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ABSTRACT

The devistions from the originally linear velocity or
temperature distribution due to the introduction of an infinite
wall in the plane x = 0 and with a velocity or temperature equal
to that of the gas at x = 0 before its introduction have been
studied by the same method employed in our previous reports.
Formal solutions involving infinite determinants have been ob=
tained. The general features of the solutions agree with the
prediction of Kramers. Some successive approximation calcula-
tions were carried out. The first approximation results for
both problems are in agreement with the classical results of
Maxwell and others.

OBJECTIVE

A theoretical study of the behavior of a gas near a wall.

iii
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I. INTRODUCTION

The problem of the behavior of a gas near a solid wall is of long
standing. The temperature and velocity jumps in the immediate vicinity of a
wall were first observed by Knudt and Warburgl in their experimental investi-
gation of the heat conduction and friction in rarefied gases. Approximate
expressions for the temperature and veloclity Jumps have also been derived by
several authors. In two of our previous reports3 we derived these expressions
for the cases where there are two solid parallel plates and where, in the case
of heat conduction, the ratio of the temperature difference between the plates
to the mean temperature of the plates and, in the case of Couette flow, the
ratio of the velocity difference between the plates to the mean molecular
velocity are small. K':r'amerslL in 1949 attempted to derive a more exact ex-
pression of the velocity jump by studying the modification of the distributio
function due to the presence of a stationary plate in a gas moving in the z=-
direction with a constant velocity gradient dw/dx. Though he was unable to
give a complete solution, he did suggest that by writing for the distribution
function an "Ansatz" of the form

8, aw

where fo is the Maxwell distribution with a mass velocity in the z-direction
given by x(dw/dx), A is a "free path," and € a constant to be determined, and
by a superposition of solutions of the type

s

X = (@)X

with constant 7, perhaps both the Boltzmann equation and the boundary condi-
tions could be satisfied. We will confirm this expectation completely. Most
recently, Welander” also derived the temperature distribution, the velocity
distribution, and the temperature and velocity Jjumps in the neighborhood of a
plate. Welander made the main assumption that the rate of change of the
molecular distribution function due to collision is proportional to the devia=-
tion from the Maxwellian state and took for the proportionality factor the ex-
pression given by the Stokes-Navier approximation for Maxwell molecules. For
perfect accommodationthe following expressions for the temperature and velocity
Jumps were found:
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where dT/dx and dw/dx are the temperature and velocity gradients, respectively,
Just beyond the transition region (i.e., a few mean free paths from the wall),
and I is the mean free path related to the viscosity coefficient p by the re-
lation

I

,e = —-—

nma\

2)g]
H

The numbers in the parenthesis are the correction factors for the expressions
derived from the simple theory.2

The problems considered in Reference 3 are closely connected with

Kramers' problem. The treatment presented there, with proper modifications,
can be adapted to solve Kramers' problem. In fact, the velocity jump Kramers
was seeking can be deduced from the results of those reports. However, the
apparent differences between the problems, such as the nonexistence of
parameters like AT/T and d/h, where d is the distance between the plates,

seem to warrant a separate treatment. For simplicity, we will limit ourselves
"to Maxwell molecules, i.e., molecules interacting with the force law, kr~2,

k being the force constant.

IT. THE COUEITE FLOW NEAR A FIXED PLATE

We consider an infinite space where the gas is flowing in the z-
direction with a mess velocity Tz(x) proportional to x. A plate, with accom-
modation coefficient ¢, is introduced in the plane x = 0. The problem is to
find in the stationary state the distribution function of the gas in the upper
half infinite space (x > O0). The Boltzmann equation ig¥

x0T nJ (£fy) (1)

where f is the distribution function,‘? 1s the molecular velocity, and J is
the collision operator. We write again

f = fo(1+1n). (2)

*We will always use dimensionless velocity variables by measuring all ve-
locities in units (2kT—/m)l/2°




—— The University of Michigan + Engineering Research Institute

Differing from Reference 5, we take for the zeroth-order distribution the
Maxwellian distribution with a mass flow ¢, = x(dw/dx) where dw/dx is the
velocity gradient in the x-direction, i.e., we write

m 3/2 c2
£ = } -
o n <énkT € ’ (3)
where a2
2 = ¢,2+c¢,2+ (cg - x )

X Y dx

— — -
or C =2 - (T). It is essumed that dw/dx is a constant, snd that I(dw/dx) is
small compsred to the mean molecular speed [~(kT/m)/2]. Substituting Equa-
tions 2 and 3 into Equation 1, and dropping the term h(df,/dx), one finds

20,0,— + Cx — = nJ(n) , (%)

- — .
where now C may be considered to be identical with €. Equation 4 is the in-
tegro~differential equation to be solved. The boundary conditions can be
written as follows:

8., dw
lo. x = h = ==A=—CyCp + ¢C a
. o« 3 ax X~z Z (5 )
2 x = 0andCy >0 h(0,Cy, Cyy Cz) = (1-a)n(0,-Cx,Cy,Cp)e (5b)

The first term on the right-hand side of Equation Sa is the viscous effect as
calculated by Chapman,~ where A is the mean free path defined by

A o= (naNe/kT) L,

k being the force constant and

Ar = 2x fd@ sin®e F(6)

and F(8) =Vm/2k gI(g,6). The mean free path A\ is related to the mean free
path £ defined before by the relation

N o= T

. (6)
2x

The second term is the effect at infinity due to the presence of the plate

at x = 0. A consideration of the symmetry of the problem indicates that this
effect should be proportional to C,. The proportionality factor € is in-
dependent of the velocity components and it is expected that it will have the
form k(dw/dx), except for a multiplicative constant which is to be determined.
In Equation 5b the quantity & is the accommodation coefficientj it means that
at the plate a fraction O of the molecules striking the plate will be reemitted

3
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with the Maxwellian distribution in equilibrium with the plate, while the
fraction (1 - @) will be reflected specularly. FEquation 5b is the mathematicall
statement of this fact. The problem is, thus, completely defined. To solvgd
it, we first make a change of the dependent variable from h(x, T) to Y(x, T
where

n(x, T) = Y(x, T) _?. '&E Cy Cp + € C, (7)

so as to meke the integro-differential equation homogeneous, namely,

oY _ n
= © T J(¥) . (8)

The boundary conditions can now be written in the form
X = Y = 0 (95)

x = 0  Y(0,;T) = [(1-2)¥(0,~Cy, C Ao,

Cy) + (2-a) =

W oo

y’

- e Cyl li.%&%&.c + 10, T) % _ (9p)

It 1s to be noted that Equation 9b for Cy < O is

ust an identity; only for
Cx > O does Equation 9b give a condition for Y(0, C).

4
C

A natural way of solving Equation 8 with the boundary conditions
Equations Qa an@agb is to use the Laplace transform. Introducing the Laplace

transform Z (s, C) of the function ¥(x, T) defined by

[o¢]

Z(s,-é) = kt[dxe'sX Y(x,'a) , (10)
we have
sz - ¥(0,T) = = J(z) . (11)
Ux

With Y(O,‘é) assumed to be known, we will solve Equation 10 in the same way as
the problems in Rgﬁerences 3 were solved, namely, we will expand Y(x,'e), and
consequently Z(x, C) in terms of Wr,ﬁ,m(é)! the eigenfunctions of the collision
operator J. As discussed in Reference 3, only terms with m = * 1 will enter,
hence we write

E: [ar,ﬂ,l(X)Wr,£,1 + ar’i,_lwr,z,-l] (112)
T,
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}: IOl O, g,-2(8 0 g,-1] - (11p)

r,t

Further, since W is the complex conjugate of Wr L,m? the reality con~
dltlon of h, and ﬁence that of the functions Y and Z, requlres that ap g .3 =

r 1,1 Thus we need only to solve for 8r f,1 OF Op g,1. In terms of the
a s, Equatlon 8 becomes

day.
2051
e —~ = =n Z Ry,20,1; rlad'+1,1 Brlaf'+1,1(X) (122)
r'i!
day oy
s2l+1,1 ‘ _
ax = = n Z Rr,20+1,1; riz2l)1 ar}Z/Ul(X) (120)
rii!

and Equation 10 becomes

80p g,1 " 8 0,1 (©) = =n Z Reof,15 rials Orjljs » (13)

R A
ril

where the ar’i’l(o)'s will be assumed to be known for the time being, and

Ry, 8,15 rjtj [’— vy sLy1, Wr;l}l]

X

=-C2 1
)\rt£$fdce E; -Ix:,!,l Wr,ﬂ;l o

The expression Krggr is the eigenvalue of the collision operator J, and it
has the dimension of an area. As before, we separate Equation 13 into two
sets, a set of even I and a set of odd I,

St 2,1 = 8p,5p,1 (0) = n Z Rr,20,15r 20 +1,1 Orjal 41,1 (13a)
rii?

SQT}2Z+1’1—aT’2£+l}l (© = mn }: Rr,2£+l;1; r;24}1 Opialia - (13v)
rylt

Eliminating ar,2£+1,1 , we find
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2 - n2 i) R . 0
8%y o,y = 1 }; }:'hr,zz,l; rial'+1,1 “rial'+1,15 rialfi Triaii

rylt rjo"

= S8r,al,n (©) +n Z Ry, 20,13 riz2l'41,1 %rjal'l4r,s (0) , (%)

ril!
a set of linear inhomogeneous equations for all Q. -4.;+ Since
b4 4

Ro,2,15 ry2tt1,1 = O,

a consequence of the conservation of linear momentum, and since for Maxwell
molecules

Rr,22+l,1; ry2ly1 = 0 ,

unless r = 0. and f = 0, but Rr,ZZ,l;o,l,l = 0O because Ay; = 0, the set of
Equations 14, can be written as

80 501 = 85,a,1 (0) (1ka)
and
}:(Szﬁrr“agz" - n2 Rr,2,13r}2l'+1,1 Rrialt+1,1;r)2l1) Qrlisgt
ryg" r;L!

= Sa’r,zl,l(o) + nZRI',2£,131';2£'+1,1 aT‘;zl"l-l,l(o) (I‘,i), (I",',E") ?é (O,l)
(140)
The solutions of Equation 14b can be easily written down. We write,

A

i

28 -
/s Oppmdyyn = 02 E:Rr,gl,l;r;2£'+l,l Rr;2£‘+1,1;r§2£§1 /

rilt

il

n (s = pi)(s +p5) o
1

The pi's are the roots of the equation A(s) = O3 they are of the form of a
constant divided by the mean free path. .Let Dr,2p,1 Pbe the determinant ob-
tained from A by replacing the (r,2£,1) column by the inhomogeneous part of
Equation 14b. By splitting in partial fractions, one then can write, except
for r = 0 and £ =1,

6
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O Dr,zgl s =pi) 1 Dr,of,1(s==p1) 1 (15)
s2h,1 , a
- P <§é 5 +pj
i dS s = Py i ds s = "‘pi

where the determinants D, 22,1(8 = % p;) still contain the ar’z,l(o) s. Since
the Dr,zz , depend llnearly on the inhomogeneous part of Equation 14b, only one
of the sets Dr 21,1 (s = _.pl) is independent. Choosing this set to be
Dl ,2,1, the others are given by*

(1)
B1,2,13r,24,1
(i)

A1,2,131,2,1

Dr,zz,l (s =X pi) 1,2,1 (s =2 Pi) ’

where A1,2,13r,24,1 is the algebraic complement of the (1,2,1;r,2L,1) element
of the determinant A. Substituting the expression for Or,24,1, Equation 1a,
into Equation 13%b one finds

ar,2441,1(0)
ar,2£+151(s) = L +n E: Rr,2f+41,15r}28}1 X

rii’

E:Drgezgl(s = pi) 1 E:Dr'zl' 1(s = - p1) 1
Py )

(2 s (2) Gy )
> ds/s = pg s ‘

By taking the inverse Laplace transform one obtains for the solutions of
Equations 12,

aO,E,l(X) = ao,z,l(o) = const. - (16a)
. (s = D = -
ar,az,l(x) = Dr,gll;ﬁs i/ Pix E: rizl 1(S Pi) (16b)
% (&)
i ds)s - i -
ar,zi-x-‘l,a.(x) = ar,2£+1,1(0) +n ZRI',ZHl;l;I‘;zZ,'i L Dr;sﬁ l( "Pl)( Plx]_]
) —}
SE A i
ril ds/g _ pi
D = - Ds .

_Z 1 I‘Jgﬂ,l(s Pl) (e Pix _ 1) . (16¢)

T ).,

*See Appendix I,




9a and 9b, in terms of the a's are, for all r and £,

aryﬁ:l(w) N 0
(1 VLS () i’ (0)
ar,ﬂ,l(o) =4 (1) - (- }: - ryl,1irid31 Brilla
r'l?
+,4(2 - Q) dw

Ml',l,l;O‘,Z,l k Ia‘; -

9iNoo1 21N011

where the N's are the normalization constants for the ¥'s and

- =.-C2 1 + sign Cx ¥
Mr,l,m;r;ﬂ;m - k/ﬁdce "————§§_~_§ Vr,2,m Wr;ﬂ}m *

The elements Mr,ﬂ,m;r}l}m have the following properties:¥

Lo Mr,l,m;r}l}m = Mr}l;m;r,l,m
2° MT,2£,IH;I';2£ ’m = 1/2 6:{'1"82‘2’
Mr,ef41,mirialtvi,m = 1/2 Bpptdype
3- E:M&,zi,m,r,2£‘+1,m Mf,al +1,miryelim T 1/k Spp"ygn
|£7
My of+1,myriolim Mf,zﬂ,m;r"2£"+1,m = 1/4 Opy"Oyg g
r!ﬂl
s

The conditions at infinity require that

aO’g’l(x) = 0
Dpr,og,a(s =p3) = 0, or Dyp,i(s= pj) = O for all i,
ar,21+1,1(0) +n Z: Rr,28+1,1;7r)24)1 }; rizgla(s = - pi)

By <: ')
!
S"-'pl

*See Appendix II.
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Equations 16 are the general solutions of Equation 8. So far, we have not
really taken into account the boundary conditions. The conditions, Equations

(172)

NII‘ )4 l;o,l,l ’ (17b)

(18a)

(18b)

(18c)

(184)

(18e)

(19a)

(19b)

O:(l90)
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where in arriving at Equation 19c, we have put Equation 19b into Equation 16c.
Each of the Equations 19 is a linear relationship between the a(0)'s. However,
these are not all independent because of the differential equation 12b. Let

us consider the case where we take N eigenfunctions, among which there are Ng
even ones (I = even) and N, cdd ones, such that Ny + Ny = N. Since as in
Reference 3 we always will cut off the series eigenfunctions for various

values of M = 2r + £ with £ <M ~ 1, one easily sees that Ny 2 N.. It can be
shown that Equations 19b follow automatically from Equations 19¢, 11b, 18a, and
18b. Thus the condition at infinity furnishes us with Ny + 1 linear homogene=-
ous relations for the a(o)'s.

The conditions at x = 0, i.e., Equation 17b, can be separated into
two sets, namely,

20
ar,az,l(o) + v Mr,28,15r)20 41,1 ar;2£'+1,1(0)
rii!
- _ b aw .22 € (20a)
OiNozy — dx TOM T 5lg BiNg,, *224htiosian
241)
ar,2l+1 1(0) + —— }Z N%,2£+1 1irizdly Br} 21;1(0)
Yzl
8(2-t dw _ €
) & . Brodlo - (20b)

M ey
910Nozy T2l 150,250 T gy 2ilNo1y

For N = finite, Equations (20a) and Equations (20b), Ne and Ny in number,
respectively, are independent. Thus, for an approximate solution where we
limit ourselves to a finite number of eigenfunctions, we have 2Ny + Ng + 1
linear inhomogeneous relations for the N + 1 (N ap,p,1's and €) unknowns° Ir
we choose to have the condition at infinity (Equatlons 19a and 19c) and Equa=-
tions 20a satisfied, then the Equations 20b can not be satisfied. Presumably
by teking N bigger, the Equations 20b will be better satisfied. The last
statement is confirmed by observing that for the exact solution, where N — =,
Equations 20a and 20b follow from each other. For instance, if we multiply
Equations 20a by Mriog'41,13r,2f,1 @nd sum over all r and {, by ueing Equa-
tions 184, one £1nds

o
}:Mf;2£'+1,1;r,22,1(0) + é(é:;j ar;2£'+1,1(o) =

N aw o €
Oiloz  dx 'rj2f'+1l,130,2,1 " 2(2-0) 2iNors

5 ! 61’0 ’

9
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which is o/2(2-Q) times Equations 20b.

Making use of Equations 19, one finds

Dr,zl,l(s = - pi) o~PiX

ar,az,l(x) = }: (dA (21a)
N a8
ds = - pg
' 1 Dyogf,(s = - py) _=pix
ar:2£+1,1(x) -n }Z Rr,2£+1,1;r;22;1 5— 224531 1/ ¢"P1% (211)
i

: §A>
r'g! d8/g = - py

For the actual solution for the constants € and the ar’g’l(o)’s, it is most
convenient to call

(i) Dr 24 l(S = - Pi)
br,o2f,1 = — o . (22)
ds 5= - Dy
By the relationship between Dy 2p,; and Di,s,;, it follows that
(1)
; A : (1)
rEéZ,l l’2£l’r’2lié blygyl ) (25)

(1)

A1,2,151,2,2

(1)

where bl,é’l is the set of independent varigbles to be solved. Eliminating
the odd a's between Equations 21b and Equations 20a, using 2la, 22, and 23,
on?.?rrives at the following set of equations for the determination of € and
bl,%,l

for all i,
Mr,20,150,1,1 ¢ }Z

2iN011 i

2=a __ 4
200 9iNpz:y

A3 s
dx

(i) b(ig;l =

Q’I’,2£,l 1s (2)4')

roszl 3

with
(1)

Q,2,1 = -1

rilt ryi"

1,A1,2,13r?2£?f> (

P A1,2,151,2,1 1

Mo,2513r}28"+1,1 Rr§2£'+1,13P¥2£gJL<

25g)

(1)

1 Ax,2,13rh2Ly

Qr,zz,l = -n

Mr,20,15r}28+1,1 Brjal'+1,15r524Y1 (

[ ? Hpn
r'i' ey
{)
i

P A1,2,1,15251

b1,2,151,24,
Ai,2,131,2,1

2-0;

and
2a

r # 0

P41,

(

)

i

(25p)
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(1)
Equation 24 is a set of equations Ne in number for the unknowns € and bi,s,1,
where 1 goes from 1 to Ny - 1. It is seen from Equation 2k that both € and
all the b's are proportional to the parameter X(dw/dx)c

Formally our problem is solved., The deviation from the Maxwellian
distribution with a streaming velocity in the z~direction equal to x(dw/dx) is

h = = % gz CC, + €Cy + }:(ar,z,lwr,z,l + ar,l,-lwr,ﬂ,*l) ’ (26)

r,l

where all the a, ,1,% +,'s are linear combinations of the form e "PXi, fhis is in
agreement with the contention of Kramers as mentioned in the introduction.
For distances much larger then the free path, x >> A, h 1s of the form

n o= -8 A& o0, + e, .
3 ax

The general expression for the velocity in the z-direction is

= X %E + & . EgLiLEg__ ; (27)
X 2 iﬁa/zNoll

80,1,1 1s purely imeginary, as can be easily deduced from the symmetry
property. Since 80,1,1 is a linear combination of negative exponential func=
tions in x, the velocity gradient 1s therefore no longer constant. However,
at points more than a few free paths from the plate (i.e., outside the
trensition region), the velocity gradient will still be a constant, and, in
fact, the same as if the plate were not present. The velocity at a large
distance from the wall is

(gz) = Xgﬂ-&-

nofm

2 (28)

which can be written in Kremers' form, by putting € = 2ki(dw/dx), so that

where k is called the slip coefficient, a numerical constant to be determined,
and f is the free path defined in the introduction. Thus the velocity is
still a linear function of x with the same gradient, but the plane of zero
velocity is at x = <kl instead of at x = O. The velocity at the wall, which
is equal to the velocity jump defined in Reference 3, is

11
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Ay = CEZ)X _o = % _ 8o 1;1(0) (29)
ix° No11

The velocity Jjump, (Aw)w, used by Welander is defined as the difference be=-

tween the velocity at the wall obtained from a linear extrapolation of the

velocity distribution curve beyond the transition region and the velocity of

the wall, i.e.,

(Aw)w = ..e..

= . (30)

The figure below gives a gketch of the velocity distribution.

Tangent to the
velocity distri-
bution curve at
large x:

T, = (x+k1) 4¥
dx

12
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ITI. SUCCESSIVE APPROXIMATIONS AND NUMERICAL RESULTS

In the previous section, the formal exact solution of the problem
is given. The actual solution consists first in finding the roots (pi) of the
infinite determinant A, and the solution of the set of infinite linear in-
homogeneous equations, Equation 21, for € and b. We will in this section find
some approximate solutions by using the same cut-off process as employed in
Reference 3. '

A. FIRST APPROXIMATION

We take into account Wo,1,1’¢1,1,1’¢0,2,1° The solutions are clearly

80,2,1 0

80,1,1 = B1,1,3

The set of Equations 15 becomes one equation for €, namely,

Mo,2,150,1,1 . _ 2-¢__ 4 , aw
2iNgqy ' 2 9iNgs, dx
gLving oo Wx . aw  2-a - aw
€ = =N = =T —
: o 3 dx o dx

The average velocity in the z-direction remains linear, and is given by

(] dx

Hence the slip coefficient is (2-)/@in agreement with the results of the older
theory; T, is linear in x throughout the whole space, Aw = (Aw)y =
20 fa T aw/dx .

B. SECOND APPROXIMATION

For this approximation we use five eigenfunctions: wo’g,l,wl,g,l;
Yo 1,1,W1’l,1,¢0,3,l, The only nonzero value of p, as solved in Reference 3 is
M

15
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The constants to be determined are € and bi,z,l’ given by the two equations

Mo,2,150,151 € +Q b _ 20 b A 4w ,
21N, ©,2,171,2,1 200 9iNg,,  dx
My 2,150,1,1
5oy * Qi,2,1b1,2,1 = 0,
where
n _ T
Qo,2,1 = *-5 ZE:MO,2,l;r}2£'+l,l Rr;2£'+1,1;1,2,1 = #JBEE
Q2,1 = =2 Ezh%vz,l;r;2£'+1,1 Rpizof'+1,151,2,1 + g:g = 12 +.§§2 .
P “ W10%
The solutions are Dul) 1%

=2y

pea W Ui 20 1ox
a 3

€ =

dx o_g o 12

200 b 10n

where we have written in such a way that the last factor is the correction to
the simple theory, and

2.0 o dw 1
b1,2,1 - 0 - K-d—}-{-m*—g-a 5 .
N lh—iNogl E&— + ———
10x

Using Equations 27 and 21b, the velocity distribution is given by

D) 13 ‘
- + ; ]2 X
- _ oea Nx , 2 ll-Q]_O’ﬂ dw 2= 2 dw 1 j: -
g, = (x+ A L
a 3 2=0 , 12 dx = 20 10 ax a;l + 3
2 wWion N10%

The slope of the velocity at the wall is bigger than that at infinity by a
factor

l + 2"’@ _]; l . y
2 620 _3
22 Jion

which is independent of the density and is equal to 1.08 for @ = 1. The
velocity at large x is

1k
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at the wall is smaller than (Aw)y; it is

2 a
() T, 2= Z’ EN udloﬂ
27% > N Q a
giving for the "velocity jump"
241 13
2wl = lWlOT( dW
(AW)W =
o g:g b2 12 dx
o U 10x

For & = 1, this gives the value 1.043 for the slip coefficient.

e=o 11
- D0, = 20 IW10% aw
C = Aw = y ——
(Ca)xeo o 2~ ., _ 12 gx
20 101

The velocity-

fora=1.

- dw
0.957 1 P

C. THIRD APPROXIMATION
In this approximation, the functions Wo,é,l’ Wz,l,lr and Wl,g’l are
added. The determinant A has two roots
0.7151 _1.3k2
p1 = N b2 = .

After solving the set of three equations of Equation 24, one finds

2=0 20
a 5 d 0.756 + 2,906 %9‘. + 2.785 (S_aﬁ)z
and
g, = (x+xI) %‘}.:

X
=0 71-5 oo _]_“511,2 .}1.
o 2fE , a1 (3909 + 1.5 50e N+ (LUBT + 2552 o)e .

a 3 dx 8J; 0,756‘+ 2.906 ég% + 2.785 (gég 2
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Thus the slope of the velocity at the wall is

b 8,771 ==
wl o1 T3+ 8T

dx a 12

2

o0l ol
0.756 + 2.906 = + 2.785 (—2&——)

For & = 1, this slope is 1.262 dw/dx, The velocity at the wall and the
"velocity jump" are easily deduced. For o = 1, they are

D. FOURTH APPROXIMATION

In addition to the ¥'s in the third approximation we include also
Vo,2,10 V1,4,17 Wo,s,lﬂ The four values of p's are

_ 0.460k4 1,065 _ 1,261 1.610
pl - -—):——_—. b p2 - N 5 p3 - N 3 p4 - N

The following results are obtained:

: X
X{E661+4194%g+8855( )+6222( "O"%OL‘X

X
2.0, 20N Duq\S ., =1.065 N
+ [26.24 + 161.72 =2 4+ 226,90 <'5<ST + 218,89 (-—-—) ]e-

+ [1.11 + 8.17 2= ‘19 78 (2-04 2 + 15.76 Dul) 3] -10261-;5
T () T6 () T e

2-01 DN D_n\3 «1.610 XZ} .
+ [11.98 + 75.61 5o= + 151.21 (—2-&-—> + 100,17 (5&-— le
: 16

e 2=0r\2 2= 2_-_.__04 4
o, é_ 437 + 33.2h 2 + 93.98 (—2——a~) + 116.80 (ga.)s + 55,76 (o
@ 3 3A8+a7752"a+8271<2‘0‘ +10941<P“O‘) +5576(
T, = (x+kiI) gw
dx
_ealn, v 1 L
04

50" dx 07 3.48 + 27.73 ——-+82 7 © +109. 41( >+55 .76 2"0‘;
2a
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The slope of the velocity at the wall is

51.68 + 323.57 = 2~ + 657,31 (2'a + 442,91 (2””>
aw {E'+ P 1 :}

dx o Ei 2=0 20 ,
3.48 + 27.7% = + 82,71 (5&_> + 109.&1_(§a—) +53. 76

For @ = 1, this is equal to 1.37 dw/dx. The corresponding velocity jumps are

Moo= (Ty)gng = 0.852 I’%E
X

(aw), = L1.134 1

g

It is of interest to compare our result with Welander's value of (Aw)y =
1.21 I aw/ax.

IV. TEMPERATURE DISTRIBUTION NEAR A FIXED PLATE

We consider the infinite space filled with a gas which has no mass
flow but the temperature distribution of which is

To(x) = Ty + tx ,

T being the temperature at x = O and t is a constant. It 1s assumed that the
change of temperature over a mean free path is small, i.e., At/TO is small.

An infinite plate at the temperature Ty and having the accommodation coeffi=-
cient & is introduced in the plane x = 0. To find the new stationary state
velocity distribution function f, we write again f = fo(l + h), where for the
present purpose we choose for fg,

2
3 /2 mv

/2 - —
m .
fo = ny(x) EEEE;?;§> e 2kTo(x) |,

where v is the molecular velocity. The number density no(x) and the tempera-
ture To(x) are related by the equation ng(x)kTo(x) = constant. To the first

order of approximation in %t/To, the Boltzmann integro-differential egquation
reads

(c2-2)3_+§£ - D0 J(n) ,
X CX

where, now both n and T can be treated as constant and replaced by no and Tge
The velocity T is the dimensionless velocity defined by

17
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é = m ? a
KT,
The boundary conditions are
X = o h 2 %E (% - 02)0X + €1 + €o (g - c%) (32a)
x = 0, ¢y >0 h(0jcyg,cy,c,) = aB+ (1 - a)h(0, - cy,cy,cy) o (32b)

Equation %2a states that at distances far from the plate, h is composed of
three terms, the ordinary heat=flux term of Chapman and two other terms re-
sponsible for whatever change in density and temperature is brought about by
the presence of the plate. One must expect that both €; and €s are propor-
tional to Mt /To. At large distances, the constancy of the scalar pressure,
i.e., nkT = constant, should again hold true, even though the presence of the
plate wight disturb this relation in the immediate neighborhood of the plate.
As a consequence, €; and €y are related, namely, '

€, = €5 (33)

Equation 32b is the boundary condition at the wall. The difference in form
from Equation 5b of Section II is due to the fact that the density is now

also a function of x. The unknown constant B is related to the density of the
gas near the plate. As in the previous section, we bring the integro-differ-
ential equation, Equation 31, to the homogeneous form

) s
< = Lo, (34)
X Cx
by introducing Y(x,C) defined by
h = Y(x,B) +2 %E (g,m c®ley + €1 + €2 (g - c2) . (55)
o 2

The corresponding boundary conditions become

X = o3

Y = 0 (36a)

18
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Y(O,cx,cy,cz) = {éI&+ (L - a)¥(0, = cx,eysez) = (2 - @) = (% - ¢2) ¢,

- Oey - Q€2 (-Z— - c2)}}__i_%8_{1~£z + Y(0,c) L= sign cx
2

(36D0)

Introducing the Laplace transforms, making expansion in the eigenfunctions
Wr’z, and finally eliminating & as in the previous section, one is led
to the set of equations

ry20°

2 2
(8%8ppnByyn = m E: Rr,2f+15r)20" Rrizftsrial"+) Orlagtes

gt 14t
r;l

Ty

Sar,21+1(0) +n Rr,2f+13ri2l" argal'(o) ’ (37)

r;l!

corresponding to Equation 14 in Section II. As consequences of the conserva-
tion laws,

Ro,13r,24 = Rl,l;r,2£ = Rpoogj0,1 = 0o
Furthermore, for Maxwell molecules
Rr,zlgl,l o

except for (r,2¢) = (0,0) or (1,0). One finds then easily the solutions

const. (38a)

1l

0,1

Il

81,1

const. (38b)

a (x) = DTLEK+1(S = pi) eP1* 4 Dr’2£+l(s - - »i) e P1¥ (38c)
ry2l41
(% s
i ds/g - Py i ds/g _ . D1

7E1t is clear in this problem only m = O is of interest; hence, in this
section we will drop the index m altogether.

19
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or,20(x) = 8y 5y (0)

\ 1 Dy oger(s =pi) , o4x
+n }; Rr,2£§r§2£’+;(-;z L ra2ihy (e1" - 1)

Pi (QA
rif I ds/g - o,
1
- }: £ Dr}2£’+1(s = = pi) (e'plx - 1)
Py (@A | ’
i ds’y _ -p;

where the notations have the same meanings as before, and the basic deter=-
minant A is

N
A = [ 838, mdyyn = n® 2{1 Rr,ofl+13rial’ Rr}zz‘;r§2£“+l,/ .

ritl’

The boundary condition at « requires that

8p,1 = O (392)

ay,1 = 0 (39p)

Dp og41(s =pi) = O . (39¢)

' Dpiogry. (8 = = pi)
ar,zi(o)‘*ll }: Rr,205ri2l'+ }2 & e 3 S = 0. (393)
p; 94y
l‘el .
s * 48/s = - py

In the present case, with the same cut~off procedure, it is easily seen that
Ne > Ng3 hence, Equation 39c follows Equation 59d and the differential equations
for the a's. The boundary condition at x = O gives the following relations:

20; .
ar,2£+-1(o) = Z Mr‘,2£+1;r,2,e' ar;zjz'(o)

"(x
2 r,'
_ . 1 2at 200 Be€yg 20 €o
= [ 6 M e — C—— M 5 i l‘l'oa
Ni1 Tf“"‘o ri°lo T 55 Nog r,204+130,0 50 Nig Ty20+131,0 ( )
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L 2(2-0
ar,zl(o) + —ijg—l }: Mr oggriatt+r ar;2£'+1(o)
ril!
2(2-) 1 2t B-€y _€o . L
= - M . + BpnOpn = =2 8,.,0 . (Lob)
- Nar T, r,2l;1,1 oo ro®lo Nag ri-lo

As remarked in the previous section, Equations 40a and 40b follow from each

other when all the eigenfunctions Wr! are taken into account. Otherwise we

have to make a choice as to which set of equations we want to be satisfied.

In the present case, it seems natural to take Equation 40a. Introducing
L) Do sls = - p1)

0s3 = aa
<ds
8

making use of the relations between the different D's and substituting the
expressions of ar,ogy1(0) and &y 5,(0) in terms of the b's into Equations 40a,
we arrive at the following set of equations

i

B-gq €
Noo Mf,2£+1;o,o

Nio

1) (1) _omg 1 ont g
Mr,2£+1;1,o +2Q‘1‘,2£+1 bo,s = o E T—O— 511810 (41)
i

where

(1 - 1 [Bo,s3rial"+a
QL1 = "o Mo,15ri20%; Rrlagtsriapier — O&B’ 2 '
o b by 0,330,3
Ty ry
(1) 1 (B, a5riat e
Qi = 1, EE: j{j Ma,i3ri20t Brjzpgtsrlie+ — <~ I
rigt ryL"
(1) 1 /Bo,a3rtapmer
— ! —— IS I 5
Qr,22+1 = o Mr,2£+1;r}21' Rriagiryatn
Pi Ao,330,8 7
r,zq r"z“ 1
’ R

0 As,330,3

2= Ao,s;r,2£+£>
i
The Equatiops 11 are a set of N, linear inhomogeneous equations for the NO
unknowns béig (No = 2 in number), B and €» (and hence €j,because of 33b).
Upon the solution of these equations, the complete distribution function is
known:

i

3 2 2Nt /5 2
h = €1 4+€2 (= = + 2 (2 - +
1+ €2 (2 c®) T (2 c ) Cy i ar,l(X)Wr,g ’

r,l
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where all the coefficients are of the form e ©°. The physical quantities of

interest are given by

2 €o
T = T 1 - .
o(x) { S Py <N10 + alO(XD}

For large x, the a's all vanish, the temperature becomes a linear function of
X, and the relation nkT = constant is satisfied. It will be seen that this is
not the case for x ~ AN. The temperature jump, AT, is given by

AT = T(x =0) =T =0) = = (E +—2 g (dz) .
o(X 2 Bﬂs/ZNlo 10

The corresponding "temperature jump," (AT), as defined by Welander, namely,
the difference between the temperature at the wall obtained from a linear
extrapolation of the temperature curve beyond the transition region and the
temperature of the wall T, is

(AT)W = TO [l - €2] - TO = =~ €p TO °

To get some idea of the magnitude of these quantities, we give numerical re-
sults for some "successive approximation" calculations.

A. FIRST APPROXIMATION: YVo,1, V1,15 V0,07 V1 o7 Yo,z

The obvious solutions sare

80,1 = al,l =0
80,0 = 83,0 T 8,2 = 0.
Equations 37 become
B € T) €2
— - =) Mo,1;0,0 = @ Mo,1500 = O
NOO NOO ?EIEy 1,0 775
B € ) € 2-0 2\G
G (7= = =My 150,0 ~ & Mi,i300 = 5 ’
NOO NOO r-aNMy N y2 2 TO
ivin
gLving o0 N1 At
€1 = € =T = — T — °
a kT,
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The temperature distribution is linear throughout the entire space. The
temperature jump is
2'055\/;%.1: _

R

To(x)
dx

AT = (AT)y = —d‘-“i—si

in agreement with the results of Maxwell and others.

B. SECOND APPROXIMATION

To the functions used in the first approximation, we now add Wo,sa
¥1,2, and Vo2 . o. The determinant A has one pair of roots, namely
’ »0 ’

15
L

&

> 1

p = %

Equations 37 now consist of three equations:

B~€1 €o n
. 2 0

. - — . ' -
Noo Mo,130,0 Y10 Mo,lgl,o + - Mo,13ri20* Brizt}o,s Po,s 0

ryL

B-¢€ : € no ! 20 A
T L My,150,0 - ﬁé_ My 131,0 + = }2 Mi,13r}2!' Rriotjo,sbo,s S
00 10 T o
ril
B-€y € n KT Dal) b
M . - == M . + -0 MO wn ¥ 1 Rr'z 1 - 0,3
Noo 0723090 7y  ©283050 <P 4"!: 9iTsEh 230 Tz ’
T

Together with Equation 29b, we find the following for the complete solution:
2« 39

+
_2-a 5w A 2% 10V15x

€ = €
* o b T,z2a, 15
2a W 15%
80,1 = 81,1 81,2 82,0 = O
~15 x
a1 5 34 o F A
o T 2~oz+ 15
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,l§ p.S
_2a1 3 3/+m e A

fo,0 T TG N5 T, 2a , 15
' 2 W15k
. a1 B Sem _o X
50 a k45 T, 20 , _ 15
x IN'15%
A5 x
o Lo2aNs s e kX
0,2 © g 8 Tq 2= 15
2 W15
The number density and temperature are given by
| ~N15 x
e, 39 S koA
A - n(x) h.2@ Nr [ 2% 10V15x 157 A
-0 @ b ofo-a 15 " oa R To
|22 W1sx % W15k
_ A5 x
= 39 2 TN
T o= T (x)dL+ D=0l 5J;. 2o/ lOJl5ﬁ . N15x At
© a 4 fo=x, 15 2= 15 To
KN 2 Wisx
so that [ V15 x 1
TSN
‘ 2= 1 |5 e AL
nkT = no(x)kTo(x) 41 - = = = — L,
a 4 A3 2-x + 15 Ty
2 W15
L J

Hence, only when x >> A 1s the scalar pressure a constant. The temperature
distribution is no longer linear in xj however, the deviation from the
linearity is again appreciable only in a very small region where x is a few
mean free paths. The quantity AT is given by

20

1k
- +
TO(X) 2/ LN l53t

dx 2«0 + 15

G N 15%

22 1o+
AT = 753 ¢

2k
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and

-0 _ 39
(AT). = 2-0 15 7 dTo(x) 22 10V15x .
K a 8 dx 2=a , 15
20 L Ton
For @ = 1, we have
- 15 + dTq(x)
AT = (0.965) r=ax
= 15 5 dTo(x)
(am), = (L.o2n) 22 T =028,

giving a value of 1.021 x 15/8 for the slip coefficient defined by

(AT )w/ 7 ——ﬂ—dTgJ((X) .

.C. THIRD APPROXIMATION

Three more eigenfunctions are taken into account. They are Wq41

VY. ., and ¥, _. The following are the values of the p's:
2,1 1,3
_ 0.h4798 _ 0.83h4k _ 1.293

The temperature distribution is found to be

T = T (x) 41 + -
° 2-0 2- ¢ 2-0\>
2.05 + 11.65 == + 22.09 (2@ > + 13.96 (

|:2.63 + 13.92 ga + 2k.29 (E&‘) + 13.96 (2"O‘>

<4798
<[11 49 + 4h.01 .g_.a‘.‘?‘. + Lo.ob (2'0‘)2] e"““‘g"’%

5n
- 0.834khx

+ [0.71 + 2,73 222 4 2.6 (2"0‘) e A
20, n

- _1,2 3 2
+ [-0.11 + 0.36 gc'f‘ + 1.09 (2 >)2 ? ")

——
-
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so that the temperature jumps are given by

L.61 + 9.96 — 220 | 20.45 (-2;‘9)2 + 13.96 (2=%®
ar o= BT To(x) 2-a 2
8 dX _0‘205+1165 +2209( )+:L5.96(-§-a"—'51)3
=nd 2 Dty 2 2-00,3
e - -
2. 92 == 4 2h.29 (== 6
(), - 1T elx) 2 63 +15.92 ==+ 9 (Ea) +13.96 (=) )
8 dx Q@ 5 05 4 11.65 =% 4 20,09 (22%)% & 13,96 (_.._.)3
20 0 20,
The corresponding values for & = 1 are
_ 15 7 dTo(x)
AT = (0.888) 5 dX
_ 15 7 dTo(x)
(AT)y, = (1.150) 2T
Welander obtained the result
_ 15 7 dTo(x)
(AaT),, = (1.152) 5 dx .

V. CONCLUDING REMARKS

The outstanding question, which remains to be answered for this
problem just as for the problems treated in References 2 and 3, is the question
of the convergence of the successive approximation procedure. Practically
speaking, the convergence seems quite rapidj only relatively small changes are
produced by going beyond the first approximation which is identical with the
classical results.

A second question is whether other ways of breaking off the infinite
sets of equations, or other ways of selecting the boundary conditions to be
satisfied, would lead to appreciably different results. If so, this might
throw some light on the convergence question.*

Finally, the effect of the choice of molecular models needs further
investigation.

*Dr. H. M. Mott-Smith in the report, "A New Approach in the Kinetic Theory of
Gases," Mass, Inst« of Tech. Lincoln Lab. Group Report V-2, Dec., 1954, has

investigated other selections of boundary conditions for the heat flow problem
between parallel plates and for the Couette flow.
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2
}:(s Sjk
k

Then

1

and let s = £ p; be the roots of the determinant A = /8585

Z Dk(s pi) y

i

i

a's. Hence,

Dy

m

where A
we have the»relation

b

for all m, n, k, and £.

where

Py

where Dy 1s obtained from the determinant A by replacing the k

z am Amk s

is the algebraic complement of the (mk) element of A.

Making use of this,

D (s =% p;) = Zam(s=
m

Engineering Research Institute

APPENDIX T
A iz )]
1 13T .2 1
PROOF THAT Dy op 3(s = £ p3) = ;)L === Di,z,1(s = £ p;)
Ai,2,131,2,1

Let us consider the system of equations

bk)oz

a

= ’

k J

-ka/ = Oo

1
S+pi

Dk s = - pi)

&),

') %

th column by the

For s = £ Pis

= by .y
: )'A(i)
i) 2nk
pi) Amk A i
nl
Dp (s =% p3) ,




APPENDIX II

PROCF OF THE PROPERTIES OF Mr £ msr}!lm

: 3 e=c2 1 + sign cx
Mo t,myrilim = fdc e 5 ¥,0,m Vrlttm

where

Mo/ (62) c'Phcos @) M

v

r,l,m

1. Sincé the same value of m appears in both ¥* and ¥, it is clear that
PP ’
Mr,l,m;r}l}m is symmetrical with respect to the two sets of indices.

2 1 ©
: 2 _=c2
Mr’zzljm;r;az;m = f d¢ f dx f dee e

0 0 0

2.

: Wﬁ,zg’m (C:X:¢)¢r}2£}m (c,x,8)

where x = cos ©. Since Wr,zi,m Wr;zzfm is an even function of x,
: 2

1 - a2 ¥
Mr,20,msrialim = > L/q dece Vr,20,m Vriziim

1
=3 Oppt Dppr
by the orthonormal property of the ¥'s. Similariy,
M . = 1,8
ry20+1,mir;2L'+1,nm > rr!CpLr o
3. To find the sum

E: Mf,2£+1,m;r?212m Mr?zﬂ?m;r;2£'+1,m
r"’e 114

we first expand 1% sign c
P =X

Vr,20+1,m 5
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in terms of the complete set of eigenfunctions wr,l,m

1 £ sign cx ‘
Wr,2£+1,m 2 = zij'br,21+1,m;r;£;m Wr}l;m
rilit
where
b . gRe=C2 * 1% sign cy
r,2l+1,mirilim = U/\ ce Wr,2£+1,m Wr;ﬂ;m i) *
Thus,
1 % sign cy 1 :
Wr,2£+1,m — = E’Wr,2£+1’m x jgj Mr,2£+l,m;r;2£}m Wr}zl}m .

ril'

For all values of Cy except Cy = O, one can write

1*signe 1 1*sign ex .
Vr,2042 m £ =5 ¥r204,n _____e_g_____ L) Mryzl+1,myr)el joVr ot
ril!
or
1 X sign cy + 1 + gien c
Vr,2f+1,m P = *2 Z MT’22.+l,m;r‘,‘22 sm q’r}a’z}m —-:-é-—gr-l—'—)-g -
ril! |
Similarly, one finds
1Xsigne . 1 % signec
‘l’r,zl,m 28 £ = +2 ZMI':ZI,,IH;I‘}\Z‘C%:L,m Wr'}gi"*‘l,_m _—_—Eg———x- ®

ritt

By substituting Equation B into Equation A it follows that

Wr,2ﬂ+l,m =k }:N%,2£+1,m;r}2£§m $20tmyri2L"+1,m Yrizl"+1,m
ritt
Hence, 1
}:_Mr,2£+1,m;r;2£§m Mrloptmsriotta,m = F SpptBppm
riL!

and similarly

1
}: Yr,20 miryat tea,m Mrjet th,mpriatin = N L F A
Iz | |

1Esignex
2

()

(B)
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= 2 =Cc2 1 %
N KT}l'L/jdce - wr,l,m wr‘t}m

b
Cx

0

Mgt Brygomsrdttn

where Ly g msrigim 18 symmetrical with the two sets of indices

A. m=0. Table of Ly pypyys
NI 0,0 1,0 0,2 1,2 2,0 0,k
r-,‘i o .
2 6
1,1 ;/.—5_ : '5 -0 0 0 0
2 4 N10
H
15 35 -3
o1 b o8 0 0 6 0
35 35 1
15 -8 2 25 lygp W2
15 95 9 9 9
B. m=1. Table of Lr,z,l;r;£§l
1,1 |
T 0,1, 1,1,1° 0,31  2,1,1  1,3,1 0,5,1
0,2,1 V2 0 0 0 0 0
2 10
1,2,1 = = 0 0 0 0
> J7 N7
L 2 1h
O,h,1 "\/'—2;:[ )4,\ 105 15 0 0 0
N b 2[10 V10
2,2,1 Sl= = 0 0
N7 3\7T 3
14,1

‘1251 N5e7-11  W15:11 W3e5.17 N
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| APPENDIX IV
M _ 4o -c® 1 4 sign cx _ x
r,l,mritt,m = f ce 5 Ve, t,m Yol tim
o My oog,myriztim = 3 Orrt Oppt
My of+1,myriz2l'+1i,m = -é- Sprt Byp0
B. Table of My g;r1gr  (m =0)
M 0,0 1,0 0,2 1,2 2,0
o1 1 1 L1 1 .t
’ on 3x Vér 21x  1/15x
11 1 7| 2 1 11 2 1712
2 2\/‘5; I\15x 2\/1—51[ T 105x% Lo\ 3
0,3 o1 1 2 o1 1
| V30m 2V5x on N 351 20x
o > w2z 2 [T 157 [ 2
’ h@ N105x h\/—ﬁ 56\15% 80\ 21x
L3 S N ) 1 sle g
’ NS on 2\351 ONm
C. Table of Mr,l,l;r;i;l
oDt o, 1,1,1 0,31  2,1,1 1,3,1 0,5,1
22 : :
O 2 l ..__]_'._ - l ...];_ - l l - l
2=2
Nox 55 NET 1w35% 10% 31k
Lo 1 11 1 25 5 1
=2
N T N 70 N T70% 28V 10x N 35x NRINE
o1 1 V35 53 __3 A3 6
27D
Noix 70 N0 150x 351 W3n
551 1 7 ! 111 1 1
240
Wi wW70x &0 56V10x 120357 8wz
R T A E R :| SN | R [
il Jo.7-11x  2N165x 5 a385x  28V165x al770% Wilx
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