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NOTATION

The underbar beneath any variable ( ) indicates an n dimensional vector.

The symbol §( ) in front of any variable denotes either virtual
displacement or virtual force.

A star superscript indicates a value related to the center of mass. Other
values are related to the rotating coordinates (1.7, 5).

A dot or a double dot over any symbol, { ) or (), indicates first or
second derivative with respect to time.

6(_)

~

at
components only (i.e derivatives with respect to time of the basis vectors
1.j .k are excluded).

The symbol denotes the derivative with respect to time of the vector



ABSTRACT

High performance requirements in robotics have led to the consideration of
structural flexibility in robot arms. This paper employs an assumed modes
method to model both the rigid body and flexible motion of a spherical
coordinate robot arm. This model is used to investigate relationships between
the arm structural flexibility and a linear controller for the rigid body motion.
This simple controller is used to simulate the controllers currently used in
industrial robots. The simulation results illustrate the differences between
leadscrew driven and unconstrainted axes of the robot; they indicate the trade-
off between speed and accuracy; and show potential instability mechanisms due
to the interaction between the controller and the robot structural flexibility.
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The first step in improving the performance of robots is to obtain a
reasonably accurate dynamic model. Usual techniques solve for the gross body
motion and the flexible motion separately. Since the elastic motion is small
then its effect on the gross body motion is neglected. Therefore, only the effect
of the rigid body motion on the flexible motion is considered. This is done by
solving the gross body equations for inertial forces which in turn are introduced
as excitation source to the elastic problem. Recent techniques use coupled
reference position and elastic deformation models. Some researchers used
finite element techniques to describe the elastic deformation [3], [4]. Others
used the assumed modes method [5]. The latter approach is employed in this
study. This approximate technique can be used to yield a set of equations which

represent the combined rigid and flexible motion.

The next step is to design a controller which insures the desired
performance of the manipulator. The conventional linear control techniques
have led to poor performance when robots are operated over a wide range of
tasks. Therefore, a sophisticated controller design is needed to control the
complex, nonlinear and nonstationary dynamic system. Adaptive controller

techniques [6], [7] seem to be a promising solution to this problem.

In this study, a simple integral plus state feedback controller is used to
control the rigid body motion only. This simple, linear controller is used to
simulate the controller used in present manipulators. The illustration of the
inter-relationships between the robot structural flexibility and the controller
design is discussed in this report. This should serve as a basis for the design of

advanced controllers aimed at solving the arm flexibility problem.

2. MODELING

The physical system is a spherical coordinate robot, which has two revolute

and one prismatic joints. It consists of an arm connected to a rotating base.

Dynamic Simulation 5
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The arm is made of two beams such that the second beam can move axially into
the first beam. The entire arm is free to rotate around the horizontal axis
passing through the pivot point A and parallel to K. This is schematically

illustrated in Figure 1.

The robot arm is modeled by two Euler-Bernoulli beams of length L, and L,
respectively as shown in Figure 2. A reference inertial frame (/, J, K) fixed at
point 0, is chosen along with a non-inertial, body fixed, rotating reference frame
( 1.7, 5), The equations are derived in terms of the latter to keep the mass

moment of inertia constant throughout the rigid body motion of the robot.

The first beam can rotate around point 0 with angular velocity ¢ around the
vertical axis passing through J, and ¥ around the horizontal axis along K. The
second beam is fitted into the first one and has one additional degree of
freedom r which allows it to move axially into the first beam. The load at the

end-of arm is modeled with a concentrated mass at the end of the second beam.

The stiffness of the beam is much higher in the i direction then in either j
or ]g directions. | Therefore, the longitudinal vibrations of the two beams are
neglected and transverse vibrations only are considered in addition to the rigid
body motion. Variations of the mass moment of inertia due to the flexible

motion is assumed to be negligible.

Expressions for the total kinetic energy and the total potential energy are
derived. The generalized forces corresponding to the generalized coordinates
are determined by the virtual work principle. These results are used in applying

Lagrange's equations to obtain the dynamic equations of the system.

Two separate cases are considered in this report to model the flexible

motion in the dynamic equations:

(1) Both beams of the robot arm are considered to be flexible

Dynamic Simulation 6



RSD-13-83

(2) Only the potion of the second beam protruding from the first beam is

considered to be flexible.

For the first case, only the kinetic and potential energies are derived. The
position vector of any point on the first beam is:

Ry=r3 +Vj+ Wk (1)
where 7, is time invariant, since flexible motion along i is neglected (i.e. no
longitudinal vibrations). V and W represent the flexible motion of the beam in
the j and ]3 directions respectively. The rotation vector of the noninertial frame
@ J. f) is defined as follows:

Q = ¢J + % = gsinGi + pcos¥j + T (2)
the time rate of change of 7, is given by:

' . ‘ ' L .
&= cstl +Q x Ry = (Wypcosd — )i + (V + 9 — Wesind)j (3)

+ (W + Vgsind — 7 gcosd)k

The position vector of any point along the portion of the second beam located
inside the first beam is
Rp=zx'i +Vj + Wk (4)
wherez' = L) + 7 — Lz +  and must satisfy the following condition,
L,-Ly+r<z' <L, (4a)
L, is the length of the first beam, L, is the length of the second beam, r is
the length of the part of the second beam protruding from the first beam and z
is the distance from the lower end of the second beam to the desired point
within the range defined for z' (see figure 3). Note that z'=r, since
longitudinal vibration along the second beam is neglected. This portion of the
second beam and the first beam are assumed to have the same mode shapes.
Therefore, I ard W defined in equation (4) are the same functions used for R,

r

The time r.. of ‘harge of Ry is:

Dynamic Si. ;] =tion 7
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) . : : - . ,
Rp = —572 +Q xRy = (r + Wocos® — VOL + (V + &' — Wesind)j (5)

+ (W + Vpsind — z'gpcosV)k

Similarly, the position vector of any point on the protruding part of the second
beam is:

Re=yi+Vj+ Wk (6)
wherey' = L, + ¥y and y =r = y The time rate of change of }33 is

. 6R . .
%:—52+Qxf33=(r+¢W’cosﬂ—0V')i (7)

+ (V’ —pW'sin® + %")j + (W' + V'gsing - y’{ocosﬂ)[g
The assumed modes method [8] is used to obtain the expressions for the
transverse vibrations V, W, V' and #'. They are written as a linear combination

of admissible functions ($;) which are functions of spatial coordinates,

multiplied by time dependent generalized coordinates g;(¢).

n
V=Y diq:(t) (8)
i=1 .
Treating the continuous beam as a two degree of freedom system, then n should
be set to 2. The admissible functions are chosen to be the first two eigen-
functions of a clamped-free beam in order to satisfy the boundary conditions of
the two beams. The eigen-functions are given in reference [9]. The final

expression for V, W, V' and W' depend on the mode shape selected for each

beam.

These results are then used to develop the kinetic energy for each part of
the robot-arm including the payload. The total kinetic energy will be

m m : : 1 : -
To= YT+ Ty =3 = [(Ri R)dmy + —mp(Ry  Rp) (9)
B 11 i=12m{~ ~ 2 ~

where m is the number of links in the robot arm, T} is the kinetic energy of each

link and 7, is the kinetic energy of the payload. The total potential energy of

Dynamic Simulation 8
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the robot arm consists of the strain energy of the two beams [10] plus the

potential energy due to gravity.

La

L
n:{ml'z—l +mzL1+r—_2— +mp(Ll+r)}gSin’6 (10)

1 2
i Ly-5+ 2

®iN

+{m1Vl vmVl o RVl +ran’}L1+,.]gcosﬁ

( ]
aSV(gt) [aZW(gt)

T f EL(§)|— e d¢

( . )

L 2
ELAGED) RS SN 1 ACHD
el Ll 5[&«51)[ T ]ds

Where ¢ is a dummy spatial coordinate used for integration. m, is the mass of
the first beam, m'; is the mass of the part of the second beam located inside the
first beam, m ", is the mass of the part of the second beam protruding from the
first beam. P;(¢.t) is the tension force in the i** beam. The first term is the
potential energy due to gravity. The second term is the potential energy
associated with the flexible motion. The integral terms represent the strain
energy of the two beams. Equations (9) and (10) are then substituted in

Lagrange's equation [8] to write the unconstrained equations of motion:

=& (ll)

8T, oT, . 8V,
t]_ t+ ¢

dt ag; 0g; 0g;

where @; is the generalized force associated with the generalized coordinate
qi(t).

For the second case, a complete derivation of the equations of motion is
presented. Note that this case can be obtained from the previous one by
dropping out the flexibility terms associated with the first beam and the part of
the second beam located inside the first beam. Since the latter undergo rigid

body motion only, then the position vector of their mass center would be of

Dynamic Simulation 9
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great importance. For the first beam, we have

L
Ri=Zi (12)
The velocity term is
: SR; L,. L.
= — = — - — 13
R 5t +Q X Ry 5 Y 5 gcosvk (13)

The position vector of the mass center of the part of the second beam located

inside the first beam is

R2‘= x"i

~

(14)

where z'° remains in the range defined in (4a). The time rate of change of Rz is

given by
., ORg o_ ; '
%z_ﬁi + QX Ry =7i + V2] — pz'cosVk (15)

Position and velocity terms for the part of the second beam protruding
from the first beam are the same as their counterparts in the first case. They
are defined in equations (6) and (7). Since the flexibility effect is restricted to a
portion of the second beam only, then the prime sign (‘) on V and ¥ is dropped
in equations (6) and (7) for the rest of the report. Note that 7 cannot approach
zero since it would violate one of the major assumptions set for the Euler-
Bernouilli beam. That is 7 must always be much greater then the cross
sectional dimensions. Following the same reasoning as before, the assumed
modes method is implemented to obtain the expressions for V and #. Selecting
the first two eigen-functions of a clamped-free beam [9] for the admissible

functions, ¥V and W become:

b;91:(t) = ®,9,,(¢) + $oq,5(¢)

-

<
"
lagly

(16)

|
1}
I

big2; (L) = &,92,(¢) + $pg45(t)

J

[}
p—
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where ¢, and @, have the general forms

& &
®; = cosh iy sin h 1Ty] - sin (17)

— COS

&Y
-,

Eiy]

The values of &; and «; for each mode are given in Table 1 [9]. Substitute
(16) and (17) into (7) to get the complete form for Ea These results are then

used to develop the kinetic energy for each link.
Since the first beam undergoes a fixed point rotation, then its kinetic

energy can be simply defined by:

Tl= Qﬁ]c (18)

™|

Where Hp is the angular moment of momentum around point 0. It has the

following form:

Ho = AQzi + BQyj + CQ,k (19)
Assuming properties of a thin rod (i,e, dimensions of the cross section is < <
. m L§
then the length of the rod), gives A =0 and B =C = 3 Therefore, Hg
becomes:
LE : L.
Ho = ;3 L cosdpj + : lﬂ;cl (20)
Using (20) in (18), T, will be:
m,LE | .
T, = -%{ 2cos?y + ﬂg} (R1)

The kinetic energy of the portion of the second beam inside the first beam has

rotational and translational parts:

Te= gmall- &)+ 20 & (22)
where H° is the angular moment of momentum around the mass center located

by Rz. It has the following form:

H* = 4101 + A2y g + A3k (23)

Dynamic Simulation 11
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where A;'s 1=1,2,3 are the mass moment of inertia around the mass center.

m'a(Ly — 7)°

1 =0and 4; = A3 = — 1z {3" becomes:
. 'o(Ly —7)2 . .
H = ln—zsﬁr—)—[;acosﬂl + 1%} (24)
Using (24) into (RR), To will be
2 2
- l '+ 42 X T LZ 2 T _ ﬁ 2
Tz—zmz[Y +#|L, ) > + ¢ L1+2 z]cosﬂ (25)
Lo — 2
+ ———-(;4—1.){90 cos?s + zf]

The kinetic energy of the part of the second beam protruding from the first

beam is:

= %"{( o= %"[{(r + ¢ Wcosd — WV)? (26)

g
+(V + By — Wosin®)? + (W + Vpsin® — y'gpcosd)?ldm

Position and velocity vectors of the payload have the same form as £z and 153 but
evaluated at a distance (L, + 7). The payload is considered to be a point mass,
does not include rotation around its own mass center, then its kinetic energy

will be:
1 . .
o= omplly &) (27)
1 . . )R : . .
= §mp [r +¢Wcos13—-1W] +[V+ %L, +71)— Wesind?

+ (W + V¢sin19 - (L, + T)gbcosﬂ)z} Ly +7

The total kinetic energy is:

= 231 T, + T (28)

=1

Dynamic Simulation 12
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The total potential energy consists of the strain energy of the two beams

(10] and the potential energy associated with the rigid body motion. The strain

energy terms include the effect of the bending moment and the axial force. The

bending moment effect is represented as follows:

r 2 r 2

1 *V(y.t) 1 %W (y.t)

= [EI(y) =L dy + = [El(y) L2l | dy (29)

g0 oy 2% oy

while the axial force effect is:
@ 17 aw(y.t))
dy + = [T(y.)| 2L | g (30)
2% oy

%{T@¢4ﬂ%$u

where T(y.t) is the axial force (tension) in the second beam. It consists of two

parts:
1. The axial force due to centripetal acceleration is [10]:

r

T(y.t) = f(gbacoszﬂ + ®)pAy(L, + £)d ¢ + [pPcos?y + Flmy (L) + 1)

v
2
- r? Ly + },’2_

= pAg(pPcos?s + &) (L,r + ?) 1- =t + my (L, + 7)[pPcos®y + F#]
Lyt + %

This term represents the effect of the rigid body motion on the flexible motion

2. The axial force due to gravity effect:
r
Ta(y.t) = {mp + pAzde]g sind = [my, + pAx(r —y)]gsing
v

Combining the two components, we get

Ly + L
: : 2 1
T(y.t) = pAx(pcos®s + &) (L7 + %) 1 - .,.22 (31)
Ly + )

+ my (L + 7)[¢Pcos®s + #] + [mp + pAs(r — y)]g siny

Dynamic Simulation 13
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The axial force T(y,t) has a tendency to increase the stiffness of the second

beam. The total potential energy will be:

Li+1 - % +m.p(L1+r)}gsim$ (3R)

L
= {ml—zl + mg
+ {ma"V'L -+ w:.pVIL1+,}gcos19
1*t3

T 2
v S Efa(y)[m

dy*

1 r
+ -é'fT(y,t)

0
where the first term represents the potential energy due to gravity. The second,
third and fourth terms represent the potential energy associated with the
flexible motion. The rest are strain energy terms associated with rigid body
motion. Before we derive the virtual work of the system, we need to evaluate all

internal and reaction forces.

Both beams of the robot arm are connected to their driving motors by
leadscrews. When all controlling forces and torques are not applied, the system
will maintain its configuration due to the constraint forces exerted by the
leadscrews which balance thevweight. of the system. Expressions for the
constraint forces are obtained from the detailed analysis of the static

equilibrium of the two beams. This analysis is included in APPENDIX ]

The virtual work principle is implemented to obtain an expression for the

generalized forces. The virtual work of the first beam is (see Figure 4)
0
SWg, = (R'4 + R'gi)'/dﬁ/,'—- m,g (sindi + cosﬁl)ﬁ[z{ (33)
—[(Fs + R)L + Roj ] 6Ry | + (Tes + T'y — Tk 06X,
+ T (sindi + cos¥j) 6X,;
where R'), R'5, F5, Ry, R, Ty, and T, are all defined in APPENDIX 1. R, is the

virtual displacement of the displacement vector Ijl. Tcs and T,, are the

Dynamic Simulation 14
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controller torque in ¥ and ¢ directions respectively. 46X, is the virtual rotation

vector of the first beam.

60X, = sin¥éypi + cos¥dypj + 6k (34)

after simplification we obtain,

6Wgy = (Teg + aF5)68 + To,0p (35)

The virtual work of the second beam is,

0Wpa = Fel 0Rel (1 4r-1y + (R\E + Roj) 6Rz|1 + Fsi-6Ra|L,

+ T1K6Xs — ma'g (sindi + cos¥j) 6R,| L

r_Z2
1*z72)

- m.,"g (sin¥i + ¥j) 6 Rg
mg'g (sindi + cosdy) 53‘(L1+%)

,
— mpg (sindi + 005191)‘5£?3|(L,+r) + fp(y.t)V(y,t)dy (36)
0

where F, is the controller force, 6Rz and §R3 are the virtual displacements of Ra
and Rg3, 6X; is the virtual rotation vector of the second beam. Note that in this
case 60X, = 6X,. The last term in equation (38) represent the virtual work done
by the transverse distributed force p(y.t). The latter arises from the tangential

component of the acceleration vector.

v
ply.t) = f{szgi}' + pAgpRcost¥sind(L, + g)}ds
0
2 (37)
= 2pAUry + pAspicosdsind(L,y + yz—)

Substituting these terms in equation (36) we get,

2.0314
T

0.7035
r

gu(t) +

6Wpe = {Fc — mp'gcosd q12(t)

Jo

+ {-—an + my'g sim?[().BBq“(t) + 1.43¢q lg(t)] + 2mpgsind(g,(¢) — qlg(t))}dﬁ

+ [-O.SBm."zg cos® — 2myg cosd + 1.14pA0rr?

Dynamic Simulation 15
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+ pAspPcosdsind(0.57r2L, + 0.2257'3)}6q“(t)
+1-1.43m",gcosd + 2mygcostd + 0.182pA0rr?

+ pAzpPcosdsing(0.09172L, — 0.0zra)]dq 12(t)

The numerical values, that appear in these equations, are due to the
integration of the product of spatial terms, ¢;’s and their derivatives, over the
length, 7, of the flexible part of the second beam. The integration is done
numerically using Gaussian quadrature of high order (40 points) [11].

Therefore, the total virtual work will be:

§W, = 6Wg, + SWpg = [Fc - mygeosy(210R g, (¢) + 20812, lz(t))]d'r
+ {T“, + my"gsin¥(0.68g,,(t) + 1.43q,5(t)) + Bmy g sind(q1,(t) — q (¢ ))]619
+ {Tc,}dcp + [—O.SBmz”g cos¥ — 2mygcosd + 1. 14;5Aai§72 (38)
+ pAzpcos¥sind(0.57r3L, + 0.2251'3)]6q“(t)
+ {-1.43m2“g cos¥ + 2mygcosy + 0.182pA4,0rr?

+ pAgpPcost¥sind(0.09173L, — o.ozrﬁ)]aq 2(8)
and the generalized forces are:

" 0.7035 2.0314
@& =F. —m ZgCOSﬂ(_T_QU(t)"' "

g12(t)) (38a)

Qs = Tcy + M '2gsintd(0.68g,,(t) + 1.43q,2(t))
+ 2my g sind(g,1(¢) — q,2(t))

Qy =Ty (38c)

(38b)
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@, (¢) = —0.6Bm 29 cos¥ — 2mygcost + 1.14pAz0rr?

- (384d)
+ pAzp®cost¥sind(0.57r2L, + 0.22573)
Qq,s = — 1.43m "3g cos® + 2myg cosB + 0.182pAz0rr? (380)
+ pAzpPcosysing(0.09172L, — 0.027%)
Q‘lm = Q‘Iaa =0 (sz)

The unconstrained equations of motion can now be derived by substituting
the results obtained in equations 18-38 in Lagrange's equation which is defined
earlier in equation 11. The resulting equations of motion are seven highly
nonlinear, coupled, second order ordinary differential equations of motion.
These equations can be greatly simplified once the role played by the leadscrews
and the effect of the gross body motion on the flexible motion and vice versa are

understood.

The rigid body motion in 7 and 9 directions is completely controlled by the
leadscrews. A self-locking condition is assumed [12], that is the leadscrew
cannot rotate unless the control torque is applied. This means, that inertial
forces (due to coriolis and centripetal acceleration), gravity and flexibility
terms would not affect the rigid body motion in the » and ¥ directions. Thus,
rendering the be‘havior of the robot in these two directions to be similar to the
simple system depicted in Figure 6. In other words, the leadscrews cancel the
effect of flexible motion on r and ¥ as well as the effect of inertial forces.
Therefore, the constraint equations in the r direction could be stated as follows:
1. If the control force is not applied (i.e. F, =0), then r will no longer change
and the constraint equation will be

r=0 (39)
2. If the control force is applied (i.e. F, # 0), then the leadscrew, which causes
the translational motion of the second beamn, exerts a dynamic reaction force to
cancel the effect of both the rigid and flexible inertial terms. Thus, making the

equation of motion for 7 independent of the other coordinates. It is simply

Dynamic Simulation 17
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written as:

(mg + my)r = F, (40)
which is a linear, second order ordinary differential equation. Similarly, the
constraint equations in the ¥ direction could be written in the following way:
1. If the control torque is not applied, T, = 0, then ¥ will no longer change. The
constraint equation is:

¥=0 (41)
2. If the control torque is applied, T.4#0, then due to the leadscrew constraint
which cancels the centrifugal, coriolis and flexible motion terms; the equation of
motion for ¥ will only be dependent on 7.

mlLla mngz
3 12

2
Li+7 - 523] +mp(L1+r)2}i§= o8 (4R)

+m2

Note that ¥ depends on 7 in the inertia term only. The physical system does not
impose any constraint on ¢. Therefore, it is expected that the elastic motion
would affect the gross body motion in that direction. Moving to the second
phase of the problem, which is the effect of the rigid body motion on the flexible
motion, we note that the inertial forces generated from the gross body motion
are serving ‘as external driving forces into the elastic problem. This occurs

twice in this study:

1. In the strain energy derivation, where inertial forces are introduced in

equation (31) and are shown to increase the stiffness of the system.

€. In the virtual work principle where inertial forces are introduced in
equation (37) and are shown to excite the motion in the gq,,{¢) and g12(t)
directions. The reader is referred to APPENDIX II for the listing of the
constrained equations of motion. APPENDIX III shows that the constrained
equations for the rigid body motion can be derived as a special case of the

general equations of motion presented in APPENDIX II. This provides a

Dynamic Simulation 18
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partial confirmation of the validity of the modeling procedure.

3. CONTROL

The dynamic model of the robot has a total of seven degrees of freedom,
three for the rigid body motion ( 7, ¥, ¢) and four for the flexible motion
(g11(t). q12(t). g21(t). g2a(t)). This results in a set of seven coupled, highly
nonlinear, second order ordinary differential equations of motion. These
equations reveal the nonlinearity and nonstationarity characteristics inherent in
manipulators. The dependence of inertia characteristics of robots on their
geometric configuration and the payload causes the system parameters to be
time dependent. Therefore, in order for the robot to have good performance
over a wide range of motions and payloads, a sophisticated controller design is

needed. This design has to take into consideration the following:
(1) The nonlinearity and the nonstationarity characteristics.
(2) The flexible motion which is included in the equations of motion.

Adaptive control method seems to be a promising technique to handle the
first feature [3]. Since, its main task is to adjust the feedback gains of the
manipulator so that its closed loop performance characteristics would closely
match the desire ones. The second feature is very 1ntricate; It involves the
controllability and observability problems that arise due to the distributed
nature of the beam. The protruding part of the second beam is assumed to have
continuously distributed mass and elasticity. An infinite number of degrees of
freedom are necessary to specify the position of every particle on the beam.
Consequently, the beam possess an infinite number of elastic modes. Since, our
interest is up to the second elastic mode only, then the sensors should be
sensitive to the first two modes and insensitive to the remaining neglected ones.

This is known as the observation spillover problem.

Dynamic Simulation 19



RSD-13-83

A certain mode can be made unobservable to a sensing element if this
latter is located at the node of this particular mode. Therefore, the locations of
the sensing elements should be carefully chosen. Prior knowledge of the shape
of the modes of the system will be of great help in the selection of the best
locations for sensor elements to reduce the observation spillover [13] from the
unwanted modes. However, this technique cannot be used to address the
controllability problem since in our system, the forcing elements are restricted

to the joints.

Unfortunately, relocation of the sensing element can improve the
observability problem but does not solve it completely. A search for special
sensing systems which are able to filter out the unwanted signal or, in other
words, could be insensitive for some modes showed that the comb filter is a good

candidate for such tasks [13].

Should the flexible motion be included in the control action, then accurate
measurements of the actual displacement and velocity of the flexible part are
needed to be fed back into the controller. This requires an additional sensor for
end-of-arm motion (i.e., accelerometer, strain gauge, etc.) since the flexible
motion is not observable from the joint sensors alone. In the case where the
complete state vector cannot be evaluated by measuring devices, then the state

observer method [14] may be applied.

Experimental work is needed to determine the shape of the first few modes.
These experiments will be conducted on a stationary robot. The equipment to
be used in the testing are a spectrum analyzer in conjunction with a Hewlett-
Packard 85 micro-computer. A hammer, with an accelerometer attached to it,
Is used as the excitation source and the vibration is measured with an

accelerometer mounted on the arm.
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In light of the problems that need to be tackled by the controller to
maintain good performance of the manipulator over a wide range of motion and
payload, a brief description of the robot controllers presently in use will be
given. These are designed to control the rigid body motion only. In most
controller designs, the nonlinear terms in the equations of motion have been
neglected. This design practice is valid as long as the robot is restricted to slow
motion. However, when manipulators are operated at high speed, the neglected
nonlinear terms become significant and the omission of the flexible motion in
the control action can lead to undesirable vibrations. For accurate performance
of the robot, a great portion of the production time has to be wasted waiting for
these vibrations to damp out. Therefore, in general, a linear control system is
expected to perform poorly over a wide range of tasks. In an attempt to show
the deficiency of the controller existing in current robots, a simple linear
control system is designed to control the general motion described by the set of

equations listed in APPENDIX II.

To relax the controller requirements, the operating ranges for r, ¥, and ¢
will be restricted to the vicinity of an equilibrium point. The payload is kept
constant throughout this study. In an attempt to reduce link deformations 2],
a common practice is to choose the ratio of the weight of the payload to that of
the robot arm to be 10:1. Under these conditions, it would be possible to design
a linear controller for this model. Since, the flexible motion is not intended to
be included in the control action, then the linear controller should be designed
based on the equations listed in APPENDIX III (i.e. equations of motion which
describe the rigid body motion only). This linear controller would then be

applied on the general equations of motion.

The first step in building the controller is to write the rigid body equations

of motion in terms of state variables which are defined as follows:
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=r =@ Ys = ‘l’
A Y3 » 5= ¢ (43)
Yy2=1 Ys=T Ye = ¢
The nonlinear state equations whose general form is
y=rflyu.t) (44)

are linearized around the equilibrium point ( 1, 0, 0). The resulting equation can

be written as:

y=Ay + By (45)
where Agyg is the plant matrix, % sx; is the control vector. In general, equation
(45) does not lead to the desired poles. Hence, a state feedback controller
technique [15] is implemented to replace the system poles by the desired ones
(see Figure 7). The latter are a compromise between the desired transient
response and the physical limitations of the system. The detailed derivation of
the state feedback gain matrix K is included in APPENDIX IV. Only its final form

is presented in this section:

(mg+ mp)W: 0O 0 2(mg+ my)EW,, 0
K, = 0 aWls 0 0 e W, 0 (46)
0 0 aWp, 0 0 Réa Wy,

An integral action is added to the state feedback controller to eliminate the
steady state error or any disturbances in the system. This is illustrated in
Figure 8. The integral gains, K%, are determined from the root locus diagrams
for 7, ¥ and ¢ respectively. The chosen values of the K%'s were found to lie in

the vicinity of the breakaway point.

When the rigid body controller is applied to the general equations of motion,

listed in APPENDIX II, the following features are anticipated:

(1) Since 7 and ¥ equations of motion don't include any flexibility terms and
are independent of the y coordinate, then their motions are expected to

closely follow the desired ones.
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(2) Equation of motion for ¢ contains flexibility terms which act as a
disturbance source to the rigid body motion in the p direction. However,
the integral action in the rigid body controller will enable the system to
overcome the disturbances and follow the desired response with zero

steady state error.

(3) The rigid body motion would excite the flexible motion. Instability might
occur if at least one of the servo loop frequencies approaches the natural

frequencies of the flexible part.

4. SIMULATION

The simulation of the robot arm is very important tool in studying the
system’s behavior. Written in a form of a computer program, it gives the
opportunity to conduct tests that were considered to be hazardous or physically
unrealizable. These tests are of great importance especially when dealing with

systems that are at their early stages of development.

The mathematical description of the model along with the equations
obtained from the controller lead to a set of complex, coupled, highly nonlinear
equations. No closed form solutions exist for these equations. Instead, they are

solved numerically on a digital computer.

This set of equations involves both very rapidly and very slowly changing
terms, all of a decaying nature. Systems possessing this feature are classified
as stiff systems. In this work, Gear's method is implemented in the solution of
these equations [18]. It is a numerical method well suited for stiff systems. A
FORTRAN subroutine package, based on a prcgram written by C. W. Gear, is
available through the Michigan Terminal System under the code NAAS:NAL. It
has the ability of solving the initial value problem for systems of ordinary

differential equations. Such a system has to have the following form:
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y =f(y.t)
where vy, y and f are vectors of length ¥ = 1. y is the first derivative of y with
respect to time. £ denotes the time variable. Hence, our system of equations
has to be reduced to first order form. Thus, leading to seventeen first order
ordinary differential equations (three equations are obtained from the
controller) which form the bulk of the DIFFUN subroutine. The latter is called
internally by the DGEAR subroutine. Flowcharts of the main computer program
and the DIFFUN subroutine are included in this section. The reader is referred

to APPENDIX V for the listing of the computer program:.
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define the
sgn function

set commeon block
and arrays
dimension

Y

print heading for
(1) to ¥ (6) and time

read ¥ (1) toy (17), time T
counter I, number of equations N
time increment H, error
tolerance EPS, index

v

©

compute y (1) through

PRINT S

L]
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NO

PRINT TIME
y (1) through y(6)
and store the values

for y (1) toy(17)

25

Gear subroutine interr
ly calls diffun subrouti

e RS
Y(17) by Gear method | | which in its turn calls

the sgn
function

test for the sing. 'arit;

of the inertia metrix




(=)
»{ O

A\

increment
the time

Y

s

TOUT < 10

NO

PRINT ERROR
RETURN

e

PRINT y(7) to y(17)
and their headings

Y

A

/3

check if

] intergration

was successful

L

PRINT no. of steps and the
number of F & J evaluations

L

PLOT each variable y
versus time
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SUBROUTINE DIFFUN

D)

y

read all variables
needed in defining the
equations of motion

y

initialize the controller commands

and set the desired position

Y
define the
inertia
matrix A

define the B matrix

define controller equations

\

define the vector F

define the D vector

computation of the right hand
side of the equation, PALL
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decompose the inertia
matrix DLUD
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include all inertia!
terms

controller torques
and force

gravity and inertial
forces effect

combines B, F,
and D matrices
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check the
singularity of the
inertia matrix

golve
y = A7 PALL

sgn function
is called
occasionally

define Y DOT IN e — —
TERMS OF PALL

Y

Q return _)

Dynai .i Simulation 28



RSD-13-83

5. DISCUSSION

The computer program written to simulate the dynamic model of the robot
arm is now used to investigate the inter-relationships between the robot
structural flexibility and the controller design. These include the effect of
constraints due to transmission mechanisms, resonance, forced excitation due

to inertial forces, instability mechanisms and parametric excitation.

The standard set of physical system parameters used in the computer

program are:

mass of the first beam (m,) = 0.465 Kg

mass of the second beam {m,) = 0.9366 Kg

mass of the payload (mp) = 0.07 Kg

cross sectional area of the second beam (43) = 0.000173 m.?

length of the first beam (L,) = 0.361 m

length of the second beam (L) =R m

gravitational acceleration {g) = 9.81 m/ sec?

aluminum density (p) = 2707 Kg / m.3

flexural rigidity (EI) = 1121.9 Pa

reference position for r is Im
reference position for ¥ is O rad

reference position for ¢ is 0 rad

desired reference position for r is 2m
desired reference position for ¥ is 0.5 rad

desired reference position of ¢ is 0.5 rad

integral action gains are:
for r: ki, =88

5.8

ford: Kl
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for p: Kéa =442

The servo natural frequencies are

for r: Wnr = 4 rad/sec
for W Wng = 4 rad/sec

for ¢: Wn, = B rad/sec

In an attempt to make the integration of the equations of motion less
costly, the difference between the servo loop and the flexible motion frequencies
is reduced. This is done by giving the second beam a length L, = 2m which is six
times greater then the actual length. This has resulted in a decrease in the

stiffness of the second beam and helped to exaggerate its vibratory motion.

Given these values, the equations of motion listed in appendices II and III
are integrated separately. The results for the rigid boy motion only are shown in
Figures 9-11 while the results obtained for the rigid and flexible motion are
shown in Figures 12-18. Comparison of the results obtained from these two runs,
show that there is no obvious difference between the results for r, ¥, » for the

two cases. This can be explained as follows:

(1) The plots for r and ¥ are expected to be the same due to the leadscrew
constraints which made them insensitive to gravity, inertial forces and

flexible motion effects.

(2) Since there is no constraint in the p direction, the plots in the two runs
corresponding to the ¢ motion are expected to be slightly different. This
difference is mainly expected to be from the flexible motion, since in both
cases, p is subjected to inertial forces and is not affected by gravity.
Numerical values obtained from the computer runs show that the difference
is roughly in the order of :0™®m. The small effect of the flexible motion on

the rigid body motion explains the reason for getting similar ¢ plots.
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Figure 15 represents the motion of the flexible coordinate g,,(¢). Its
transient response shows the whip effect that the rigid body motion has on the
flexible motion. Note that in modeling the robot arm, the gravity effect on the
flexible motion is included, and the general equations of motion represents a
conservative system since no damping is considered in the derivation.
Therefore, it is expected that the steady state response would be a sustained
oscillation around a negative value. The latter represents the static deflection

caused by gravity.

The motion of g 5(t) is illustrated in Figure 16. This plot has two additional

features:

(1) The magnitude of the vibratory motion is on the order of 1072 while the one

for g,,(t) was on the order of 107!. This is due to the larger amount of

energy required to excite the higher modes.

(2) After 4 seconds, the natural frequency of the second flexible mode is
decreased due to the vanishing effect of inertial forces which tend to

increase the stiffness of the flexible part.

Figures 17 and 18, which illustrate the flexible motion of g5,(¢) and ga3(¢),
represent a very important aspect of this particular robot design. Their
transient responses show the whip effect, due to the rigid body motion, and then

die out with time. These interesting results can be interpreted as follows:

(1) Gravity doesn't affect the flexible motion in the g5,{t) and g45{t) directions.
Therefore, their motions are expected to either die out to zero with time or

oscillate around zero (i.e. no static deflection).

(%) Since there is no constraint on the rigid body motion in the » direction,
then the flexible part would not be able to conserve the strain energy in the
g21(t) and ggp(t) directions. The moticn of the latter would act as a

disturbance source on the rigid body motion in the ¢ direction. These
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disturbances are compensated for in the rigid body controller.

To better explain the second feature, a model, which simulates the rigid
body motion in the ¢ direction as well as the flexible motions of g2,(¢) and g25(¢)
is shown in Figure 19. z,(t) and z3(t) represent the rigid body motion and the
flexible motion coordinates respectively. Note that only one flexible mode is
considered in this model. F{¢) is the rigid body control force. Fj{t) is the
flexible motion control force. However, in our system, the controller is designed
for the rigid body motion only, then F3(¢) will remain zero at all times. Only the

resulting equations of motion are listed here.

) F,
z,+ W2 (z, —z,) = —
1 nl( 1 2) m,
5 Py
o+ Wizs —2,) = —
2 n2 Tz D) —

In an attempt to prove that the flexible motion cannot store the strain energy,
an initial condition is given to the flexible motion coordinate, z(¢), while the
rigid body coordinate, z,(¢), is set to zero. The results of this simulation (see
Figures 20-21) prove that the flexible motion, z5(¢), could be driven to zero while
exciting the rigid body motion, z,(t). The rigid body controller is then

reactivated to bring z,{t) to its initial position.

Additional runs are made with modifications to the standard set of
parameters to study the behavior of the system in the following areas:
1. Effect of gravity
2. Instability mechanisms

3. Speed - accuracy trade off.

The first study is done by simply eliminating the effect of gravity. Setg =0
in the base program. Since gravity affects the flexible motion in the g,,{¢) and
7.:2(t) directions only, then similar results are obtained (o those as in the base

run for the rigid body motion (i.e. plots for 7, ¥ and ¢) and the flexible motion in
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the g2,{t) and ga3(¢t) directions. The steady state response of the g,,{¢t) and
g12(t) oscillate around zero instead of the static deformation position. This is

illustrated in Figures 22-23.

Instability can occur if one of the servo loop frequencies coincides with the

flexible motion frequencies. There are two ways in which this can occur:

(1) The servo loop frequency is increased to match the flexible motion

frequency (i.e. a sharp increase in the speed of the rigid body motion).

(2) The flexible motion frequency is decreased to approach the servo loop

frequency (i.e. making the system more flexible).

The first case should be ruled out since increasing the speed of the rigid
body motion would drastically increase the effect of the inertial forces. The
latter have a tendency to increase the stiffness of the system. Consequently,
the flexible motion frequencies would become hard to predict. Hence, the
second way is adopted in this study. In the base program, £7 is reduced to 17.04
Pa to make the system more flexible and g = 0 simply to reduce the cost of this
run. The results are shown in Figures 24-28. The plots for r and ¥ are the same
as in the base run results (see Figures 12-13) since they are insensitive to either
El or g. Comparing Figures 24-28 with their counterparts in the base run

(Figures 14, 17, 18, 22 and 23), we note the following:

(1) ¢ becomes more oscillatory (compare Figure 24 with Figure 14). Thus, for a
"soft” system, the flexible motion has a very significant effect on the rigid

beody motion.

(2) Figure 25 reflects the reduction in the flexible motion frequency and shows

the increase in the magnitude of the oscillatory motion of ¢ ,,(¢).

(3) Figure 26 shows the instability in the system.
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(4) The response of gz,(t) and ggzz(f) are more oscillatory {compare Figures

27-28 with Figures 17-18).

The speed accuracy trade off case is done by raising the servo loop natural
frequencies for 7, ¥ and ¢, in the base run, from 4, 4 and 8 rad/sec to 20, 20 and
40 rad/sec. The integral gains have to be changed accordingly to K, = 1:92,
KL, = 692 and K43 = 5537. Similarly, g has been set to zero in an attempt to
reduce the cost of this run. Comparing the results obtained (see Figures 29-35)
with those of the base run with g = 0 (see Figures 17,18,22, and 23), a general
comment can be drawn. The overall oscillatory flexible motion has increased in
magnitude. This increase is in the order of 1072 to 107! for g.,{¢) and g4,{¢).
Therefore, leading to the conclusion that high-speed operation would deteriorate

the accuracy of the system.

6. SUMMARY

The purpose of this study is to investigate the inter-relationships between
the robot structural flexibility and the controller design. These relationships
will be used as the basis for designing and evaluating controllers for the flexible

as well as rigid body motion of the robot arm.

A spherical coordinate laboratory robot is used as the focus for this study.
The dynamic model for the robot includes the flexibility etfects of the flexible
link. The assumed modes method is used to approximate the dynamics of the
infinite dimensional link. This approximation incorporates the first two flexible
modes only. The latter is considered to adequately describe the flexible motion,
since higher modes are unlikely to be excited. The generalized forces are
obtained fror1 the virtual work principle, and Lagrange's equacionr is
implemented to derive the equations of motion. An integral plus state feedback
controller is used to control the rigid body motion only. This simvle contr-!l~»

design is adopted to simulate the robot ccontrollers currently in use b=
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dynamic model and the controller design are used as the basis for the
simulation studies. The latter demonstrates the potential mechanisms by which

structural dynamics and controller design can interact.

The effects of constraints, due to transmission mechanisms such as lead
screws, have given the robot arm a cantilever beam-like behavior in the r and ¥
directions. This leads to the conservation of the strain energy which is
manifested by the sustained vibratory motion of g,,(¢) and g,5(f). The absence
of the constraint in the ¢ direction caused the strain energy to dissipate since it
acts as a disturbance on the rigid body motion. Consequently, the rigid body
controller was able to damp out the vibration in the g2,{t) and g2(t) directions.
The possibility of resonance, parametric excitation, and forced excitation due to

inertial forces are covered in this report.

The simple controller design employed here, can be improved significantly
by including the effect of the flexible motion in the control action. This can be

done in three different ways:

(1) Design a controller based on a detailed dynamic model of the manipulator
which includes the effect of flexibility. This approach has many drawbacks.
The dynamic model would be very complex even for low order beam models.
Any discrepancy in the dynamic model or disturbances in the system would
considerably affect the overall performance of the robot, since no actual
measurements are being fed back to the controller. In other words, the

robot would behave as an open loop system.

(R) A full kinematic state measurement at the end point of the robot arm is fed
back to the controller. The latter activates the actuators at the joints to
correct for the malpositioning of the end effector. This approach
compensates for the inaccuracy of the dynamic model as well as for any

disturbences in the system. It does not require any additional actuators.
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The major drawback of this method is the difficulty of getting accurate
measurements of the position and orientation of the end effector over a

large operation volume.

(3) Acknowledging the fact that large deflections in manipulators are due to
bending, one approach calls for sensing and correcting the bending of each
link separately by using a “straightness servo” [:7]. This technique
requires as many additional hydraulic actuators as links. Its main
advantage is that each link is controlled by a simple independent control
loop. This approach, in effect, requires both additional sensors and

actuators to compensate for the flexible motion.

Dynamic Simulation

{2
o



[3]

RSD-1383
7. REFERENCES

Asada, H., Kanade, T., Takeyama, 1., "Control of a Direct Drive Arm," in
Fobotics Research and Advanced Applications, edited by Wayne J. Book,

ASME Booklet, Nov. 1982, pp 63-72.

Thompson, B.S., Sung, C.K., "A Variational Formulation For The Dynamic
Viscoelastic Finite Element Analysis Of Robotic Manipulators Constructed
From Composite Materials,” ASME Design and Production FEngineering

Conf. Dearborn, MI, Sept. 1983.

Sunada, W.H., Dubowsky, S., "On The Dynamic Analysis And Behavior Of
Industrial Robotic Manipulators With Elastic Members," ASME Paper No. 82-

Det-45.

Shabana, A., Wehage, R.A., "Variable Degree Of Freedom Component Mode
Analysis Of Inertia Variant Flexible Mechanical Systems,” ASME Paper No.
82-Det-93.

Book, W.J., Maizza-Neto, 0., Whitney, D.E., "Feedback Control Of Two Beams,
Two Joint Systems With Distributed Flexibility,” ASME Journal of Dynamic

Systems, Measurements and Control, Vol. 97, No. 4, Dec. 1975, pp 424-431.

Dubowsky, S., Desforges, D.T., "The Application Of Model-Referenced
Adaptive Control To Robotic Manipulators,” ASME Journal of Dynamic

Systems, ileasurement and Control, Vol. 101, No. 3, Sept. 1979, pp 193-200.

Horowitz, R., Tomizuka, M., "An Adaptive Control Scheme For Mechanical
Manipulators-Compensation Of Nonlinearity And Decoupling Control,” ASHE

Paper No. 80-WA/DSC-6.

Veirovitch, Leonard, FElements Of .Jbration Analysis, McGraw Hill, New

York, 1975.

Dynamic Simulation 37



RSD-13-83

[9] Young, D., "Vibration Of Rectangular Plates By The Ritz Method,” Journal of

Applied Hechanics, Vol. 72, Dec. 1930, pp 448-453.

[10] Meirovitch, L., Analytical Methods In Vibrations, McGraw Hill, New York,

1967, pp 440-445.

[11] Desai, C., Abel, J., /ntroduction To The Finite Element Method, A Numerical

Methad For Engineering Analysis, Van Nostrand Reinhold, 1972.

(12] Joseph E. Shigley, Mechanical Fngineering Design, McGraw Hill, New York,
1977.

[13] Balas, M., "Feedback Control Of Flexible Systems,” /EEE Trans. on

Automatic Control, Vol. AC-23, No. 4, Aug. 1978.
[14] Landau, Adaptive Contral Systems, Marcel Dekker, 1979.

[15] D'Azzo, and Houpis, Linear Control System Analysis And Design, McGraw-

Hill, New York, 1981.

[18] Gear, C.W., "Ordinary Differential Equation System Solver,” Univ. of

Michigan Computing Center, Dec. 1974

[17] Zalucky, A., Hardt, D.E., "Active Control Of Robot Structure Deflections,"

ASME Robotics Research and Advanced Applications, Nov. 1982, pp 83-100.

(18] Takahashi, Y., Rabins, M., Auslander D. , Control And Dynamic Systems,

Addison-Wesley, Nov. 1972.

Dynamic Simulation 38



RSD-13-83

ACKNOWLEDGEMENTS

The authors are pleased to acknowledge the financial support of the Center
for Robotics and Integrated Manufacturing at The University of Michigan, and the
United States Air Force under AFOSR contract number F49620-82-C-0089. They
are also grateful to Mary Ann Pruder for assistance with the preparation of this

manuscript.

Dynamic Simulation 39



RSD-13-83

8. APPENDIX - Static Equilibrium and Reaction Forces

Free body diagrams of the two beams are shown in Figures 4 and 5. The
constraint torque exerted by the first leadscrew to prevent the rotation of the
first beam around the pivot point O is denoted by T';. The constraint forces and
torque exerted by the second leadscrew on the second beam are R, Ry and T,
Fs is the friction force at the point of contact of the two beams. R£'; and R'; are
the reaction forces at the pivot point 0. The constraint variables and the
reaction forces are computed from the conditions of static equilibrium. Only

the results are listed in this appendix:

Ry = (mz + mp)gsin® — Fy
Rz = {my + my)g cosd
Lo
T,=ymy + myr — > g cos¥ — aFy

R'y =(m, + mz + myp)g sind
R'z2=(m; + my + my)gcosd

Lp L,
L,+71 — > + my(Ly + 1) +m1—2- g cos¥

T'l = [mg
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9. APPENDIX I - Equations of Motion

Only, the resulting seven highly nonlinear, coupled, second order ordinary
differential equations of motion are listed in this appendix. The equation of

motion for 7 is,

(mg+ my)r =F, for F, #0
r=0 for F,=0

The equation of motion for ¥ is,

L)
L1+r-?2]]i§= s for T,s#0

+ + my (L) +7)° + my

77"'1['12 mzLég
3 12

=0 for Tey=0
The equation of motion for ¢ is,

2 2

m L7

Lo
2

r
+ =
2

t.

{ip'coszﬂ - Zgb'ii:osﬂsim‘}] - pAz'r"{pcoszﬂ[Ll -
Lo °
2

Lo

+ =
2

+ pAsgrcos?9(L, — 1')[[,1 -

2
Lo r]

+ pAZ'(P'COSZ'G(LZ - T)[Ll - % + —;—

As ..
- B cos?S(Ly — 7)?

— 2pAz¢Bsindcos®(Ly — 1) 2

Ll—-—2—+-2-

As .. As ..
+ %;0008213([:2 -7 - &6-3 psindcosy(Lg — )3

+ pAg{[¢rcoszﬂ + prcos?y — 2¢i9rcos1351n13](q221 +q%) + ¢rcos8(292192; + 2922922)
+ [’r’rcosa + rlcosd — fri%inﬂ](O.?qul + 0.43q33) + rrcos¥(0.78g2, + 0.43¢22)

- [';5.7'00513 + Brecosy — ’@TSim’](CIn(sz + q12922) — T%OSB|g11gar + Juge + F1eGez + Q12§22]

—~[r*sinY + rrsind + rrcosy](0.5q,,92; + 0.65¢ 11922 — 0.65¢ 292, + 0.59,2922)
- 7‘7;5'11113[0-5(41142x +911921) + 0.65(9 11922 + 9 11922)

- 0.85(q 12921 + G12921) + 0.5(¢ 12922 + 7 12022)

Dynamic Simulation 41



RSD-13-83

— (rsin® + rcosV)[g 11921 + 712922] — TSNV 11921 + Juider + 12922 + 912922
— L[¥7rsind + Ursind® + 7 ¥cos8](0.78g,, + 0.43q2,) — 9L, sin$(0.789 2, + 0.43932)
— ($73%sinY + 2rr%ind + T2 F¥cos8)[0.57g,, + 0.099,;] — 735IinB(0.57g2, + 0.097 ;)

+ [prsin®9 + oTsin®d + 2pWrsindcosB](g5 + g5)+ ;brsinzﬂ(qulqgl + 29229 22)

+ [r%sin® + rrsin® + rrc0s8](0.5¢219 1), + 0.65921912 — 0.659 22911 + 0.5 229 12)

+ 7rsinB(0.5(g 21911 + 9219 11) + 0.65(g21912 + Qquxz) - 0»65(422411 + 5122‘1'11)

+0.5(¢20q 12 + T22912)| + TSING(F219 11 + 921911 + T2ed12 + T2z 12)
+ [rsin® + 70%0s8)(g21q 11 + F22912)+ L, 9SinG(0.787g,; + 0.437g 45 + 0.78rqs; + 0.437g5;)
- .L1(_~os19[o.78(i?qg1 +7q2,) + 0.43(rqos + 7qa2) + 0.78(rq2, + 7q21) + 0.43(rg a2 + 79 22) .
- [f-zcosﬂ + rFcosd — rr0sing|(0.35q 4, — 0.25¢ 20) — 77 cos¥(0.35¢ 5, — 0.25¢ 5)
— [2r7 cos® — r¥%ind](0.57g5, + 0.09925) — 72c0sV(0.57g4, + 0.099 25)
+ (prsin®® + ¢rsin®S + 2prsindcosV)(gf + g&)+ 207sin®8(g 11911 + 9129 12)
—2L1[¢sinﬂcosﬂr + pBrcos®y — @Ursin®y + {oi‘simﬁcosﬂ](DYBq 11 + 0.43q,2)
— 2¢rL sindcos¥(0.78g,, + 0.43q,2) : |
- Z[Ekrgsintﬁcosﬂ + 2rr¢sindcosy + gbrzi&:osgﬂ—gbrzi?sinzﬂ](O.S?q,1 + 0.09q,2)

— 2¢r3sindcosd(0.57g,, + 0.09q2) + (L1 + 2L,7r + 7 )gcos®>s

+ (pcos®y — 2¢i95'1m$cos19)}+ mp{4[¢coszﬂ - 2p¥cosUsind|{gé + 9% — 2921922)

Q
72
ler + Ll’f'z + —ﬁ—

+ 49cos®B(29219 21 + 2922022 — 2921922 — 29 21922) + 2[TcosV — r®inB]{g2 — g22)
+ 2rcosd(7s — ga2) — 4[Ucosd — Fsin®(g11921 — J1192e ~ T12921 + T12922)
— 4%c0s9(q,,92, + 911921 — T1192e — T11dee — 912921 — T12921 + T12922 + F12G 22)
~ 4%0s8(g 11921 — g1192e — 12921 + 129 22)
- 4sin¥(g1192: + 11ger — Jud22 — I1d22 — 912921 — J12921 + F12922 + 9129 22)
- 278sin®(L, + 7) + Orsind + Fcos(L, + 7)]{(g21 — g22) — 2®BING(L, + 7)[ g5, — F22]
+ 4(psin®¥ + 2ptsindcosV) g3 + 9% — 2921922] + Besin®B(g21921 + 922922 — 721922 — 219 22)

+ 4% 08Y{q219 11 — 921912 — T229 11 + F22912)
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+4sin®(g21911 + 921911 — 921912 — 921912 — TeeT 11 — T22d 11 + JeaG 1z + 9229 12)
—2lrcosy = (L, + 7)®inB[{ger — 9g2) — 2Ly + T)cosB(gz — 722)
+ 4(psin®3 + 2pcos¥sin®){gd + g% — 2q9,,9,2)+ Bysin®8{g,,9,, + 912912 ~ 911912 — 9119 12)
— 4[gsin¥cosVB(L, + 7)+ pcos®Y(L| + 7) — p&IinS(L, + 7) + ¢rsindcost]{g,, — g.2)

— 4psin¥cosV¥(L, + 7)(q 1 — g12) + ¢(L, + 7)2cos?y

+2(L, + r)prcos®s - 2¢WL, + r)%cosVsind} = T,
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The equation of motion for g ,,(¢) is,

?2' (r? + 7r)(q1 — 1.3q12) + 77 (g, — 1.3q12) + 28rqyy + 2rqyy + 1.56L,(87 + o)

+ 1.14(97% + 21§ﬁ)— 2(prsindq,, + ;bi%'cosﬁqgl + prsindg,, + ;brsinﬁqgl) - 2%rq,,

+ 1.5677 8 + 2prcostdggy — 1.527%q |, — 1.067%q 5 — 77, — 1.377q 5 — 1.5679L, — 0.7%r

+ 2.6¢7Tsin¥g e~ Rprsindgg, — 2p%rsin®dq,, + 1.56¢%L, rsindcosy + 1.14¢°r%sin¥cosy

+ ‘z—p B(q11 —q12) + 48(L, + 1) + 49 — B(psin® + picosd)(gz; — gaz]

— Bpsin®(ga; — gze)— BF(g,, — q o)+ 4TB+ Bptcosv(ga — 9a2) — B(d21 — Joo)@sind
- By®sin®8(q, — q12)+ 4¢%sinBcosV(L, + 1')] =

12.362
73

— 0.68m ;g cos¥ — 2m, g cosV— Elq i (t)

. . 2
— pAg(pPcos?s + F)(Lr + %){%5‘911 - 7f8 q 12]

+ pAz(pPcos®s + #) [(3.08L, + 1.137)q,, — (6.96L, + 37)q 2]

= [mp(L; + 7)(gPcos®8 + ) + (m, + pA,r)gsind

, ][4765 7.38 ]

911~ —;“‘hz

+ pAggsing[3.08q,, — 6.96q 5]+ 1.147%pA,0r + pAngzcosﬁsind{O.fS?rle + 0.2257'3]
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The equation of motion for q2(¢) is,

pAA(T? + 77)(0.65g,, + 0.5q,3) + 77(0.65g,, +0.5q 12) + 7q12 + 7 12+ 0.43L,(Sr + )

+ 0.09(28rr + $7%)— (rsintga, + ;bﬁrcosﬂqgg + p7sSin¥gas + @7sinVg ) — ®rg p + 0.437rr 8

+ rocosBqay — 0.5373q |, — 4.34723q 1o+ 0.8577¢ |, — 0.577q 5 — 0.437 8L, + 0.25r+3
— 1.3¢7rsintqa, — ¢7sindqqs — 7 ¢°sin®¥q 5 + 0.43r ¢ sindcosBL, + 0.09r2¢2sin13cos1§}
+ mpla(g1z — qu1) —2[¥(L, + 7) + U] — 4(psinY + pcosV)(gez — g21)
— 4¢sin®(ge — 721) — 4F{(g12 — g11) — 278 + 4picosB(ga — 921)
— 4psin®(qgep — g21)— 4¢°sin®¥(g 12 — q11) — 2¢sinvcosV(L, + "')} =

— 1.43my"gcos¥ + 2my,g cosﬁ—igag—lgE’[qlg
T

. L 2
- pAz(pPcos®s + B)(Lyr + ) - L8 q, + BB

+ pAg(pcos®s + ®)[ — (6.96L, + 3r)q,, + (23.77L, + 9.737)q 2]

- : . 7.38 32.42
- [mp(L1 + 7)(¢%cos? + F) + (mp + pAgr)gsind]i — ——gq,, + - ‘hz}

+ pAggsin®] — 6.96q,, + 23.77q12] + 0.1827%p A% + pAsp costsin®[0.091L,7% — 0.02r2]
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The equation of motion for gg,(t) is,

pA{0.5(r%qay + TTg2 + T795,) — 0.65(r%q oz + T7qap + TTq02) + T2y + Tq 2,

+ ?rsimiqu + ;bi?rcosﬁq“ + ;':f'sim?q“ + ;'a'rsimiq'”
- 0.78[rpL,cos® + rpL,cosd — 7l ,sind]— 0.57[2rr gcosd + r3pcosyd — rlpisind]
— ¢®rcos®¥qy; — 0.78rrgcosd + rgdcosdq,, + ¢sind(0.577q,; — 0.8577q 12 + 79 1,)

+ 0.787 8L, psind + 0.57r%Wpsind — r¢%sin®8q,; — 0.767%q2, — 0.537%q 22 — 0.577g5, — 0.6577¢ 2,
— ¢sin¥(0.577q,; + 0.6577q 5) + 0.787Lpcosd + 0‘357‘1"9'900519] + my [4(&1'21 - g22)

+ 4(psind + gdcos¥)[q;, - g12] + 4psind(g,; — ¢ 12)

{

— 2[rgcos® + (L, + T)gcos® — (L, + 7 )Bpsind]— 4¢%cosv2(g,; — ga2) — 27 pcosy

+ 495&0519(911 - q12)

+ 4953111"3(‘?11 - g2 + 2L, + 7)psing - 4¢25in192(q21 - ‘Z22)] =
~12.362 _ 738,
73 q21 - 22

+ pAg(p®cos® + F)[(3.08L, + 1.137)g,; — (6.96L, + 37 )q 2]

. . 2 5
Elgai(t) = pAa(p®eos® + F)(Lyr + T 222

4.65 7.3

;7 Je1 ~ —'1,"‘922} + pAzg sind(3.08g 5, — 6.96q45)

= [my{Ly + 7)(p%cos®S + F) + (m, + pA,r)gsing]
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The equation of motion for gga(t) is,

pA{0.65(r%qq, + 172 + T7q2)) + 0.5(r7Tg.s + 72%q 00 + TTq 22)

+ 7qaz + Tqap + #7TSINVg 15 + 27 cosYq 1z
+ ¢Tsindq; + ¢rsindq p — 0.43L(rypcosd + rpcos¥ — rp%iny)
— 0.09(2rrgcosd + r3pcosy — r2p%ing)
— rpPcos?¥g g, — 0.43r7 pcosy + r o9costq g + 0.437r 8L, psind + 0.09r%W%ssind — 7 ¢%sin®¥g 4,

— 0.537%q,, — 4.341%q 4, + 0.8577q 5, — 0.5779 55 + ¢sind(1.377g 1, + 7q 12)

+ 0.43rL,;pcosd — 0.257T gcost

+ my 4(gge — g21) + 4(psin® + posB) (g2 — g11) + 4psind(g12 — 1)

+ 2[rpcos® + (L, + r)gcosd — (L, + r){oﬁsimﬂ] — 4¢%c0s?8(q 22 —q21)

+ 2rpcostd + 4ptcosd(giz — g11) + 4¢sind(gi1z — q11) — 2% L, + 7)psind
— 4¢sin®9(ggp - ‘121)} =

} ) 2
- iS‘iél—gE'[qgg(t) —pAg(:pzcosz15 + &) (Lr + 12—){—
r

F21

3

7.38 32.42 }
+ 922

+ pAg(pcos?s + ®) [ — (6.96L, + 37r)qqe, + (R3.77L, + 9.737)q 23]

7.38 32.42
Q21 t+ , g2z

— [mp(Ly + 7)(p%cos?8 + F)+ (mp + pAer)g simﬁ]{—

+ pAgg simﬁ[—6.96qgl + 2377(122]
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T, = %Q ' ffo (3-8)

where Q is the rotation vector of the (i, j, k) basis. Hp is the angular moment of
momentum around point 0. It can be written in the following form:

Ho=AQ:1 + BQyj + CQk (3-9)
Assuming properties of a thin rod (dimensions of cross section is < < then the

2
. m,Lj
length of the rod ), gives A =0and B =C =

Substituting the values of
A,B and C in (3-9) we get:

m,L§ - mL§
Ho = 3 cosﬂcpl +

Then, the Kinetic energy of the first beam will be:

dk (3-10)

LE | :
T, = ﬂé—l— [goz cos® + 19} (3-11)

The Kinetic energy of the second beam has rotational and translational

parts:

T, = -é-mzi;. 75+ '12'9'5]. (3-12)

where H° is the angular moment of momentum around the mass center of the

second beam, and has the following form:

H* = A4,0,0 + AQy 7 + A0k (3-13)
where A;'s © = 1,2,3 are the mass moment of inertia around the mass center
2

moL
A =0, A; = Ag = 122 2. Substituting (3-13) and {3-8) into (3-12) we obtain

m L, |? 2 Ly )2
T2=—é—2-[7"2+ Ll+r—-é-2-];b2coszﬁ+l9 L1+r——2]}
(3-14)
mngz.z 2 .
= {;o cos®y + ¥

The Kinetic energy cof the payload, since it is considered to be a point mass, dees

not include rotation about its own mass center,

.2 Y
r + (L, +7)°® + (L, + 7)%° cos?B!

J

T =Hmat =
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The total Kinetic energyis, Tt = T, + T2 + Tp

2
Ty = T‘gL_l[sbzcosZﬁ + if} + %%{2 +

2
Le
Li+1 - =

[¢2coszﬂ + 132} + r_nz_}_,_{’l._z + (L + )¢+ (L, + T)Z;bzcoszﬂ} (3-16)

PR
Li+r - -—23] @?cos?y + ¥

m 2L22
24
POTENTIAL ENERGY

+

The datum line is chosen to be aligned with the /[ unit vector. It is

horizontal and passes through point 0. Then the potential energy is:

4

sind + m,g (L, + 7)sind (3-17)

Ly L,
V=m,g—sind + mog|L, + 1 — —
2 2
which is the summation of the potential energy due to gravitational acceleration

of the two beams and the payload.

VIRTUAL WORK PRINCIPLE:

The virtual work principle is implemented to obtain an expression for the

generalized forces. The virtual work of the first beam is

6Wg, = [R'Lg + R‘gl] - 677 — m g (sin¥i + cosdyj) - 6/
= Fsi 6ryjp, —(R\i + Rej) 6ryfp, + (T + Tes) K- 6%, (3-18)
= Tk - 6X, + Tep(sindg + cosqﬁl) 60X,
where R',, R'2, Fs, R,, Rs, T, and T'; are defined in APPENDIX I After
simplification we obtain

6WBI = chdﬂ + Tcgéfp + a.F's(S‘G (B'lg)

where 6X, is the virtual rotation vector of

6X: = 6psin¥i + Spcosdj + §¥k

The virtual work of the second beam is

SWgy = — mog {sindi + cosﬂz) - 632'— mpg (sindi + cosﬂz) 0Tl er

+<Rll+R2J;)'6£2]L1+Fci'6:2:L Lg
i

+FL o 0Taln, + Thk - 6%

which after simplification, gives the result,

Dynamic Simulation 50



RSD-13-83

6Wgs = F, 61 — aF, 60 (3-20)

The total virtual work is

6W‘ = 6WBI + dWBz = Tc.3619 + Tc¢6§0 + chr (3'2:)

and the generalized forces are:

Qo = Ty
Qe = Tey
Q‘r = re (8'22)

LAGRANGE'S PRINCIPLE:

Now that we have obtained the expression for the total Kinetic energy and
the generalized forces, we can apply Lagrange’s equation to obtain the equations

of motion. Lagrange's equation can be written as:

d

dt

ar

T | _ )
o1, { =@ (3-23)

0g;

where T is the total kinetic energy, g; is the i** generalized coordinate and &, is
its corresponding generalized force. Making the necessary substitutions for

each term in (3-23) we get the following:

L
(mg+ mp)r — [mg[Ll +7r - ?2

+ my{L, + r)}(;bzcoszzi +®) = F, (3-24)
The unconstrained equation of motion in the ¥ direction is:

R

mlLla Lg Tn.nga .
{ 3 +m2L1+r——é- 3 +mP(L1+r)219
2
. m L} L m oL ”
+ ;azcosﬁsim?{ % Lo+ moll, + 7 — ?2] . —fé—z +mp (L, + r)“} = Tew (3-25)
The unconstrained equation of motion in the @ direction is:
mlng [,2 2 m ’2 .. .
3 +mglL, + 1 — > + 12;2 +my (L + r)z}[gocoszd — 2pvcosysing
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Ly
+ m2L1+r——2—

Constraint Conditions

+ my (L, + T)]ngbcosgﬂ = T,y (3-26)

The motion of the robot arm is caused by the rotation of the leadscrews
which connect the rigid links to the driving motors. A self-locking condition is
assumed [12], that is the leadscrews cannot rotate unless the control torques
are applied. The constraint equations in their direction could be stated as
follows: 1. If the control force is not present (i.e. F, = 0) then = will no longer
change and the constraint equation will be

r=0 (3-27)
2. If the control force is applied (i.e. F,, # 0), then the leadscrew, which causes
the motion of the second beam, exerts a dynamic reaction force to cancel the
inertial terms in the equation for » and the equation of motion in the r direction
becomes:

(mgz + mp)r = F, (3-28)
which is an ordinary, linear second order ordinary differential equation.
Similarly, the constraint equations in the ¥ direction could be written in the
following way:

1. The control torque is not applied, 7,4 = 0, then the constraint equation in the
¥ direction will be

¥9=0 (3-29)
2. The control torque is applied, 7,3 # 0, then due to the leadscrew constraint,
the equation of motion will be completely independent of the ¢ coordinate. The
system will behave as if it is constrained to move in a planar motion with the
leadscrew constraint cancelling the centrifugal and Coriolis terms. This results
in the following equation of motion,
2

mlle 77"'2[422
3 12

Lo
L1+r—?

~

+ mo

+ my (L, + r)z]iﬁ = Tes (3-30)
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There is no constraint in the ¢ direction.

Equations of Motion

The equations of motion are obtained by combining the constraint
equations with equations (3-24) to (3-28). The resulting equations will be:

1. Equation of motion in the r direction:

.. L . . .
[(mg+ mp)r — M|l + 17 — ?2 + mp (L, + r)'[;azcoszﬂ +192]} sgn | F, | + r|l —sgn | F, |
[ Lz 2 2 X | | ¢ 4
=F, - lmzL - |+ my,(Ly + 7)| |p°cos®d + F|} sgn | F, | (3-31a)

The equation of motion in the ¥ direction:

A

2
m, L3} L m,L# e Lo
{{ 3 +mgL1+T—? + e +mp(L1+r)“13+ m2L1+r——2—
2 2 2
m L; Lo mol5

+myll,+7 - —

2

+ mp (L, + r)]27"1'9+ ;}chosﬁsim?[

> + my (L, +r)2} sgn ! Ty

. 1
i

2
m,L? L mqL3 .
= Tes + ;&%oszﬁsimﬁ{ Lo+ mz{[,l +7r - -2—2] + 2E mpiL, + 'r)z} sgn i Tyl

3 i2

; L

The equation of motion in the ¢ direction is the same as equation {3-28). The

. Ly .
+13{1—-sgniTc«31] + Li+T ——2§J+mp(Ll+r)]2r1"4 sgn | Tos {3-3:b)

results obtained in (3-26) and (3-31) show that the rigid body case can be

obtained from the general case by dropping out the flexibility terms.

Dynamie Simulation 53



RSD-13-83
11. APPENDIX IV - Derivation of the Controller Design

The state variables are defined as follows:

y,=r Yys=gp Yys=71

; i (4-1)
Y =9 Yy =7 Yg = ¢

The rigid body equations of motion, written in terms of the state variables, lead

to:

Y= yasgn | uy |

yg=yssgn fug |

ys =Ys
- U,
Yu = my + ™y (4-2)
. - U2
ys - D
: . 2 L
Yo = {RDygyscos(yz)sin(yz) — 2yayscos®(yz)imza|L, + ¥y — |t my(Ly + Yy)
+ ua}(DCOSZ(yz))_I
mL:  m,L2 Lo )
where D = 131 + 122 +m2L1+y1——-2— + my (L) +y,)?

The sgn function is defined as follows

1 z >0
sgn{z) =40 if z =0
-1 z <0

The sgn function is used to express the constraint conditions imposed on r
and ¥ That is, to insure the invariance in the position of r and ¥ when the
control variables v, and v, are removed. Since the sgn function is not allowed
to take on negative values in the equations of motion, then the absolute value of
its argument is considered. u, ug and ug are the controller torques and force.
We need to linearize the state equations around the equilibrium point. The

latter is determined by setting the above equations to zero. This leads to.
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0 0 0 1 0 o |
0 0 0 0 1 0
0 0 0 0 0 1
A4=\_wz o o _z¢w, 0 0 (4-11)
0 -wW2% o0 0 —R¢Wps 0
0 o -w: O 0 —R2¢Wn,

In order to evaluate K;, B~! has to be computed. The latter is a rectangular
matrix and pseudo-inverse method is used to calculate 57! [18], i.e.,
000 (mag+my) 00

B 1'=(BTp)'BT = o000 0 a 0
000 0 0 «

where BT is the transpose of B. Substituting A, 4; and B! in (4-8) we get

(me+ m)WZ 0 0 2Amp+mp)ihn O 0
K, = 0 a2, 0O 0 ReEaW, s 0 (4-12)
0 0 ali, 0 0 2fal,,

The block diagram of the desired system is shown in Figure 7. An integral
action is added to eliminate the steady state error or any disturbances in the

system. This is illustrated in Figure 8. The integral block, X7, has the following

form:

r 1

K[

11 0 O

S

Ko
Kl=1]o0 — 0 (4-13)

s |

where K%'s are determined from the root locus diagrams for 7, ¥, and ]
respectively. The open loop transfer functions are obtained separately for each

degree of freedom. This is done, by first writing the equations for r

1 0 ,
Y 4 + 1 U, \4’1.4:)

mg + my

Y1
Vs

0 1
—anr —2¢ Wnr
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the output equation is:

Y1
=T 4-15)
Z, =11 0] [y4} (
The closed loop transfer function for the inner loop of r is
I S
+ (4-
Gy(s) = (me 7n7’) (4-186)

s% 4 2t W, + W2
The corresponding block diagrams are shown in Figures 36(a) and (b). The open
loop transfer function is
Kl

Mg + My (4-17)
S(s? + 26 Wprs + WE)

Gy (s)=

Using the values in Table 2 for £ and #,,, we can draw the root locus diagram for
r. Similar reasoning is followed for both ¥ and ¢. The resulting transfer
functions are shown in Table 3. The root locus diagrams are shown in Figures
37-39 The values of the Ki's are chosen by trail and error from the root locus.
The controller is tuned according to the nonlinear equations of motion listed in
APPENDIX III. The chosen values of the K%'s were from the neighborhood of the

breakway point.
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12. APPENDIXV - Listing of the Computer Program

[AAASRRASAN MAIN PROGRAM IDENTIFICATION 22222

THIS PROGRAM 1S WRITTEN TO SIMULATE THE RIGID AND FLEXIBLE
MOTION OF A ROBOT ARM. SEVEN DEGREES OF FREFDOM ARE USED IN
THTS STUDY. THE FIRST THREE DEGREES OF FREEDOM,DENOTED Y(1)
TROUGH Y(3), ARE USED TO SIMULATE THE RIGID BODY MOTION,

WHILE THE LAST FOUR DEGREES OF FREEDOM,Y(4) THROUGH Y(7), ARE
USED TO SIMULATE THE FLEXIBLE MOTION WHICH IS TRUNCATED AFTER
ITS SECOND MODE. THE SEVEN HIGHLY NONLINEAR SECOND ORDER
ORDINARY DIFFERENTIAL FQUATIONS OF MOTION ALONG WITH THE STATE
FEEDBACK CONTROLLER EQUATIONS ARE TRANSFORMED TO SEVENTEEN FIRST
DRDER ORDINARY DIFFERENTIAL EQUATIONS. THE LATTERS ARE THEN
SOLVED SIMULTANEOUSLY USING GEAR’S METHOD.

PHEFFF I I AR I PRI FEF AR ARA I LT IR TerrF F Rkt

ARSI FUNCTION IDENTIFICATION A A

THIS FUNCTION DEFINES THE SGN FUNCTION

elsNeNsReoNs o RsNoNsNoNoNoNeoNoNoNoNeoNoNoNoNoNoNoNel

NS ERERE R R RS Z AR SRR R 2 AR A R LRSS R RS SRRl R AR RNl

C
C
c001 FUNCTION SGN(X)
0002 REAL*8 X,SGN
0003 SGN=0.0DO
0004 1F(X.MNE.0.0DO) GO TO 100
0005 SGN=0.0D0
0006 GO TO 101
0007 , 100 SGN=1.0DO
0008 101  RETURN
0009 END
*OPTFTONS IN EFFECT+* 10,EBCDIC,SOURCE,NOLIST,NODECK,LOAD,NOMAP
*OFTIONS IN EFFECT* NAME = SGN , LINECNT = 57
*STATISTICSY SOURCE STATEMENTS = 9,PROGRAM SIZE = 364

YSTATISTICSY NO DTAGNOSTICS GENERATED

467 .000
474 .000
475.000
475.100
475.200
475.220
475 .300
475.400
475.420
475.440
475.490
475.540
47%5.590
475.640
475.700
475.800
476.000
477 .000
478.000
479.000
480.000
481.000
482.000
483.000
484 .000
485.000
486 .000
487 .000
488 .000
489.000
490.000
491.000
492,000
493 .000
494 .000
495 .000
496 .000
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0001
Q002
0203
0004
0005
000%
0007
0008

0009

0010
o011

0012

0013
0014

0015
0016

0017

0018
0019
Q020
0021

0022
0023
0021
0025
0026
0027
0028
0029
0030
0031
0032
0033
0031

C035
0036
0037
0028

11 PMIHAL

o BeoNoNeoRaNeNel

~
=

sEeEe NN NeNa!

SYSTEM fORIRAN G(21.8) MAIN 08-03-83 Of1:

v..e.0v.obbgQQo&bQQQQQQOQ‘Qoo.969»60.9?0&*4*0.,.VQQQ

SERTERERS MAIN PROGRAM BODY \AASRAAE A

REAL*B TO,TOUT EPS,H,Y(17).S

REAL*4 Y1(220),Y2(220).¥3(220).Y1(220),Y5(220),Y6(220),T1(220)
REAL*4 Y7(220),Y8(220),Y9(220).Y10(220).Y11(220),.Y12(220)
REAL*4 Y13(220).Y14(220)

COMMON /GEARY/ NSTEP,NFE ,NJE

COMMON /SINGUL/ S

WRITE(6,10)

10 FORMAT(3X,/'TOUT’.8X, 'Y( 1)’ 12X, Y(2)’ 12X, 'Y{(3) ' 12X, 'Y (4) " 12X, Y
1(5)°,

101
103

1

12X, 'v(6)’,.8X)
MN=17
I1=0
T0=0.0D0
H=0.0000001DO
Y(1)=1.000
¥(2)=0.000
Y(3)=0.0DO
¥Y(4)=0.0D0
Y(5)=0.0D0
¥(6)=0.0D0
Y(7)=0.000
Y(8)=0.0DO
Y(9)=0.0D00
Y(10)=0.0DO
Y(11)=0.0D0
Y(12)=0.0D0

)=0

)=0

n

Y(13 .0DO

Y(14 .0DO

Y(15)=0.0D0O

Y(16)=0.0DO0

Y(17)=0.0D0

TOUT=0.0001D0

EPS=0.00001D0

MF=22

TNDEX =1

CALL DGEAR (N,TO,H,Y,TOUT,EPS,MF, INDEX)

"

1HE CONDITION FOR THE VARIABLE S IS INCLUDED TO POINT
OUT THE SINGULARITY OF THE INERTIA MAIRIX WHENEVER IT
OCCURS AND THEN TO HALT THE EXECUTTON OF THE PROGRAM.

1IF(S.EQ.0.0DO) GO TO 101
GO TO 102

WRITE(6,103) S
FORMAT( 10X, ‘S=",F6.4)

22:59
497 .000
498 . 000
499.000
500.000
501.000
502.000
503.000
504 .000
505 .000
506 .000
507 .000
511.000
512.000
513.000
517.000
518.C00
518 .000
519.000
520.000
521.000
§22.000
523.000
524 .000
525.000
526.000
527 .000
528 .000
529.000
530.0C0
531.000
532.000
$33.000
$34.000
535.000
$36.000
537 .000
537.100
537.200
537.300
538 .000
$39.000
540.000
$41.000
512.000
542.020
512 .040
512.100
542.200
542 .300
5142.400
542.5C0
513.000
514 .000
$515.000
546.000
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0039
0040
0011
0042
0043
0014
0045
0046
0017
0048
0049
0050
005 !
0052
0053
0054
CO55
0056
0057
0058
0059
CO60
006 1
0062
0063
0064
0065
0066

0067
0068
00692
o070
0071
0072
0073
0074
0075
0076
00717
0078

0079
on8o
008§
©082
Q083
00841

OSSO0

C

G0 10 34
102 WRITE(6.,11) TOUT,Y(1),.Y(2),¥Y(3),Y(4),¥{5),Y(6)
1 FORMAT(1X .F7.4,2X ,5(E14.8,2X) ,E14.8,6X)
I=1+1
1(1)=Y(1)
Y2(1)=Y(2)
¥3(1)=v(3)
Ya(1)=vY(4)
Y5(1)=Y(5)
Y6(1)=Y(6)
Y7(1)=Y(7)
¥Y8(1)=v(8)
Yo(1)=Y(9)
Y10(1)=Y(10)
Y41(I)=Y(11)
Y12(1)=Y(12)
¥13(1)=Y(13)
Y14(I1)=Y(14)
TI(I)=TOUT
IF (INDEX.EQ.O0) GO TO {3
WRITE(6G,12) INDEX
12 FORMAT(//.17X,’ERROR RETURN WITH INDEX=',17)
GO 10 34
13 TOUT=TOUT+0.05D0
IF (TOUT.LE.10.0D0) GO TO 24
TN=1
70  WRITE(6,71)

71 FORMAT(3X, 'TOUT’ ,8X, 'Y(7)', 12X, Y(8) 12X, 'Y(2)' 12X, "Y(10)" 12X~

M EER S
1 12%,°Y(12),8X)
Do 201 I=1,200
WRITE(6,202) TI(1),Y7(1),Y8(1).Y9(1),Y10(1),Y11(1),v12(1)
202 FORMAT(1X,F7.4,2X,5(E14.8,2X) ,E14.8,6X)
201 CONTIMNUE
WRITE(6,203)
FORMAT(3X,'TOUT’,8X, 'Y(13)’,12X,.'Y(14)")
00 205 I=1,200
WRITE(6,207) TI(I),v13(1),v14(1)
207 FORMAT(1X,F7.4,2X,2(E14.8,2X),2X)
205 CONTINUE
31 WRITF(G,16) NSTEP NFE.MJE
16 fORMAI(//. ' PROBLEM COMPLETED IN’,110,2X,
! "STEPS’,//.24X.110,2X,’F EVALUATIONS',//
1 21X,110,2X,'J EVALUATIONS',//)

bS]
o]
W

vy FLOTTER COMMANDS \MAAAA LA

CALL PSCALE(6..,1..TIMIM,T1F TI,IN, 1)

CALL PSCALE(6.,1. . YIMIN,Y1F Y1 IN 1)

CALL PLTOFS(TIMIN,TIF,YIMIN,YiF 2..2.)

CALL PLINE(TI,Y1,IN,1,0,0.1)

CALL PAXIS(2..,2.,'TIME’,~4,6.,0.,TIMIN,TIF 1 )
CALL PAXIS(2.,2.,°Y(1)’,4,6.,90. . YIMIN,YIF 1)

547 .000
548.000
549.000
550.000
551.000
552 .000
553.000
554 .000
555.000
556 . 000
557 .000
558 .000
559 .000
560.000
561.000
562.000
563.000
564 .000
565.000
566 .000
5G7.000
568 .0C0
569.000
570.000
571.000
571.200
572.000
573.000
573.000
574 .000
575.000
576 .000
577.000
578.000
579.000
580.000
581.000
$82.000
583.000
584 .000
585.000
586 .000
587.000
588 .000
$90.000
591.000
$92.000
593.000
594.0C0
595 .000
596 .0C0
597 .0C0
598.00M0
$99.000
600.000
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0085 CALL PLTEND
0086 CALL PSCALE(G6..1. , TIMIN,TIF,TI,IN,1)
0087 CALL PSCALE(G.,1..Y2MIN,Y2F Y2, IN, 1)
0088 CALL PLTOFS(TIMIN,TIF Y2MIN,Y2F, 2.,2.)
0089 CALL PLINE(TI,Y2,IN,1,0,0,1)
0090 CALL PAXIS(2.,2..'TIME’,-4,6.,0.,TIMIN,TIF 1.
0091 CALL PAXIS(2.,2.,°Y(2)’,4,6.,90. Y2MIN,Y2F 1.
0092 CALL PLTEND
0093 CALL PSCALE(6..1.,TIMIN,TIF TI . IN,1)
0094 CALL PSCALE(6..1..Y3MIN,Y3r,v¥3,IN, 1)
0095 CALL PLTOFS(TIMIN,TIF,Y3MIN,Y3F 2..2.)
0096 CALL PLINE(TI,.Y3.IN,1.0,0,1)
0097 CALL PAXIS(2..2.,'TIME’,-4,6.,0. ,TIMIN,TIF 1.
0098 CALL PAX15(2.,2.,'Y(3)’,4,6.,90.,Y3MIN,Y3F 1.
N099 CALL PLTEND
0100 CALL PSCALE(6..1.,TIMIN,TIF TI,IN 1)
0101 CALL PSCALE(6..1. . YAMIN, Y4F Y4 IN, V)
0102 CALL ﬂrqcﬂm.q:s_z‘q_n.<>z:z.<>ﬂ.u4.w.._
0103 CALL PLINE(TI,Y4,IN,1,0.0,1)
0104 CALL PAXIS(2.,2.,'TIME’,-4.,6.,0. TIMIN,TIF 1.
0105 CALL PAXIS(2.,2.,°Y(4)’,4,6.,90.,YAMIN, YA4F 1.
0106 CALL PLTEND
0107 CALL PSCALE(6.,1.,TIMIN,TIF, TI, IN 1)
0108 CALL PSCALE(G..1.,YSMIN.YSF Y5, 1IN, 1)
0109 CALL PLTOFS(TIMIN,TIF,YSMIN,YS5F.2..2.)
0110 CALL PLINE(TI,Y5,IN,1,0.0,1)
o111 CALL PAXIS(2..,2.,'TIME’,-4,6.,0. ,TIMIN,TIF 1.
0112 CALL PAXIS(2.,2.,°Y(5)’.4,6.,90.,Y5MIN Y5F 1.
0113 CALL PLTEND
o114 CALL PSCALE(6.,1.,TIMIN.TIF,TI.IN,1)
0115 CALL PSCALE(6..1.,YGMIN,YGF,VY6,IN, 1)
o116 CALL PLTOFS(TIMIN,TIF,YGMIN,Y6F 2.,2.)
o117 CALL PLINE(TI,Y¥6,IN,1,0,0,1)
o118 CALL PAXIS(2..2..'TIME’.-4,6.,0. TIMIN,TIF 1.
o119 CALL PAXIS(2.,2.,°'Y(6)’.4,6.,90.,Y6MIN YGF, 1.
0120 CALL PLTEND
0121 CALL PSCALE(6..1..TIMIN,TIF,TI,IN 1)
0122 CALL PSCALE(6..1.,Y7MIN,Y7F Y7, IN, 1)
0123 CALL PLTOFS(TIMIN,TIF,YIMIN,Y7F,2.,2.)
0124 CALL PLINC(TI Y7,IN,1,0,0,1)
(02 AN CALL PAXIS(2..2..°TIMI . A 6. O  TIMIN, VIR
o126 CALL PAXIS(2.,2.,'Y07) ,3,6.,90. , YIMIN Y/I 1.
0127 CALL PLTEND
0128 CALL PSCALE(6.,1. . TIMIN,TIF ,TI,IN,1)
0129 CALL nmn>_.mAm..¢..<mz:2.<,mﬂ.<m._z.:
0130 CALL PLTOFS(TIMIN,TIF, YBMIN,YBF,2..,2.)
0131 CALL PLINE(TI,Y8,IN,1,0,0,1)
0132 CALL PAXIS(2..2.,'TIME’,-4,6.,0. TIMIN TIF 1.
0133 CALL PAXI1S(2.,2.,°'Y(8)’,4,6.,90.,Y8MIN, Y8F 1.
0134 CALL PLTEND
0135 CALL PSCALE(6..,1. . TIMIN TIF TI,IN, 1)
0136 CALL PSCALE(6.,1..YOMIN, Y9F Y9, IN, 1)
0137 CALL PLTOFS(TIMIN,TIF, YOMIN,(YOF 2. ,2.)
0138 CALL PLINE(TI,Y9,IN,1.0,0.1)
0139 CALL PAXIS(2..2..'TIME’,-4.6.,0. TIMIN,TIF, 1.

J

08-03-83

N01:22:59
601.000
603.000
604 .000
605.000
606 .000
GO7.000
608 . 000
609.000
611.000
612.000
613.000
614 .000
615.000
616.000
617 .000
619.000
620.000
621.000
622 .000
623.000
624 .000
625.000
627.000
628 .000
629.000
630.000
631.000
632.000
633.000
635.000
636 .000
637 .000
638.000
639.000
640.000
641.000
G43.000
614 .000
645.000
646 . 000
GAT OO0
648 . 000
649.000
651.000
652.000
653 .000
654.000
655.000
656 .000
657 .000
659.000
660.0N0
661.000
662.0N0
G63.0N00
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0140 CALL PAXIS(2..2.,°Y(9)’,4,6.,90. ,YOMIN,Y9F 1 ) 664 .000
0141 CALL PLTEND 665.000
0142 CALL PSCALE(6..4. ,TIMIN TIF,TI.IN,1) 667 .000
0143 CALL PSCALE(6.,1..YIOMIN, YIOF ,Y10,IN, 1) 668.000
0144 CALL PLYOFS(TIMIN,TIF,Y1OMIN,Y10OF,2.,2.) 669.000
011% CALL PLINE(TI,Y10,IN,1,0,0,1) 670.000
0146 CALL PAXIS(2.,2.,'TIME’,-4,6.,0.,TIMIN,TIF, 1.) 671.000
0147 CALL PAX1S(2..2..°'Y(10)’,5,6.,90.,Y1OMIN.Y1OF ,1.) 672.000
0148 CALL PLTEND 673.000
0149 CALL PSCALE(6.,1. ,TIMIN,TIF,TI,IN, 1) 675.000
0150 CALL PSCALE(6..,1., YHIMIN,Y1IF Y11 IN 1) 676.000
0151 CALL PLTOFS(TIMIN,Y1F,Y1IMIN,Y1iF 2. ,2.) 677.000
0152 CALL PLINE(TI,Y11,IN,1,0,0.1) 678 .000
0153 CALL PAXIS(2.,2.,'TIME’,-4.6.,0..TIMIN,TIF,1.) 679.000
0154 CALL PAXIS(2.,2.,°'Y(11)’.5,6.,90. ,Y1IMIN,YiiF 1.) 680.000
0155 CALL PLTEND 681.000
0156 CALL PSCALE(6.,1..TIMIN T1F TI,IN 1) 683.000
0157 CALL PSCALE(6..1.,Y12MIN, Y12F Y12 IN 1) 684 .000
0158 CALL PLTOFS(TIMIN,TIF,Y12MIN,Y12F 2. . 2.) 685.000
0159 CALL PLINE(TI,Y12,IN.1,0.0.1) 686 .000
0160 CALL PAXIS(2..2.,'TIME’,-4,.6.,0. . TIMIN.TIF,1.) 687.000
0161 CALL PAXIS(2..2.,’Y(12)’,5,6.,90. ,Y12MIN, Y 12F 1. ) 688 .000
0162 CALL PLTEND 689 .000
0163 CALL PSCALE(6.,1.,TIMIN,TIF,TI,IN 1) 691.000
01641 CALL PSCALE(6.,1.,VI3MIN,Y{13F Y13, IN, 1) 692 .000
0165 CALL PLTOFS(TIMIN,TIF,YI3MIN,YI13F,2.,2.) 693.000
0166 CALL PLINE(TI,Y13,IN,1,0,0,1) - 694.000
0167 CALL PAXIS(2.,2.,'TIME’,-4.6.,0. TIMIN,TIF, 1.) 695.000
0168 CALL PAXIS(2.,2.,°Y(13)',5.,6.,90. ,YI3MIM, Y13F 1.} 696 .000
0169 CALL PLTEND 637.C00
0170 CALL PSCALE(®.,9. . TIMIN,TIF, TI, IN, 1) 699 .000
0171 CALL PSCALE(6.,1.,Y1dMIN, Y 14F YI1, IN, 1) 700.000
0172 CALL PLTOFS(TIMIN,TIF,Y{AMIN, Y14F 2..2.) 701.000
0173 CALL PLINE(TI,Y14,IN,1,0.0,1) 702.000
0174 CALL PAXIS(2.,2.,'TIME’,-4.6.,0. ., TIMIN,TIF, 1.) 703.000
0175 CALL PAXIS(2.,2.,°'Y(14)°,5,6.,90.,Y14MIN, Y147, 1) 704.000
0176 CALL PLTEND ‘ 705.000
0177 CALL EXIT 706 .000
0178 sTop 707 .000
0179 END 708 .000

COPTIONHS IM EFFRCT'  1D,.ERCDIC, SOURCE ,NOLIST NODECK, LOAD  NUMAP

YOPTIONS TN EFFECT'  NAME = MAIN , LINECNT = 57

'STATISTICS® SOURCE STATEMENTS = 179.PROGRAM SIZE = 19416

*STATISTICS® NO DIAGNOSTICS GENERATED

63



MICHIGAN TFRMINAL SYSTEM FORTRAN G(21.8) MAIN 08-03-83

0001

0002
0003
0004
0005
0006
0007
0008

[e]

C
C
c
C
C

C
C

sNeNeResNoNsNeoNoNoNoNoNoNoRoNoNoRoNoNoRoNo NN NoNoRoNeoNoNoNoNoNoNo Mo Ne Nole el

2SN EZEE RS2 R R AL AL RS A R RS AR S R AR AR AR R AN NN

SUBROUTINE DIFFUN (N,TIME,Y,YDOT)
ARSI PROGRAM IDENTIFICATION LA SRR AR
THIS SUBROUTINE DEFINES THE DIFFERENTIAL EQUATIONS OF MOTION

R R R AR AR RS2 2SR TR TR RAR 22222222 2 A0 A N AL AL AN LA AN

A AR VARIABLE IDENTIFICATION AR AR A

M1-MASS OF THE FIRST BEAM

M2-MASS OF THE SECOND BEAM

MP-MASS OF THE PAYLOAD .
C1=TRANSLATIONAL CONTROLLER FORCE

C2=ROTATIONAL CONTROLLER TORQUE AROUND K VECINR
C3=ROTATIONAL CONTROLLER TORQUE ARODUND THE VERTICAL AXIS
L1=LENGTH OF THE FIRST BEAM

L2-LENGTH OF THE SECOND BEAM

ZETA1=DAMPING RATIO IN THE r DIRECTION
ZETA2=DAMPING RATIO IN THE TETA DIRECTION
ZETA3=DAMPING RATIO IN THE FETA DIRECTION
WNR=NATURAL FREQUENCY FOR r

WNTETA=NATURAL FREQUENCY FOR TETA
WNFETA=NATURAL FREQUENCY FOR FETA

R1=REFERENCE INPUT IN THE r DIRECTION
R2=REFERENCE INPUT IN THE TETA DIRECTION
R3=REFERENCE INPUT IN THE FETA DIRECTION
A2=CROSS SECTIONAL AREA OF THE SECOND BEAM
ROW=DENSITY OF THE UNIFORM SECOND BEAM

R A R A A R 2 AR R R R AL AN AR AR LA LA S

IREA RS 3 STORAGE BLOCK LA A AL NE SR

REAL*8 TIME,IK11,1K22,1K33,CENTAC DIST, PALL(7)

INTEGER IV(7),IJ,IN, IM 1Y, IUH, JUH K

REAL*8 M1 ,M2 ,MP,L1,L2,R1,R2,R3,Y(N),YDOT(N),RC,DC

REAL*8 ALPHA ,BETA.C1,C2.C3,WNR,WNTETA WNFETA ZETAY PBY(T7)
REALY8 ZETA2,ZETA3,A2 ROW,A13,A14 A15,ROW7 ,ROWS

REALY8 ROW1,ROW2,ROW3,ROW4,ROWS, ROWS

REAL*8 ALY, AL2 AL1O,AL11,El ROWIO, ROWI

01:23:00
Jh  Jh
710.000
711.000
712.000
713.000
714 .000
715.000
716.000
717 .000
718.000
719.000
720.000
721.000
722.000
723.000
724.000
725.000
726 .000
727 .000
728.000
729.000
730.000
731.000
732.000
733.000
734 .000
735.000
736.000
737 .000
738.000
739.000
740.000
741.000
742.000
743.000
744 .000
745.000
746.000
746.200
746.400
747 .000
748.000
749.000
750.000
751.000
752.000
753.000
754.000
755.000
756.000
757 .000
758 .000
759.000
760.000
761.000
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0N09a
0010
[eoAN]
0012
0013
0014
0015
0016
o017
0018
0019
0020
0021

0022
0023
0024

002%
0026
0027
0028
0029
0030
0031

0032
0033

0031
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
Nno1s
0046
0047
0048
0019

e NeNesNeoNeNeNe]

a9N700

222

REAL*8 B(7,7).T(7,7),F(7),D(T),YVECT(T)
NFEAL *8 PIR(7.7).PTIF(7).PID(7),PIBY(7),A(7,7),G
REAL *8 PART1.PART2.PARTI PARTA PARIS
REAL'S8 PARTG,PART7,PARTS8,PARTY
COMMON /SINGUL/ S

M=7

1M2-0.9366D0

M1=0.46500

MP=0.07D0

A2=0.000173D0

ROW=2707 .0DO

C1=0.0D0

C€2=0.0D0

C3=0.0D0

R1=2.0D0

R2=0.5D0

R3=0.5D0

L1=0.361D0

1.2=2.0D0

ZETA1=1.CDO

ZETA2=1.000

ZETA3=1.0DO

WNR=4 .0DO

WNTETA=4.0D0O

WNFETA=8.0DO

G IS SET TO ZERO TO SHOW ,BY COMPARISON WITH THE
GENERAL CASE, THE EFFECT OF GRAVITY ON THE FLEXI-
BLE MOTION.

G=0.0D0
A13=0.76D0
A14=0.53D0
A15=4.34DO
AL1=0.68D0
AL2=1.43DO
AL10=12.362D0
AL11=485.519D0
EI=1121.9DO
IK11=8.8D0
1K22=5.8D0
1K33=44.2D0
Do 222 I1=1,7

DO 222 U=1,7

T(1,J)=0.0D0

CONT INUE

A:.Fobvvo;6#0690’&6"#’6'*&"6¢¢0604‘45000'060’600Q4¢0

C
C

762

764
766

804

.000
763.
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
-000
.000
.000
. 100
.200
.300
.400
.500
.600
.700
.000
.000
.000

000

.000
.000
.000
.000
.000
. 100
.200
.300
.400
.500
.600
.700
.000
.000
.000
.000
.000
.000
.000
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Q050
005 1
0052
0053
0054
0ons5
0056
0057
0058
00592
0060

006 !
0062
0063
0064
0065
0066
0067
0068
0069
on70
0071
0072
0073
0074
0075
0076
0077
0078
0079

[ole}:10}

008 1

DIFFUN 08-03-83

Ctrerrt by . mcﬂ.—w BLOCK A RS S R AR A4

Ny Ne]

CENTAG=(Y(10)**2)*((DCOS(Y(2)))**2)+(Y(Q)*+2)
DIST=(LI*Y(1))+((Y(1)*+*2)/2.0D0)

BC=L1+Y(1)-(L2/2.0D0)

ROW1-ROW*A2

ROW2=1.1-(1.2/2.000)+(Y(1)/2.0D0O)

ROW3=L2-Y (1)

ROWA=L1+Y( 1)
ROWS=(L1++2)*Y(1)+L1*(Y(1)*+2)+(Y(1)**3)/3.0D0
ROW6=ROW1/2.0DO )
DC=(M1*L1++2)/3.0D0+M2+BC**24(M2+L2%*2)/12.0DO+MPYROW4**+2
ALPHA=(M1*L1++%2)/3.0D0+(M2+L2*+2)/12.0DO+M2*(L {+1.0DO-
(L2/2.0D0))*+*2+MP*(L1+1.0DO)**2

ROW7 =MP *ROW4

ROW8B=( (ROW1*Y(1))+MP)*G*DSIN(Y(2))
ROWI=ROW1*G*DSIN(Y(2))
ROWIO=ROW1+*(Y(10)**2)*DSIN(Y(2))*DCOS(Y(2))
A(,1)=M2+MP

A(1,2)=0.000

A(1,3)=0.0D0

A(1,4)=0.0D0

A(1,5)=0.0D0

A(1,6)=0.0D0

A(1,7)=0.0D0

A(2,1)=0.0D0

A(2,2)=DC

A(2,3)=0.0D0

A(2,4)=0.0D0

A(2,5)=0.0D0

A(2,6)=0.0D0

A(2,7)=0.0D0

A(3,1)=ROWI*(Y(1)*+DCOS(¥(2))*+(0.78D0%Y(6)+
0.43D0*Y(7))-1.3DO*Y(1)*DSIN(Y(2))*(Y(4)'Y(7)-Y(5)*Y(6))-
L1*DCOS(Y(2))*(0.78D0*Y(6)+0.4300"'Y(7))-
Y(1)+DCOS(Y(2))*(0.35D0*V(6)-0.25D0*Y(7)))+MP+2.0DO*
ncos(v(2))+(v(s6)-v(7))
A(3,2)=ROWI*(-Y(1)*DCOS(Y(2))*+(Y(4)*Y(6)+Y(5)*Y(7))
SLA*Y(1)'DSIN(Y(2))*(0.78D0*Y(6)+0.43D0*Y(7))-
(Y(1)*+2)4DSIN(Y(2))*(0.57D0*Y(6)40.09D0 ' Y(T)))+MP*
(-4.000*0COS(Y(2))*(Y(A)*Y(G)-Y(1)*Y(T7)-Y(5)'Y(6)+
Y(5)*rY(7))1-2.0DO*(L1+Y(1))*DSIN(Y(2))*(V(6)-Y(7)))
A(3.3)=((M1*L1%+2)/3.0D0)*((DCOS(Y(2)))**2)+ROWI+*ROW3
*(ROW2++2)+((DCOS(Y(2)))**2)+

(ROW1*(ROW3*+3)* ((DCOS(Y(2)))*+2))/12.0DO+ROWI+*(Y(1)*
((DCOS(Y(2)))*++2)+(V(6)+*24v(7)*'2)+Y(1)* ((DSIN(Y(2)))*+2)
T(Y(6)**24Y(T7)*+2)+Y (1) *((DSIN(Y(2)))**2)*(Y(4)*+2+Y(5)**2)
-2.0D0*L1*DSIN(Y(2))+DCOS(Y(2))*Y(11*(0.78D0+Y(4)+0.43D0*
Y(5))-2.0D00*DSIN(Y(2))*DCOS(Y(2))*(¥(1)**2)*(0.57D0O"
Y(4)+0.09D0O*Y(5))+ROWS * ((DCOS(Y(2)))**+2))+MP*(4.0DO"*
((DCOS(Y(2)))**2)*(Y(G)**2+4Y(7)**2-2.000*Y(6)*Y(7))+
4.0D0* ((DSIN(Y(2)))**2)*(Y(6)**214¥(7)**2-2.CDO*Y(6)"*
Y(7)4+Y(4)+*2+Y(5)**2-2.000*Y(4)'Y(5))-4.0D00*DSIN(Y(2))*

01:23:00
805.000
806 .000
807 .000
808.000
808.200
808.4C0
809 .000
810.000
811.000
812.000
813.000
814.000
815.000
816.000
817.000
818.000
819. 100
819.200
819.300
819.400
820.000
821.000
822.000
823.000
824.000
825.000
826.000
827.000
828 .000
829.000
830.000
831.000
832.000
833.000
834 .000
835.000
836 .000
837 .000
838.000
839.000
810.000
8.41.000
842 .000
843.000
844 .000
845.000
846 .000
817.000
848 .000
819.000
850.000
851.000
852 .000
853.000
854 .000
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0OORD
[@I¢133¢]

[elp2: 2]

0085

0086
0087

odas

Q089
ooen
Cco91
0ce?
©o92
0094

0095

0086
0097
0oa8
00993
0100
o101
0102

0103
0104
0105
0106
0107
o108
0109

o110
[eARN
o112
o113
[OARE)
o115
0116
0117
o118
o119
0120

DCOSIY(2)V*ROWA*(Y(1)-Y(5))+(ROWI**2)*+((DCOS(Y(2)))*'2))
AC3.4)=-RPOWI*Y(1)*DSIN(Y(2))*Y(G)-MP*4.0NO'DSIN(Y(2))*
(Y(G)-Y(7))

A(3,.5)=-ROWI+Y(1)*DSIN(Y(2))*Y(7)-MP+d ODO*DSIN(Y(2))*(Y(7)
-Y(6))
A(3,6)=ROWI*(Y(1)*DSIN(Y(2))*Y(4)-11*DCOS(Y(2))*0.7800"
Y(1)-Y(1)++2+DCOS(Y(2))*0.57D0)+MP* (4.0DO*DSIN(Y(2))*(Y(4)
-Y(5))-2.0D0*ROW4*DCOS(Y(2)))
A(3,7)=ROWI*(Y(1)*DSIN(Y(2))*Y(S)-L1*
DCOS(V(2))*0.43D0*Y(1)-(Y(1)**2)*DCOS(Y(2))
+0.09D0)+MP*+(4.0DO*DSIN(Y(2))*(Y(5)-Y(4))+2.000
1ROWA*DCUS(Y(2)))
A(4,1)=ROWI*(Y(1)/2.0D0)*(Y(4)-1.3D0*Y(5))
A(4,2)=ROWG*(1.56DOL1*Y(1)+1.14DO*(Y(1)*+2))
+MP*(2.0DOYROW4)
A(4,3)=-ROWI*DSIN(Y(2))*Y(1)*Y(6)-MP*4.0DO
PDSIN(Y(2))*(Y(6)-Y(7))

A(1.4)=ROWI*Y(1)+4.0DO*MP

A(4,5)=-4.0DO*MP

A(4.6)=0.0D0

A{4,7)=0.0D0

A(S, 1)=ROW1*Y(1)*¥(0.65D0*Y(4)+0.5D0*Y(5))
ALS,2)=ROW1+(0.43D0*LI*Y(1)+0.09DO*(Y(1)*+*2))
-MP+2 . 0DO*ROW4
A(5.3)=-ROWI*DSIN(Y(2))*Y(1)*Y(T7)-4.0D0*MP*
DSIN(Y(2))+*(Y(7)-Y(6))

A(5,4)=-4.0D0*MP

A(5.5)=ROW1*Y(1)+4.0DO'MP

A(5,6)=-0.000

A(5,7)=0.0D0

AG.1)=ROWI*Y(1)*(0.5D0*Y(6)-0.65D0*Y(7))

A(6,.2)=0.0DO
A(6.3)=ROWI*(Y(1)*DSIN(Y(2))*Y(4)-0.78D0*Y(1)*
DCOS(Y(2))*L1-0.57D0O*(Y(1)**+2)*DCOS(Y(2)))+MP+(1.0DO"
DSIN(Y(2))*(Y(4)-Y(5))-2.0DO*ROWA*DCOS(Y(2)))
A({6,4)=0.0D0

A(6,5)=0.000

A(6.6)=ROWI*Y(1)+4.0DO*MP

A(6.7)=-MP*4_0DO
A(7,1)=ROW1*Y(1)*(0.65D0*Y(6)+0.5D0*Y(7))

A(7,2)=0.0DO
A(7,3)=ROWI*(Y(1)*DSIN(Y(2))*Y(5)-0.43D0*L1+Y(1)*
DCOS(Y(2))-0.09D0*(Y(1)*+2)*DCOS(Y(2)))+MP+(4.0DO*DSIN(Y(2))
*(Y(5)-Y(4))+2.0DO*ROW4+DCOS(Y(2)))

A(7,4)=0.0D0

A(7,5)=0.0DO

A(7,6)=-4.0DO*MP

A(7.,7)=ROWI*Y(1)+4.0DO*MP

B(1,1)=0.0D0

8(1.2)=0.000

B(1,3)=0.000

B(1,4)=0.0D0

B(1.5)=0.0D0

B(1,6)=0.0D0

B(1,7)=0.0D0

855.
.000
. 000
.000
859.
860.
.000
.0C0
863.

856
857
858

861
862

864

867
868

871
872
873
874
875

877
878

881
8832

884

886
887
888

891
892

894

896
897
898
899

901
Q02

911
912
913
914

000

000
0n0

000

.000
865.
86G6.
.000
.000
869 .
870.
.000
.CCO
.000
.Q0O
.000
876.

000
000

000
009

000

.000
.000
879.
880.
.0C0
.CO0O
883.

000
000

000

.000
885.

000

.000
.000
.000
889.
890.
.000
.000
893.

000
000

000

. 000
895,

000

.000
.000
.000
.0N0
S00.
.000
.000
810.
.000
.000
.000
.C00
915.
g916.

000

00

000
000
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0121
0122
0123

0124

0125
0126
0127
0128

0129

0130

0131

0133
0134

0135

- - - - - - - - - - o s - e - - -

- . - - - -

- - . . - -

B(2.1)=0.000

B8(2,2)=0.0D0

B(2.3)=0.0D0

B(2,4)=0.000

B8(2,5)=0.0D0

B(2,6)=0.0DO

B(2,7)=0.0D0
PART1=-ROWI*Y(10)*(ROW2++2)*((DCOS(Y(2)))'*2)

+ROW1 *ROW3*Y(10) *ROW2* ((DCOS(Y(2)))**2)-((ROW1*
(ROW3*+2))/4.0D00)*Y(10)*((DCOS(Y(2)))**+2)+ROWT?
(Y(10)+((DCOS(Y(2)))**2)*(V(6)**2
+£Y(7)++2)+(Y(8)*DCOS(Y(2))-Y(1)*Y(9)*'DSIN(Y(2)))
+(0.78D0*Y(6)+0.43D0*Y(7))+Y(1)+DCOS(Y(2))*
(0.78D0*Y(13)40.43D0*Y(14))-Y(9)*DCOS(Y(2))*(Y(4)*Y(G)+
Y(5)*+Y(7))-DSIN(Y(2))*Y(1)*(0.50D0* (Y (11)*Y(6)+
Y(4)*Y(13))+0.6500*(Y(11)*Y(7)+Y(4) YV (14))
~0.6500*(V(12)*Y(6)+Y(5)*Y(13)1+40.5D0* (Y (12)'V(7)+
Y(5)*v(14))))
PART2=ROWI*(-DSIN(Y(2))*(Y(11)*¥(6)+Y(12)*Y (7))
SL4*Y(9)*DSIN(Y(2))*(0.78D0*Y(6)+0.4300*Y(7))
-2.0D0*Y(1)*Y(9)*DSIN(Y(2))*(0.57D0*Y(6)+0.09D0%Y (7))
AY(10)*((DSIN(Y(2)))**2)+(Y(6)*+2¢Y(T)*+2)+
(Y(B8)*DSIN(Y(2))+Y(1)*Y(9)+*DCOS(Y(2)))*
(1.3D00*Y(6)*Y(S5)-1.3D0¢Y(7)*Y(4)))
FARTA=ROWI*(DSIN(Y(2))*Y(4)*+(0.5N0*(Y(13)*V(1)+
Y(6)*Y(11))+0.65D0*(Y(13)*Y(5)1Y(6)*Y(12))-
0.65D00*(Y(14)*Y(4)+Y(7)*Y(11))+0.5D0*(Y(14)+*Y(5)
+Y(7)+Y(12)))4DSIN(Y(2))*(Y(13)*Y(4)+
Y(14)*Y(5))+L1*Y(9)*DSIN(Y(2))*(0.78DO*Y(6G)+
0.4300+Y(7))-L1¥DCOS(Y(2))*(1.56D0*Y(13)+
0.86D0*Y(14)))

PART4=ROW1* (-(Y(8)*DCOS(Y(2))-Y(1)*Y(9)*DSIN(Y(2)))*(0.35DO*
Y(6)-0.25D00*Y(7))-DCOS(Y(2))*Y(1)*(0.35DO*
Y(13)-0.25D0+Y(14))-2.0D00*Y(1)*DCOS(Y(2))*
(0.57D0*Y(13)+0.09D0+Y(14))+Y(10)*((DSIN(Y(2)))

t+2) v (Y(4)*+24Y(5)*+2)-2.0D0*L1+Y(10)*DSIN(Y(2))
+DCOS(Y(2))*(0.78D0*Y(4)+0.43D0*Y(5))-4.000*Y(1)*V(10)
+*DSIN(Y(2))*DCOS(Y(2))*(0.57D0*Y(4)+0.0900*Y(5)))
PARTS=ROWI*(Y(10)*((DCOS(Y(2)))**+2)*((L1*+2)+
2.000*LA*Y(1)+(Y(1)**¥2)))+MP¥(-4.0DO'Y(9)*DSIN(Y(2))*
(Y(6)-Y(7))-4.0D0*Y(10)+*DCOS(Y(2))*DSIN(Y(2))*
(Y(4)-Y(5))+2.0DO*ROWA+Y (10)*((DCOS(Y(2)))**2))
B(3.1)=PART1+PART2+PART3I+PARTAPARTS
PART6=-0.6667D0*MI*(L1+*+2)*Y(10)*DCOS(Y(2))*
DSIN(Y(2))-2.0DO*ROW{*ROW3*Y(10) ¥ (ROW2*+*2)*
DSIN(Y(2))*DCOS(Y(2))-(ROW1*(ROW3**3)*Y(10)*DSIN(Y(2))
1DCOS(Y(2)))/6.0DO+ROW1I*(-2.0D0*Y(10)*Y(1)+DCOS(Y(2))*
DSIN(Y(2))*(Y(6)**2+Y(7)**2)+Y(9)*Y(1)*DSIN(Y(2))*
(Y(4)*Y(B8)+Y(5)*Y(7))-Y(1)*DCOS(Y(2))*(Y(11)*Y(6)+
Y(4)*Y(13)+Y(12)*Y(7)+Y(5)*Y(14))-Y(1)*DCOS(Y(2))*
(Y(11)*Y(6)+Y(12)*Y(7)))
PART7=ROW1*(-L1*Y(1)*Y(9)*DCOS(Y(2))*
(0.78D0*Y(6)+0.43D00°*Y(7))-L1*Y(1)*DSIN(Y(2))*
(0.78D0*Y(13)+0.4300+*Y(14))-(Y(1)**2)*Y(9)*DCOS(Y(2))"*
(0.57D0*Y(6)+0.0900*Y(7))-DSIN(Y(2))*(Y(1)**+2)*

01:23:00
917.000
918 .000
919.000
920.000
921.000
922.000
923.000
924 .000
925.000
926 .000
927 .000
928.000
929.000
930.000
931.0C0
932.000
933.000
934 .000
935.000
936 .000
937 .000
938.000
939.000
910.000
941.000
942 .000
943.000
944 .000
945.000
916 .000
947 .000
948 .000
949.000
950.000
951.000
952.000
953.000
954 .000
955.000
956 .000
957 .000
958.000
959.000
960.000
961 .0C0
962.000
963.000
964 .000
965 .000
966 .000
967 .000
968.000
969.000
970.000
971.000
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0136

0137

0138
0139

0140
o111
0142
0143
0144

0145

0116

0147
0148
0149

0150
0151

-

- > - - —n b - - - . - b - - -

- = e - - -

- - - -

-

(0.57D0'Y(13)+0.09D0*Y(14))+2.0DO*Y(10)*¥I1)!
DSIN(Y(2))*DCOS(Y(2))*(V(6)**24Y(T7)*+*2)
HY(1)DCOSIY(2))Y(Y(13)*Y(4)+Y(14)*Y(5)))
PARTB=ROWI*(L1*DSIN(Y(2))*(0.780N*Y(1)+Y(13)+
0.43D0+Y(1)*V(14))1+(Y(1)*+*2)*DSIMN(Y(2))*(0.57DO*Y(13)+
0.09D0*Y(14))+2.0D0*DSIN(Y(2))*DCOS(Y(2))*Y(10)*
Y(1)*(Y(4)**2+4Y(5)*+2)
-2.0D0*L1*(Y(10)*((DCOS(Y(2)))*“*2)'Y(1)
SY(10)*((DSIN(Y(2)))**2)*Y(1))*(0.78D0*
Y(4)+0.4300*Y(5))-2.0D0+*Y(10)*(Y(1)**2)*
(((DCOS(Y(2)))**2)-((DSIN(Y(2)))**2))*(0.57D0*Y(4)
+0.09D0*Y(5)))
PARTO=ROWI*(-2.0D0*Y(10)*DSIN(Y(2))+DCOS(Y(2))
YROWS ) +MP* (Y (10)*DCOS(Y(2))*DSIN(Y(2))*(8.0DO*
(Y(4)++2+Y(5)**2-2.0D0*Y(4)*Y(5))-2.0D0*(ROWA**2))
14 .0D0*Y(9)*DSIN(Y(2))*(Y(4)*Y(6)-Y(4)*Y(T)-
Y(5)*Y(6)+Y(S5)*Y(7))-4.0D0*DCOS(Y(2))*(2.000*Y(11)*
Y(6)+Y(4)*Y(13)-2.0D0*Y(11)*Y(7)-Y(4)*Y(14)
-2.0D0*Y(12)*Y(6)-Y(5)*Y(13)+2.0D0*Y(12)*Y(7)+
Y(5)+Y(14))-2.0DO*Y(9)*ROWA*DCOS(Y(2))*+(Y(6)-Y(T7))+
4.0DOYDCOS(Y(2))*(Y(13)*Y(4)-Y(13)*Y(5)-Y(14)*Y(4)+
Y(14)*Y(5))-(Y(10)*((DCOS(Y(2)))**2)*ROWA-Y(10)*
((DSIN(Y(2)))*“*2)*ROW4)*(Y(4)-Y(5))*4.0D0)
B(3,2)=PARTG+PART7+PART8+PARTY
B(3,3)=ROW1I+(Y(1)*2.0D0*(Y(6)*Y(13)+Y(T7)*Y(14))+
Y(1)*((DSIN(Y(2)))*+*2)+2.0D0*(Y(4)*Y(11)+¥(5)*
¥(12))-2.0D0*Y(1)*DSIN(Y(2))+DCOS(Y(2))*(0.78D0*
Livv(11)40.4300*L1+Y(12)+0.57D0*Y(1)*Y(11)+0.09DO*
YO1)*Y(12)))+MP*(8.0D0O*(Y(6)*Y(13)+Y(7)*Y(14)-Y(13)
wY(7)-Y(6)*Y(14))48.0D0O* ((DSIN(Y(2)))*12)*(YL4)*+Y(11)+
Y(S)I*Y(12)-Y(11)*Y(5)-Y(4)*Y(12))-4 ODO*DSIN(Y(2))*
DCOS(V(2))*ROWA*(Y(11)-Y(12)))

B(3,4)=0.0D0

B(3.5)=0.0D0O

B(3,6)=0.0D0

B(3,7)=0.0D0 .
B(4,1)=ROWG*(Y(B)*(Y(4)-1.3DO*Y(5))1+Y(9)*Y(1)*
3.14D0-2.0DO*Y(10) *DSIN(Y(2))*Y(6)-2.0DO*V(8B)*
(A13*Y(4)+A14*Y(5))+2.6DO*Y(10)*DSIN(YV(2))*
Y(1)*Y(7))+MP*+4.0DO*Y(9)
B(4,2)=-ROWI*Y(Q)tY(1)*Y(4)-4.0DOMP+Y(9)*(V(1)
-Y(5))
P(A,3)=ROWG*(-2.0D0*Y(10)*((DSTNIY(2)) ) *2)*v (1)
Y(A)+Y(10) *DSIN(Y(2))*DCOS(Y(2)) Y1)+ 1.56D0"
L141.14DO*Y(1)))+MP+(-4.0D0O*Y(10)*((DSIN(Y(2)))**2)
1(Y(4)-Y(5))+2.000*Y(10)*DSIN(Y(2))*DCOS(Y(2))
tROWY )

P(4.4)=ROW6+2.0D0*Y(8)

B(4.5)=-ROW6*2.600*Y(1)+Y(8)
B(4,6)=-ROWG*Y(10)*4.0D0O*DSIN(Y(2))*Y(1)-8 OO
‘MP*Y(10)*DSIN(Y(2))
P(4,.7)=8.0D0*MP*Y(10)*DSIN(Y(2))
B(5.1)=ROWI+(Y(8)*(0.6500°Y(4)+0.5DD*Y(5))
+0.86N0*Y(9)*Y(1)+Y(10)*DSIN(Y(2))*Y(7)-
Y{B)*(A14+Y(4)+A15+Y(5))-1.30DO*Y(10)*

972.000
973.000
974.000
975.000
976.000
977.000
978.000
979.000
980.000
981.000
982 .000
983.000
984 .000
985 .000
986 .000
987.000
988 .000
989.000
990.000
991.000
992.000
993.000
994.000
995.000
996 .000
997.000
998 .000
999.000
1000.000
1001.000
1002 .000
1003.C00
1004 . 000
1005 .000
1006 .000
1007 .000
1008 .000
1009.000
1010.000
1011.000
1012.000
1013.000
1014.000
1015.000
1016 .000
1017 .000
1018 .000
1019.000
1020.000
1021.000
1022.000
1023.000
1024 .000
1025.000
1026 .000
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0152

0153

0154
0155
0156
0157

0158

0159

0160
0161
0162
0163

0164
0165

0166

0167

0168
0169

0170
o171
0172

0173
0174
0175
0176

0177
0178

1 DSIN(Y(2))*Y(1)*Y(6))-MP*4.0DO*Y(9)
B(5,2)=ROWI*(-Y(9)*Y(1)*Y(5))-4.0D0O*MP
1 *Y(9)*(Y(5)-Y(4))
B(S,3)=ROWI+(-Y(1)*Y(10)*((DSIN(Y(2)))*+*2)
CY(S5)+Y(10)*DSIN(Y(2))*DCOS(Y(2)) Y (1)*
(0.43D0+L1+0.09D0*Y (1)) )+MP*(-4.0D0O"
Y(10)*((DSIN(Y(2)))**2)*(Y(5)-Y(1)) -2 .0DD*
Y(10)*DSIN(Y(2))*DCOS(Y(2))*ROWA)
B(5.4)=ROW{*1.300*Y(1)*Y(8)
B(5.5)=ROW1I*Y(8)
B(5.6)=MP*8.0D0*Y(10)*DSIN(Y(2))
P(5,7)=-ROW1+2.0DO*Y(10)*DSIN(Y(2))*Y(1)
t -8.0D0*MP*Y(10)*DSIN(Y(2))
B(6,1)=ROWI*(Y(8)*(0.5D0*Y(6)-0.65N0*Y(7))
+Y(10)*DSIN(Y(2))*Y(4)+Y(10)+DCOS(Y(2))
*(-4.57D00*Y(1))+Y(10)*DSIN(Y(2))*Y(1)*
(-1.23D0*Y(5))-Y(B)*(A13*Y(6)+A14°Y(T7)))
+MP*(-4.0DO*Y(10)*DCOS(Y(2)))
B(6,2)=ROW1*(2.000*Y(1)*Y(10)*DCOS(Y(2))*Y(4)+
1 1.56D00*Y(1)*LI*DSIN(Y(2))*Y(10)+1.14DO(Y(1)*+2)
1 *Y(10)*DSIN(Y(2)))+MP+(8.0D0*Y(10)'DCOS(Y(2))
1 *(Y(4)-Y(5))+ROW4*4 .0DO*Y(10)*DSIN(Y(2)))
R(6,3)=-ROW1*Y(1)*Y(10)*Y(6)-4.0NO*MP*Y(10)
1 *(Y(6)-Y(7))
B(6,4)=2.0DO*ROWI*Y(10)*DSIN(Y(2))*Y(1)+8.0D0
t *MP*Y(10)*DSIN(Y(2))
B(6.5)=-8.0DO*MP*Y(10)*DSIN(Y(2))
B(6.6)=ROWI*V(8)
B(6.7)=-ROW1*1.3D0*Y(1)+Y(8)
P(7,1)=ROWI*(Y(8)*(0.65D0*Y(6)+0.5D0*Y(7))+Y(10)
*DSIN(Y(2))*Y(5)-0.86D0*Y(1)*Y(10)*DCOS(Y(2))
|<Amv*.>_a~<amv+>.m~<aq‘v+_.uco.<A_OV.GM~ZA<Aw~v
*Y(1)+Y(4))
+MP*4 .0DO*Y(10)*DCOS(Y(2))
B(7.2)=ROWI*(2.0D0*Y(1)*Y(10)*DCOS(Y(2))*Y(S)+
1 0.18D0*(Y(1)**2)*Y(10)*DSIN(Y(2))+0.86DO*LI*Y (1)
1 *Y(I0)*DSIN(Y(2)))+MP*(8.0DO*Y(10)*DCOS(Y(2))*
1 (Y(5)-Y(A))-4.0DO*ROWA'Y(10)*DSIM(Y(2)))
R(7,3)=-ROWI*Y(1)*Y(10)*Y(7)-4.0DO'MP*Y(10)*
1 (Y(7)-Y(8))
B(7.4)=-MP¥8 .000*Y(10)*DSIN(Y(2))
P(7,5)=ROW1+2.0DO+*Y(10)*DSIN(Y(2))*Y(1)+8.0D0O
1 *MP*Y(10)*DSIN(Y(2))
E(7.6)=ROW1*1.3D0*Y(1)*7(8)
B(7.7)=ROW1*Y(8)
CA1=-((M2+MP ) +*WNR*+2+(Y(1)-R1)+2.0DO*ZETA I *WNR
1 +(M24MP)*Y(8))+IK11*Y(15)
C2=-((WNTETA%*2)*ALPHAYY(2)
1 12.0DO*ZETA2*WNTETA*ALPHA*Y(9))+1K22+Y(16)
C3=-((WNFETA**2)*ALPHA*Y(3)+
1 2.0DO*ZETA3*WNFETA*ALPHA*Y(10))+1K33*Y(17)
F(1)=C1
F(2)=C2
F(3)=C3
F(4)=0.0D0

- - - -

- - . -

- . - -

08-03-83

oft:

23:00

1027 .000
1028.0C0O
1029.000
1030.000
1031.000
1032.000
1033.000
1034.000
1035.000
1036 .000
1037 .000
1038.000
1039.000
1040.000
1011.000
1042.000
1043.000
1044 .000
1045.000
1046 .000
1047 .000
1048.000
1049.000
1050.000
1051.000
1052 .000
1053.000
1054 .000
1055.000
1056 .000
1057 .000
1058.000
1059.000
1060.000
1061.000
1062 .000
1063 .000
106:1.000
1065.000
1066 .000
1067 .0C0
1068 . 000
1069.000
1070.000
107 1.000
1072.000
1072.200
1073.000
1074.000
1075.000
1075.200
1076 .000
1077 .000
1078 .000
1079.000
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0179
0180
01
0182
(oR123¢]
0184
0185

0186

0187

0188

0189
01390
0191

0192
0193
0194
0195
0196
0197
0198
0199
0200
0201

0202
0203
0204
0205
0206
0207
0208
0209
0210
0211

GO

61

20

91

-, - - - s s - - -

- - - -

e st aeireiw BT €V L KR tryr U AT I RS B & B9

F(5)-0.000
F(6)-0.0n0
r(7)-0.000
D(1)=0.0D0
D(2)-0.0DO
D(3)=0.0b0
D(A4)=-ROWI*Y(1)*G*DCOS(Y(2))*AL1 2.0DO*MP*G
fDCOS(Y(2))-(ET+Y(4)*ALI10)/(Y(1)**3)
-((ROW1*CENTAC*DIST*(4.65D0*Y(4)-7.3800*Y(5)))/Y(1))+
ROWI*CENTAC*((3.08DO*L1+1.43D0*Y(1))*Y(4)-(6.96DO*L1
+3.0D0*Y(1))*Y(5))-( ((ROW7+*CENTAC+ROWB) *(4.65D0*V(4)-
7.38D0*Y(5)))/Y(1))+ROWO*(3.08D0*'V(4)-6.96D0"'Y(5))
+1.14DOY(Y(1)*+2)+ROWI+*Y(8)*Y(9)+ROWIO*(0.57DO*
(Y(1)+42)*0L140.22500*(Y(1)**3))
D(5)=-ROW1*Y(1)*G*DCOS(Y(2))*AL2+2.0DO*MP
CGPDCOSIY(2))-(ET*Y(S)*ALI1)/(Y(1)+*3)
~((ROW1'CFNTAC*DIST*(-7.38D0*Y(4)132.42N0*V(5)))/V(1))+
ROWI*CENTAC*(-(6.96D0*L1+3.0D0*Y(1))*Y(4)+(23.7700*L1
19.73D0*Y(1))*+Y(5))-(( (ROWT+*CENTAC+ROWB)* (-7 .38DO*Y(4)+
32.4200*Y(5)))/Y(1))+ROWI*(-6.96D0O*Y(4)+23.7700*Y(5) )+
O 18200 (Y(1)**2)*ROWI+Y(8)*Y(9)+ROWIO'(0.091DOYL 1+
(Y(1)*%2)-0.0200*(Y(1)**3))
D(6)=-(ALIO*EI*Y(6))/(Y(1)*++3)-((ROWI*CENTAC'DIST' (1 .65D0*Y(G)
~7.3800*Y(7)))/Y(1))+ROWI*CENTIAC' ((3.08D0O'L 1+ 1.13DO'Y( 1))
tY(6)-(6.96D0*L1+3.0D0*Y(1))*Y(7))-(((ROW7*CENTAC
+tROWB)*(4.65D0*Y(6)-7.38D0*Y(7)))/Y(1))+ROWI*(
3.08D0O*Y(6)-6.96D0*Y(7))
D(7)=-(ALAI*ETI*Y(7))/(Y(1)**+3)-((ROWI*CENTAC*DIST*(-7.738D0"
Y16)132.42D0*Y(7)))/Y(1))ROWI*CENIAC*(-(6.96D0"*11
+3.0D0*Y(1))*Y(6)+(23.7700¢L149.7300'Y(1))1*Y(T7))
- (((ROWT*CENTAC+ROW8)*(-7.38D0*Y(61432.4200+Y(7)))
/Y(1))+ROWI*(-6.96D0*Y(6)+23.77D0*Y (7))
YVECT(1)=Y(8)
YVECT(2)=Y(9)
YVECT(3)=Y(10)
YVECT(4)=Y(11)
YVECT(5)=Y(12)
YVECT(6)=Y(13)
YVECT(7)=Y(14)
DO 60 IN=1.M
PBY(1N)=0.0D0O

D0 GO IM=1.,M

PBY (IN)=PBY(IN)+(-B(IN,IM)) ' YVECT(IM)

CONTINUE
DO 61 IY=1,M

PALL(1Y)=0.000

PALL(IY)=PBY(IY)+F(IY)+D(1Y)
CONTINUE
CALL DLUD(M,7,A.7,T7,1V)
IF(1V(M).EQ.0) GO TO 90
G0 TO 91
$=0.0D0
GO T0 14
5=1.0D0
CALL DBS(M,7,7,1V,PALL)

1080.

1081
1082
1083
1084

1085.

1086
1087
1087
1087
1087
1087

1087 .

1087
1088
1089
1089
1089
1089
1089
1089
1089
1090
1030
1090

1090.

1020
1091
1091

1091.

1091
1091
1092
1093
1094
1095
1096
1097
1098
1098
1098
1098

1098.

1098

1098.

1098
1098

1098.

1098
1098
1098
1098

1098.
1098.

1098

SRR VIV

.000
.000
.00
.000
000
.000
.000
. 100
.200
.300
.400

.600
.000
. 000
. 100
.200
. 300
. 400
.500
.600
.000
1o
.200
300
.400
.000
. 100
200
. 300
.400
.0C0
.000
.000
. 000
.000
.000
.000
.050
. 100
. 150
200
.250
300
.350
.400
450
. 500
.550
.600
.650
700
750
.800
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MICHIGAN TERMINAL SYSTEM FORTRAN G(21.8) DIFFUN 08-03-83
0212 YDOT(1)=Y(8)*SGN(C1)
0213 YDOT(2)=Y(9)*SGN(C2)
0214 YDOT(3)=Y(10)
0215 YDOT(4)=Y(11)
0216 YDoT(5)=Y(12)
0217 YDOT(6)=Y(13)
0218 YDOT(7)=Y(14)
0219 YDOT(8)=(PALL(1))*SGN(C1)
0220 YDOT(9)=(PALL(2))*SGN(C2)
0221 YDOT(10)=PALL(3)
0222 YDOT(11)=PALL(4)
0223 vDOT( 12)=PALL(5)
0224 YDOT(13)=PALL(6)
0225 (DOT(14)=PALL(T)
0226 YDOT(15)=R1-Y(1)
0227 YDOT(16)=R2-Y(2)
0228 YDOT(17)=R3-v(3)
0229 14 RETURMN
0230 END
. *OPTIOMS IN EFFECT* 10,EBCDIC, SOURCE,NOLIST,NODECK,1.0AD,NOMAP
" +Or110MS IN EFFECT* NAME = DIFFUN , LINECNT = 57
*STATISTICS® SOURCE STATEMENTS = 230,PROGRAM SIZE = 27560

*STATISTICS* NO DIAGNOSTICS GENERATED

01:23:00
1143.000
1144 .000
1145.000
1146 .000
1147 .000
1148 .000
1149.009
1149.800
1150.600
1151.400
1152.200
1153.000
1153.800
1154 .600
1155.400
1156.200
1157.000
1159.000
1160.000
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SUBROUTINE PEDERV (N,T,Y,FD,NO)
RETURN
END

ey

1.

v

0.

1161
1162
1163
1164
1165
1166.
1167
1168
1169.
1170.

0No

. 000

000

. 000
. 000

000

.000

000
000
000
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payload ——-\

motor drive for

second beam Ieadscrew_\

@)
A

second beam

first beam

leadscrew

motor drive
for the first

beam
| \—- cylindrical rotating base

(@)
L - 1

Figure 1. A schematic of the physical system
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Figure 2. Illustration of the model
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Figure 3. Illustration of the parameter used in the dynamic model -
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Figure 4. Free body diagram of the first beam

Figure = F | pody diagra~. «°the
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y(t)

F(t)
——— M

77777

Figure 6 Simple rigid body translational degree of freedom model

78



Is™!

Figure 7.Block diagram of the state feedback controller

applied to the linear system
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state feedback controller

T T T

T + v y
% )Q—‘ Y =f(y.u.t) { C

Figure B. Block Diagram of the integral plus state feedback controller
applied to the nonlinear system
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8.00 o 10.00
TIME [sec]

Figure 9.  displacement, obtained from the equations representing
the rigid body motion only

[rad]
0.40 050

(]

%.n 2m ) 8.0 .08 o 2.0
TIME [sec]

Figure 10. ¥ displacement , obtained from the equations representing
the rigid body of motion only
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0.50

[rad |

0.40

e “[sec]u

Figure 11. ¢ displacement, obtained from the equation describing
rigid body motion only

L4

Eun
&
&

e fsec]™

Figure :2. 7 displacement, obtained from the base run
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[rad]

0.40

= %

0.

%. - I “[sec]u -

Figure 13, ¥ displacement, obtained from the base run

0.50

[rad]
l.'ll

g. n 40 (¥ ) (V] oo

TInE [sec]

Figure 14. ¢ displacement, obtained from the base run
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[m]

qll(t)(xm')
-0.04

-0.08

0.0
3

.08 .0 L]
e [sec]

Figure 15. q,,(t) displacement, obtained from the base run

12(t)ygn  [m]

-0.24

-0.32

0.40
&

(Y ] [V ) LV

Figure 18. q,5(¢) displacement, obtained from the base run
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[ £

[m] 0.9

0.02

gz1(t) xipa

-0.02

0.0
g

am am o
TInE [sec]

Figure17. q4,(t) displacement, obtained from the base run

0.0
&

20 400 .00 s s 12.00
TINE [sec]

Figure 1B. gz.(t) displacement, obtained from the base run

85



r’(t)

r Iz(t)

F(t) i M, —W\;—— M.

(@) O

ST

Figure 1g Model of the rigid body motion with one fiexihle 1:0de

86



(17)

0.10

m]

“.(t )(xm') [

-0.02

0.0
3

200 400 T% a0 .00 12.00
[sec]

Figure 20 Rigid body displacement, z,(t)

“e

[m]

zo(t)

-9

15

[V ] 2m 40 am a.m 0.08 o
TINE [sec]

Figure 21. Flexible motion, zy(t)
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g1(t) o [m])
0;“2 0.06 0.9 [ §7)

-0.02 .

-0.08

E—o 0
&
&

6.00 .0 .00
TINE [sec]

Figure22. q,,(t) displacement, obtained from the base run
with g =0

0.9 [ §2)

0.08

12(t) yypn  [m]

0.0
g

2.00 400 6.00 2. 0.00 am
TINE [sec]

Figure23. q5(t) displacement, obtained from the base run
with g =0

88



ﬂ.‘ﬂ[ rad ]l‘SO

0.20 .30

0.0

%.u 2m 400 8.00 am o 12,00

Figuregy ¢ displacement, obtained from base run
with g =0 and £/ = 17.04P,

[m]
on 022 03

911(t)(xml)

0.08

-0.02

E-n.w
&
3
gJ

am am e
e [sec]

Figure 25. q,,(¢) displacement, obtained from the base run
with g =0 and &7 = 17.04P,
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0.9 (3]

0.06

91l yiga  [m)

0.0
E
&

8.00 [T ] L.V
TIME {sec]

Figure 26. g ,5(t) displacement, obtained from the base run
withg = 0and EJ = 17.04FP,

(17}

(8}

[m]

gat)

-0.08

0.0
&

2 am ) n o 2.00
R [sec]

Figure 27. q,,(¢) qisplacement, obtained from the base run
with g =0 and £/ = 17.04P,
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(-]

0.12

g 22(£) xip9 [m]
~0.04

-0.12

0.0 20 400 6.00 .00 .08 12.00
TIME [sec]

Figure 28. q5(t) displacement, obtained from the base run

with g =0
3
3 N
£
B
8
2
8
]
"o 2.00 6.00 LT ] 12.00
TIME [sec]

Figure 29. = displacement, obtained from the base run
with g =0 and high servo loop frequencies
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[rad]

0.4

0.9

%.D m Ly ] .00 an e 2.9
TIHE [sec]

Figure 30. ¥ displacement, obtained from the base run
with g =0 and high servo loop frequencies

[ rad]m
=

0.40

0.9

==

rie m[sec]“

Figure 31, ¢ displacement, obtained from the base run
with g =0 and high servo loop frequencies
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0.08 [m] (%) (U]

911(02 X101

-02

4.0
§
&
&

e “[sec] “ am

Figures2, g,,(t) displacement, obtained from the base run
‘with g =0 and high servo loop frequencies

[ 1)

u[m] .

12(2) 9
002

4482

S
&

- I uEsec] - h

Figure 33. 9,2(t) displacement, obtained from the base 1 un
with g =0 and high servo loop frequencies
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(4]

m]

[

ai(t) (X10h
-0.08

0"

(T ] 2. 4 6.0 . 0.08 .n
TINE [sec]

Figure 34. g,,(t) displacement, obtained from the base run
with g =0 and high servo loop frequencies.

el “ (1] [ 0o 120
TIrE [sec] '

Figuregs, _sz(t) displacement, obtained from the base run
with g =0 and high servo loop frequencies.
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inner loop for r

R,

Figure 36(b). Simplified form of the block diagram forr
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|
e, l Zl
U, * Y1 r— Y1
% —f_,_ 5, ‘ s™! G !
+ 4 ———— '
A[d | caf— l
Figure 36(a). BLOCK DIAGRAM for r only
G'\(s)
e, '
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Figure 37. Root locus for r

96



Figure 38. Root locus for
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Figure39. Root locus for ¢
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First Mode Second Mode
£; 1.8751041 4.640911
oy 0.7340955 1.01846644

RSD-13-83

TABLE 1 Values of o; and ¢g; for a Clamped Free Beam

Settling Damping Number of Time Constant Natural
Time ratio ¢ frequency #,
(%% error) (rad/s)

1.0 1.0 4 4

1.0 1.0 4 4

0.5 1.0 4 8

Dynamic Simulation

99

TABLE 2 Desired System Parameters.




RSD-1383

Closed-loop Transfer Function
for the inner loop

Open-loop Transfer Function
for the inner loop

( ) : K

my +

Gs) = =3 2$zwm’:p+ W uls) = s(s? +"2L:V:n:'p*‘ W)
() fe

) S s v T | O = s(s? + ZEWLS + Wis)
(<) Ka

Ga(s) = = G'a(s) = n

SR+ REWp s + W2,

S(s®+ 2¢Wp,s + WE,)

TABLE 3 The Required Transfer Functions for Drawing the

Root Locus.

Dynamic Simulation
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