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ON THE PROPAGATION OF SOUND IN MONATOMIC GASES

I. INTRODUCTION

Among the problems connected with the study of the transport phenomena
in gases, the question of the sound propagation in monatomic gases is of special
interest. The reason for this lies in the fact that by varying the ratio of the
wavelength of sound,/\, to the mean free path of the gas molecules, A, one can
study in the most direct way the transition from the so-called Clausius-gas to
the Knudsen-gas regimes, which correspond to the limiting cases IN>> 0\ and A\ <<,

The classical theory of sound propagation is based on the Stokes-Navier
equations, which lead to the dispersion law:

- L mar wo = o
/ Pt 0
where « is the frequency of sound, oo = 0} - i0% is the complex wave number,

V, 1s the velocity of sound at zero frequency, k is the Boltzmamm constant, and
m, p, 4« , and ¥ are the molecular mass, the density, the viscosity coefficient,
and the heat conduction coefficient of the gas respectively. One can solve

Eq (1) exactly for the real and imaginary parts of o, and thus obtain the "exact"

expressions for the dispersion and absorption of sound. But for gases, it is in
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the spirit of the derivation of the Stokes-Navier equations from the Boltzmann
equation to develop Eq (1) in powers of A//\, and keep only terms up to the first
order in this ratio. Doing this, one finds that there is no dispersion, the
velocity of sound, V, is

V=4

g

and the absorption coefficient dr is given by:

o )
Qz}EWQﬂ,E?U

For Maxwell molecules, 1.e. molecules repelling with the ¥r-> force law,
Yy = E% 5‘/4, the expression reduces to
m

N

7
€7

One can go to higher approximations by calculating from the Boltzmann
equation higher-order corrections to the local Maxwell-Boltzmann distribution.
From these one obtains the higher-order terms in the pressure tensor and heat
conduction vector, leading to the corresponding higher-order hydrodynamic equa-
tions. From the second-order hydrodynamic equations(the Burnett equations)
Primakof‘fl and later Tsien and Schamberg2 have computed the dispersion and ab-
sorption of sound. Their results were in error on account of an error in the
heat conduction vector given in Chapman's book?. This error was corrected by
Chang and Uhlenbeck™, who also carried the calculation one step further, i.e.
computed the next term of the absorption coefficient. For Maxwell molecules

the results are:

1 H. Primakoff, J. Acous. Soc. Am. 1k, 1L, 1942,

2 H. S. Tsien and R. Schamberg, J. Acous. Soc. Am. 18, 334, 1946.

3 Chapman and Cowling, The Mathematical Theory of Non-uniform Gases, Chap. 15.

4 C. S. Wang Chang and G. E. Uhlenbeck, "On the Transport Phenomena in Rarified
Gases, APL/JHU CM-443 UMH-3-F, 1948.
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Cha.ng5 has also reported results from the Burnett approximation for helium using
for the force law a form derived from the second virial coefficient by de Boer
and Michels. For room temperatures, the numerical coefficient 7/6 in Eq (2b) is
replaced by 7.01/6, while the coefficient in Eq (2a) is replaced by 230.9/72,
which indicates that the dependence of these coefficients on the molecular model
is not very strong.

Recently measurements of the absorption and the dispersion of sound in
helium have been made by Greenspan6 using very low pressure and very high fre-
quency. These experiments go beyond the range of validity of the Stokes-Navier
and Burnett approximations, and probably they are beyond the range of convergence
of any series expansion in kﬁ“&. Thus, it seems desirable to make a further
study of the theoretical aspect of the problem. To do this, it seems better to
go back to the Boltzmann equation. In the Enskog-Chapman successive-approxima-
tion method one does not distinguish between the size of the disturbance from
the equilibrium state and the scale (compared to A) of the disturbance. One
concentrates on the derivation of the macroscopic equations of motion, which as
a result are not linear. But for the sound propagation the nonlinear terms can
always be neglected, since one can always assume that the intensity of the sound
is sufficiently small. Thus the Enskog-Chapman method requires too much unneces-
sary work.

It is more practical to assume from the beginning that the size of the
disturbance from the equilibrium state is small, and that the dependence on time
and space coordinates is like exp i(wt - ¢ z) with no restrictions on the scale
in time and space as compared to the time between collisions and the mean free
path A. It turns out that in this way it is easy to derive and extend results

5 C. S. Wang Chang, "On the Dispersion of Sound in Helium", APL/JHU CM-467 UMH-
3-F, 1948,
6 M. Greenspan, Phys. Rev. 75, 197, 1949; J. Acous. Soc. Am. 22, 568, 1951.
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like Eq (2), and one may hope to obtain in this way the complete dispersion law
for all values of A//\. The same idea has occurred to Dr. Mott-Smith*, and his
results are in substantial agreement with ours. In the following, we will give
an account of our work. A Jjoint publication with Dr. Mott-Smith is in prepara-
tion.

II. THE BOLTZMANN EQUATION FOR A SMALL DISTURBANCE FROM EQUILIBRIUM

The Boltzmann equation for a monatomic gas when there is no outside
force is:

G roZ o fery-

- SS s .
i /x a7 ) 7 I (3)

fit

PG 1D

f(jf, 7, 85 x,7,25t) is the velocity distribution function at time t and at the
point (x,¥y,z); £, is the distribution function corresponding to the velocity
componentsjfl, 71, and.fl; and f' and f1' are the distribution functions corre-
sponding to the velocities after collision. I(g,8) is the differential collision
cross section corresponding to a turning of the relative velocity g over the angle
6 into the solid angle sin © d0 d€ . For the case of a small disturbance the
"Ansatz" for f is:

]I=]€[/fi(f»7,_f/x//‘/,// "L)/ (%)

¥ We thank Dr. Mott-Smith for sending us his manuscript.
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and h <<1, but no assumptions are made about the space and time variations of h
Substituting Eq (4) into (3) and introducing the dimensionless velocity

we obtain, in the first approximation:

A\

where n is the number density and

J(B)= W,// 7C e /d&/ﬂmaﬁ
7L 8) (Rr - £ 3/

where g is also dimensionless.

The operator J will be called the collision
operator**,

It has the dimension of an area and the order of magnitude of the
collision cross section. Eq (5) is a linear integral differential equation.

For further discussion, it is convenient to consider first the eigenfunctions,
}ﬁ of the collision operator J defined as

T =A%, (7)

* The density and the temperature are therefore supposed to be constant.

*%*Jt is to be noted that our definition of J(h) differs from that of Chapman by
a factor -(m/2nkT)3/2 /2kT/m e~°°.
>

where fo is the complete equilibrium distribution function with no mass velocity*
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where Aj 1s the eigenvalue. We will list some simple properties of the system
of eigenfunctions and eigenvalues which are valid for any kind of interatomic
force.

1) As a consequence of the conservation theorems of the number of
particles, momentum, and energy during a collision, five of the eigenfunctions
are known. They are, except for normalization factors:

Fooo ~ 7/

%/a

\O

burer ™ CA""} %,,~ C}-‘;»

and
<

4
}é/ao ~ C";é'

The corresponding eigenvalues are all zero. The meaning of the labels of the
elgenfunctions will be explained below.

2) All the other eigenvalues are negativeé This. can be shown as
follows: Multiplying both sides of Eq (7) by'Y& e~ and integrating over dE;

Y/ D,
* /éf dEJe'CL(?é/Z

¢

The denominator is positive, while the numerator* can be transformed into

* It 1s essentially the negative of the bracket symbol.[}%'fj used by Chapman.
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ol e[t g g )

AW, - -4 )

and is therefore negative or zero, and zero only for the five values of y“s
mentioned above. Hence all the nonzero eigenvalues are negative.

3) Both Enskog7 and Chepman have given the expression for J in the
standard form, namely:

TH) = - stepf - [ &€ K (EEIPED, "

where
= 2 /0 .-6° : (9)
o(c) v J/;é; e J/szaﬁzuei;zzfgitﬁ/
and

4 = - -__e‘. 7 . _
A, 6) = Vfo/ absecr //[93;)

gl [rpmf o) r Lo £ 7-6)) (R

- &
— (e - REG )t F . o4
e ’ 1T R riec e CG c&/;fj/

7 D. Enskog: Kinetische Theorie der Vorgénge in Massig Verdlinnten Gasen.
Dissertation, Uppsala 1917, p. 1LO,

7



—  ENGINEERING RESEARCH INSTITUTE -« UNIVERSITY OF MICHIGAN

—

One sees that K(T,c¢y) is symmetric in € and €, and is isotropic, which means
sC1 1

that K depends only on the magnitudes of ¢ and cy and on the angle, ¢', between
them.

4) From the isotropy of the kernel K(E,EH) it follows that the
eigenfunctions'Y‘will have the form:

Y% ()= fel(V 2 (d 1),

(10)

where ¢ and'X,are the polar angles of T with respect to a set of fixed axes,
and where the radial part fz(eg) of the eigenfunction fulfills the equation:

2 "C;L.i" z, A
- 0(c) /, -Jlif/dgg e (el G (c8) 7 4yt (11)

qt(c,cl) is defined by the development of K(c,cq,cos@’) in zonal harmonics:

o0

Klce, ecad) =2 G, (e c)/lp (crf) . (12)
lz0

The proof is as follows: Introducing Eq (10) and Eq (12) into the
integral in Eq (8), one gets:

a2

2T G (50) Bl G, 4015

where ¢l and Yi are the polar angles of Ei with respect to the same set of axes
used for T. For the integration over T}, we take the direction qf'? as the
polar axis, so that the polar angles are §' and L', and d¢] = cfdcising’

d¢' dX,. The Integration over'XJ can then be performed, using
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7

/ AR A R ORI ACT IR )

which is a consequence of the addition theorem for spherical harmonics , and
one obtains:

272 K1) vt T h G G (s
7
'/.,/ AP /5 (o P /5 (cer B

<’/

= L NGyt a9 (o),

-
Therefore if f, (c®) fulfills Eq (11), %& (c) as given by Eq (10) will be an
eigenfunction of J(¥).

5) The eigenvalues Ay in Eq (11) will clearly depend on.Z, and on a
"radial quantum number" r. We will write the eigenvalues as Are 5 they are
(2£ + 1)-fold degenerate, corresponding to the 24 + 1 different spherical har-
monics Yy (#,X) of order £. The radial eigenfunctions fw(cg) form an orthog-
onal set of functions with & weight factor c2e~C“, The complete eigenfunctions

will be written as

Botry (602 Nogm 12" (B4 Fre (.
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where Nﬁ£m are appropriate normalization constants, so that:

2
4 - C -
J/gé € ,;62%» ;yiqu”/ - °Qr'4929 Srm’

The simplest problem to consider is the case where the disturbance h
depends only on t, but not on x, y, and z. Eq (5) becomes, then:

5’%—" » YL 15) (13)

Developing h in terms of the set of normalized eigenfunctions of J,
o0
4
Zl‘ "Z 0(,;4/,"/}/,,/‘6/%' (C).

Substituting in Eq (13), multiplying by ’}Pmﬂe‘cz, and integrating over dc, one
obtains the set of simple differential equationms;

LAt - 5 Y2 st trm (14)

for all values of n, £, and m. The solutions are

7} "4‘»,'[/) »Em t
Syt (B = Uy () €

L
(e %
For all nonzero eigenvalues, the coefficients apnpy approach zero exponentially.

For the five zero eigenvalues, the ('s remain constant. They are determined by
the initial values of the density, mass velocity and temperature. The “solution

10
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is clearly a special case of the general result of Boltzmann (proved by means
of the H-theorem) that the equilibrium distribution, as described by a Maxwell
distribution with a mass velocity, is reached monotonically in time.

For the problem of sound propagation we will assume h to be of the

form:
Fir ) e ¢ et~ a'/e/

withewreal and d = of - 10h. Eq (5) now becomes:
4'04;7}7: “ - V‘})f = 2704/ . (15)

Developing h as before, one obtains an infinite set of homogeneous linear equa-
tions with coefficients qpgp. In order that they have a solution, the infinite
determinant must be zero. This gives a relation between «w and o , which is an

expression of the exact dispersion law for the gas.

For the further development we will limit ourselves to the case of
Maxwell molecules. For this case we have found an explicit expression for the
"radial" eigenfunctions f.g » vwhich leads to a straightforward evaluation of the
coefficients in the series expansions in Eq (2).

IIT. FPROPAGATION OF SOUND IN A GAS OF MAXWELL MOLECULES

For Mexwell molecules the collision probability per second is inde-
pendent of the relative velocity g. It is convenient to write:

JL3.8) = yIe Fra) (16)

11
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and redefine the collision operator as:

T4 = ;:’g/,/q“ &Gt ftp it #C8) -
(17)

RLUT ARV S S

where ) 1is the force constant and F(©) is dimensionless and a function of ©
only, so that the collision operator J is also dimensionless and the eigen-

values of J will be pure numbers. In Appendix II, the definition and some of
the properties of F(6) will be given.

Adopting these changes, Eq (15) becomes

ff - /’%‘7‘; o"cj) K= nyZZ JK), (18)
where
f/ﬂ=’%f“ﬁq"e‘qf(é\//(//¢, ¢, cat #7) (19)
with
-
Ay = 27/ b 8 7 ()
and

12
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K e, cetpl = ;_64- //,,-

K

- 5/77 c/éca:fd wc ) ¢ A r-8)] -

: e-(”c’*)c sJent 2 7"(‘oacc//m;5/co~/ ‘;)/

Since for small 6, F(©) becomes infinite as 0-5/2 (see Appendix II), both terms
in J(h) are really infinite. However, the combination of the two terms is
finite.

To find the radial eigenfunctions one first has to determine Gl (c,cl).
From Eq (12), we have:

4 /c/ﬁw;f’/"‘ (cxt BN e 6, cts 8.

With the help of the integral formula8

Prf }W"“’%

7
[ a8 e  (peisii) & et ) =

- ){}éz‘ 0T i Ep e, 2.

8 Watson, Bessel Functions, p 379.
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the ¢' integration can be performed, leading to:
G, (c c) = L. -
7 (O )) = = /42 ézv

w2(2lrr) O T g
- 2EC0. ) [ s frf cac f Bl (e

(bf-/,ﬁzn/

- [F)+F )] e /,,/,e;ecco// -Z)

and the "radial" integral equation:
}/ o0 2 CZ—
e <
Ap D E AT 5o Ll

# -ml: (t)/’c/a’c e " /677/4’5’)/——‘”5-&

7 _ C?' ,z z_f
/;;/caﬁf)[F/ﬂ/¢F(zz;g// e (e &)t 3

1k
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We assert that the eigenfunctions are:

o, e 8 p (Lrfrr)! |
S @', (D= e 5 e e S (PR (23)

where $§+i 5 (c2) are the Sonine polynomials of degree r and order £ + 1/2,
which are defined by the last part of Eq (23). For some of the properties of
these polynomials, see Appendix III. To verify the above statement and to find
the eigenvalues we substitute Eq (23) into Eq (22). The second term of Eq (22)
is zero unless £ is zero, and because of the orthogonality of the Sonine
polynomials r must also be zero. Since fyy is 1, the second term can be written

as -Ag §,0 Jhofré . Hence, interchanging the order of integration in the last
term, one finds:

~ Ay fog (e - Spp e (<D #
fff()"—‘,gf)///fmw ’/e et 2
- [Fll)r F(F 2 J; y ZZ/*(Z ;/)/
',,/;C’ C//,(gfye- 9"64:';5‘//_% (oive oot Ecrc L)

The c, integral is evaluated by using the formulad:

9 Watson, Watson, Bessel Functions, Eq (3), p 39%.

15
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Sttt Y s et -

/) Q }) 2
= /j/%{“’) (2] - 5 Lo yy Prs 2
a’/’“’ﬂ(/)f;) € ? /f/‘zd o 0 /

and one obtains:

~ A S (s » ZT Z/aw pewE-

& ///",&f’v)/
YACK: ///—'//+F(.rﬂ)]/ja (=) K

. .} 4
. /ﬂu/zé///r('f; /"‘2{, "C%’/iéé’/ =

7
= —,y,/,',é/cy(/f Iy d2s ) + 27C e/a(f,m‘,/ao fég :

/
< B lent) [Fia) 70 4’)/2 (L2 A,

//( /}/’ ~

. £ C“é’;ﬂ"?‘f@‘f/’l{
/0 /'_/'QV).’(/Q;"»?)/ <

16
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Interchanging the order of summations, the sum over p is seen to be just (ﬁj'ﬁ
cos2(r - J)9/2; the sum over j is then:

r ' ) Y] / r)
sl p Y (TErT) o
/é e S rpol (HrErp)! % o i

v

We thus arrive at the desired result; the eigenvalues are given by:

.
Dot = 7 dbsaad £18)-

(2k)

/ | |
[t B o) r it B i) (00 )]

All eigenvalues are negative except Aoos Mo &nd Ag1» which are zero as in the

general case. For the same value of £ the eigenvalues decrease with increasing

values of r. It can be proved that there is no lower bound (sie Appendix IV).

A few of the eigenvalues are listed in Table I. Here App = J’de sincktlgr(e).
0

For the problem of the propagation of sound we can take for the com-
plete set of eigenfunctions:

Z -
Wt LG, O R () sy o

7 (Erdr 1)/

The V;z’are normalized to unity with the weight factor e'°2. They are poly-

nomials in cg, Cys and c, of degree-2r 4 £ . And the first eight are listed
in Table II. Developing the disturbance h in theiy}zi, one gets for the
coefficients ane the set of equations:

17 —!
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TABLE I

UNIVERSITY OF MICHIGAN

A Partial List of the Eigenvalues of the Collision

Operator for the Maxwell Molecules

—

Zr © / 2
o o 1o) ":?é
/ o ,24’ _o_;,{z
y | -2 3 —g,f—”&f%é’ -l 2 f’;f

18
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TABLE II

UNIVERSITY OF MICHIGAN

First Eight of the Eigenfunctions of the collision
Operator for the Maxwell Molecules

%, s
-z
7{/ e r¥e

%o 5_77.54 (2‘2”&)
4

% ‘;\7;47#(‘3;?;":)

y = ’?j -“'——c’j

7% ,@:77‘ ?(.a
4

s z??f“(fge’-ﬂ})
-

Vo | KT % (55 eDE Y

4
%a /-:?__77‘—“_('2“"—3'6#6#)

19
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_
g if LGS [y gep ) E e e, (2
»L’ ’

where

- et
/‘/xl, rZ’ =/”/‘:\ ¢ 5} %’4 }éz’

Mrz,r'z" is symmetrical with respect to the pair of indices r4 and r'.£'.
Using the recurrence relation

cotd Vg lcatt) = i [ 2073, + 275, |

and the integral properties of the Sonine polynomial given in Appendix III, one
deduces easily the selection rules for the matrix elements Mrj.r' ¢ ') namely

/et v’ = 0

unless £'. = £ 4+ leand 2r' +£' = 2r + £ + 1. The complete expression for
M is:

_ (rel+3)
/%'l, r¢r - (£#7) (_;g,/)(.?z,_;) Srrs ;Zf/, £’

Y’ ~
= (£#7) / Glr/) (2€+3) J"’—/ Vol é/,c/ VA4

20
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relrE
* LY et Srr Sese

r/ .
/){\7{—/)(.2{76/) Srts o0 Yere7

The infinite set of linear equations (25) will have a solution if
their determinant is zero. This will give a relation between ¢« and ¢ which is
the general dispersion law of the gas.

We have not succeeded in developing a general discussion of the dis-
persion law, and we have therefore gone back to a successive-approximation method
analogous to the Enskog-Chapman development. To do this, we have to choose &
special ordering of the linear equations and consequently of the infinite deter-
minant. The most natural ordering is according to the degree 2r + £ of the
eigenfunctions y;z’ and for each group according to increasing values of £ .

The first eleven rows and columns of the determinant ordered in this way are
shown .in the page following. We have further introduced the dimensionless
quantities

w
a)o:__—_.. 0’:__...7:__2‘:-
4 ) D ]
”."_&_f 2
)
so that
05____ T O
a@, 7 w .

The heavy lines indicate the successive stages of approximation, the choice of
which will be explained in the next section.

21
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IV. SUCCESSIVE APPROXIMATIONS OF THE DISPERSION LAW FOR A MAXWELL GAS

As in the Enskog development, we will try to construct a successive-
approximation method which will give the dispersion law as a series in kﬂﬁs,
the ratio of the mean free path to the wavelength of the sound. It is to be
noted that in the determinant the A., are of the order unity, while </, and oj
are small, of the order A/ .

1. Zeroth Approximaticn ("Ideal Fluid")

Clearly, taking only the first three rows and columns of the determi-
nant, one uses only the zero eigenvalues of the collision operator J(h). These
correspond to the basic conservation lews of number, momentum, and energy, and
one must expect therefore that this approximation corresponds to the ideal fluid
approximation in the usual theory. One gets in fact,

CUO "% (o]
dJs [~/ 2 g, 2
A4, = 1 a, Lo = o, (a -0 )=0
3 %‘-a’ o V\;; o(o {o
o
bo) o
e “o

of which the roots are

and

23
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2
a},.—.o-}-rc;'z or w = Yo
with
47
Y

which is the well-known result. One can also determine the zeroth approximation
of the first three expansion coefficients &.¢ - One of them is arbitrary, which
corresponds clearly to the arbitrariness of the amplitude of the sound. One
finds for the root oy, = Yy a5

Feoo [ 11525 -F(3-25) | (26)

By computing the number density, the mass velocity, and the temperature, it can
easlly be verified that Eq (26) is of the form to be expected.

2. First Approximation ("Stokes-Navier")

For this approximation we add two rows and two columns to the deter-
minant. A comparison with the Enskog development shows that this corresponds
to the Stokes-Navier approximation. Calling the determinant A5 and developing,
one obtains

= (R )(arid,) 4 - Falq Cayrid,) -

(27)

2

‘f’/wo %) (a5 ety ) - - f/—’ z*

2k
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where Ao = —BAQ/h and A7 = —AQ/E as given in Table I. We are mainly
interested in the development around the zeroth-order root dg = 6/5 ovf,
50 we put

as a solution of A5 = 0 and determine b; and by, by equating coefficients of
equal powers of Ap. This ylelds

o 1
4 = - $Eeew, 4 = - 63/w0’ggL
7 o2y < S
so that
5t Jw,(/ ,,efwu,,__oef//w
A s AL . ) (28)

Changing to ordinary units and making use of the connection between Ap and the
viscosity coefficient,/to,

it follows that

o & LT 2L, (29)
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Eq (29) gives the following expressions for the velocity and coefficient of
absorption of sound

«w . W f 2N aw* (29a)
Ve 7 4 /.e/';’;"f)??‘ / )
g - 22

s (29b)

The first five expansion coefficients can again be determined in terms

of ao which remains arbitrary. For the root given by Eq (29) and up to the
secong power of /a , one gets:

7 4 2 -
top A e [ F B ) ]
o, = -—;ofw /#aerf%;—f ff(/%/f /

(30)

1]

y o)
0(4,_ /01/:'?—1*09 L //_ o?(fc_/_ A /

w2 - P g [ phs
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It is to be noted that the dispersion law, Eg (29) or Egs (29a) and
(29b), agrees with the result obtained from the Stokes-Navier equations (Section
I) only up to the first order in /(( . If the Stokes-Navier equations had been
considered as exact and if they had been developed in powers of /a (specializing
for the Maxwell gas for which Y ={( 15/4 X k/m)/a. the velocity would have been
obtained as

R} 1%/ 1l {
P g /,//L/" /

Our first approximation is therefore not quite identical with the Stokes-Navier
approximation in the Enskog development. That the coefficient 215/72 in Eq (29a)
is the right one*, follows from the second approximation, discussed below.

3. Second Approximation ("Burnett")

Three rows and columns are added which is again suggested by the
Enskog development, giving:

= (@i s Hopoed) - Lmrid,, ) |4, -
- a"z/b,./m,ﬁ dz)(cgn,)ej(w,n)”)f ‘?/cq,ﬂ/,{,z)(a(,n Q,)(a/fe i
f;g (20,7 ), )(ety # o)y ,,/Qj/( 4

/ dy* (2 7. .w)(‘”a #e A?) "‘ wol(“b""/o})/‘%"‘%)"

2
7‘,}“;(‘”0“:? (“’o*‘\za)(“’o"“ye)/ 7

¥ It follows also from the Enskog development but only from the next-order or
the Burnett approximation, as noted in Reference 4.
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# .
79 /5"{(0),#440&)’"&-5(%#&}” #\;—‘f(a},fz,)lz)/dj -

ol .
- Bag i, )-FEargl= o

Using the values of er given in Table I, and making the same kind of expansion
for o, but now up to A5", one gets:

i £ [, 2y w0t
° < s A J$ 4

#

(31)

5wl | 2786 ) [

e 7277 STy g T

The expressions for the velocity and the absorption coefficient, which follow
from this equation, are

PN 97 WO A2 0 YA Ty
;o Y 7'3/”//’ 27347 7"/,? /
(31a)
w ¥
= & - AL - “___.
%/ﬁ/&v o #8202 (

and
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- w?® [0 AL el
6-/"2‘5}3/{'5/4/%;7 j,
(31b)
- &l
-/F////—///?J’/i;,}, /

The corresponding expansion coefficients ar ¢ &re given as follows:

e {28 B )

- i‘z“‘i w/l' /‘5,2?/ oy

= - S 4 5[40 S L e )7
)/J,a/,,,//* # 5 ‘/%) p c(i—a/,‘}

<

Y ALA /W/*‘_-.... [
=7

o= Gt | 13 48 - F () 22 w I

{/? (ol 4’(0/

, S ues //
o‘///" _7’ /"37:::2 %(‘// (//e ( 4% ‘.’j-’./ ///-2
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One can go on in this way. In the third approximation eleven rcws
and columns must be taken, which permits development up to terms of the ordeg/z6.
The calculation becomes lengthy, and since the coefficients in the series in-
crease rather rapidly so that the range of applicability of such a development
seems rather limited, we have not gone any further. Several points should be
noted in connection with the development outlined:

1) When the calculation is performed as outlined above, at no stage
of the approximation are the results of the earlier approximations changed; each
new stage simply adds two higher-order terms. This is seen by comparing Eqgs
(28) and (31), and it can also be proved in general*. It is due to the fact
that in the nth approximation the added rows and columns have no nonvanishing
elements extending farther than the blocks belonging to the (n-1)th approxima-
tion. This in turn is due to the selection rule

2rt O = 2rrl LS

in the matrix element Mre,rﬁzf‘ This is also the reason why one gets at the
nth stage of approximation a result for the dispersion law which is n steps
better than the result obtained from the corresponding stage of approximation in

The scheme for the higher approximations is that in the fourth and fifth ap-
proximation, one adds successively 4 rows and columns to the determinant;
then in the next two orders of approximations one adds 5 rows and columns,
and so on.
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the Enskog development, as we noted previously, in the Stokes-Navier and the
Burnett approximations.

2) For the expansion coefficients aszof the distribution function,
analogous theorems hold. At every stage of the approximation two further terms
are obtained in the development in powers of}pc, and these terms are unaltered
by the higher approximations.

3) We know from Section III that for d; = 0 the equation has three
zero roots and all other roots are pure imaginary. For o, # O all these roots
will become functions of o, and may be called different modes of motion. Up
to now we considered only the mode which in the zeroth order is given by
wg = 50’% /6 and which therefore starts for 0o, = O from two of the zero
roots. For the mode starting from the third zero root one finds:

a ;"‘:;1 / (32)

For real & all terms are pure imaginary, so that thie mode may be called non-
ropagating, in contrast to the mode starting from the other zero roots, given
by Eq (29), which can also be written:

v _ 2ear , LS ur)? [
w =AY /rfff{”‘f//oa/f y (33)

Here all powers of o’ occur in the series expansion and the terms are alternatingly
real and imaginary. For real ¢, ¥ is complex, so the mode is propagating. The
question arises whether there are other propagating modes.

4) The form of the series expansions of the different modes in powers
of o follows from the fact* that A is an even function of ¢ . Since in any
approximation A i1s a homogeneous polynomial in w4, Oy, and the iAy, and since
the Ay are proportional to lé;&, the dispersion equation has in any approximatian
the form:

¥ This is physically obvious since ¢ and -o should always be equivalent; for a
formal proof see Appendix IV.
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Pl g)=o, (34)

where P 1s a polynomial in x = ;Auhg and y = 140, with real coefficients.
From the theory of the algebralc functions it is known that all the branches
starting from the distinct roots of Eq (34) in x for y = o must be analytic

functions of y. Since only even powers of y can occur in Eq (34), it is seen
that in these cases the form of the development is:

Guw, = 4, + @, (ua)" + @, guig) - - -

where the ak's are real. Therefore all distinct roots will not give rise to
propagating modes.

5) Clearly the general situation will be that there are for 0% =0
three zero roots and otherwise distinct and purely imaginary roots. One must
expect, therefore, that in general there is only one propagating mode, corres-
ponding to Eq (33). However, in the case of Maxwell molecules there are still
"accidental" degeneracies. For instance, the eigenvalues Aj; and Apy are equal
and as a result the mode starting from these eigenvalues will have a form anal-
ogous to Eq (33). One finds in fact:

Q
I
“f

A S

This should therefore also be called a propagating mode, although since the first
term is purely imaginary the damping will be much stronger, so that it is unlike-
ly that these modes have any physical significance.
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V. EXTENSIOR TO OTHER MOLECULAR MODELS; FINAL REMARKS

In principle, the method of Section III can also be used for other
force laws. However, there is then the practical difficulty that the eigen-
functions and eigenvalues of the collision operator are not known. In addition,
the successive-approximation method described in Section IV is not so simple
and straightforward.

The most obvoius method for other molecular models is to use the same
set of eigenfunctions in the expansion of the perturbation h as is used for
Maxwell molecules*. Putting

£z 2 oy Yogr 2

r’l’

in Eq (15), multiplying by y}iie'ce, and integrating over 4, one finds:

' . 7
cwqfrz - 4/&7—7‘ 0';%/ /‘/’z),/é/ Yyrgr =

(35)

=) 2

’/_Z/ Q/@ "‘/2/ #’.'/é, P

where

¥ This is also essentially what is done in the Enskog-Chapman method.
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Ceza.rQK’ EEJ/Cﬂf‘e—<:}¥£z,v773%2£’ N
(3¢)

<=2 (Y ]

using the bracket symbol of Chapman. The T A will be zero if £' % £
because of the isotropy of the collision operator J, but there will be no re-

striction on the "radial" numbers r and r'. If we now call:
172 :
o
07— —— G = e
/ » = 7, / 727 (57)

and arrange the determinant in the same manner as we did previously, then in the
determinant A all elements proportional to o’ are unchanged. The diagonal ele-
ments will be of the form 091 + iarl.r!b The only difference from the form of
the determinant in Section III is that there are new off-diagonal elements

larg ,re.

Using the same successive-approximation method to derive the dispersion
law for the propagating mode as before, one obtains in the zeroth approximation
the same result as in the Maxwell case. This is, of course, to be expected,
since the zeroth-order solution is governed solely by the conservation theorems.
For the first approximation the expression for o’% is formally the same as
Eq (27) in Section IV, except that in place of Ag2 and A11 we have 802,02 &nd
811,11 respectively. A comparison with the Enskog-Chapman development reveals
tha 802,02 and 811,11 &re related to 4, and Y3, the "first approximation" of
Chepman' s expression for the viscosity and heat conduction coefficients, in
exactly the same manner as the Ajp, and A;; are related to X and Y in the
Maxwell case. One finds, to the first order of small quantities:
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2

2
) 177 ' e 74
0,'*‘:——‘//;‘“0,- # /-/
S fa,,,’,/ J’a%u

which, when transformed to ordinary units, reads:

2

2 4
g (EE Fa) ]

This is the same expression as that derived from the Stokes-Navier equations
except that /w 1 and VY ; take the place of & and y .

Going over to the second approximation, one finas, in contrast to the
case of the Maxwell molecules, that the coefficient of the first approximation
is changed. The result, to the first order of small quantities, is now

2. gwi , o
g, = ==« ) /___._____ .
! s //* “% ‘!'a// // v
v ¥ @oz,00 Zuz 2 /-_- /
S 2
02, 02 aa.z,o; d;.e)/_e - (aa, 22/ J

The change is that 1/5'02,02 is replaced by:

/ Doz 02 Zre, 12

@ - 2
“a.z, 02 2,02 a’/—z, y24 (“oz, /2 ) V]
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which in Chapman's notation means that A 1 1s replaced by /452, the "second
approximation" of the viscosity coefficient according to the method of Chapman.

The development proceeds in this menner. At every stage of the ap-
proximation the coefficients of 9&3 the lower-order terms change, and especially
in the first-order term one gets successively higher approximetions of the
viscosity and heat conduction coefficients according to the method of Chapman.

This complication of our successive-approximation method for the
dispersion law cannot be avoided, as one might perhaps surmise, by the use of
the exact eigenfunctions of the collision operator, which would make the matrix
8re,r'p! diagonal in both r and £. Even with these eigenfunctions (supposing
that one knew them!), one will in general not have the same selection rules for
the "radial" number r in the matrix Mr! ,r'f' 88 one has for the case of the
Maxwell molecules. As a result it is easily shown that in the second approxima-
tion the coefficient of the first-order or Stokes-Navier correction is modified.

From a practical point of view, this complication of the method is
not very serious, since one can expect from the work of Chapman and Enskog that
for the usual force laws the successive changes of the coefficients in each or-
der will converge rapidly*. Clearly the origin of the method's complication lies
in the fact that the arrangement of the determinant adopted for the Maxwell
molecules is not suitable for other molecular models. We will now present an
arrangement which will lead to "exact" expressions for the viscosity and heat
conduction coefficients, and which presumably will enable one to make & more
consistent series-expansion development of the dispersion law. For this purpose
we use the set of eigenfunctions belonging to the Maxwell model, so that the
set of linear equations is the set given by Eq (25). In the arrangement of the
determinant we leave the zeroth approximation unchanged but order the rest ac-
cording to the "azimuthal number" .£. In each block corresponding to a value
of £, the arrangement is in the order of increasing values of r up to infinity.
For the first approximation the blocks A = 1and f = 2 are added to the
zeroth-order determinant. The second approximation is obtained by the further
addition of the blocks f/ = O and # =3 and all values of r. For the mth
approximation, where m > 2, one simply borders the determinant for the (m - 1)th
approximation by the rows and columns corresponding to #/ = m + 1, and again
all values of r. Using the notations defined by Eqs (36) and (37), the deter-
minant for the first or the Stokes-Navier epproximation is given below. The
zeroth-order solution is

2 6?0‘
5 F

P

* Compare the values of the successive epproximations A, //‘2,.. and 91,
4 Dy.... Of the viscosity and heat conduction coefficients in Chapman and

Cowling, Chap. 10. ¢
3
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while for the first approximation one easily obtains the equation:

_ & 2 A L ¥ L) . Z
7'z 88 yp i, (FErE L) (38)
4 IR o R A e
N
4 >N©o o /|2 g /2
| o i
Oi o1l <, L’@*:(”O o I, o R o
T i T -
U2 N //F
IO % E 0 557, o
= f ;
ol/i o0 t-L cd,i—/f‘—%’ 0 s 0
/ A;" AN gl\ii\\\
i < | S ca ] N o
s R
. : ' r@ ! \\\
/b 000 o ~ | X% wo
! ) - . \\/
%I ‘d%z;y ; o)
{ Lz _ - ‘
B 1
: / ) Je
I N\ 12, 52
o o7 -
o ) <
L 10 4 0 N %
I3
| «t; N\ .
| | A 3 o ~.\\ ¢ Q),.? 52 \\\
I w \\\ P N .
______J._L LL e A ,;, - ;l, e \'Q . \

wvhere A = ]arl Sﬂ r and s taking all values from 1 toeo, and B = ’ar2 521
with r and s starting from O. A;; and Byj are the first minors of A and B
respectively when the corresponding first row and first column are struck out.
The form of Eq (38) suggests the following identifications¥*:

*¥ TFor justification of these ldentifications, see Appendix V.
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S s (39a)
4 J £ Pl

”C(// é’/ EoR— :{" *é_(wli’__
/ J) 4 !’c;‘ 2

j a (39p)

so that Eq (38) reduces in ordinary units to

A Pl

S @ [, e [ 22

w7z’ ’Lh?é‘) T /{

the same as the Stokes-Navier expression with/é& and ¥ given by Chapman's
formulas.

We conclude with some remarks on questions which have to be investi-
gated further.

1) Clearly the outstanding problem is the question of the convergence
of the series development for the dispersion law of the propagating mode, say,
for Maxwell molecules. At every stage of approximation one gets a convergent
series, as follows from the theory of algebraic functions. However, it is not
sure that the regions of convergence in the successive stages of approximation
have a region in common.

2) It would be very desirable to obtain an expression for the disper-
sion law which could be used for larger values of A//\, so that a comparison
with the experiments of Greenspan could be made. A development in powers of
‘\/k seems indicated, but we have not succeeded in obtaining such a series. It
is perhaps possible to cast the infinite determinant into other analytical forms
for the case of Maxwell molecules, and perhaps in this way a better discussion
of the dispersion laws for the different modes can be made.

3) For a proper discussion of the experiments it is perhaps necessary
to include the effect of the solid walls through which the sound vibrations are
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transmitted to the gas. In this connection it will be of interest to treat
simple problems, like the Couette flow or the heat conduction between two
parallel plates, where one has to take the effect of the walls into account.

If the flow is slow, or the relative temperature difference small, then it is
possible to formulate the problem for all values of X/L (L = distance between
plates) in a way analogous to the dispersion-of-sound problem.

k) These problems touch also the question of the calculation of the
viscosity slip in gases as formulated recently by KramersiO .

5) Finally, one should perhaps emphasize again that in the method
proposed here it is in principle possible, for all types of flow problems, to
separate sharply the effect of the (molecular) Mach number -Prom the effect of
the Knudsen number. For example, it will now perhaps be possible to discuss
properly the drag of a sphere in a gas for small speeds, but for arbitrary ratio
of the mean free path to the diameter of the sphere.

10 H. A. Kramers, Nuovo Cimento, 6, 297, 1949.
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APPENDIX I. DEFINITION AND PROPERTIES OF F(6)

From the relationship between the angle 6 through which the relative
velocity is turned in a collision, and the collision parameter b, one obtains
for Maxwell molecules:

Z./

78 ax
2z

S )//,zz_z/(o%y

7, )
where x = b/r, a = Ig b, and x' is the smallest positive root of the
equation: X

Making the substitution

¥ 2
of = Leof "
so that the range b = O tob = ® corresponds tod = =/% tod = 0, one
finds
78 ——e .
= = ) e f K(a«ﬁ))
where
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r
_/F Y
A ) - {//;/f/—,aazégfﬂau(iy&

is the complete elliptical integral of the first kind. This relationship be-
tween 6 and ¢ has been tabulated by Maxwellll and is reproduced in Table ITI.

TABLE III
Relationship Between © and ¢ for Maxwell molecules

g 9 9
o ! o ! o} ! o !
0 0 0 0 Lo 0 ok Lo
5 0 1 2 41 0 103 4
10 o | & 10 42 0 112 52
15 0 9 3k 43 0 124 Ll

20 0 17 30 Lk 0 1ko 36

25 0 28 30 i 30 152 2

30 0 43 24 45 0 180 0

.35 0 63 58

In terms of the variable @, F(0), which is defined as
Flt)aub 48 = YTF 72158t 7P

= zﬁ;%:"741445 ,

11 Maxwell Collected Papers II, p L2. X
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where

while for ©
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Y ewzf
lib e P (ot ’d K - catBE) 7

F1e) = F

£ :O/"{Za/;////,&;,y’mz}é

is the complete elliptical integral of the second kind. F(6) is a monotonically
decreasing function of ©., For small ©

F8) = -Zggf é .e (//5‘;52;: g+ ’)

2

b

(7)) = = ooy
A7) ff//((] Vel

b3
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APPENDIX II. PROPERTIES OF THE SONINE POLYNOMIALS

The Sonine polynomial ng) (x) is defined as the coefficient of s@
in the expansion of

Its explicit expression is

” oty ) 7
S S el
Y VIRET 72 (74 p).

so that

<
g

\

N

S = »rs -z

5 = X (D) - (rr)r £ a2

Ly

——




etc.
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The following integrals can be easily derived from the generating function:

1)

2)

3)

Orthogonality relation

f/xxae_zJ(m)J(”Q = Lorwrd)
2 > -
o

plmes) 7

0 - ™
//. aérA’” e '*\5;'I ‘i;:b) = St 4 /)
° /”/%of,;)

o]
- (1) G
| s et SE s L Ll
° /(72 1)

k5
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APPENDIX III. THERE IS NO LOWER BOUND FOR THE SET OF EIGENVALUES

7
,Zré = cef/'/ B Lt 81
Sl G By B w gL B s S
AR N C s RS A e

= (//’O‘;oéfgd) _/Z
J

We prove this statement in two steps:

1) /’zll/>/’2ro/.
This is evident forr = 0. Forr % O
7 Sy 7
/}re' 2y = d?/:/f.)‘zaﬂ/:/ﬂ//w 5 /54/_6 /;‘,?/mf‘g/'//f

+ /(é/d:éé //@,{-ag 7/(?1//24)- /‘//{

Since F(0) is always positive, and in the interval 0 < x = 1

xz/vf(,() =/,

L6
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it follows that

/)Ii —’/rv = negative

or

(At ] > /drs/

because A ¢ 18 negative. Hence if Apo has no lower bound, there will also
be no lower bound for >"r/'

2) There is no lower bound for Aro-

Forr & O,
- 4 1) ( g,  erd )
J,v = X7 ) adbiwd F(E eof TS 2 T/

Since F(0) deverges at & = O and decreases monotonically with increasing 0;
and for large r, (coser 0/2 + siner 9/2 - 1) is approximately -1 except for ©
near O and n, we see that the main contribution to the integral will be from
the neighborhood ® = 0. Thus we can approximate F(6) by

N
F18) = o,jé)/-f;zm “f

which has the correct behavior for small ©, and lies always below the true F(0)
curve for 6> 0. Further, we can drop the term sin®T 9/2, since its contribution
goes to zero as r — v . Changing the integration variable from 6 to x = 9/2,

b7
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7
/ 7~
/Z,,O = ?/ﬁ‘fo/&a’)\’m/\’c&ﬂt’ F (cﬂd ¥ =)

oo < L

¥ r-s

BNVENS S WA C ¥t 7
< » ;*; /7(13452)

For large r, the ratio of the i + 1 to the ith term of the sum is:

Thus:

’ =2 Z Z D JE A
;{6;4:—0 //va }é_ V7.4 /7/;‘/ e (e “_2)

;o0 l'zp

l
R

—
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APPENDIX IV. PROOF THAT THE DETERMINANT A IS AN EVEN FUNCTION OF o,

This property of the determinant is independent of the interatomic
forces. It is a consequence of the selection rule

L= €2/ '

We will assume h to be developed in the set of eigenfunctions Y}I of the linear
operator J, and we will arrange the determinant according to the values of,{.
The determinant then takes the form:

V4 o / Z 3
Y4 o/ o
o xx
/ ’(,g (o)
0 (
*ﬁk
] *
'S
7 A, 0
/ : ~ O'o o 3‘\* ~ 0‘6 b
. «
b
_%*
.** (6]
2 o ~ G 0 ~ dy
f Kﬂ
%7&
% O
3 'S
o] o ~ J; v(,(
0
] **

Along the main diagonal we have COO + ixre, the nondiagonal elements
in the diagonal blocks are all zero, and O, appears only in the off-diagonal
blocks as indicated. These blocks may be square or not, and they may have any

k9
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number of rows and columns, depending on the atomic model and on the order of
approximation. If we now change the signs of all the elements in the rows and
the corresponding columns, all the signs of the op's change to their negatives,
while the signs along the main diagonal remain unchanged. The determinant A is,

however, not changed because we have made an even number of sign changes and
therefore we have shown that:
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APPENDIX V. JUSTIFICATIONS FOR EQS (39a) AND (39b)

By comparing the definitions of 8y g, 54 with the quantities a.g and

b,.. used by Chapman and Cowlingl?, it is easily seen that:

rs

Z v
Zri,sr T TT T st Wiy Moy @ s
L 50 = e Ny Moo Jéqr)

where Nr[ is the normalization factor for ﬁ;ﬁ, namely,

Ny = |27
T(lrrrf)!

If we call (A)C = \arsl,,then:

% £ 2
AP s (FJ (B (H Ky~ 1) (27,

i

%) -/ * p- y2 2
# = ) ity 4

12 Chapmen and Cowling, The Mathematical Theory of Non-Uniform Gases, Chap. 7.
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where the superscript p means that p rows and p columns are taken in A and (A)

Similarly, by making use of Noo =

v (ke
/é—aao (239%2:

one establishes Eq (39b).

52

Hence
(’“-/ 3)
-fﬁ:ﬁé: = - 2 1222:142—
3 2
4 72N ()
—
Since N, = \/i;- 73/% ana
) <
o// . (:4£;/J/%: = 74 . ai;?/>
cue X2~ LT
it follows that
p
@, Ay S w, 47 :__._gz)cu&
7 e A I E P

/g-n‘5/h and Chapman's result:
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