A MULTIPLIER-ADJUSTMENT-BASED
BRANCH-AND-BOUND ALGORITHM
FOR THE PARTITIONING PROBLEM

Thomas Justin Chan
James C. Bean
Candace Arai Yano
October 1987

Technical Report 87-35

A MULTIPLIER-ADJUSTMENT-BASED
BRANCH-AND-BOUND ALGORITHM

FOR THE SET PARTITIONING PROBLEM

Thomas Justin Chanl‘r
James C. Beani

Candace Arai Yano$

October 1987

' Department of Operations Research and Engineering Management, School of
Engineering and Applied Sciences, Southern Methodist University, Dallas, TX 75275

¢ Department of Industrial and Operations Engineering, The University of Michigan,
Ann Arbor, Michigan 48109-2117

Subject Classification: 628 Set Partitioning Problem, 630 multiplier adjustment
method bounding procedure with variable elimination.

Abstract

We introduce a branch-and-bound algorithm for solving the set partitioning problem
(SPP). The new algorithm employs a multiplier adjustment method bounding procedure,
and a new branching strategy which results in relatively small search trees. Typically,
only three subproblems are created from each branching. We also extend the results of
variable elimination to the SPP. Results for ten moderate-sized problems show that, on
average, 94.4% of the variables can be eliminated without loss of optimality. Elimination
of the variables reduces the computational effort of the bounding procedure and increases
the likelihood of fathoming the subproblems. On average, the computation times of this
algorithm are 9.5 times faster than knowntechniques on problems tested. Moreover, this

ratio is observed to increase as the size of the problem increases.

A Multiplier-Adjustment-Based Branch-and-Bound

Algorithm for the Set Partitioning Problem

The set partitioning problem (SPP) is a zero-one integer program formulated as

follows:
n
(P) minimize | C x.
j=lJ J
n
s.t. [a;x =1 iel (1)
=1
X; = {0,1} jed
where a; ¢ {0,1} iel, jed

1 ={1,2 ...,m, J =1{1,2 ..., n}

The SPP has been the focus of study by many researchers because of its simple structure
and numerous practical applications. Among the applications described in the literature
are: crew scheduling (Marsten and Shepardson 1981), truck scheduling (Balinski and
Quant 1964), information retrieval (Day 1965), circuit design (Root 1964), capacity
balancing (Steinman and Schwinn 1969), capital investment (Valenta 1969), facility
location (Revelle, Marks and Liebman 1970), political districting (Garfinkel and
Nemhauser 1970) and radio communication planning (Thuve 1981). Other applications of
the SPP are given in the surveys by Garfinkel and Nemhauser (1972), and Salkin (1975).

The two best published approaches for the SPP are implicit enumeration and
simplex-based cutting plane. (A survey of these and other approaches is provided by Balas
and Padberg 1979.) Implicit enumeration is the more promising and more widely used of
the two because it takes full advantage of the special structure of the SPP. Branching is
usually performed by either fixing a variable X, = 1 to satisfy a particular constraint
(Pierce 1968; and Garfinkel and Nemhauser 1969) or restricting the set from which a

variable may be selected to satisfy a particular constraint (Marsten 1974).

One means of enhancing the performance of implicit enumeration is to reduce the
size of the search tree. This is usually achieved by calculating a lower bound on the cost of
completion for each partial solution. To accomplish this, Michaud (1972) solves a LP in
the free variables for each partial solution. To avoid solving a LP for each partial solution,
Pierce and Lasky (1973) and Lu (1970) solve a knapsack problem obtained by adding up
all the unsatisfied constraints, while Christofides and Korman (1973) solve an auxiliary
problem using dynamic programming techniques.

A more successful bounding technique was developed by Etcheberry (1977), which
uses Lagrangian relaxation (Fisher 1981 and Geoffrion 1974) and subgradient
optimization (Sandi 1979). Marsten and Shepardson (1981) combine Marsten’s branching
strategy with [Etcheberry’s bounding strategy in an airline crew scheduling
application. This hybrid algorithm is found to perform better than Marsten’s original
algorithm (Gerbracht 1978). Currently, SETPAR (Marsten, Muller and Killion 1979) is
considered to be the best published algorithm for solving the SPP (Fisher and Kedia 1986).

This paper introduces a more efficient algorithm for solving the set partitioning
problem. The algorithm (BB-SPP) employs a multiplier adjustment based bounding
method (called MAM) and a new branching strategy, which we developed to complement
MAM. See Chan and Yano (1987) for details of MAM.

Before describing the new algorithm, we define the notation and provide an overview
in section 1. We present the bounding strategy in section 2, and give the motivation for
and details of the branching strategy in section 3. In section 4, we describe the branch-
and-bound algorithm. In section 5, we explain how the concept of variable elimination can
be extended to the SPP and suggest how it can be applied. In section 6, we give the
computational results for the new algorithm and describe how we implemented several
improvement strategies and variable elimination. For comparison, the computational

results for SETPAR are also given.

1. Notation and Overview

Before stating the algorithm, we need to define the following notation:

F={jeJ:xjisfixedtobel}
I=1{4iel: constraint i is free }
J=1{73eJ: variable j is free }
L o={icTia=1)
J. ={j63:a..=1}

1 ij
LIST = list of candidate problems to be investigated

U= (“1' Uyy oony um) = dual solution vector

LB = lower bound of current subproblem

SOL={je3:xj=l}

UB = upper bound (objective value of incumbent)

n, =|SOLnJ |
S ={ieI: n=0]}
S ={iel: n=1}

S, ={ieI: n22}

The branch-and-bound algorithm consists of two main components: branching and
bounding. The branching component creates new subproblems by fixing certain variables
to equal one or zero. When a variable is fixed to equal one, certain variables and
constraints are deleted. Hence, each new subproblem contains fewer free variables and
constraints than the subproblem from which in branches. The remaining variables and

constraints are referred to as the free variables and constraints, respectively.

The index set F represents the variables which are fixed to equal one for the current
subproblem. Sets I and J contain the indexes of the free constraints and variables,
respectively, for the current subproblem. Subproblems corresponding to the unfathomed
terminal nodes of the search tree are referred to as candidate problems. Subproblems
created during branching are referred to as candidate subproblems. If a candidate
subproblem is not fathomed, then it is stored in LIST and may be investigated during
future branching.

The bounding component attempts to obtain a tight lower bound to the candidate
subproblems. This is accomplished by applying an iterative algorithm, MAM, to each
subproblem. At each iteration of MAM, a feasible dual solution (U) is obtained for the LP
relaxation of the subproblem. This dual solution is then used to determine a corresponding
lower bound (LB) and an integer solution. The integer solution is represented by the set
SOL, which contains the indexes of the variables equalling one. If the integer sclution is
feasible to the subproblem, then SOLUF represents a feasible solution to the original
problem P. The current best feasible solution of P is referred to as the incumbent. The
objective value of the incumbent provides the current upper bound, UB.

Ifie IJ. and j € SOL, then we say constraint i is covered by variable j. The number
of variables covering constraint i is indicated by n. Given an integer solution to a
subproblem, the free constraints can be classified into three groups: 1) those which are
under-covered (i.e., not covered by any variable); 2) those which are tight (i.e., covered by
exactly one variable); and 3) those which are over-covered (i.e., covered by two or more
variables). These three groups of constraints are represented by the index sets So’ S1 and

Sz’ respectively.

For notational simplicity, we also assume the constraints are indexed such that

at the beginning of the algorithm, where J = J.

|Ji1[<|J.‘2| for any i, i, €1:1, < i,

2. Bounding Strategy

Our bounding strategy is based on MAM, which overcomes many of the weaknesses
inherent in subgradient optimization. For example, MAM requires no stepsizes nor an
upper bound, and the lower bound obtained at each iteration is monotonically
nondecreasing. When applied to a subproblem, MAM attempts to solve the dual of the LP
relaxation as shown below:

maximize [u

i€l

s.t. Lagy < C jed (2)
iel
u, unrestricted iel

At each iteration, MAM obtains a feasible dual solution U and a corresponding lower
bound LB, which equals E u + J; Cj. Based on U, a primal integer solution is also
obtained by setting the initirger variables corresponding to tight dual constraints in (2) to
equal one. If this integer solution is feasible, MAM terminates and the subproblem is
fathomed. If its objective value is less than UB, then the incumbent is also updated. On
the other hand, if the integer solution is infeasible, then LB is examined. If LB is greater
than UB, then the subproblem is fathomed; otherwise, it is stored in LIST.

A formal statement of the MAM algorithm and a brief description indicating how

MAM was incorporated into our branch-and-bound algorithm are given in the appendix.

3. Branching Strategy

The branching strategy was developed to complement the bounding method MAM.
We have observed that when MAM is applied to problem P, SOL contains many variables
which equal one in the optimal solution, even after only one iteration. In particular, the
variables in the set {j € SOL: IJ. C Sl } usually equal one in the optimal solution.

Moreover, for each i € Sz’ ji (the variabie which covers constraint i in the optimal solution)

is usually contained in the set SOL, = SOL NJ, . If J, is not in SOL,, then it usually
becomes an element of SOL when MAM is applied to the subproblem with SOL.l deleted
from J.

To take advantage of this characteristic of SOL, the algorithm branches by fixing
selected variables in {j € SOL : IJ.ﬂS2 # 0} to equal one or zero. To determine which
variables to fix, the algorithm first identifies the constraint having the smallest value of
| J, | among the least over-covered constraints. This constraint is indexed by p. Then the
variables in SOL covering constraint p are the set of candidates for branching. The
reasons for this selection rule are: 1) Choosing a least over-covered constraint minimizes
the number of branches created, especially at the top of the search tree, which in turn may
reduce the computational effort of the algorithm; and 2) The smaller the value of | J, |, the
more difficult it is to cover the corresponding constraint.

Next, the algorithm creates q+1 candidate subproblems, where q = |SOLp|.
Initially, the values of I, J, F, SOL and U for each candidate subproblem take on the
corresponding values of the parent candidate problem. The first q candidate subproblems
are created by fixing a unique variable in SOLp to equal one. Fixing a variable X, = 1

reduces a candidate subproblem by | I | constraints and | U J, | variables.
i€l

J
Candidate subproblem q+1 is created by fixing all variables in SOLp to equal zero.

This is necessary in case jp is not in SOLp. The formal statements of the branching

component are given below:

Step BL. (a) Let p=min {i :n =n} wheren= min {n }.

ieSZ ieS2
(b) Let SOL = { 3, 3,0 3g¢ .ver 3} where g = | sOL |.
Step B2. For candidate subproblem k ¢ {1,2,3,...,9}:
(a) Set I, J, F, SOL and U to the corresponding values of

the parent candidate problem.

(b) set F=Fu {3}; T=T\I, andJ=J\(v J).
k ieIJ.k

For candidate subproblem g+l:

(a) Set I, J, F, SOL and U to the corresponding values of

the parent candidate problem.

(b) Set J = E\SOLP.

This branching strategy eliminates the need to branch into | J o | candidate
subproblems each time. Since each new candidate subproblem requires the application of
MAM to obtain a lower bound, the strategy reduces the computational effort tremendously,
especially when | J o | is large. In the worst case, the strategy is equivalent to branching
into | J) | candidate subproblems for each candidate problem investigated. However, for all

the problems that we have encountered so far, the resultant search trees are small.

4. The Branch-and-bound Algorithm

The new algorithm consists of the following five steps:

Step 1. (a) Set I=1,J=J, F=@, LB=0, U=0 and UB = =,
(b) Apply MAM.
If SOL is optimal, terminate.
Otherwise, go to step 3.
Step 2. (a) If LIST is empty, terminate.
Otherwise, retrieve candidate problem with smallest LB.
(b) If LB >= UB, terminate.
Step 3. Determine branching parameters. (See step Bl in section 3.)
Step 4. Create new candidate subproblems. (See step B2 in section 3.)
Step 5. (a) For each candidate subproblem:

(1) Check feasibility.

(ii) Apply MAM. (See the appendix.)
(iii) If subproblem is not fathomed during (i) or (ii),
then store it in LIST.

(b) Go to step 2.

In step 1, the variables are initialized and then MAM is applied to problem P. If the
integer solution obtained by MAM is optimal, then the algorithm terminates. Otherwise,
the algorithm goes to step 3 to begin the branching process.

In step 2, the candidate problem with the smallest LB is retrieved from LIST. If
LIST is empty or LB of the candidate problem retrieved is greater than or equal to UB,
then the algorithm terminates and the current incumbent is optimal to P. However, if
there is no incumbent, then P is infeasible.

Steps 3 and 4 constitute the branching component of the algorithm. Step 3
determines the branching parameters, while step 4 uses these parameters to determine
how the new candidate subproblems are to be created. (See section 3 for details.)

In step 5, each candidate subproblem is first checked for feasibility. This is
necessary because certain variables are deleted when a candiate subproblem is created at
step 4. (The details of the feasibility test are given shortly.) If the subproblem is found to
be infeasible, then it is fathomed. Otherwise, MAM is applied to it. If the subproblem is
not fathomed within the MAM algorithm, then it is stored in LIST. After all the candidate
subproblems are examined, the algorithm returns to step 2 and repeats step 2 to 5 until

one of the termination criteria in step 2 is satisfied.

Feasibility Test
The following feasibility test is applied to each new candidate subproblem at step

(5ai) of the new algorithm:

For each i ¢ I in turn:

Step F1. If | J. | = 0, fathom.

Step F2. If | J | = 1: (Suppose J = { k }.)
(a) Set F =Fu {k} and T = T\I,.

(b) If I = @:
(i) If LB = [C < UB,
j€F
set UB = LB and update incumbent.

(ii) Fathom subproblem.

() I =7\ (v J).
ieIk

(d) Repeat feasibility test.

For any free constraint i, if J, is empty, then the subproblem is infeasible and can be
deleted without further consideration. If J i contains only one variable, then the variable is
fixed to equal one and I is reduced accordingly at step (F2a). After I is reduced, if all free
constraints are satisfied (i.e., I = 0), then F becomes a feasible solution to P. If the
corresponding objective value is lower than UB, then UB is updated and F becomes the

new incumbent. Next, the subproblem is fathomed.

If any free constraints remain at step (F2b), then J is reduced accordingly at step
(F2c). However, after J is reduced, | J . | may become zero for an free constraint i that has

already been examined. Hence, the feasibility test must be repeated from the beginning.

10

5. Variable Elimination

Variable elimination for the Multiple Choice Integer Program was presented

formally by Sweeney and Murphy (1979), and then implemented within a branch-and-

bound framework for the multi-item scheduling problem (Sweeney and Murphy 1981). We

extend this idea to the SPP. The justification is provided by Theorem 1 below. For the

m
SPP, we define the reduced cost for variable j as CJ. - Zaiju,l . Hereafter, the optimal
1=1

multiplier vector is denoted as U: the optimal reduced cost for variable j as Cj; the LP

relaxation of P as P; the dual of P as D; the feasible region for problem (-) as F("); and the

complement of F(:) as F(").

Theorem 1 : If f:j > v(P) - v(P), then x, = 0 in any optimal solution to
P.
Proof : Suppose X is an optimal solution to P with k =1 and (':J. > v(P)

- v(P), then using vector notation:
C-X>v(P) -v(P) sincel 20, jelJ. (3)

Also, since every constraint is covered by exactly one variable

in %X, the following relationship must hold:
n m m

a-% = [(Jai)% =14. (4)
i=1i=1 =1

Then, by definition, we have:

C-X=(¢-Ua) %X = c-% - 0a-%
=C-X - Eﬁi from (4)
cc- & - D)
> v(P) - v(P) from (3).

Since v(D) = v(?), we get C + X > v(P) after cancellation. This

is a contradiction, which means X cannot be optimal. ®

Theorem 1 implies that if we solve P optimally, we can eliminate all variables with

reduced cost greater than the amount v(P) — v(P) without loss of optimality. In general,

11

v(P) is unknown and we substitute UB, the objective value cf a known feasible solution to
P. If no feasible solution is available, one can estimate the upper bound as v(P) + 6. (We
will describe how é may be determined shortly.)

If the above estimation is used, then P can be reduced by eliminating all variables
with reduced cost greater than §. We refer to the reduced problem as Pé‘ Since P isa
restriction of P, v(P6) = v(P) and F(Pé) C F(P). In fact, F(P) can be partitioned into two
regions: F(P)OF(P6) and F(Pé). The following two theorems are direct extensions of

Sweeney and Murphy'’s results.

Theorem 2: If v(P,) < v(P) + §, then v(P) = v(P).

Proof : Omitted.

Theorem 3: If v(P,) > v(B) + §, then v(P,) - v(P) < v(P,) - v(P) - §.

Proof : Omitted.

Implementing Variable Elimination

There are different strategies for implementing the techniques of variable
elimination. We will suggest a strategy which can be employed after MAM is applied at
step (1b) of the new algorithm. Suppose the optimal integer solution is not obtained by
MAM. Then the st can be estimated by the latest values of SLACst, the slacks of the
dual constraints in (2). Our experience indicates that the SLACst are very good

estimator of the st because U is very close to U.

The success of variable elimination depends on how well the value of ¢ is selected. If
6 is too large, only few variables are eliminated and the effect on the algorithm is
negligible. On the other hand, if é is too small, the optimal solution may be eliminated.
We will discuss how to deal with the latter case shortly.

If the value of 6 is chosen appropriately, a significant fraction of the variables can be

eliminated without loss of optimality. This, in turn, can result in a tremendous saving in

12

computation time for two reasons. First, the majority of the computational effort is
devoted to evaluating the min expressions within MAM, and the effort required to evaluate
these expressions is proportional to the cardinality of the J S (See the Appendix.) Since
variable elimination decreases the cardinalities of the Jis, computation time is reduced
also. Secondly, variable elimination increases the likelihood of fathoming a candidate
subproblem due to infeasibility. When an infeasible subproblem is fathomed, we not only
save the effort of applying MAM to the subproblem, but also reduce the size of the search
tree by eliminating the need to perform further branching.

Our strategy not only implements variable elimination at the last iteration of MAM,
but also within each iteration of MAM. We expect to gain significant saving in
computation time even within each iteration of MAM. Since SLACst are evaluated
within each iteration of MAM, variable elimination can be applied with no extra effort. If

SLACKj is greater than é, then we simply remove variable j from J.

Although the same value of é can be used for each iteration, it is more effective to
decrease ¢ at each iteration. The reason is that the accuracy of SLACKJ. as an estimator
of Cj improves at each iteration. To facilitate the discussion below, we introduce the

following notation:

LB(t) = the value of LB obtained at iteration t

p(t) = LB(t) / v(P)
p(t) = an estimator of p(t) for future problems
8(t) = the value of & for iteration t

We now suggest a statistical method for choosing the é(t) values. We have observed
that the performance of MAM is fairly consistent when applied to problems originating
from the same application. (By consistent, we mean that p(t) varies little among
problems.) Suppose that we solve some problems from a specific application using the new

algorithm BB-SPP and determine the values of p(t) for each problem. Then we can set p(t)

13

to be the average of the p(t)s. If the variance of p(t) is large, then a conservative value,
such as the minimum p(t), can be used instead.

In fact, for a specific application, a forecasting component can be incorporated into
the algorithm. Each time BB-SPP is applied to a problem, the values of LB(t) can be
saved. When the problem is solved and an optimal solution is obtained, then the values of
p(t) can be calculated and used to update the p(t)s. A forecasting method, such as
exponential smoothing (Brown and Meyer, 1960), can be used for the updating.

With the values of p(t) available, we can then apply variable elimination to any
future problem from the same application. At the end of each iteration t of MAM (during
step 1b of BB-SPP), we simply set &(t) = {{1 / p(t)] — 1} LB(t) and delete any variables
with SLACKJ. > §(t). At the termination of MAM, we apply the remaining steps of BB-
SPP to the reduced problem, P, When the optimal solution to P is obtained, we again
update the p(t)s as before.

To determine whether the optimal solution to P, is also optimal to P, we simply
apply the results of Theorems 2 and 3. If v(P P < LB + 6 (where LB and é are the values
obtained at the final iteration of MAM at step 1b of BB-SPP), then the solution to P, is also
optimal to P. Otherwise, we need to increase the §(t)s and resolve the problem.

If the best incumbent obtained during the first trial is not optimal to P, then we can
set &(t) = v(P) - LB(t) during the second trial. These settings guarantee the solution
obtained at the second trial will be optimal to P. However, if no incumbent was obtained
during the first trial, we must either set the 6(t) = oo or increase them by some step size

and then resolve the new problem.

6. Computational Results & Discussion

Data & Results
All computational results are based on a set of ten crew scheduling problems from

Chan and Yano. The size, density and optimal objective value of each problem are given

14

in Table I. The number of censtraints ranges from 65 to 88, and the number of variables
ranges from 327 to 3919. For all problems, the densities are approximately 10% and the

maximum value for | IJ. |is 17.

TABLE I

Description of Data Set.

Problem| # of # of density
rows columns (%) v(P)
1 68 327 11.0 7112
2 70 656 9.6 7376
3 72 664 9.6 4823
4 65 827 10.4 7706
5 66 988 10.4 6664
6 88 990 8.6 7164
7 73 1321 9.9 5234
8 85 2161 9.3 6263
9 78 3839 10.5 7927
10 86 3919 10.3 5431

We applied BB-SPP to each of the 10 problems, permitting a maximum of five
iterations for all applications of MAM. We found that five iterations were more than
adequate to obtain fairly tight lower bounds. Furthermore, it was not necessary to
perform a larger number of iterations at the root node as is done in most branch-and-
bound algorithms. The results for BB-SPP are shown in Table II. In our application, the
set-covering solution obtained at the end of each iteration of MAM does not constitute a
valid upper bound for the SPP. Hence, UB is initially set to equal oo and updated only
when an incumbent is found.

In Table II, four rows of information are provided for each problem. The first row,
‘# nodes’, shows the total number of nodes created during the algorithm. These numbers
include the root node and provide an indication of the size of the search trees. The second

row, ‘opt. @’, gives the nodes at which each optimal solution was found. The third row. ‘#

15

*002-060¢ WEL Ue uUo Spuodas ut uaaid ale sawn :c:cfaEcU_

991°0 822°0 G81°0 ¥1.G°C awn 520°0 1€0°0 1£0°0 0320 awn

G G 11 — IO # ¢ ¢ € — ION #

I I ¢ — ® "ydo I 1 I — ® "ydo

I 1 1% - sopou #| O1 1 1 1 — sopou #| G
G8T°0 9.8°0 192°1 ¥8E°2 awn 920°0 620°0 9v0°0 022°0 awn

e ve 19 — AN # € € 9 - AN #

91 91 A — ® "do I I Z — ® "ydo

& 23 ¢l - sapou # 6 I 1 b — sopou #| ¥
1700 1%0°0 LET'0 029°0 awn €10°0 £10°0 610°0 o¥1°0 awn

1 1 L - IoN # I 1 2 — AN #

1 1 2 — ® "1do I I 1 - ® do

1 1 14 — sapou # 3 I I 1 - sapou #| ¢
$€0°0 3£0°0 LY00 99¢°0 awn LY0°0 580°0 9€2°0 901°0 auin

4 b4 ¢ — I3 # €3 9% Z8 — AN #

1 1 I — ® ydo 11 I LT — ® "ydo

1 1 I - sapou # L 91 91 61 — sopou #| g
9%0°0 601°0 I 1) LTEL0 awn 810°0 92070 €v0°0 L90°0 awty

L el Sl — 1) # L T LG - TN #

14 b 12 — ® -ydo L L L - ® "ydo

14 v v - sapou # 9 L L L — sapou #| |
AA-dd oddS-dd ddSs-a9d dvdLldS # "qoad AA-9d ¢dds-dd dds-99 dVd.LIS # "qoadq

4

* awny uonendwod pue ‘pauniojiad suoneasit WV JO # [€10) ‘punoj st uoiIn|os

[ewindo ayy yoyam e apou ‘pajediisaAul Sapou Jo # [€10) JO SuLI3) ul uosireduwod dUBW.I0JI3]

I 4'TdV.L

16

iter.’, shows the total number of iterations of MAM performed. The fourth row, ‘time’,
gives the computation times.

The times under the columns BB-SPP, BB-SPP2 and BB-VE are in seconds for an
IBM 3090-200 under the Michigan Terminal System. (BB-SPP2 and BB-VE will be
described shortly.) The times under the column SETPAR are also for an IBM 3090-200
but under the operating system at American Airlines. Computation times do not include
the times for input and initialization. In all but problem 2, the computation times for BB-
SPP are less than those for SETPAR. In fact, BB-SPP is 4.3 times faster than SETPAR
on average, based on the ten problems.

This timing comparison is biased because SETPAR is a production code which has
been improved over the last ten years, while BB-SPP is only an experimental code.
Currently, BB-SPP is written in Pascal and is not optimized with respect to efficiency or
storage. The only data structures used are arrays. Because of the extensive use of set
operations in the algorithm, we expect the use of more efficient data structures will help to
reduce the computation time of BB-SPP noticeably.

The results of BB-SPP also show that very few nodes were created for all the
problems. Moreover, the optimal solutions were found at the end or close to the end of the
computations (i.e., ‘opt. found’ is close to ‘# nodes’). This implies that little effort was
required to verify the optimality of the solution, which-is a very desirable characteristic of
any branch-and-bound algorithm. Typically, branch-and-bound algorithms find the optimal
solution relatively quickly, but a majority (i.e., as much as two-thirds or more) of the effort
is spent verifying that the best incumbent is indeed optimal.

The success of BB-SPP is due to its ability to frequently select the right branch (i.e.,
containing the optimal solution) to investigate. Typically, only three candidate
subproblems are created from each branching. When MAM is applied to the newly created
subproblems, the one containing the optimal solution in its feasible region often possesses

the lowest lower bound among all subproblems. Infrequently, the wrong branch may be

17

selected. For these instances, the breadth-first policy (for selecting the next candidate
problem) prevents the algorithm from spending excessive effort investigating this branch.
Next, we introduce three strategies which can easily be incorporated into the

algorithm to improve its performance.

Improvement Strategies for BB-SPP

The three improvement strategies presented below are based on the notion that if
the improvement in LB during an interation of MAM has not resulted in the fathoming of
the current candidate subproblem, then the effort spent on the iteration is wasted.

This wasted effort can occur in three instances: 1) LB > v(P), but the current
incumbent is not tight enough to fathom the candidate subproblem; 2) the cwrrent
candidate subproblem is very difficult for MAM and LB increases very slowly; and
3) LB = v(P), but the optimal integer solution cannot be detected due to primal
degeneracy. We now present three improvement strategies which attempt to alleviate the
difficulties encountered in the three instances, respectively.

Let P denote the candidate problem with the smallest lower bound, LB, among all
the candidate problems in LIST. Then the first strategy is as follows: if LB > LB for the
current iteration of MAM, then terminate MAM and store the current candidate
subproblem in LIST. The logic is that if LB is greater than LB, then there is a greater
chance that LB is larger than v(P). Moreover, it is most likely that P contains the optimal
solution to P.

Hence, by terminating MAM and storing the candidate subproblem, the algorithm is
able to pursue the candidate problem P instead. Hopefully, when the candidate
subproblem is reconsidered in the future, the incumbent will be tight enough then to
fathom it and eliminate the need for further branching. This strategy is consistent with
the breadth-first selection policy (employed in the branching strategy), which always

retrieves candidate problem P for branching.

18

The second strategy is to terminate MAM and to store the candidate subproblem
whenever the increase in LB during the current iteration is less than p, which we set to be
1.0. The reason for this strategy is that LB increases very slowly for difficult problems,
especially as it approaches the optimal objective value of the LP relaxation. Hence, when
the increase in LB is less than p, it is advantageous to store the candidate subproblem for
the moment and pursue candidate problem P instead. When the candidate subproblem is
retrieved in the future and branching occurs, each of the newly created candidate
subproblems is likely to be less difficult, and LB should increase much more rapidly when
MAM is applied to each of them. This strategy prevents wasting excessive effort on
solving difficult candidate subproblems.

The third strategy is to try to detect when LB= v(P) but there is primal degeneracy,
and then to apply a test to determine whether SOL contains an optimal solution to the
candidate subproblem. When SOL is feasible, it is also optimal. (See the appendix.)
However, when the optimal solution is primal degenerate, SOL may not be feasible. In
this situation, MAM cycles and LB remains the same indefinitely. To avoid this problem,
certain variables in SOL must be set to zero.

The third instance occurs when LB remains the same for two consecutive iterations.
If all the Cj’s are integers, it can also occurs when LB is an integer. Under these
conditions, the following test can be applied: 1) identify each variable j in SOL which
satisfies the condition IJ. c Sz; 2) enumerate all combinations of the variables identified; 3)
for each combination, set the variables in the selected combination to zero, and check
whether the resultant solution is feasible. If a solution is feasible, then the candidate
subproblem is fathomed and the incumbent may be updated. Since usually only a few
variables are identified at step 1 above, the test actually takes little effort to perform.

We incorporated these three strategies into BB-SPP and refer to the new version as
BB-SPP2. Computational results for BB-SPP2 are also shown in Table II. All problems,

except problem 5, showed a noticeable improvement, particularly in the computational

19

times. The application of strategies 1 and 2 resulted in a reduction in the total number of
iterations required (e.g., problem 1, 2, 6, and 9). For problem 4, 8 and 10, the application

of strategy 3 allowed the optimal solutions to be identified at the root nodes.

Implementation of Variable Elimination

We implemented variable elimination as described in section 4. First, we obtained
the values of p(t) for the ten test problems. The values of p(t) indicate how close the
LB(t)s are to v(P). These values are shown in Table III for iteration 1 to 5, and are given
in percentages. The average over the ten problems for each iteration is given in the last
column. We define 6(t) to be the minimum &(t) which can be used without eliminating the
optimal solution. These values are also provided in Table III, but are normalized (i.e.,
divided by the corresponding v(P)) for ease of comparison.

For many of the problems, the normalized §(t) is less than 1 — p(t). This means
that, for these problems, the value for é(t) can be less than v(P) — LB(t) without
eliminating the optimal solution. The reason is that, at iteration t, v(P) -
LB(t) = ilSLACKj ij, where X is the optimal solution. Hence, é(t) only needs to be
greater tilan .r.naxl {SLACK}.}. This implies that even when SOL is far from optimal,

Jx. =
choosing a sma\llJ value for 6(t) may not necessarily eliminate the optimal solution. This in
turn results in robustness of the methodology. (For example, in problem 9, p(1) = 87%
but é(1) is only 5%.)

Suppose we assume the ten test problems represent a good sample for the
application from which they originated. Then the p(t)s provide a basis for choosing the
p(t)s. Once the p(t)s are chosen, they can be used to determine the &(t)s for future
problems. However, since we do not have available to us any other problems originating

from the same application as the test problems, we selected some conservative settings for

the p(t)s instead, and applied them to the ten test problems.

20

9°G £'7 z'¢ 0°¢ — L9 — LS v 101 S oot .0ecl 7 |Vell
12°6 92°G £0'S 92°G — Zat — 936 9%6 I11'S 926G | 001.[(d)a/)Pp]
V80 00°0 09°¢ 000 — T — 000 000 €£LT €00 | 00r1.(d)rP]
V2 66 LdO £€9°66 LJO - 6966 — LdO — LI'L6 L6'66 001 .. (0 d G
v 0¢ 8¢ gg — LL — g9 L¥v err Lot |oor.dlel/|Vell
1€°9 9¢'9 L0'9 8€'9 — ve'9 — 889 8e9 919 8e9 | 001.[(da/M)P]
86°0 LZ°0 £9°¢ 000 — 650 — 0000 000 Lzt 900 |001.[(d)sMP]
60°66 €L°66 0266 000T — I¥66 — 000 — 1996 ¥6°66 00T . 0 d ¥
) 6°'¢ 6V ey - 9'6 — £ v'g szt 82t | oot.del/|Veh
evL 6V'L €I'L €S°L - LY'L - €5°L 8S°L €3L 3SL | 00T.[(d)r®P]
AR IP'0 SL°E 0070 — 480 — 000 000 6G8¢ 210 |o001.[(d)a/M)P]
26°36 25°66 L9¥6 0001 LJO SI°66 LJO 0001 — 2096 88°66 001 .) d €
26 Ly 6°G VG ¥8 01T SIT 66 g9 9vt 11 | oot.del/|Vel
868 G9'8 0I'8 08 O0L8 LS8 L98 L98 OL8 ¢£'8 898 |001.[(d)s/®)P]
G1°T £€6°0 2% 0000 000 LVT 980 9£0 000 0ev +2°0 | 007.[(d)a/a)p]
8G°86 LY'66 01°¢6 0001 0001 £4'86 ¥966 ¥9°66 LJO O0L'S6 9.°66 001 .) d 2
211 09 99 89 L0T ¥P1 1€l Ss¥1 L s91 est |oor.de]/|Veh
VGG 86 298 686 86 €F6 O0L6 €86 686 986 06 | 00I.[(d)a/MP]
122 PI'€ 006 000 O0L0 L.Z 2ZI'T S9°0 000 O0g¥% ¢€v¥ |001.0(d)a0)P]
LV 96 I8°G6 PI'L8 0001 0£'66 9£'G6 €0'86 S£66 0001 19%6 L0O'S6 001 . 3 d I
o1 6 8 L 9 G 17 € Z I 7
odeiaaay uorje.ady|
wa|qo.id

I A'14V.L

‘uorjeuTWF] J[qeElIC A 0] JUBAd[IY SINSIIeIg

21

The settings selected are: p(1) = 0.91, p(2) = 0.92, p(3) = 0.93, p(4) = 0.94 and
p(5) = 0.95. The resultant é(t)s, also normalized by the corresponding v(P), are shown in
Table III. Comparisons between the normalized é(t)s and the normalized 4(t)s indicate that
the p(t)s are indeed rather conservative estimates.

Nevertheless, the use of these conservative p(t)s resulted in the elimination of a
large number of variables, even after only one iteration of MAM. For each problem, the
percentage of variables remaining at each iteration is also shown in Table III. On
average, for the ten problems, only 11.2% of the variables remain after the first iteration,
and 5.6% remain after five iterations. The results also indicate that, at a given iteration,
the percentage remaining becomes smaller as the size of the problem increases. Such
dramatic reduction of the number of variables, especially for the larger problems, will
reduce the computational effort tremendously.

We denote the version with variable elimination and improvement strategies as BB-
VE. The resuilts for BB-VE are shown in Table II. In all but problem 3, the computation
times for the problems are indeed reduced significantly. On average, based on the test
problems, BB-VE is 9.5 times faster than SETPAR. This ratio increases as the size of the
problem increases. Considering that SETPAR is a production code while BB-VE is only an
experimental code, we conclude that BB-VE is significantly faster than SETPAR, at least
for the test problems.

As mentioned in section 4, the aims of variable elimination are: to reduce
computational effort of each iteration and to increase the likelihood of fathoming the
subproblems. The first aim has obviously been achieved by the reduction in the
computation times. The second aim has also been achieved in problem 1, 2, and 6, where
the number of iterations were reduced due to infeasibility of certain subproblems.
However, the numbers of nodes created remained the same.

To further improve the performance of the algorithm, we can apply variable

elimination to each candidate subproblem as well. At each iteration t, we would simply

eliminate variables with SLACKj greater than UB — LB(t). This will reduce the size of
each subproblem and increase the likelihood of fathoming it.

We feel that the problems available to us are neither large enough nor complicated
enough to reveal the power of variable elimination. For more difficult problems (i.e.,
problems which result in larger numbers of nodes and require larger numbers of iterations
of MAM), we expect to see not only reductions in computation time and number of

iterations performed, but also reduction in the search tree.

7. Conclusion

We have introduced a new and effective branch-and-bound algorithm for the set
partitioning problem (SPP), which outperforms SETPAR, the best algorithm currently
available for the SPP. The new algorithm employs a lower bounding method called MAM,
and a new branching strategy, which we developed to take advantage of the near-optimal
solution provided by MAM.

This strategy proved to be superior to existing branching strategies for the SPP, and
resulted in relatively small search trees. Typically, only three subproblems are created
from a branching. When MAM is applied to the newly created subproblems, the one
containing the optimal solution in its feasible region often possesses the lowest lower bound
among all subproblems. Hence, in almost all cases, the algorithm selects the correct
branch (i.e., containing the optimal solution) to investigate. As a result, relatively few
nodes need to be examined.

We also presented three improvement strategies which are easily incorporated into
the algorithm and require almost no extra effort. Results showed that these strategies
reduced the number of iterations of MAM required and improved the computation times
noticeably.

Finally. we extended the results of variable elimination to the SPP, and described

how the techniques of variable elimination can be applied. Results for the test problems

show that, on average, 94.4% of the variables can be eliminated without affecting the
optimal solution. Elimination of the variables reduces the computational effort of MAM
and increases the likelihood of fathoming the subproblems. When variable elimination and
the three improvement strategies above were incorporated, the computation times were, on
average, 9.5 times faster than SETPAR. Moreover, this ratio is observed to increase as
the size of the problem increases.

Considering the rather low computation times required for solving the moderate-
sized test problems, we expect the new algorithm to be superior to existing approaches for

solving large-scale problems as well.

24

Appendix: Implementation of MAM

The following notation is relevant to MAM:

t
[}

current iteration number

H
n

maximum number of iterations allowed

UP={iel: u permitted to increase}

ielj
SOL = { j e J: SLACK, = 0 }
LB = u + C
Ly jezF’

MODE = 1 or 2 (indicates mode of operation)
In this appendix, we will refer to the dual variables (uis) as multipliers to avoid
confusion with the integer variables (xjs). The constraints in (1) will be referred to as the

primal constraints, while the constraints in (2) will be referred to as the dual constraints.

Algorithm

Step (0) :
(a) 1f 5, =5, =@, go to step 5.
(b) Set t = 1.

Step (1) : Increase selected multipliers.

(a) If S, # #, set UP = S, and MODE = 1.

0

Otherwise, set UP] IJ.ns1 and MODE = 2

jesoL’
where SOL' = { j ¢ SOL : InS, # @, InS, # 8 }.

(b) If UP = §, terminate.
Otherwise, for each i ¢ UP:
set u. =u + min {SLACKj/IIjnUP|}.
j ¢ J\sOL

Step (2) : Decrease certain multipliers in violated dual constraints.

If MODE = 2, then for each j ¢ SOL' in turn:

25

set y =y +(n,/] n)*SLACK i e InS,.
1€ IJ-ﬁS2
Step (3) : Ensure all primal constraints are covered.

If MODE = 2, then repeat until S, = §:

(a) Let p = min { i }.

ieS0
(b) Set u, = u_ + min {SLACKj}.
jer
(c) Set S, = SO\Iq where g = arg min {SLACKJ} .

jed
p
Step (4) : Determine LB and check termination criteria.

(a) If LB 2 UB, fathom.

(b) 1f S, =S, =@, go to step 5.

(c) Set t

t+1. Ift=7T, terminate.
(d) Go to step 1.
Step (5) : Check if incumbent should be updated.
(a) If LB < UB, set UB = LB and update incumbent.

(b) Fathom.

Brief Description of MAM

When a candidate subproblem is created, certain variables are deleted from J . This
means that the contents of S0 and/or 82 may be altered. If both S0 and 82 are empty,
then the current integer solution SOL is optimtal to the subproblem. In this case, the
algorithm goes directly to step 5 to check whether the incumbent should be updated; then
the subproblem is fathomed.

At step (la), certain multipliers are selected to be increased. These multipliers are
selected with the aim of satisfying the primal constraints that are violated by the current
SOL. The logic underlying the selection rules are given in Chan and Yano. If no
multiplier is selected, then the algorithm terminates. This termination criterion usually

occurs when LB = v(D).

26

At step (1b), each selected multiplier is increased by an amount which ensures that
at most one variable from Jj will enter the solution. Hence, when MODE = 1, no dual
constraint is violated at the end of step 1. When MODE = 2, only the dual constraints in
the set SOL' are violated. To correct the violations, certain multipliers are decreased at
step 2.

After the decreases, if any primal constraint is still not covered, then a multiplier
corresponding to an under-covered constraint is selected at step (3a) and increased at step
(3b). The amount of increase ensures that no dual constraint is violated. This process is
repeated until all primal constraints are either tight or over-covered.

As a result, a feasible dual solution is obtained at each iteration. This in turn
provides a valid lower bound to th> subproblem. In addition, SOL is a feasible solution to
the corresponding set-covering problem. The value of this feasible solution provides a valid
upper bound to v(P) for many practical problems such as vehicle routing.

At step 4, if LB is greater than UB, then the subproblem is fathomed immediately.
If SOL is optimal (i.e., So = S2 = 0) or the number of iterations exceeds the maximum
allowed, then the algorithm goes to step 5. Otherwise, the algorithm returns to step 1 and

repeats the above process.

27

References

Balas, E. and M.W. Padberg (1979), “Set Partitioning — A Survey,” in N. Christofides.
A. Mingozzi and P. Toth (editors), Combinatorial Optimization, Wiley, Chichester,
England.

Balinski, M.L. and R.E. Quandt (1964), “On an Integer Program for a Delivery Problem,”
Operations Research, 12, 300-304.

Brown, R.G. and R.F. Meyer (1960), “The Fundamental Theorem of Exponential
Smoothing,” Operations Research, 9, 6, 673-685.

Chan, T.J. and C.A. Yano (1987), “Finding Lower Bounds to the Set Partitioning Problem
via Multiplier Adjustment,” Technical Report 87-OR-7, Department of Operations
Research and Engineering Management, School of Engineering and Applied
Sciences, Southern Methodist University.

Christofides, N. and S. Korman (1973), “A Computational Survey of Methods for the Set
Covering Problem,” Report No. 73/2, Imperial College of Science and Technology,
April 1973.

Day, R.H. (1965), “On Optimal Extracting from a Multiple File Data Storage System : An
Application of Integer Programming,” Operations Research, 13, 3, 489-494.

Etcheberry, J. (1977), “The Set Covering Problem : A New Implicit Enumeration
Algorithm,” Operations Research, 25, 760-772.

Fisher, M.L. (1981), “The Lagrangian Relaxation Method for Solving Integer
Programming Problems,” Management Science, 27, 1, 1-18.

Fisher, M.L. and P. Kedia (1986), “A Dual Algorithm for Large Scale Set Partitioning,”
Purdue University, Krannert Graduate School of Management, Working Paper
No. 894.

Garfinkel, R.S. and G.L. Nemhauser (1969), “The Set Partitioning Problem : Set Covering
with Equality Constraints,” Operations Research, 17, 848-856.

Garfinkel, R.S. and G.L. Nemhauser (1970), “Optimal Political Districting by Implicit
Enumeration Techniques,” Management Science, 16, B495-B508.

Garfinkel, R.S. and G.L. Nemhauser (1972), “Optimal Set Covering : A Survey,” in
A. Geoffrion (editor), Perspectives on Optimization, Addison-Wesley, Reading,
Massachusetts.

Geoffrion, A.M. (1974), “Lagrangian Relaxation for Integer Programming,” Mathematical
Programming Study, 2, 82-114.

Gerbracht, R. (1978), “A New Algorithm for Very Large Crew Pairing Problems,” 18th
AGIFORS Symposium, Vancouver, British Columbia, Canada, September, 1978.

Lu, Ming-Te (1970), “A Computerized Airline Crew Scheduling System,” Ph.D. Thesis,
University of Minnesota.

28

Marsten, R.E. (1974), “An Algorithm for Large Set Partitioning Problems,” Management
Science, 20, 779-787.

Marsten, R.E., M.R. Muller and C.L. Killion (1979), “Crew Planning at Flying Tiger: A
Successful Application of Integer Programming,” Management Science, 25, 12, 1175-
1183.

Marsten, R.E. and F. Shepardson (1981), “Exact Solution of Crew Scheduling Problems
Using the Set partitioning Mode : Recent Successful Applications,” Networks, 11,
165-1717.

Michaud, P. (1972), “Exact Implicit Enumeration Method for Solving the Set Partitioning
Problem,” IBM Journal of Research and Development, 16, 573-578.

Pierce, J.F. (1968), “Application of Combinatorial Programming to a Class of All-Zero-One
Integer Programming Problems,” Management Science, 15, 191-209.

Pierce, J.F. and J.S. Lasky (1973), “Improved Combinational Programming Algorithms for
a Class of All Zero-One Integer Programming Problems,” Management Science, 19,
528-543.

Revelle, C., D. Marks and J.C. Liebman (1970), “An Analysis of Private and Public Sector
Location Models,” Management Science, 16, 12, 692-707.

Root, J.G. (1964), “An Application of Symbolic Logic to a Selection Problem,” Operations
Research, 12, 4, 519-526.

Salkin, H.M. (1975), Integer Programming, Addison-Wesley, Reading, Massachusetts.

Sandi, C. (1979), “Subgradient Optimization,” in N. Christofides, A. Mingozzi and P. Toth
(editors), Combinatorial Optimization, Wiley, Chichester, England.

Steinman, H. and R. Schwinn (1969), “Computational Experience with a Zero-One
Programming Problem,” Operations Research, 17, 5, 917-920.

Sweeney, D.J. and R.A. Murphy (1979), “A Method of Decomposition for Integer
Programs,” Operations Research, 27, 1128-1141,

Sweeney, D.J. and R.A. Murphy (1981), “Branch and Bound Methods for Multi-item
Scheduling,” Operations Research, 29, 853-864.

Thuve, H. (1981), “Frequency Planning as a Set Partitioning Problem,” European Journal
of Operational Research, 6, 29-37.

Valenta, J.R. (1969), “Capital Equipment Decisions : A Model for Optimal Systems
Interfacing,” M.S. Thesis, M.I.T., June 1969.

29

UNIVERSITY OF MICHIGAN

I

39015 04732 6320

