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THE COUETTE FLOW BETWEEN TWO PARALLEL PLATES
AS A FUNCTION OF THE KNUDSEN NUMBER

I. INTRODUCTION

In a previous report! a formal solution was obtained for the heat
transport through a gas between two parallel plates as a function of the Knudsen
number d/x (& is the distance between the plates, A is the mean free path of the
molecules), The starting point was the linearized Boltzmann equation, since it
was assumed that the magnitude of the disturbance from equilibrium, measured by
the ratio AT/T QAT = temperature difference between the plates, T = average tem-
perature), was small,

In the following, the same method will be applied to the problem of the
Couette flow of a gas between two parallel plates as a function of the Knudsen
number d/N. We will again assume that the Mach number which in this case is the
ratio of the average flow velocity to the mean molecular velocity, is small, so
that the disturbance of the equilibrium due to the moving plate is also small in
this case.

Since the method and the general features of the solution are quite
similar to those of the heat-transport problem, only an outline of the calcula-
tions will be presented in sections II, III, and IV, In section V some diver-
gence difficulties will be discussed which also occur in the heat-transport
problem, and which are due to the parallel-plate geometry.

1¢. S. Wang Chang and G. E. Uhlenbeck, "The Heat Transport between Two Parallel
Plates as Functions of the Knudsen Number", Univ. of Mich., Eng. Res. Inst.,

Project M999, Sept., 1953.
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II. FORMULATION OF THE PROBLEM

We take the y-z plane halfway between the plates. The upper plate,
situated at x = 4/2, is stationary, while the lower plate at x = d/2 is moving
in the z direction with a velocity w (measured in units of Vm/EkT). The velocity,
W, is assumed to be much smaller than unity so that terms of the order w2 and
higher will be neglected. The notation of the previous report will be used.
The distribution function is written as

%: ?o[“‘- f\(c)%)\l\f):' .
Tt is convenient to take for the zeroth approximation distribution function

b _c*
50 =M <2;|?ET) € )

A ) 2

where C = ¢ - w/2, n is the equilibrium-number density, and T the equilibrium
temperature, which are all constants. The Boltzmann equation is again

Cx%%‘ :’ﬂj(ﬁ) ()

where J is the collision operator.
To formulate the boundary conditions we introduce the distribution
functions for the molecules going up and down, i.e., £t and f~, and the corre-

sponding disturbances ht and h™. In terms of the h's, the boundary conditions
are

BF9)= % (B4wC) + (-0 R (-5 -C)  xvo ()
and

R d)= «(B-wC+ 0B (4 -C)  x<o (b

where @ is the accommodation coefficient and the constants B and B~ are to be
determined by the conditions
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EQ\’AXXEQ f=o , (2a)

N ,
Bdt txe H=o0 =b)

expressing the conditions that the number of molecules per unit area between the
plates is given (equal to nd) and that in the steady state there is no net flow
in the x-direction. Up to terms linear in w we have the symmetry condition

%i (C")%) =7 Y\?\P ("'CX)‘X> R (4}»)

and consequently

J%(C,)X) = - f\ (“Cx)"'X«) .

With the symmetry condition (4), Eq. (3a) is automatically satisfied, and the
boundary conditions (2a) and (2b) are equivalent with

BT =-B& = B.

Thus our problem reduces to the solution of the integral differential
equation (1), subjected to the boundary condition (2a) and the auxiliary condi-
tions (3b) and (4). The physical quantities we are interested in are the drag
on the upper plate, the velocity distribution as a function of x, and the
velocity jumps at the plates,

III. GENERAL SOLUTION

At first glance, this problem seems to be more complicated than the
problem of the heat conduction because of the lack of axial symmetry around the
x-axis in the present problem, It will be seen, however, that this is not a real
difficulty. It is true, though, that in the development in eigenfunctions, we
must now use the spherical harmonics instead of the Legendre polynomials used in
Ref. (1). We write

) N . L
F\*)TQ’W\ = NYQM CQ\ N grd (C)—PQ LC&56> € C?)
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. Y
where © is the angle between the velocity C and the x-axis and § is the azimuthal
angle measured from the y-axis, and develop h according to

?T = Z &YQ\M (x) “PYR "y LS)

~ & e
Because of the reality of h one must have a, gy = aizm' From the symmetry of the
problem with regard to the y direction, it follows that h must be an even function
of Cys which has as a consequence that the 8rgm for odd m must be pure imaginary
The first few of the development coefficients apjyy are related to quantities with
physical interest. For instance, the density and temperature are found from

Cpoo (%)
( > [ '\TS/Z Nooo :I )
- 2 Olyog (1)
= | — & V00 A/
Teo= T -3 ]

and the physical quantities (shearing stress, average velocity, and heat flux,
all in the z-direction) in which we are especially interested are given by

_ kT 2 e .
Py = =7 ph 50 e ) (te)
= Qe
¢, = b

3’ 2 LTYS/L WO\\ > ( b)

- | 2k ! QS Qo
%é’ IY)LT\‘ L [ Ny A Nsiy _]. ((OC)

From the conservation laws it follows that c,, Pyy» Pxys Pxz, and g are con-
stants. We will require that ¢y = O (see eq. (3b)); Pyy is zero by symmetry.
This implies that™

Qoo =0
@y, = Conth,
a a a
920 _ 200 4 3 000 — empk,
Nozo 2N go t  Nooo

Qgp = Conak,

¥There are some misprints in the corresponding formulas in the previous report,
Ref. (1)




Introducing the development of h into the Boltzmann equation, we find
that our problem reduces to the solution of an infinite set of homogeneous linear
differential equations:

da Y‘L A8} —_— {\ \ ) > : 10l ]
CXX o " %’ /h,‘/ C\ \”YJ l\’ '“’\/ _ij \\’\"LW\ ) L})Yx ‘W‘I (7)
N

with the boundary conditions:

1

Q:y\fm('%—) = O(Rc\ e ﬂl‘)YQM(B+wC )= ‘J““ n %

N a {l )
e “o( Q_ = — = Wvy = Cte
* ( ) YQ“\ ( Z> ( ! {EH',(&/
Finally, 8010 = 0, and from the symmetry property eq. (4) it follows that
even odd
8 im =( in x according as { - m is{
Iodd even,

The square bracket in eq. (7) is different from zero only when m = m', and
! - 1' is 0dd. Thus coefficients with different values of m are not coupled.

Since for|m|>1 the integral in the boundary condition (8) is zero, it
is clear that the equations for a,,, with |m|>1 are completely homogeneous, so
that the only solution will be zero. This is also the case for m = O, because
in eq. (8) the quantity B is also an unknown and the inhomogeneous part is only
the term containing wC,. This term is also zero for m = O. Hence one may
conclude*

*vfm =0 | form£+1 .

We use the same procedure as was employed in Ref., (1). One must
distinguish between even and odd values of [. Eliminating &.(og 4+ 1)1 °ORe ob-
tains an infinite set of second-order homogeneous dlfferentia equations for
ay(24)1> which, with the use of the symmetry conditions, has as solutions:

O] ¢) _?
Cra ) = Dyygy ¥ Z by, cevh ,hFLX' ) M)

¥This is in contrast to the case of heat conduction. It is also physically
evident that a temperature gradient will produce a change of the density n near
the plate, while this is not the case for a velocity gradient.

5
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where the p;'s are the positive and nonzero solutions of the secular determinant

Az | PSver Sy - YZFL

- >
[_é; “‘\)\-:&x ,ﬂh’ﬂ'«—\ \][éi\)\*’z%\l )“’\)\-”29\"1] l =9,

and where in the sets of the b, , 7)1 °ne set can be taken as arbitrary, for which
we ichoose bég}l and biiz)l . Furthermore, from the constancy of p,, it follows that
bég)l = 0 for all 1.

The coefficients a, (2 are now completely determined and one finds

£+ 1)1

- e '
e 'Y‘%%L, [E} “Pa— 240, \‘\)v&’\ } Lx~’z°\’\

+ 2\; ‘F va\/‘r\ MPQXYZQ' [ %;4 “‘)*'19\-\-! Vs “’Pw—'-&’l] b“'lQ/| . (10)

The remaining unknown constants bég)l and bl(jg‘)l have to be determined
from the boundary conditions. For this, one needs first the a;(El)l’ for which
one obtains:

X N \ T (o)
Ct\*zk\—' Z (E g\,\ﬁlgxwi’Y\T\_&\_Y;z, %) b\’!lQll + (”
v ¥ 2

R \ + W)
2 5 (£5wSw erhmpxz suchnpi T vty ) b
\J u L

where

-‘— N
Ty val1 = Y‘Jc';“\)\—ﬂ\\ H‘ip’ , q‘\)w—’ﬁ\’l],

Putting eq. (11) in the boundary conditions, one is led to the set of inhomogene-
ous linear equations

&y \ HgnC e _ - -
wg(\éo_ NS CX’:L%“_A = [‘Z;%— —2%»2'@ T;”‘\}*!ﬂ" By ; “-‘] bou

-0 ) mpd _ Lol pd s - )
JrZJ[T-?C“& %i p? o A Y Br’ﬂl’\smj b

'

G2)

where the known constant matrices B are defined by

b(“) (o)
r2Qy © B\“LQ IRICEA! boz\

W) _ ) )
})\_lk\ - B b

Ll A I PARE A PR
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In the same sense as in Ref., (1), eq. (12) is a set of inhomogeneous linear
equations with the same number of equations as that of unknowns. Thus the prob-
lem is formally solved.

The complete solution involves infinite determinants. We are, as yet,
unable to discuss the convergence of these determinants nor the convergence of
the "preaking off" processes which we will use as in Ref. (1).

Iv. THE MAXWELL MOLECULES

We will use the same "successive approximation" method as in Ref. (1).
Furthermore, we will restrict ourselves to the Maxwell molecules so that

M T (Perm) = AeaPeim

* _ct
(9 LAC;“SGSUW\ , \\%'Q'W\] = >\¥’9\’ &c\C Q

J “31)* QUwy \\\)YL "o

and

»*
L -
) [Cﬁq¥*2Q+‘\> oz\] = 0 unless both r and { are zero which has
as a consequence that all b (%Z)l are zero except bozl.

Since we do not expect to get anything from the zeroth approximation, we start
with the first approximation,

A, First Approximation

As in the heat-conduction and sound-propagation® problems, we will use
in the first approximation the eigenfunctions for which 2r + f £ 3, and £1<3.
since only the ¥'s with m = 1 enter the problem, we therefore need to take only

Yo11, V111, and VYop1. We know that

aOZl = COl’lSt = bOZl (‘3011)

2C, S, Wang Chang and G. E. Uhlenbeck, "On the Propagation of Sound in Monatomic
Gases", Univ. of Mich., Eng. Res. Inst., Proj. M999, Oct., 1952.

7
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The other two a's are

0-0\1 = ’“boz\ X [é_«\\)-:—l\ > r"\)ou ] 3 (\3}))

O = /Y‘\Dm_\ x \_Jc;: vk'\)_)\e\-\ > “'\)07_\ ] . Q“?‘C‘)

Since p = O in this case, the boundary condition (12) reduces to

_ 2= © md 7T (o)
\N‘Soz\ - ——i*? bol\ - TT°7_\) 0\ baz_\
where
N eS| RUE o U (er-3))
Sklk\ = SAC e n\‘)Y‘IQ\ C? D\ = (_) Y ‘-12\ \~!

Using the values of S and T+as given in tables in Appendix II, one finds

€] 3
X:, = - JLT/ZNDI\ W —g\\—— ‘

o) 7::.%_ 8\{%
\ 2% ‘E”‘f&:

=) -
where A= ('m“rl\(ff) . Using/egs. (6) and (13), one obtains the following
results:

|
& T TR (4a)

o= WL |
% = l{‘ § LT 3 ] (14})

and

__ s WX PL: \
%73/ = - kT a3 L’#{" B G40




where w is still in units VQkT?m;
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Therefore the velocity slip at the upper

plate x = 4/2 is
z S oaw = W2 BET \
(g)x_%: AW 2 i 3 A \_\,7;‘3_8‘(:5:)\
N

For small A/d and @ = 1, this is in agreement with the result of Maxwell.

B. Second Approximation (2r + £ £ 4 and £ <L)
The eigenfunctions entering the problem are Vo011, Voz1, V111, VYos1sy and
¥151. The ¥'s with odd values of [ - m are VYpp; and ¥35;. The only nonzero

value of p is

b=V A

The constants to be determined by the boundary conditions are b021 and bfgl.
Equations (12) become a set of two equations:

(o

» + \
(l ou,ou> bo?—\‘_F on\3 5“"L\ E by,
and
- d -
WSz = T b R emA B 5T sk 2 ] by

Solving these equations, one then can calculate the quantities of physical in-
terest. It turns out that in all approximations the drag, the velocity distribu-
tion, and the velocity jump have the form

sz = mkT ‘%\L

d 1« ¥ A
AR TR |
LS E :
T -r-xd 2y BE TR "‘J’L%J -
ELTAN Ty R g e ),
AT BB S+ 5%
li._ 3 e
AW = W 2o ?ﬁ ) T E}Z\'ElSL.
o M3 4 N sw A
A 3,

\O
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where the sum is over all the roots pj, and s; = sinh (npid/2). The functions

A, B, and E, are all functions of K = a/.

In this approximation, one finds

A T

u
B= 22 {—E

where t = tanh (npd/2), ¢ = cosh (npd/2).

C. Third Approximation (2r + £ £ 5, and £ < 5)

The eigenfunctions to be taken in this case are Voi11, Vo21y V111, Vosi,

V121, Voa1y, Vo211, @nd VY33;. There are four y's with odd values of ! - m. Hence
there are two pairs of p differing from zero. They are

P; = 0.7151 Aé and ps, = 1,342 AL ,

where Ab = Ap Vk/KT. We find, further,

@
b04l = '0.2)-1-56 bl(gl » bo(z)l = 2.559 bl(g)l'

Solving the set of three equations for the boundary conditions, one finds then,

2-o\" . 2-
£ 1 A (063184, 4 0837 E,) + 03372 1,8,

B ( )+7-0((o§367f+05067tl)+017|4%t

E, =T\‘< zz—o(o< - 0. 8992 4 o.q-é}?ofz))

E, = | (1’;( + 0.3000 + o‘\734—t,)

10
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D. Fourth Approximation (2r + £ £ 6, and £ < 6)

—_ —_— e — —— —

We proceed as before, with the four values of p's and the corresponding
ratios of b.(3)) /o8 given in the following table.

i 1 2 3 b
(1) 0.460LAL 1.065A% 1.261A% 1.610A%
b&%l/bfél 1 ( 1 1 1
— (- 0.711) —= (- 5.525) — (3.322 —
5 o5 o5 | o5 098)
1) n @)
b
£ o8, 'i'é (- 1.218) % (- 6.20k4) % (1.213) ?LE (8.4k2)
(1) h (D [€ (3 ,
b b 1 1 1/6
131 /b13h __"/__6__ (1.362) IEEY (0.320) /1T (-5.349) w11 (32.51)
W |

Taking o = 1 to simplify the computation we arrived at the following results:

A=2a3 +2063F+273t,+ asot; + 248, + 295ttt 2704, +
1T 273tty T 2BL L Y 2.8 T+ 261ttt 3ottt
+ 303ttt + 2.%0 t.t;;,r + 2.94 sztstc, T 30 Tttty

B = 238+ 249t + 237t 249 b, + 2331 + adbht,t 2554 %t
FaAnge Y 24 BN A3t 293 2asut it ¢+
290ttt v 24%E LT + A Lttt 246 bttt

E'fi;—mé (0502 + 0457t % 0.502%t, + 0488 Ty + 04534, 1,4 0,937 Lt +

v 0Bttt o043t

E;J%s—(azz% 321bT, v 3338, + 3,081t ¥ 37760k ¥ 3071t byt

TGt 3asELY)
11
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E.= —Liz’\— (0.805 + 0.\ 7t 0.6b% %, + 0.833+,+ 0.40T it + oSSt gt

3
T oJoott, v 0:45¢ bty )

3

E,= -"-‘f-& (25634 2606, ¥ 2556+ 2705t + 2495HE, + 2,634 it
4
+2.603T,k, + 258 i),

For the discussion of these results we have plotted three sets of
curves, Figure 1 contains a set of four curves for pxz/(sz) Knudsen against
the Knudsen number, d/A. Curve I is for the Stokes-Navier approximation. Curves
II, III, and IV are results from our first, second, and third approximations
respectively. We have not plotted the curve for the fourth approximation because
we do not expect anything new and the numerical computation is very laborilous.
The straight line on the left is the initial slope for the exact solution. All
the curves from the different approximations have the same value (unity) for
K = 0, and for K equal to infinity they all approach the same limit, zero. The
initial slope for the four approximations are listed below.

Initial slope

Exact -1.242
First approximation -0.423
Second " -0.458
Third " -0.53k
Fourth " -0.598

Figure 2 consists of a set of three curves for the first three approxi-
mations for the velocity slip at the upper plate as a function of K. The initial
slope is given by:

Initial slope

First approximation -0.423
Second " -0.494
Third "o -0.6k4hL
Fourth " -0.755

We have drawn Fig. % to show the velocity distributions as functions
of x for K = 10. Since the velocity distributions for the different approxi-
mations deviate very slightly from the straight-line distribution of the first

12
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approximation we have drawn instead of € against X, the curves Ry - R, where
R=1-2c, /w and R, is the value of R from the first approximation, namely,

R,= &%
S N AT
34

As in the case of heat conduction, the boundary effect is shown by the sharp rise
of the curve near the wall.

V. THE APPROACH TO THE KNUDSEN LIMIT; A DIVERGENCE DIFFICULTY

In Ref. (1) we pointed out that the behavior of the exact solution for
the heat-conduction problem is for large K quite different from the behavior at
small Knudsen number. The approach to the Clausius gas limit (K>>1) is compli-
cated by the occurrence of the hyperbolic functions, so that a development in
inverse powers of K is not possible. We see from section III that the same is true
for the Couette flow. On the other hand, it seems that the approach to the
Knudsen gas regime (K<<1) is quite regular so that a development of all relevant
physical quantities in powers of K should be possible.

In fact, in Ref. (1) we gave the first two terms in such a development
for the heat flux. Analogous results can be found for the drag¥*. In the zeroth
approximation one finds

)
sz = ka l < _\Iv%rf— Q(,)

with w still in units ofJEkT/m. In the first approximation

YXX ng - ‘:‘:' [ C D\Z‘q CZMZ\« C)‘J . 07)

For a = 1 this reduces to the expression given in Ref. (3).3 There the square
bracket which is always negative has been evaluated for elastic spheres and
Maxwell molecules. The results are as follows.

*These results can be found either by the method described in Chap. III of
Ref. (1), or from the general solution.

3C. S. Wang and G. E. Uhlenbeck, "Transport Phenomena in Very Dilute Gases",
CM 579, UMH-3-F, Univ. of Mich., Eng. Res. Inst., Proj. M6OL-6, Nov. 15, 1949.

16
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For elastic spheres of diameter o,
WQ) 3 >
o NI oy VT
= - 2 1ga
K’“’) e C ) (ga)
Y
For Maxwell molecules,

i%=-m&{¥—3 %MGF(@{W (- ess By =222

X

\ (gh)
Sitenb | L dw L &

Z i 4- (- ewb )& 1*4—(\*—&09—5;'J .

- (wewl) sw

In this case the result obtained from the general solution is expressed in the
elgenvalues xrl of the collision operator in the form

W)

WL -2y
_PLBL X ma Z sz&L@Q +) R(A+E) LR+ z)’] UQ,)

2-
by T SECRE T

The summation can be carried out (for details see Appendix I) and confirms eq.
(18b). The integral was evaluated numerically in Ref. (3), with the result

\)

XA,
Ji?%— ot ()

where Xﬂz.mhhﬁx/kr. Thus for o = 1, the exact value of the initial slope in
Fig, 1 is -1.2hk2,

A difficulty appears when one wants to calculate the second approxi-
mation of the drag, or when one wants to find analogous expansions for the
average velocity distribution or for the velocity jump at the plates. Formally,
one finds

O i -
By = by ) S [ epeT(Geps), Gepe), ey
and in the first approximation,

(U]
T, = _A MXW C T J
¥ 2-o x ) 8“ ”

The bracket expressions are both divergent integrals because of the factor l/cx.
The same difficulty occurs in the heat-conduction problem, although we did not
notice it at that time. The second approximation to the heat flux given in

17




Ref. (1), p. 8, eq. (19) is also divergent, and the temperature distribution in
the first approximation for which one can derive the formal expression

oo &2 AT mX T e 3 | ~
T 0 = - ¥ [<c_l)?§ ) (cm;)&ahqﬁ]}

is divergent just as Eé

The divergence of all these integrals is of a logarithmic nature and
is always due to the factor l/cx. The origin of these divergence difficulties
is therefore clearly the parallel-plate geometry. Molecules which are emitted
nearly parallel to a plate will have to transverse a very long path before
reaching the other plate, so that the Knudsen approximation will not be valid
for these molecules. Or one can say, the average Knudsen number for molecules
emitted in all directions is logarithmically infinite even if d/h<<l. We have
found that by taking two concentric spheres (radii a and b) instead of two
parallel plates all divergences disappear. For d = a - b<<{/2)(a + b) = R,
quantities such as the temperature distribution will in first approximation in
K = d/A contain terms proportional to 1n (R/d), which blows up for the parallel
plate geometry.

One may conclude, therefore, that these divergence difficulties will
not affect any real physical situation, and that the behavior of the solutions
near the Knudsen limit can still be considered to be regular, so that a develop-
ment in powers of K is possible.

18
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APPENDIX I

DERIVATION OF EQUATION (18b) FROM EQUATION (19)

In terms of the eigenvalues Ny of the collision operator, the first
order correction to the pressure P, in the Knudsen limit is given by

W)

JLOL Z Ay (400 M%Z)UQ*“* i (13)
&

v, & v (2R+val LY )

The expression for Aroy is

e YT
Mo = 2 SOAG 38 F(6) { oot T e 8y

. (29)
N Raat N ?Q(%Mw) - (\+ S0 8g0) }

®

In the braces, we see that the second, third, and fourth terms are obtainable
from the first term by replacing 6 by = - 6 , 0, and :r/2. Thus, substituting
eq. (24) into eq. (23), we see that we need only to calculate the sum

Z.
S = Z_ (‘1&“) QW‘\J[) [(Q‘\‘\"‘— J W}-Y_H-Q% —P Q\(Cb: >

v (2 er 3))

Putting r + £ = i, we have

_3 e LR+ L) il
5= 2 [(-3)! e8> z () — O D) P (ens)

The last sum can be done with the help of the relation

! (ns 3).
t-2)1 (nrgs ) 2

() e % = 7 G P (o)

19
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leading to

u L p
S——lAu ce:%é Z——(W—Zl = + ,)\C&A ) M_ KﬁL_Q‘,

ZTL‘\’(H'Z) 8

- aN)sitet Pl g LIt ¥k L 3 e
2
= Fr{(wme)z»a\“ rewd ) eed |
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and thus to eq. (18b).
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APPENDIX II

TABLE USED FOR NUMERICAL COMPUTATIONS
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