1, A.2, A.3, and
A. 4.

Where the meaning of function arguments and function returns

is clear from convention, no definition is given.
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A.3.1 Basic functions

EMEQ
Purpose. Equate one matrix to another

Call. EMEQ. (MA, MX)

Arguments
MA Known array having linear subscript I,
O=<= I< 4M - 1, where M is the number of
vectors stored in MA. MA(0) = decimal M.
MX Array having the same linear subscript range

as MA
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EMV1, EMVZ2., EMV4.
Purpose
EMV1: Insert a vector in the Nth row of a two-subscript
array having any number of rows and four columns.
EMVZ2Z, EMV4: Composea 2x4 or 4x4 arrayof 2

or 4 vectors.

Call

EMV1. (VA N, MX)

EMV2. (VA1l, VA2, MX)

EMV4. (VA1,VA2,VA3,VA4, MX)
Arguments

VA,VAl,VA2,VA3,VA4 Vectors to be stored in MX
N Row of MX into which VA 1is inserted
MX An mx4, 2x4 or 4x4 array having integer

linear subscripts 0 to 4m -1, 7, or 15, respectively
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ESDP.
Purpose. Compute scalar product of two vectors
Call. ESDP.(VA,VB,X)
Arguments
VA, VB
X Scalar product of VA and VB

Function return. X

EVAZ2., EVA3., EVN2., EVS2.
Purpose
EVA2. Add two vectors
EVA3.. Add three vectors
EVNZ. Negate the sum of two vectors

EVS2. Subtract one vector from another

Call
EVA2. (VA,VB,VX)
EVA3. (VA,VB,VC, VX)
EVNZ2. (VA,VB,VX)
EVS2. (VA,VB, VX)
Arguments

VA,VB,VC (In EVS2., VB is subtracted from VA.)

VX Vector result
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EVCP
Purpose. Compute vector cross product
Call. EVCP. (VA, VB, VX)
Arguments
VA,VB

VX The cross product, VA x VB.

EVEQ.
Purpose. Equate one vector to another
Call. EVEQ.(VA, VX)
Arguments
VA

VX

EVFP.
Purpose
EVFP. Multiply a vector by a scalar.
Call. EVFP. (VA, B, VX)
Arguments
VA
B

VX Productof VA and B.
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A.3.2 Intermediate functions

EIUU.
Purpose. Compare two unit vectors

Call. EIUU. (UA,UB, EU,IX)

Arguments
UA,UB Unit vectors to be compared

EU Decimal constant specifying acceptable error. UA = tUB

whenever 1. - |UA - UB| < EU
IX = 0: UA + + UB
IX = 1: UA = - UB
IX = 2: UA = UB

Function return IX
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EIVV.
Purpose. Compare two vectors
Call. EIVV.(VA,VB,EU,EM,IX)
Arguments
VA,VB Vectors to be compared
EU,EM Decimal constants, specifying acceptable errors.

UA =t UB whenever 1. -|UA . UB| < EU.

2.(A - B)

<
B+ B) EM

A = B whenever

IX = 0: UA+t UB,ALEB
IX = 1: UA$+1UB,A=B
IX = 2: UA=- UB, A+ B
IX = 3: UA=UB A}B
IX = 4: UA =-UB, A=B
IX = 5: UA=UB, A=B

Function return. IX
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ERUF
Purpose. Compute the azimuthal and polar angles of a unit vector
Call. ERUF.(UA,UL,UM,UN, RAX, RPX)
Arguments
UA Unit vector with angles RAX, RPX
UL, UM, UN Right-hand reference frame
RAX Azimuthal angle of UA measured from UL, positively
increasing in the UN direction of rotation.
O; RAX < 2w
RPX Polar angle of UA measured from TUN.
0< RPX<

Function return, RPX

ERUU.
Purpose. Compute the angle between two unit vectors
Call. ERUU. (UA,UB, RX)
Arguments
UA, UB

RX Angle between UA and UB

Function return, RX
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ESAV.
Purpose. Compute the absolute value and square of the absolute
value of a vector.

Call. ESAV.(VA,X, SQX)
Arguments

VA

X Absolute value of VA

SQX Square of X

Function return. X

ESRP.
Purpose. Compute the ratio of two scalar triple products
Call. ESRP.(VAN, VBN, VCN, VAD, VBD, VCD, X)
Arguments

VAN, VBN, VCN Vectors in numerator
A" VAD,VBD,VCD Vectors in denominator

VAN . (VBN x VCN)

X VAD - (VBD x VCD)

Function return
0. Normal operation
1. VAN - (VBN x VCN) = 0., VAD . (VBD x VCD) = 0.

20. VAN - (VBN x VCN) }- 0., VAD - (VBD x BCD) = 0.
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ESTP.
Purpose. Compute the scalar triple product

Call. ESTP.(VA,VB,VC,X)

Arguments

VA,VB,VC

X VA (VB x VC)
Function return. X
EUMV

Purpose. Compute the unit vector and absolute value (magnitude)
of a vector

Call. EUMX. (VA, UX, X)

Arguments
VA
UXx Unit vector of VA, consistent with a positive
magnitude of VA
X Absolute value or magnitude of VA
Function return. X

Remark. Whenever X =0., UX is assigned the value 1.,0.,0.
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EURF.
Purpose. Compute a right-hand reference frame from two vectors
Call. EURF.(VA,VB,I,ULX, UMX, UNX)
Arguments ,

ULX, UMX, and UNX are computed from VA and VB,

according to the value of I:

1 ULX UMX l UNX
VA x VB
1, 5 VA < VB | (UNX) x (ULX) | UA
|
VB x VA ' !
2, 6 -WA— " V—gr (UNX) x (ULX) UA
| VA x VB ;
3, 7 i (UMX) x (UNX) |- A
| (OMX) x (UNX) T VB ! v
} ;
| | |
VB x VA
! }
4, 8 l (UMX) x (UNX) | v - ua
1<I< 4 VA and VB are checked for the possibilities
A=0., B=0., and UA = £ UB
8 VA and VB are not checked

on
A
—_
A

Function return

0. Normal operation and/or 5< 1< 8

0. and B = 0.

-

1. A

1i

2. A=0. and B $ 0.

3. A$0. and B

H

0.

4. A$0, B$O0, but UA =1 UB
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Remarks.
1. EIVV. is employed to compare VA and VB, with
-6
EM=EU =10 .

2. When the function return is other than 0., ULX, UMX,

and UNX are assigned values according to the following table:

|
Function ;
Return { ULX UMX UNX
1 l 1.,0.,0 0.,1.,0 0.,0.,1
| UB x VI |
2. (UMX)x (UNX) | [UB % Vi UB
i
3, ’ (UMX)x(UNX) l |gﬁ z Xi UA
t
' UA x VI
4. ’ UMX = UB
! ( )x (UNX) % [UA x VI UA=U

VI(l) = UNX(1)
VI(2) = UNX(2) + 1.

VI(3) = UNX(3)
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EUZR.
Purpose. Compute a unit vector from its azimuthal and polar angles

Call. EUZR.(UL,UM,UN,RA,RP, UX)

Arguments
UL,UM, UN Unit vectors of a right-hand reference frame.
RA Azimuthal angle of UX measured from UL,
positively increasing in the UN direction of
rotation.
0< RAK< 27
RP Polar angle of UX measured from UN.

Of RP§7r

UX sin RP [(cos RA)UL + (sin RA) UM] + (cos RP)UN
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EVFQ.
Purpose. Divide a vector by a scalar
Call. EVFQ. (VA, B, VX)
Arguments

VA

B

VX Quotient of VA and B, VA/B
Function return

0. Normal operation

1. A=0., B=0.

20, A+0., B

tl

0.
Remark. When the function returnis 1., VA

value VA =1.,1.,1.

EVTP.

Purpose. Compute the vector triple product

Call. EVTP.(VA,VB,VC,I, VX)

Arguments
VA,VB,VC
I
VX I=1:VX=VAx (VB x VC)

—
i

-1: VX = (VA x VB) x VC

is assigned the
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A.3.3. Special Functions

The Tetrahedron Functions
Purpose. Solution of the three-dimensional equation
VR + VS + VT + VA =0

Each vector is expressed in spherical coordinates (magnitude, azimuthal
angle, and polar angle) with angles measured from known unit vectors.
The nine Tetrahedron Functions solve the equation for all possible com-
binations of three unknown coordinates out of the nine coordinates of
VR, VS, and VT. VA isalways known. Cases in which one
coordinate is functionally dependent on another are excluded.
Calls

EVGIA. (VC, VRX)

EMGZA. (VC,UPR, US,RPR, MRX, MSX)

EMGZB. (VC,UPR, UPS,RPR,RPS, S, MRX, MSX)

EMG2C. (VC,US,R, MRX, MSX)

EMG2D. (VC,UPS,RPS,R, S, MRX, MSX)

EVG3A.(VC,UR,US,UT, VRX, VSX, VTX)

EMG3B. (VC,UPT,UR,US,RPT, T, MRX, MSX, MTX)

EMG3G. (VC,UPS,UPT,UR,RPS,RPT, S, T, MRX, MSX, MTX)

EMG3D. (VC,UPR,UPS, UPT,RPR,RPS,RPT,R,S, T, MRX, MSX, MTX)



-156-

Arguments
VC =VS+ VT + VA (EVGI1A)
= VT + VA (EMGZA, B, C, D)
= VA (EVG3A;EMG3B, C, D)
UPR,UPS, UPT Unit vectors from which polar angles
RPR, RPS, RPT are measured
UR, US, UT Unit vectors of VR, VS, VT
RPR, RPS, RPT Polar angles of VR, VS, VT
measured from UPR, UPS, UPT,
0. ; RPR, RPS, RPT < 7.
R, S, T Magnitudes of VR, VS, VT
VRX, V8X, VTX Unique solutions of VR, VS, VT
MRX, MSX, MTX Multiple solutions of VR, VS, VT

stored as arrays.
VR = MRX(4I-3), MRX(4I-2), MRX(4I-1)
VS - MSX(41-3), MSX(41-2), MSX(41-1)
VT = MTX(41-3), MTX(4I-2), MTX(41-1)
Each complete solution VR, VS, VT corresponds to a particular
value of the integer 1. Elements MRX(0) : MSX(0) - MTX(0) = N
where N 1is the decimal number of complete solutions obtained.
EMG2A, 2C, 2D, 3B: N =2,
EMGZB, 3C: N=2. or 4.
EMG3D N=2.0or 4. or 8.

In special cases two or more solutions may be identical
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Use
Each tetrahedron function obtains VR, VS, VT for the corresponding

combination of unknown spherical coordinates in the following table:

Function Unknown Spherical Coordinates
VR VS VT

EVGIA. R RAR RPR

EMGZA. R RAR S

EMGZ2B. R RAR RAS ‘

EMG2C. ! RAR RPR . S ;

EMG2D. l RAR RPR 5 RAS

EVG3A. i R | S T

EMG3B R ; S RAT

EMG3C. R i RAS f RAT

EMG3D. RAR RAS ? RAT

(1) VR, VS, VT are dummy variables and may appear in any
order in the equation VR + VS + VT + VA = 0.

(2) A polar angle of a vector is known if the vector maintains
a known angle from any known unit vector. Both the known angle
(RPR, RPS, or RPT) and the known unit vector (UPR, UPS, or

UPT) are entered as arguments in the appropriate function.
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(3) A case in which a polar angle
is the only unknown angle in a given vector can always be transformed
to a case in which an azimuthal angle is the only unknown and the polar
angle is _%r .  Thus, let RPRI1- be unknown and let RAR!  be

known, as measured from ULR1 with positive rotation in the TUNRI

direction.

Transform, regarding an azimuthal angle RARZ2 as unknown.
T
RPR2 =3 measured from UPR2Z

UPR2 - {sin RARI1){ULR1) - (cos RARI1}){UNRI1 x ULR1)

(4) Solutions are always obtained in terms of the full vectors
which contain the unknown coordinates. The unknown coordinates can
then be obtained individually from the full vectors.

(5) When multiple solutions are obtained a test may be
necessary to isolate physically realistic solutions,

Function returns

EVGIlA. None
EMGZA. 0. Normal operation
1. C=0. and UR = -US. MRX and MSX
indeterminate
2. C=0, and UR = +US. MRX and MSX
indeterminate
10, C=0. MRX and MSX complex

11, MRX and MSX complex



EMG2B

EMG2C.

EMGZD.

EVG3A.

10.

10.

10.

11.

12.
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Normal operation

Failure to solve polynomial. Function returns
from EMRP.

UPR, UPS, VC2 parallel. MRX and MSX

indeterminate

MRX and MSX complex

Normal operation

MRX, MSX complex

Normal operation

VC, UPS parallel. MRX, MSX indeterminate.
C=0. MRX, MSX indeterminate.

VC, UPS parallel. MRX, MSX complex.
C=0. MRX, MSX complex.

MRX, MSX complex.

Normal operation

UR, US parallel. VRX, VSX indeterminate;
VTX determinate.

UR, UT parallel. VRX, VTX indeterminate;
VSX determinate.

US, UT parallel. VSX, VTX indeterminate;
VRX determinate.

UR, US, UT parallel. VRX, VSX, VTX
indeterminate.

UR, US, UT co-planar. VRX, VSX, VTX
indeterminate.
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EMG3B. 0. Normal operation
1. UR, US parallel. RX, SX indeterminate.

MRX, MSX assigned value (RX + SX)UR.
MTX determinate.

2. (UR x US), UPT parallel. MRX, MSX, MTX
indeterminate

10, UR, US parallel. MRX, MSX, MTX complex

11. (UR x US), UPT parallel. MRX, MSX,
MTX complex

12. MRX, MSX, MTX complex

EMG3C. 0. Normal operation
2.,3.,4. Failure to solve polynomial. Function returns

from EMRP.

5. VC, UPS, UPT, UR parallel. MSX, MTX
indeterminate; MRX determinate.

10. MRX, MSX, MTX complex.
11. VC, UPS, UPT, UR parallel. MRX, MSX,
MTX complex.
EMG3D. 0. Normal operation
2.,3.,4. Failure to solve polynomial. Function return
from EMRP,
5. UPR, UPS, UPT parallel. VR, VS, VT

concentric. MRX, MSX, MTX indeterminate.

6 UPR, UPS, UPT parallel. VR, VS, VT
not co-planar. MRX, MSX, MTX indeterminate.

7 UPR, UPS, UPT parallel. VCZ—S-/, R sin RPR,
S sin RPS, T sin RPT =zero. MRX, MSX,
MTX indeterminate.

5VCZ = VC + R sin RPR + S sin RPS + T sin RPT. Modify this
definition by dropping any term containing an unknown Only in EMG3D
are all four terms present.
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8. UPR, UPS, UPT parallel. VR, VS, VT co-planar.
MRX, MSX, MTX ideterminate.

10. No real roots from EMRP. MRX, MSX, MTX
complex.

11. UPR, UPS, UPT nparallel. VR, VS, VT co-planar.

R sin RPR, S sin RPS, T sin RPT zero. MRX,
MSX, MTX complex.

12. UPR, UPS, UPT parallel. VR, VS, VT co-planar.
MRX, MSX, MTX complex.

13. UPR, UPS, UPT parallel. VR, VS, VT co-planar.
Either R sin RPR, S sin RPS or T sin RPT
finite. MRX, MSX, MTX complex.

20. Denominator term zero in solution for MSX. MRX

determinate. MTX not determined.

Approximate Execution Time

Function Time (sec.)
_ EVGIA - ‘ - less‘ ‘:chan .02

EMGZA ' less than .02

EMG2B ( .08

i

EMG2C l less than .02

EMG2Z2D | .02

EVG3A less than .02

EMG3B | .02

EMG3C . .05

EMG3pY/ 2.0

6 :
This time will probably be substantially reduced by an improved
polynomial routine being written to replace ZER2. (ref. EMRP.)
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EMRES
Purpose. Simultaneous solution of two real-coefficient polynomials
each in two unknowns. The solution is obtained by deter-
mining the coefficients of the resultant polynomial and
solving this polynomial by iteration on a single variable.
Call. EMRES. (A, B, MM, KM, NM, LM, X, Y)
Arguments
A,B Two-dimensional arrays of the real coefficients of two
polynomials of the following form:
K KM-1
[A(MM, EKM)X M + A(MM, KM-1)X +...+ A(MM, 0)]YMM
K - -
FAMM-1, KMIXCM 4 AMM-1, 'kM-OxEMT 4 aoam-1, o)y MM
KM -
+ [A(0, KM)X + A(0, KM-I)XKM s A0, 0)] =0
LM -
B, Lvx™™ o4 B, venx™™MTUow B, o™
-1 -1
+ [B(NM-1, LM)XLM + B(NM-1, LM—I)XLM +...+ B(NM-1, O)]YNM
+ [B(O, Lv)x™ 1 B0, cm-nxEME L4 B, 0)] = 0
KM, LM Integers specifying maximum degree of X inthe A

and B polynomials.
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MM, NM Integers specifying maximum degree of Y inthe A
and B polynomials.

X,Y Linear arrays of the complex X and Y roots of the
resultant polynomial.

Real part of Ith root

X(21-1), Y(2I-1)

Imag. part of Ith root = X(2I), Y(2I)
Limitations

To obtain the coefficients of the resultant polynomial this
function evaluates (KM+1)NM(LM+1)MM determinants, each of size

(MM + NM) x (MM + NM). Computation time can become excessive

(Section 3. 2).
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EUUUU.
Purpose. Solve the set of equations
(VA * UX)=C
(UB - UX)=D

Call. EUUUU. (UA,UB,C, D, UXI,UX2)

Arguments
UA,UB Known unit vectors
C,D Known scalars C_: 1; D_f 1.
UX1, UX2 Unknown unit vectors. Each is a solution

to the original two equations.
Function return

0. Normal operation

1. UA=UB, C=D, UXIl, UXZ2 indeterminate
2. UA=UB, C= -D. UXl, UX2 indeterminate

10. UA

UB, C#% £ D. UXl, UX2 complex
11. UXI1, UX2 complex

Approximate execution time: { .02 sec.
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A .3.4 Auxiliary Functions

CMPWRI.
Purpose. Raise a complex number to a power. (Used by EMRES.)
Call. . CMPWRI1(REA,IMA, P,REX, IMX)
Arguments
REA,IMA Real and imaginary parts of complex number A

P Decimal power to which A is raised.

REX, IMX Real and imaginary parts of AP
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EDETZ.

Purpose Accept the rows of a square matrix from a three-
dimensional array and compute the determinant. Identify
zero rows and columns and in such cases equate the de-
terminant to zero without numerical evaluation (Used by
EMRES.)

Call. EDETZ, (MQ,KI, TM)

Arguments

MQ Three-dimensional array, MQ(I,J,KI(1))
1 é I<TM
1< J< TM
0:<_ KI(I)__<: KKI(I)

KI KI(I) and KKI(I) are linear arrays of integers:
lé Ié ™, O < KI(I)_<_ KKI(I)

™ Span of the row and column subscripts of MQ

Function Return. Value of the determinant.
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EMCP., EMRP.

Purpose. Compute roots of a polynomial with real coefficients,
using ZERZ.Z/ Accepts coefficients subscripted according
to powers of the associated variable. Defines the degree of
the polynomial as the subscript of the highest non-zero
coefficient. EMCP. retains all roots obtained by ZERZ.;
EMRP. retains only the real roots. (EMCP. used by

EMRES; EMRP by EMG2B, EMG3C, EMG3D, EMRES.)

Call
EMCP. (MP,D,MZ)
EMRP. (MP, D, MX)
Arguments
MP Linear array of the real coefficients of the
polynomial MP(D)XD + MP(D- 1)XD'1 +... +MP(0)=0
D- Degree of the polynomial (integer)
MX Linear array of the real roots of the polynomial.

MX(0) 1is the decimal number of real roots in MX,
Ith root = MX(I)
Mz Linear array of the complek roots of the polynomial
Real part of ith root= MX(2I - 2)
Imag. part of Ith root = MZ(2T - 1)
1

I< D

A
A

7ZERZ. is a standard SHARE subroutine for obtaining
the real and complex roots of a polynomial having complex coefficients.
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10.
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Normal operation
Arguments out of range in ZER2.

Impossible for ZER2. to locate all of the roots
within 250 iterations. (EMCP. only)

Impossible for ZER2. to locate all of the roots
within 250 iterations. Assume that all real roots
have been obtained and continue (EMRP. only).

Division by zero in ZERZ2.

No real roots obtained (EMRP. only).
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ESDR
Purpose. Convert degrees to radians, radians to degrees.

Call. ESDR.(DA,RA,I)

Arguments
DA Angle in degrees
RA Angle in radians
I I>0: Convert degrees to radians

RA = .0174532928 * DA
1< 0: Convert radians to degrees

DA = 57.295778 ** RA
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SCOMPILE MADSEXECUTE»DUMPsPRINT OBJECTsPUNCH OBJECT
RCROSS PRODUCT OF TWO VECTORS VX=VAXVB
EXTERNAL FUNCTION(VAsVBsVX)

ENTRY TO EVCP.

VX(1) = VA(2)%VBI(3)

VX(2) = VA(3)*¥VB(l) = VA(l)*VB(3)
VX(3) = VA(1)*VB(2) = VA(2)*VB(1)
FUNCTION RETURN
END OF FUNCTION
Figure A.1 Basic External Function (Subprogram) for

Performing the Vector Cross Product

$COMPILE MADsEXECUTEsDUMPsPRINT OBJECTsPUNCH OBJECT

= VA(3)*vB(2)

RCOMPARE TWO UNIT VECTORS FOR EQUALITY
EXTERNAL FUNCTION(UASUBsEUsIX)

ENTRY TO EIUUe
INTEGER IX
ESDPe (UASUB9X)

WHENEVER (le —eABSe(X))eGEeEU

IX=0

OTHERWISE

WHENEVER XeGeOe
IX=2

OTHERWISE

IX=1

END OF CONDITIONAL
END OF CONDITIONAL
FUNCTION RETURN IX
END OF FUNCTION

Figure A.2

EVCP 001

EVCPOOO1
EVCP0002
EVCP0O003
EVCPOO0O4
EVCP0OOO05
EVCP0OO006
EVCP0OO007

EIVU 001
ETUU0001
ElUvoo002
EITUU0003
EITUU0004
EITUU0005
EIUU0006
EIVU0007
EIVUU0008
EIUU0009
ETUU0010
EITUUOOL1L
EIUUOOL12
EIUU00L13
EIVUUOOL14
EIUUOO0LS
EIVU0O016

Intermediate External Function for Comparing

Two Unit Vectors



-171-

$COMPILE MADs»DUMPPRINT OBJECT9PUNCH OBJECT EMG2D001
RCASE 2D OF SUM OF VECTORS EQUAL ZERO (RARsRPRsRAS UNKNOWN) EMG2D
EXTERNAL FUNCTION (VCsUPSIRPSsRsSsMRXIMSX) EMG2D
DIMENSION V1(3)9V2(3)sV3(3)sVa4(3)9V5(3)sV6(3)9VT(3)sV8(3)sVRIEMG2D
1(3)sVR2(3)sVS51(3)9VS2(3)uC(3) EMG2D
ENTRY TJ EMG2D. EMG2D
EUMVe (VZsUCHC) EMG2D
ESLPe (UTHsUPSsY1) EMG2D
Y2=1e=Y1lePe2 EMG2D
WHENEVER Y2eLelOE-6s TRANSFER TO A0001 EMG2D
WHENEVER oABSe(2e%*C/(R+S))eLel10E-6s TRANSFER TO AQ002 EMG2D
SS5Q=SePs2 EMG2D
Y3=5#CO0Se (RPS) EMG2D
Y4=(SSQ=Y3ePe2)%Y2 EMG2D
Y5=(CePe2+SSQ—RePe2+2e#CHY1%¥Y3)/(2e¥%() EMG2D
Y6=Y4~Y>ePe2 EMG2D
WHENEVER Y6 eLe Oes TRANSFER TO A0003 EMG2D
Y7=+SQRTe(Y6) /Y2 EMG2D
Y8=Y5/Y2 EMG2D
EVCPe (UTsUPSHVL) EMG2D
EVCPe(V1sUPSsV2) EMG2D
EVFPe(U2SsY39V5) EMG2D
EVFPo(V2sY8sV6) EMG2D
EVA24(V55V69V3) EMG2D
EVFPe(V1sYTsVv4) EMG2D
EVA24(V3sV4sVS1) EMG2D
EV52e(V33V4sVS2) EMG2D
EVN2e(VCsVS1yVR1) EMG2D
EVN2e (VC92VS25VR2) EMG2D
EMV2e (VR19VR2 9MRX) EMG2D
EMV24(V319VS29MSX) EMG2D
FUNCTION RETURN Oe EMG2D
A0001 WHENEVER Y1eGeOo EMG2D
YO=+2¢#T#SH*Y] EMG2D
OTHERWISE EMG2D
YO=—2 e HSHY] EMG2D
END OF CONDITIONAL EMG2D
WHENEVER (eABSe(RePe2=(SePe2+CePe2+Y9)) )/ (RePa2+SePe2+CePe2) EMG2D
lelLelOE-4% EMG2D
PRINT COMMENT $0VC PARALLEL TO UPS IN EVG2De MRX AND MSX INDEMG2D
1ETe FCTe RETe le$ EMG2D
FUNCTICN RETURN 1. EMG2D
OTHERWISE EMG2D
PRINT COMMENT $%0VC PARALLEL TO UPS IN EVG2D. MRX AND MSX IMAEMG2D
1Ge FCTe RETe 109 EMG2D
FUNCTION RETURN 10C. EMG2D
END OF CONDITIONAL EMG2D
A0002 WHENEVER ¢ABSe(2e%*¥(R=S)/(R+S))elLel0E-4 EMG2D
PRINT COMMENT $0C=0 IN EVG2De MRX AND MSX INDETe FCTe RETe EMG2D
1249 EMG2D
FUNCTION RETURN 2 EMG2D
OTHERWISE EMG2D
PRINT COMMENT $0C=0 IN EVG2De MRX AND MSX IMAGe FCTe RETe 11EMG2D
le3 EMG2D
FUNCTION RETURN 11 EMG2D
END OF ZONDITIONAL EMG2D
ACQO03 PRINT COMMENT $0Y5 IMAGe IN EMG2De MRX AND MSX IMAGe FCTe REEMG2D
1Te 1269 EMG2D
FUNCTION RETURN 12 EMG2D
END OF =SUNCTION EMG2D

Figure A.3 Special External Function for Evaluating the
Case 2d. Solution of the Vector Tetrahedron
Equation
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$COMPILE MADsDUMPsPRINT OBJECTsPUNCH OBJECTIEXECUTE EMRP 001
RCOMPUTE REAL ROOTS OF A POLYNOMIALs (USES ZER2) EMRP
EXTERNAL FUNCTION (MPsDsMX) EMRP
ENTRY TOD EMRP. EMRP
DIMENSION A(200)sR(200) EMRP
INTEGER Is1lsIRsJsD EMRP
MX(0)=0 EMRP
THROUGH A00Ols FOR I=Dy=1sMP(I) oNEe Oes eORe I olLe 1 EMRP
A0001 D=D~-1 EMRP
THROUGH AQQO02sFOR I=0s1s1eGeD EMRP
A(2%¥1+1)=MP(D-1) EMRP
AD002 Al2¥1+2)=0, EMRP
EXECUTE ZER34(500) EMRP
W=2ER2e (DsA(1)sR(1)»A0010) EMRP
AQ010 WHENEVER W eEe 2¢ eORe W oEe 4oy TRANSFER TO AQ0O4 EMRP
J=1 EMRP
THROUGH AQCO5sFOR [12292411eGeD*2 EMRP
IR=11-1 EMRP
WHENEVER R(II)eEeOe9s TRANSFER TO AQUO3 EMRP
WHENEVER oABSe(R(II)/(4ABSe(R(IR))+eABSe(RIII))))eLelOE=6) EMRP
1TRANSFER TO AQ003 EMRP
A00CS CONTINUE EMRP
TRANSFER TO AQ025 EMRP
AQ003 MX(J)=R(IR) EMRP
MX(0)=J EMRP
J=J+1 EMRP
TRANSFER TO A0005 EMRP
A0025 WHENEVER J oeGe 1 oANDe W eEs ley FUNCTION RETURN 0. EMRP
WHENEVER J eGe 1 oANDe W eEe 3es FUNCTION RETURN =W EMRP
FUNCTION RETURN 10 EMRP
AGOO4 FUNCTION RETURN W EMRP
END OF FUNCTIOHN EMRP

Figure A.4 Auxiliary External Function for Evaluating a
Polynomial
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