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ABSTRACT

A vital component of computer-aided engineering
design is the base program which computes the behavior
of an arbitrary design, given a minimal input of both
the structural identity and the design parameters. This
paper considers the computer-a:ded design of multifreedom,
constrained mechanical systems (realistic machinery).
Characteristics of such systems and their computational
representation and graphic display output are discussed
in terms of an example machine system. An outline of
mathematical methods useful for generalized representation
is made. Finally an organizational scheme for implemen-
tation of a generalized program is briefly discussed. A
preliminary program based on these methods is presently

under test.
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1. INTRODUCTION

Effective computer-aided engineering design requires
base programs which compute the behavior or arbitrary de-
signs, given a minimal input of both the structural identity
and the design parameters which define the design. This
type of program is familiar in electrical engineering. Base
programs such as -ECAP, SCEPTRE, CIRAN, various proprietary
programs, and others have come into conventioanl use for
electrical circuit design. Aeronautical, civil, and mechan-
ical engineers have begun use of programs such as STRESS
and SAMIS for structural analysis. These programs save
months of design time for designs which cannot be established
entirely from experience and intuitiomn, because they allow
immediate construction of detailed mathematical prototypes.
Since the programs accommodate automatically to changes in
structural identity, a designer can, for example, change
the elements and interconnections of elements in an electric
circuit without having to recode the program representing
the circuit. Structural or topological change is thus accom-
plished as easily as change in the "size'" parameters for a
specific design. >Once such base programs are available the
way is open for productive use of various application-
independent CAD facilities such as'graphic display, remote
processing; optimization subroutines, etc.

A significant fraction of engineering design involves
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Table 1. Distribution of Employment of Professional

Engineers in the United States by Product
or Service.

realistic machinery. Examples of such systems include vehicle
suspension systems, high-speed printers, canning machinery,
and machine tools. Referring to Table 1, approximately 6% of
all professional engineers in 1967 regarded their principal
employment product or service as machinery.* Design of mach-
ines or machine-like systems is also involved in other cate-
gories as transportation equipment, aircraft and spacecraft,
and chemical products. However, there are few generalized
base programs available for computer-aided design of realis-

tic machinery. Those that are available are critically

*Table 1 is obtained from the results of a survey
of 53,000 professional engineers performed in 1967 by the
Engineers Joint Council under contract to the National
Science Foundtion. These and other results are summarized
in Engineer, March-April, 1969.



limited in breadth of application and convenience of use.
In one class are programs including DYANA which represent
linear, unconstrained multifreedom dynamic systems, but
these either cease to apply or require equation formulation
of the user for nonlinear and constrained systems. Since
machinery characteristically involves constraint, this
class of programs is limited in application. In a second
class are programs including KAM which represent zero-
freedom systems (ideal machinery) involving detailed two-
or three-dimensional constraint. But most realistic mach-
inery exhibits multifreedom behavior in some respect. In
fact, the possibility of such behavior may be the basic
cause for concern in the design. Thus what is required is
an approach and an associated computer program which will
represent nonlinear, constrained, multifreedom dynamic
systems. Ideally, the program should be fast enough for
use as a base for computer-controlled optimization.

In this paper an example CAD representation of a
characteristic realistic machine i§\outlined--including
system definition, network representation of constraint
and dynamic conditions, integration and output by graphic
display. Several distinct features of mechanical dynamic
systems are then outlined, as they compare with features
of electrical and structural systems; Mechanical dynamic
systems in general can be represented mathematically by a

part-contact network, defining rigid body constraint, and
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by variationally derived Lagrange equations with constraint,
defining force interrelations. This representation is dis-
cussed briefly in Sections 3 and 4. In Section 5 an organ-
ization for program implementation in FORTRAN IV is briefly
discussed. A preliminary generalized two-dimensional program

based on these methods is presently under test.



2., COMPUTER REPRESENTATION OF AN EXAMPLE
DYNAMIC MECHANICAL SYSTEM

Figure 1 is a phptqgraph of a mechanical system used . .
as part of a torsional'vibration experiment ' in the Mechanical
Analysis Laboratory, Department of Mechanical Engineering,
University of Michigan. The system is instrumented for ex-
perimental measurement of torsional vibration of a large
flywheel on a long shaft, for various input motor speeds.
Although this is a somewhatlless detailed system than most
realistic machinery, it illustrates several important fea-
tures and provides a checkout example for a generalized
program. |

Figure 2 shows the notation used in representing
this system mathematically. It is assumed that elements:

3 and 7 are significantly elastic and that the motor inputs
a torque which is significantly dependent on the angular
displacement and velocity of element 2. This is therefore
a three-degree-of-freedom system, requiring specification
of at least three coordinates for complete definition of

geometry. The coordinates might be 62, 6 and 68. How-

4’
ever, the four-bar constraint arrangement represented by
elements 4, 5, and 6 appears to requiré expression of the
dynamic characteristics of elements 5 and 6 relative to

element 4. Here this is feasible, but if the constraint

were more detailed it would be difficult. Also, a technique



Figure 1.

An Example Multifreedom, Constrained
Mechanical System. This device is
actually used as a torsional vibration
experiment, but serves to illustrate
characteristics of realistic machinery
systems generally.
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is sought that can be implemented without major difficulty
in a generalized program. Therefore a Lagrange multiplier
approach is chosen. The system is defined by all five coor-
dinates 62, 64, 95, 66, and 68’ and is represented by five

Lagrange equations plus two constraint equations:

d |oT 3T av. 2 Ak,

N - + + I Aj I Q;

dt |96, 38, 96,  j=1 J\ae,
i=2, 4,5,6,38 (2.1)
¢ = 0 j =1, 2 (2.2)

Terminology is the following:

T system kinetic energy
V = system potential energy

Q.= non-conservative force associated with

coordinate ei

A.= the Lagrange multiplier associated with
the constraint ¢j = 0 (or ij = 0)
j =1, 2

The constraint functions ¢j simply represent the horizontal

and vertical components of loop closure:

0y = (F) + T, + T + T) ° i=0 (2.3)
b, = (T, + T, + T +T) °j =0 (2.4)

When fully developed, equations (2.1) and (2.2) are:

Lagrange equations:

1,6, + 2kg(r,8, - p,8,)T, = T, (2.5)
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2, v .+ 2
[I4+m5r4 ]e4+(m5r455)[cos(64-65)65+51n(64—65)65 ]
2k3(r262 - p4e4)r4 + M gT,Co0S 64
- (r4sine4)>\1 + (r4 cos 64)A2 = 0 (2.6)

2. . : 2
[Is+mss5 ]65+(m5r455)[cos©4565)64—51n(64-65)64 ]

+(m5gss)cose5 - (rssins))\1+(r5coses))\2 =0 (2.7)

2 .
[I6 + meSe ]e6 - (m6gs6)cose6 - k7(68 - 66)
- (r6sin6)A1 + (r6cose6))\2 =0 (2.8)

Ig0g * k (8 - 8,) = 0 (2.9)

Constraint equations:
- r,sing, 0, - r551n6595-r651n66 O
2

2 : 2
- r464 cose4 - rse5 coseS - r666 cose6 =0 (2.10)

r4cose454 + rscose5 65 + r6cose6 66

- 1,6,%sin0, - r.6.%sin6, - r 8, %sin6, = 0  (2.11)

474 4 5°5 5 66 6

Most of the notation in thése equations is defined
in Figure 2. The subscripts denote the element with which
the corresponding symbol is associated.  The term To1 is
the torque exerted by the motor on element 2.

Equations (2.2) (or equations (2.10) and (2.11)) have
been stated in second order form so that the orders of the

Lagrange equations and the constraint equations are equal.
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This allows application of a standard numerical integration
process to determine the functions ei(t) i=2,4,5, 6,8
and Aj(t) j =1, 2. Characteristically, equations (2.5)
through (2.11) are coupled in the coefficients of the high
order terms. Because the coefficients are dependent on the
system coordinates, it is impossible to determine a mathe-
matical uncoupling valid over the entire range of displace-
ment. Therefore a simultaneous solution of equations (2.5)
through (2.11) for the high order quantities éi i=2, 4,75,
6, 8 and Aj j =1, 2 must be performed at every integrating
step, or at least sufficiently frequently to allow accurate
extrapolation.

A program for the integration of equations (2.5)
through (2.11) was written in FORTRAN IV, using several
subroutines from the IBM System/360 Scientific Subroﬁtine
Packagel, including HPCG, an integration subroutine based
on Hamming's modified predictor-corrector method. Program
output was expanded to include the coordinates of all points,
lines, and circles of interest in the system versus time.
The overall bfogram'was run on the IBM 360/67 computer under
MTS (Michigan Terminal System) and the results stored on
disc storage for subsequent step-by-step display on an IBM
2250 graphic display unit. Figure 3 is a photograph of the
2250 unit with the computer-generated schematic on the dis-

play tube.
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Figure 3. Display of a Schematic Representation of
the System of Figure 1, on an IBM 2250
Graphic Display Unit.
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The series of photographs in Figure 4 shows successive
configurations over eqpalytime interVais, from the moment the
motor begins to supply aﬁ input torque to the syétem; The
circles can be recpgniied as the pulléy of element 2, pulley
of element 4, and flywheel of element 8. Straight lines
were fixed on each of the circles to make possible recogni-
tion of their origntation. The belt was not shown, but the
input, coupler, and output links of thevfour-barrlinkage
are shown. The motor torque, belt stiffneés, and shaft tor-
sional stiffness corresponding to the system in Figure 1
were too high for any multifreedom effects to easily be
seen on the gfaphic display unit. Therefore, these para-
meters were substantially reduced for the photographs shown
in Figure 4. Flywheel 4 is seen to lag the input from pulley
2, and flywheel 8 lags both 4 and 2. The time redﬁired to
integrate the system through approximately twenty rotations
of pulley 2 was approximately one-half minute.

The fact that the time response of a specific example
of a constrained, multifreedom dynamic mechanical system can
be efficiently determined and displayed is of marginal inter-
est. However the example does suggest the nature of realistic
machinery and inspires observations on situations that will
be encountered in any generalized program:

1. A multifreedom representation is reasonable for

a variety of reasons, including motion input of limited



Figure 4.

A Series of Photographs of the IBM 2250

Graphic Display Screen, During Simulated
Start Up of the System of Figure 1.

Line segments fixed in the pulleys and
flywheels show the angular displacements
of the respective parts. The input
pulley has been repositioned (lower left
corner) and the belt is not shown. Simu-
lated values of motor strength, belt
stiffness and shaft stiffness are some-
what lower than actual to emphasize
multifreedom effects.

13-
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power and presence of elastic elements. Other situ-
ations occur involving passive freedoms and artificial
freedom introduced for the purpose of computing reaction

force.

2. VLarge, non-linear displacements occur--physically
unlike any phenomena in typical electric circuits or

mechanical structures.

3. The system must at least be represented as two-
dimensional, and it is easy to imagine a need for
threefdimensional'representation. If an electrical-
mechanical‘analogy is made between current and force,
voltage and velo;ity, then force and velocity fust
each be_six-element‘vectors; Force has three com-
ponents of translational foree and  three of torque;
velocity has three components of translational ve-
locity'and threé éomponents of angular yelocity.

In contrast, current and voltage are scalars.

4. There is a constraint situation suggestive of
electrical or structural networks. Conceivably
every element (rigid part, elasticvforce, inertial
effect) can be represented as a branch; every con-
tact or point of action between branches as a node.
Representation of the present example in such a way

leads to a network of 25 branches and 12 independent
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loops in which the state variables are three-element
vectors (two translational components; one rotational
component). If there is a general way to avoid this
complexity, it may lie in emphasizing only that con-
straint caused by the interconnection of rigid parts.
All other force fields are included in a state func-
tion (the Lagrangian) or as generalized, non-conser-
vative forces. This approach will lead to a larger
set of differential equations than is absolutely
necessary. (In the example, seven differential equa-
tions were obtained, although only three would have
been required if the problem was defined entirely in

terms of coordinates 92, 6,.and © But there is

4> 8‘)
Certainly no guarantee as a practical matter that a
state variable approach will lead to a minimum set
of equations either, considering the eliminations
involved. Also, there may be fewer numerical prob-
lems due to ill-conditioned equations, the more

directly the equations are related to a manifest

physical situation.

5. The only mechanical elements analogous to elec-
trical capacitors (i = C %% ) are inertial fields
dv

(f = ma?). However, of any two parts related by
an inertial field, one is always ground. Because

of this simplification, a Lagrange equation repre-
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sentation of inertia via the kinetic energy term

seems natural.

6. For most purposes, the sources of applied force
can be considered without mass. All mass can be re-
garded as lumped in the interconnected rigid parts.
Thus in the example the timing belt is considered

a massless torsional field, exerted on element 4 by
element 2. Situations will arise involving elastic
elements of substantial mass, but it may be possible
to represent them in lumped parameter form, again
separating the mass and field effects, but intro-

ducing more system coordinates.

7. Integration times are small enough for computa-
tional representation to be feasible. With the large
output displacements involved, graphic display out-
put is almost indispensable for rapid interpretation
of overall response. However, small displacement
response of individual coordinates (e.g., vibration
amplitudes) must be output on scaled plots to be

recognized.



3. REPRESENTATION OF CONSTRAINT BY A
PART-CONTACT NETWORK

General dynamic mechanical systems are now to be
represented by a combination of constraint conditions
based on part interconnections and Lagrange equations
interrelating the effects of inertia and applied forces.
The discussion here will be in terms of two-dimensional
systems, although most of the methods involved have direct
extension to general three-dimensional application.

As a first step toward developing the constraint
conditions, parts and contacts will be defined. Figure 5
shows a part in the most general situation. By definition
the part is rigid and inextensible. Part orientation is
defined by the angle of unit vector Xi relative to i fixed
in ground. The sets of points Pim and Qin are fixed rela-
tive to part i: pim denotes locations where part i con-
tacts other parts such as j, k, 2 shown; Qin denotes loca-
tions where external forces or torques are applied on part
i, including inertial, elastic, frictional, electrical,
and other force effects. Except in one situation, points
Pim and Qim are fixed relative to part i throughout the
entire range of time involved in the response. The excep-
tion is so-called "higher pair'" contact, in which case one
part either rolls, or rolls and slips, on another part.

This is illustrated by the contact of parts i and £. In

-17-



Part j

Figure 5.

General Situation of a Rigid Part, Showing
Possible Rotation, Translation, and Rota-
tion-Translation Higher Pair Contact.
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this case the contact points such as Pi3 are fixed relative
to their part only during the instant in which they locate
the actual contact. During numerical integration for over-
all time response the positions of these higher pair con-
tact points relative to their parts must be updated at each
integration step so that they will always very nearly locate
the actual contact.

Certain unit vectors must also be defined relative
to the part. In three dimensions unit vectors aij and &iz
would be required to define directions of relative rotation
between the parts, but in two dimensions all rotations may
be assigned the direction K. In either case unit vectors
gik L

tive translation of any parts (% and k) involved in trans-

and gi are required to define the directions of rela-
lational contact. Such unit vectors of slip are fixed in
their respective parts over the entire time range, except
again in the case of higher pair contact illustrated by
parts i and 2. In this instance the orientation of the
slip vector must be updated at each integrating step to
maintain an orientation very nearly that of the tangent
vector to the contact point.

Two basic contact types are defined: rotation and
translation. To simplify system topology the convention
is introduced that each contact relates two and only two
parts. Thus, a rotation contact is either a pin joint

connecting two parts such as the contact at point pil;
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or a rolling contact (with or without slip) such as the
contact at point PiS' A translation contact is either a
keyway joint connecting two parts such as the contact at

point P or a slip between two surfaces such as the con-

i2°

tact at point Pi If it is necessary to represent at a

3
single joint a combined rotation-translation or a double
translation, this is accomplished by interposing an arbi-
trarily small part between the two contacts. Thus each
contact relates two parts as required. This scheme ex-
tends readily to three-dimensional analysis in which an
ideal ball joint is, for example, represented by three
rotation contacts separated by two zero-size parts. Graphi-
cally, rotation contacts are represented by small circles;
translation contacts by small triangles. Parts are repre-
sented by straight lines or large polygonal shapes.

Now another less familiar entity important in con-
straint statements will be defined: the keyed assembly.
A keyed assembly is simply any set of one or more parts
related entirely by translation contacts. A schematic
keyed assembly is shown in Figure 6. The basic reason for
the usefulness of the concept of a keyed assembly is that
all parts in the assembly undergo common angular displace-
ment.

A part-contact network is the topological network
of nodes and branches in which every part is included as

a node and every contact is included as a branch. An

appropriate tree derived from the part-contact
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Figure 6. Schematic Representation of a Keyed Assembly,
Defined as Any Group of Parts Related En-
tirely by Translation Contacts.

Figure 7. Abstract Example Mechanical Network. Small
circles are rotation contacts; small triangles
are translation contacts. The straight lines
and large polygonal shapes denote parts. Topo-
logically, contacts are branches; parts are
nodes.



-22-

network forms the basis on which the dimensional constraint
equations such as (2.10) and (2.11) are constructed. This

is completely analogous to the process by which the Kirchoff's
Voltage Law equations are constructed from electrical net-
works, In both instances the only topological problem is
determination of an appropriate tree from the input network.
This is conveniently handled by network analysis.2 The
results as concern mechanical systems can be illustrated

by the hypothetical mechanical network shown in Figure 7.

The branch-node incidence matrix for this example is the

following:

Branches

[
—
—

eNoNoNoNoNoNeoNol s Ll

1

Nodes
QCQVOVWOoOONOOUT PSS, WN M
1
QOO OO0 MM OOlw
1
OO O0OOKHHMHOOOOCO

= [A]

OO OHOOOOOoO IO

QOO OOHKOOOW

OO PR OOOOOoOd

QO KFHFHOOOOOOowm

O OOOOOOoOQOIN

O OO, OOOOO|IN

OO OO OOH+-+FO|®
[}

OO O OO KFEOOOIN

H R OOOOOOOoOOoo+-

—

(3.1)

Here, precedence in the sequence of columns has been given
those branches (contacts) relating parts nearest ground.
To obtain the loop matrix the non-augmented branch-node
incidence matrix is formed by eliminating the row corre-
sponding to the ground node (part). Then by a process

similar to Gaussian elimination a cut-set matrix is developed.
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The transpose of this matrix is the loop matrix, listed

below for the example of Figure 7.

Branches

| 1 6 3 4 5 8 2 712 9 10 11
" L 1-1 10 0 1 0 0 0 1 0 0
a2/ 0 0-11 0 0 1 0 0 0 1 0 = [B]
83, o0 0o 0 1 1 0 0-1 1 0 0 1
-1

(3.2)

Note that development of a tree occurs implicitly in the

construction of equation (3.2). In this case a tree results
in which most tree branches directly contact the ground node,
or contact only one or two nodes away from ground. This
tends to define loops involving a smaller number of nodes
and branches than otherwise. Figure 8 outlines the loops

defined by equation (3.2)

»/\ 10

C‘“\ //////
Loop 2 | \\\\L SV |

Loop |

Figure 8. Loop Structure Defined by Network Analysis
for the Abstract Example of Figure 7.
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For any given loop there are two useful constraint
conditions for mechanical systems. One states that the
sum of the relative translational displacements around a
closed loop is zero; the other that the continued product
of the relative angular transformations around the loop is
unity:

Translational constraint:

m >
L q, =0 (3.3)
. 1
i=1
Angular constraint:
2
[Eln]]_—.ln[El,l—l] = [1] (3°4)

In equation (3.3) the ai vectors are defined as
being directed from one contact point to the next around
the closed loop. (Note that for each contact there are
two contact points, one in each of the related parts.)
An individual ai vector either spans a part, from one
contact to another, or spans a contact, from one part
to another. The ai vector is zero if it spans a rota-
tion contact, but is finite if it spans a translation
contact. In any case it can be expressed in polar coor-

dinates as the product of magnitude and direction:
> ~ 2 . o
q; = 9;9; = qi[cosei i+ 51neij] (3.5)

Consideration of equations (3.3) and (3.5) suggests that
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the dependent variables involved in the translational con-
straint will be the angles of parts (more specifically their
keyed assemblies) relative to ground ei’ and the distances
of slip at the translational contacts Sk
In equation (3.4) the [Ei,i—l] terms are 3 x 3 Euler
transformation matrices involving as dependent variables
the angle of each keyed assembly relative to the keyed assem-
bly preceding it in the loop. The condition (3.4) is re-
quired for three-dimensional problems* but degenerates to
an unnecessary condition in two dimensions: specifically
that the sum of the relative angles around a closed two-
dimensional loop is zero. Thus all loop constraints re-

quired for two-dimensional analysis will have the follow-

ing form:

mo R m
d = o 3 = =
jj izl q; i 151 a; c056i 0 (3.6)
mo . m
- o 3 - 1 -
¢j+l = izl q; j = 151 q; sinb; =0 (3.7)

If it is intended to include higher pair contact

within the application of a general program for mechanical

*Even in three-dimensional problems, direct solution
of equation (3.4) can be avoided by working with its first
time derivative--the statement that the sum of the relative
angular velocities around a closed loop of keyed assemblies
is zero:

w
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systems, then the part-contact network constraints are not
sufficient. Constraints defining the profiles of the con-
tacting parts are required, as well as a condition that

they do not interpenetrate.



4. REPRESENTATION OF FORCE INTERACTION
BY LAGRANGE'S EQUATION

The constrained form of Lagrange's equation for any

mechanical system can be written as follows:

m 99 .
% B-'.F—_ST_+§L+ I a—J = qQ (4.1)
E”i Ny iooj=1, 4
This equation compares closely with equation (2.1). Here

the coordinates ny represent the angles of keyed assemblies
relative to ground and the slips of the translation contacts,
as discussed in Section 3. As before, T and V are the total
system kinetic and potential energies respectively; Qi is

the generalized force associated with the N coordinate.
There are m constraint equations ¢j and m Lagrange multi-
plier functions Xj(t).

In the construction of a generalized program the
essential task is to develop and implement a procedure for
reducing the Lagrange equations represented in equation (4.1)
to ordinary differential equations in standard form and to
efficiently compute the numerical values of the coefficients
of these equations at each integrating step.

The form of equation (4.1) suggests that the greatest
difficulty will be encountered in computing the coefficients
of the kinetic energy terms. First the total system kinetic

energy due to rotation and translation must be expressed

-27-
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in terms of the system coordinates (keyed assembly angles
relative to ground and slips at the translation contacts).
Total kinetic energy T is the sum of the kinetic energies

Tm due to the motion of each of the individual parts.

Figure 9 depicts the geometry for computation of the kinetic

energy of part m:

T = % 16 % 41

m m-m 2 m (4.2)

3
The velocity p, must be expressed in terms of the zeroth
and first derivatives of the system coordinates intervening

between ground and the center of mass of part m:

t.
a i
b, = I [F,+ I 3. (4.3)
i=1 j=1 ]
t t.
RSN SRR N T
o = I 0, x (r. + S.. + S.. S..
m j=1 1 i =1 ij i=1 j=1 ij Tij (4.4)

In equations (4.3) and (4.4), the i summation runs over all
the keyed assemblies in the chain, from ground to part m.

The limit a is the number of keyed assemblies in the chain.
The j summation runs over all the translation contacts within
the ith keyed assembly, where t. is the number of translation
contacts in the ith assembly. The terms ?i and gij can be
identified and related to the term ak defined in Section 3

as follows. Vector gij is the slip displacement of the jth
translation contact counted within the ith keyed assembly.

. > . .
It is therefore the same as a vector q, Spanning a translation
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Figure 9. Abstract-Representation of a Characteristic
Situation in the Computation of Kinetic
Energy Terms in Lagrange's Equation. The

chain of parts and keyed assemblies shown
runs from ground to the center of mass of
part m. The chain is only a portion of a
larger total mechanical system. Terms T.
and gij are noted. *
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->
contact. Vector ri is the vector sum of all the vectors

spanning parts, in a given chain of vectors passing through
the ith keyed assembly. It is therefore the same as the
summation of all the ak vectors which span parts in the ith
keyed assembly.

Development of the kinetic energy terms in equation
(4.1) requires squaring and performing differentiation oper-
ations on equation (4.4), in terms of the specific coordinate
Ny corresponding to the specific Lagrange equation under
construction. When this is worked out a surprisingly simple

relation is obtained:

For angular coordinates, Ny = 92:
a i
d BTAW 0Tm :
= |= ! - 5= =6 I 6+ m [ Z L 0. b (4.5)
dt ao%J BGQ 2m "m m nl{.i=1 j=1 i i
hd 2 ~ ~ ~ . . A
- 6y (b1 x k) + sij (s1J x k) + 2 sij ei(slj) ]°b%}
For slip coordinates, N, = S%p
d |aTm 3Tm N RN
== | - = m [ Z £ 6. (kxb.,)-6."b.
dt dsgp BSQP m { i=1 j=1 i i i 71
. ~ * * A ~ o
+ %33 sij + 2 S5 0 (k x sij)] szé} (4.6)

Some of the terminology of equations (4.5) and (4.6)

is explained in terms of Figure 10. Following a chain of
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Figure 10. Same Illustratlon as Figure 9, Notated to
Define Terms bQ, Slp and ﬁk
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+ -
parts from ground to the part containing mass m, bl is the

~

vector spanning the keyed assembly having angle 62; Szp is
the unit vector of translation for the pth translation con-
tact within keyed assembly 2. An individual ak vector is
one vector segment in the chain of part and slip vectors
running from ground to mass m.

Equations (4.5) and (4.6) have a striking similarity
to the classical four-term expression for the second deriva-
tive of a single position vector with respect to time, con-
taining tangial, centripetal, radial and coreolis terms.

In this sense they reduce the Lagrange equation of equation

(4.1) to the somewhat more tractable form:

ma = F (4.7)

The potential force and constraint terms introduce
little programming difficulty provided a limited variety
of such effects are included. For example, the potential
term might represent forces due to gravity and linear tor-
sional and translational springs. The constraint term
would account only for part-contact network constraint,
unless higher pair contact is involved.

The Qi term poses a more detailed computational
problem. Assume that a total of p actual non-conservative
forces ﬁk act on the system. The generalized force Qi is
computed as a force acting directly on the coordinate n,

equivalent in effect to that of all the actual forces ?k:
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Q. = I F, ° =k (4.8)

Usually ;k can be conceived as the vector between the two
points of attachment of ?k’ Given a series of tree branches
connecting these two points, the partial derivative terms
are readily evaluated. If the Ek terms include only forces
dependent on displacement and velocity, they are computed
from the motion data obtained in the prior integration step.

-
Dependence of F, terms on reaction force (Coulomb friction)

k
does not fit this pattern and may require introduction of
a new constraint, for which the associated Lagrange multi-
plier corresponds to the required reaction force.

As in equation (2.2) of the example problem, the
constraint equations accompanying the Lagrange equations
are stated in second order form so that the orders of all

equations will be the same. The second derivative of

equation (3.3) is:

->
q; = 0 (4.9)

n™Ms

i=1

The expanded expression for ﬁi is:

q. + [6. q. + 2 q. 6.1(k x q.) (4.10)

N e é
q. = [q; - i 95 i

1

The second order constraint conditions are formed as the
orthogonal components of equation (4.9). If the part-
contact loop includes a higher pair constraint, an addi-

tional accelerational term is required in terms of the
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radii of curvature of the contacting surfaces.
The above analysis method extends directly to three
dimensional problems. Use would then be made of expressions

similar in form to equations (4.5), (4.6) and (4.10).



5. REMARKS ON PROGRAM ORGANIZATION

A preliminary generalized two-dimensional program
based on the foregoing methods has been written and is
presently under test. The program is written entirely
in Fortran IV for compatibility, and therefore has a some-
what primitive data structure compared with what might have
been utilized in PL/1 for example.

Basically, all fixed and floating point data are
stored in tables identified under one of the following
categories, termed entities:

1. Fields. Conservative or non-conservative applied

forces exerted on one part by another.

2. Generators. Motion sources, inputing either a

rotation to a keyed assembly or a slip to a trans-
lation.

3. Keyed Assemblies. Assemblies of one or more

parts related entirely by translation contacts.
(Internal use only.)

4. Loops. Sequences of parts and contacts forming
an independent closed chain. (Internal use only.)

5. Markers. Points, unit vectors or points and unit
vectors, fixed in translational or orientational
position relative to a specified part.

6. Parts. Rigid, inextensible objects of zero or

finite size, mass and moment of inertia.

-35-
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7. Rotations. Contacts allowing single-freedom
rotation between parts.

8. Requests. Indications by the user of the pro-
gram of desired output (displacements, motions,
forces versus time) .

9. System. A category established under which
information pertinent only to the overall system
is stored.

10. Translations. Contacts allowing single-freedom

straight line slip between parts.

For each entity there are two tables, one for fixed
point data; the other for floating point data. Variable
length lists are referenced by pointers in the tables and
stored end-to-end in long, one-dimensional data arrays. A
set of simple access subroutines is employed to store and

retrieve data in the tables.
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