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TRANSPORT PHENOMENA IN VERY DILUTE GASES

I. Introduction

In the study of the transport phenomena in gases one usually
considers only the two extreme cases; the so-called Clausius gas and ths
so-called Knudsen gas. The former corresponds to a comparatively high
density (but density still low enough that only binary collisions need
to be considered), or rather to a Knudsen number M = 4/A much larger
than unity, where 4 is the dimension of the container or the body in
question and A is the mean free path. In this case the heat flux is

given by
2? ~ - f’ff?Lc;r grad T

vhere F is the density of the gss,'E the mean molecular velocity and Cy
the specific heat at constant volume. Thus the heat flux is proportional
to the temperature gradient and independent of the pressure. The heat
flov between two parallel plates at different temperatures is proportion-
al to the temperature difference, inversely proportional to the distance,
d, between the plates and independent of the pressure. Analogously the
pressure tensor is proportional to the velocity gradient and independent

of the pressure.




The Knudsen gas is a gas of such low density (or so small
value of M) that the collisions between the gas molecules can be neglected
completely. In this case there is no temperature or velocity gradient
in the proper sense. The heat flux between two parallel plates is
proportional to the temperature difference between the plates and the
pressure, but it is independent of d. The force on a moving plate has
similar behavior, i.e. it is proportional to the velocity of the moving
plate, the pressure, but is independent of 4.

We are interested mainly in the transition region between the
Knudsen gas regime and the Clausius gas regime. Mathematically the steart-
ing point is alwaye the Boltzmann equation for the distribution functim

f(x,y,z;cx,cy,cz;t):

& vl +x, 4 - [ 42 [aa31G0@s -11) (1)
vhere the second term on the left is the time rate of change of f by
streaming in the coordinate space and the third term is the time rate of
change of f by streaming in the velocity space, X, being the «th
component of the acceleration due of the outside forces. The right hand
side is the time rate of change of f by collision; I(g, &6 )d{L is the
differential collision cross-section,

For the Clausius regime a systematic successive approximation
method is given by the well-known Hilbert Enskog development. One starts
as the zeroth approximation by neglecting the streaming terms, in which
case one gets the local Maxwell-Boltzmann distribution. The first approxi-
mation is obtained by putting f = f(o) + f(l) and the streaming is taken

into account in the perturbation of f(l). We have given a summary of this
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development and some calculations in a previous roport(l) .

In the present report we shall concern ourselves with the de-
velopment starting from the Knudsen gas regime. A systematic successive
approximation method will be the successive collision method which corre-
sponds mathematically to the Neumann development for the solution of
the integral equation (1). We start again with equation (1) and neglect,
contrary to the Clausius' case, in the zeroth approximation the collision
terms. To make the calculation easier we restrict ourselves to the two
simple cases: the heat flux between two parallel plates at different
temperatures, and the drag on one of two parallel plates when one of
them is moving with a given velocity while the other is kept statiomary.
To further simplify the calculation we assume in the former case that
the ratio of the temperature difference, AT, to the mean temperature, T,
is much smaller than unity so that cne can make a series development
in the parameter AT/T and drop all terms of order higher than the first.
In the latter case the assumption is that the velocity of the plate is
much smaller than the mean molecular velocity and a similar development
is made.

In the next section we shall derive the zeroth and the first
order distribution function for a gas between two parallel plates at
different temperatures. We shall then derive the expression for the heat
flux up to the first approximation. The integrals will be evaluated as

far as possible for a general r°8 force law between the molecules and

(1) C. S, Wang Chang and G. E. Uhlenbeck, On the Transport Phenomena in
Rarified Gases, APL/JHU CM-4LU43 UMH-3-F, Feb. 20, 1948,
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specialization to the Maxwell and the elastic sphere models shall be made
at the end of the calculation. To shorten the writing, we shall give the
calculation for the case of perfect accomodation, i.e. molecules which
hit the solid are reemitted by the solid with no memory of their im-
Pinging speed and thus with a distribution corresponding to the tempera-
ture and velocity of the solid.

The third section will deal with analogous developments for

the force on one of the two plates when it is moving with a given velocity.
The results obtained in both sections II and III will be discussed in
the last section. The effect of imperfect accomodation will also be

mentioned there.

II HEAT FLUX BETWEEN PIATES AT DIFFERENT TEMPERATURES

We consider two plates parallel to each other and to the y-z
plane at a distance 4 apart. The upper plate is kept at a temperature
T2 and the lower one at a temperature Tl > T2. Assuming perfect accomo-
dation each plate will emit molecules with a velocity distribution corre-
sponding to the temperature of the plate.

A. Zeroth approximation.

In this approximation, we neglect the collisions in between
the plates. The velocity distribution function between the plates will

then be given by:
3

_ el _.mg
@ @ 2K 4 w‘-zﬂcx () , 2KT2 | = palgm Cx (2)
f = A‘ e l + 2 e :{
\

where

. x +1  when cx is positive
A;L?h Cxy = = <
jexd

-1 when cy 18 negative
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Al(o)and. AE§°) are constants to be determined by the conditions that:

1) The total number of particles (nd) is given.
2) In the steady state, the total number passing through (3)

unit area per second upwards and downwards are equal.

These conditions lead to the following expressions for Al(o)

and Ae(o);
32 — \;’
o) i~
A= o () e
3/2 \r_;’#; T

__ yn
Ad= I R) R

With the distribution function (2), one finds easily the

Knudsen expression for the heat flux:

(0) - )
0= 3 [ oo

_—m (o) [
= .2_[ A. Jc L”Lo dcxdc{o\cs <y e
YY\C‘

+A(°)J E Lw de,de dcé’ cxC e Tﬁ_]

It is also simple to calculate the temperature and the pressure between

the plates:



P = nkVTT;

Thus there is a temperature Jump at both the upper and the lower plate.
All the above results are in agreement with those of xnudeen(a).
B. PFirst approximation.

In the first approximation we take into account the collision
terms due to the zeroth order distribution. The Boltzmann equation for
the steady state with no outside forces and with temperature variation

along the x-axis only is given by:

W - I(o) pl/(9) ps)pla@)
S 2 zj...jo\c, 40.41(3,0) FOH7-117)
(4a)
= CX'\’ F’f(c)‘) CZ) Cj)
where the integration is limited to all direct collisions where c, is
positive and all restituting collisions leading to a positive velocity

component Cy+

The integral in Equation (4a) we define as CrsFs (cx,cy,cz).
There is an analogous expression for fﬁl). The ¥'s are complicated func-
tions of the velocities but because of the conservation theorems, they
satisfy certain integral relationships:

a) Conservation of total number
T [ 3 (5a)
LJ Lﬂ déxdcz,dca Cx [ Fr(exey )= Fo (- ex °y CJ)}

b

(2) See, for instance, Lorentz: Lectures in Theoretical Physics, Vol. I.
Kinetic Problems, Ch., III.
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b) Conservation of momentum

TLL scagaqainsro)=0  ow)

m” g: dc"“)j“} ex € [F-F-O]=0 d =2,3 (5b,)

0 J el

¢) Conservation of energy

fI“ j: éc,dea,o\cg e [F* -k (—)] =0 (5¢)

~00

To find the first order distribution function, one puts in the
right hand side of Equation (4) the zeroth order distribution functions.
Choosing the origin at the middle point between the plates, one may

write:
+ Felex ey ) (x+ %) .
Analogously

meh

) 0 =i
f( = A(l) T+ P (e <3 <5) ()“g') .

The A's are again determined by the two conditions (3). Using the con-

servation theorem (5a) one obtains:

3/2
('J‘_ o) Y
A= d e e o L

i

I) © r
( A(J‘*d(mkr) T+ [ e ]



where

L= | J j dexdegdey [Folevey ) = Fol-ceey &) ]

-ag v =00

I= rtr L: dudc}d\ﬁg [ Fe 1 ‘-'3,) + F- (- ‘} Cg)]

All macroscopic quantities, especially the density n and the temperature
T become now linear functions of x.

One can calculate the heat flux to the first approximation:

3= 12_.5 de ¢, f(‘)

=2nkl‘k R (T.—Tz){w%lo

™ T+
R DT \ﬁ"'+ﬁ
R e D AR ey &

where
o) rod r0OQ

I.= L LOLQ dcxdc\adc}, ,.}cx [ Fa (°*°z cy) + F. (- ey cé)}
and the equation for the energy conservation (5c) is used. The heat flux,
q, comes out independent of x as it should be. Each of the integrals I
are eight fold integrals. In addition it is convenient to use the well-
known integral representations for the sign functions, thus the multi-
plicity of the integral is increased to 10. To make the calculation
easier we assume that the temperature difference Tl - T2 is small compared
with the average temperature T = (T; + Tp)/2. Or calling T; =T + AT,

T, =T -AT, ve assume that 2AT/T is much smaller than unity. Further

2
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ve assume the molecules interact with each other with the r~% force
law vhich has the Maxwell molecules (8 = 5) and the elastic spheres

(s =00 ) as special cases, With these approximations and keeping terms

of the first order in AT/T, one has

+(o)=n(1;_n f/leuiﬁ_[ H(_%—z)—é_—rl/ﬁrcx] (6)

‘1»=2nkTV-j—EI-—AT{ y L~ ar ( = (4-7%1,) J

Tm T

(9)

=% T "f,(') (7)

where q(o) is the Knudsen expression and

ﬁwzcﬁﬂ{dAI J%? (41,- iLI)}

It will be seen later that all the I's are proportional to AT/T, thus
we can drop the term containing Io in this approximation. q(l) actually
is also proportional to A T/T.

For a force lawv F = xr °

, the collision cross section can de-
pend only on the force constant K, the relative velocity g, the mass
m, and the value of s, Out of these four quantities, the dimension of
an area can be formed only in one way, namely, (mgQ/r,)'e/(s = 1). We

shall write

-4 .
1(3,6)6\11:: q ! F(6,%,5)amungdbdE



where 6 is the angle through which the relative velocity has turned, amd
€ 1is the azimuthal angle the plane containing the relative velocities
before and after collision makes with a fixed reference plane. F is
now independent of the relative velocity. For elastic spheres F = a-e/h,
where 0" is the molecular diameter. For Maxwell molecules gI(g,d ) =
F(&, x, 8) is independent of the relative velocity g.

As stated before, the contribution due to the term containing
I, is of higher order in AT/T. The calculation of the quantity q{%)/q()

thus amounts to the evaluation of the integral 4TI, - -in_f: I, .

(-3 -

BT eyt e

vhere F_ is defined by (4a), and P_ by a similar expression.

—?r% = - T {4 InJ:]":dcxdczdc? ex [Fpt )]

-?,%; = %J}%%{ 4}- -[aéaa a;r«cxﬁo\nzl(3,9)({""’{,’“)- ')

- %

A

B e fangio 48]

Using (6), one has up to the order AT/T

2

~xack _ el 2 .
Jj/(o)}lim_ fm]tfc) - ‘n"(l? ‘r)s e T T ERT a {(ﬂﬁ_‘: - 2) -‘—‘%_E pAgM Cx J
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vhere AlP]= ¢ +¢ - -, | since 5@ -§° 6

enters in Io as well as Il and 12, we see that all the I's are proportion-

al to AT/T.

)

Fo= i w22 Jaogrq s

e“i"}?‘r ﬁ_'l"_ ) [(.%_-z)mrcx}

WY\CL

-uﬁ%ﬂﬁwu T3

od

m .z'rJ dé}mé‘gs iy-'( )s)J::aA[(%—z)u?mCx].

We introduce now the center of gravity and the relative velocities (a‘and

8)

o 4

/
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and ve specify the orientation by choosing the plane containing g and

the x axis as the reference plane from which & is measured, ‘t.hen(5 ) :

Ix= Gxeo0 @ ~{q*-GI Ain Goos €

/ . . ‘ (9)

= g .8 + pot § cod € — — p bl E
f1= het TG G

/ . . \

= mo+—fiﬁi—;weme+ Muw § fuw €

33 37 3‘-3& ﬁ%?%x

/= G—’—G-g' + i—z

2
mc 1Y
Fal [(2{1’ -’2‘) MY" Cx J consists of the sum of four terms. It
/

12
is clear that one needs to calculate one term only, say (—ii%: - 1) M?’"Cx
the other terms are obtainable by replacing 8 by TT+86 , O, and W re-
spectively together with proper signs in front., We shall call these

terms A, B, C, and D respectively, then:

S—

em———

(82— et s g5 o

iz

S (4- BS) (B - 2) wigm e

Introducing the integral representation for the sign function:
| oo eif'X
bgn X = — ..._j e
9 ) T dt

making use of Equations (9), letting the polar angles of g be «, P, and

(3) Jeans: The Dynamical Theory of Gases 4th Ed. p. 217.



using the cylindrical coordinates for G: G, Gr' and ¢ ; one finds:

3

—i;rg) 7/‘2 F(e xS)MOAOJ ‘WJ -‘% r ag 3%]‘— e A

e j:"&e j:aa, o g [T
i (G F) coon + it (G~ 3 st et + F tiusx b e € )

e ]

[4- (- 3+ §)] [ (60 G- Gy 008 oo

+e,(?mxueme "GﬁI}'G?% + i:) - 2]

Next we introduce dimensionless variables

@=\F & T =\3r 19
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and then drop the primes. Integrations over P ’ ? » G., and Gx lead to

35s+5

—%F(:) I-;To‘f 2 2eY (T"L) = > j dbaw 8 F(9,x,3) r VJ QE 'GW).

'Jdﬂ‘{s—.—(_ J - aw wa(—zd‘?w«me

dx(dunex €

I'\T 1\“’34«1"(“9&98 { 3

dc e

3t %(ﬂv)z-r et ?’t + gemd

(10)

- 3‘(f+v)‘+ ii* +2 Y ot (1400 0) ;3(++«r)‘cm<wmo)

- 2?2‘(""4 ) ceao e - Cf (+ +v) eonot (14 c8)

T 8 Aub e E (_" g’;{%‘(ﬂv)- i?(fwf + 13"G+V)zcwo( + Cf(h'uf } )

For the integration over ¢ we have:
7 Lyew &

[Taee?™ = arnp)

[}

g C},mi .
Saawme = ar @

(]

where J(z) is the Bessel Function of argument z.

(11)



The £ integrations involved are of the forms*:

L Lo

) L dol b (A+B o) € T (b ttwey)

=\f55{ AT+ (Na*+B) laBTs(Vdr b’)}

(a*+ b9V (a*+ p)¥%

Ay - laces \
I Ao bl X cpo ' € T (baww)

=\f5r‘{ T ([ F) _ aTgp (o) }

(Qx+ La.)3/4. (o™ + bz)f/{. (12)

T o, - e ‘
3) j&xm«e T, (b aaux)

_ b7, ( o+ b*)
= \rf“:' (Qz + 51)374-

T ) - Lo X .
[ Aol ' ces & T, (baux)

©

4

i abTe (IS
= L\E‘:rr (0&1“" bz);/;

* For proof, see Appendix I.
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Putting all these in (10), one obtains

-2 o 2
(‘%{%))A =- z‘\r‘.’%‘ (%I‘) S-| JTF(G,K,S)MQAG fw %J-w é{:‘: e——d’ﬂr) .

357 a2 . v . ;
.Jdg«;}f?’e 3{[%‘-+ %&W)*’%(ﬂ“ﬁ‘fa—?&w)-& ¥+}zcm9] T\?%%Z)

¥ (- zf(hv)" cond 4 53‘@4-«:)‘(\4: ®0)+ z}"&-wf'(ua.o) - z}*@-ur)’(a-f ) %&Zf

¥ gf(-\-W)"[('uf’r)Lme + vt WGYJ %%%%')f }

vhere 3= V'+ avlemf+ £,

The g integrals are special cases of the Hankel's exponential 1ntegrals(h) :

L4

j:'ma'c)e"’ t4 at

A tar D Il

v 2
= a Y _ : . oo
pHTO+1) ) F(E-fes 0 ’+r‘)

vhere F(a, b, x) is the confluent hypergeometric function defined by:

— (4 Gy alas) xt
Fla,b,x) = |+ p X+ (1) 2] +

Inour case t = g, p = 1, and a = 2z = 2(v° + 2vtcos 6 + t2)1/2. There

are six different sets of values for M and Y. They are tabulated

(4) Watson, Theory of Bessel Functions, p. 393.



as follows:
Lk
1% m O;‘“ Y+i
3eneml ns |s=5| §=00
4 + | — 4 _&S5-4 —_— .....:2.:.5._.. Is) N N - 1
2 S-Ii 2 S-] a(s-1 2 2
A =] 43— L | 335 | _ 38-7 -1 |- 3 S
2 S~| ] S~ 2(5-1) K} 2
1| 357 ~ 1] 4s-b | _ &5~ —, |- 3
2 S-| t5 A S~ 2(s-1) 2 2 2
3 | 3s7 423 | 355 | _ s-% -l 5
2 S| *3-3 ) 2(s-)) 0 2 2
2 357 y5_ 3 48-6 | _ = -1 |- &
2 S-| P S-| 205-1) 2 2
S ~ =2 | 4s-b - -4 Z
2 s=1 t9 T2 <l 26| 17| 2

Since F(a, b, x) breakes off if a is zero or a negative integer, it is
seen that for Maxwell molecules where a has only zero or negative integral
values, the expression for q(l)/q(o) takes a particularly simple form.

We shall see later that for elastic spheres where a has negative half
integral and b has positive half integral values q({})/q(0) ig also

very simple.
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After the g integration and writing o = — "——""“35(;5) , %z

(%,':g)f— & r;(({:z) () ,J dosd F (9, x SJJ évzj‘: £

~(++ v) =Cv+avtcmb + t) {
- @

VISDIE SRS SR ThY

+4gs(p+a)(p—x)[~§+w9—(++v)‘] F-,8,3%) + 2BBr0B-(pt1-4) Fla-2,p. 1)
(13)
+ 23+ (-0 [ (o9 (+200) + 2014 0) (14 00 ®) | F oo pr1, 3

+ 2prY(p-a)Br1-w) [~2 () 1 +ewo )] Flu-, B41, 1)
+8(p-0(pr1-o0(t+9) [ (1)eosd + tv (14em 0] Flp 2.3 }

Since F is in general an infinite series in x, the integrations over v

and t involve integrals of the form*:

Soo &J” &, ~@G+v) = (Fvs 2vtheod)
- Vi,

n
* (++v)m(+‘+ v+ 2vtes )

- (-‘)'n-r'mﬁ-l. W 2 a —a__‘ M“’Im@_&_
N

o0 - P (At wtes g
r av] ate o=@ )(++\r)’(f‘+v‘+ avted)’
-0l -0

— 11+I. ,si’._L \
= ( ‘) 7[- azn IF {(Pf“/)l“(rfﬂme)z

p=y =1

*Derivation given in Appendix II.



Using these formulas, we find:

| —o ""%:— L)
cpf,;) AF%((%F;% (4T) ™ [ desuo Fla,x5)

{4003 - 335 + 4 Pl p )
#4015 +cord 4 5)Fli-1, B, -5 + 2B )B0pr 10 F -2, B, =55
+-1(F+f)((s-u)[ (3+ew8) 35 + 2( 1+ o0 o)ar ] P p,- 3 3°r (15)
++(F+4)q3—u)(f+|—o<)(\+ca¢e)§F Flex-1, PH' “52;)

+8 (B-o)(B+1-u) eeab ﬁ;—,z F(o(,f&“,‘aéf)"*“ "%—-&1',_

(1)) &= -3 ‘
+4(p-20(pt1-%)(1-emb) 5F Flopta, 3‘7)‘{(?4»1)‘-(}71‘1@“9)1 }‘mﬁ,

This is as far as one can go for a general r-% force lawv.

Specialization to Maxwell Molecules:
8 ‘5, “- 0, g- 5/20
All the P's in Equation (16) become polynomials of at most

three terms. Collecting terms, one finds.

S
‘P@) l\aij As“‘“(‘)F(G,’SS){[(2+1cm6)+(|+:(mo6)§F+(i+3me)-F-
3 13 s pge
Fet 3y Hat o) 1y ]MM_ ;Fﬂmﬁ crwme)}}c},

4o _ YI-cf (atcotB)(1+et6) |

4
"‘“ﬁf‘-j dbam b F( 8:5){(4'*3‘3“9),4"‘ 2(3+e6)3/2 J
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and

W = @j 2688 F(6,%, )

{ M- 2(4=-3008) fumt -‘:-3-"-‘1-6‘ ~ A($+3c08) pu ' Lrest

2 (16)
+a@-cn )i eos @)V (¥ e N 2 (24 8) (14 et B) V|- cosd }
(3-c00)¥2 (34 ces B)2
Specialization to Elastic Sphere Model:
8 =00, o = -1/2, %- 3/2.
P(6,X, 8) = Uz/k, independent of 9 .
) aew +
(39), = S5 aonint | (4 - 235 + 1) FC1 2 -3)
+2(-5£ 4 cmd Jf;f,—)F(—’l 3 ;iy;—) +3F(-£ % —51-) +
+3- (3+mo)§F+zu+me),P}F(~%,f, “5) + (17)

4w FCEE - F) v estinr4 Lo )| i “Eﬁ%ﬂ

o - -
+ () me)f-F( ,z, #)‘“P*V‘ (f+1m6)‘}r=1=l

The O integral can be done. But for doing this we will have to con-
sider the terms A, B, C, and D separately. Term C is especially

simple. For =0, cosf =1, and ain'l-k%:‘;—‘sﬁ—-s% ,
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®) __ndo? 3l v 3\ ,_’r_r_J_ 3]10(:{‘““0'z
(%)c” N [82”(2 A e X5

Term D is the next simple one. For this we put 6 =T7C ., Instead of
using Equation (17) it is simpler to write the last two terms in a
slightly different form.The last term of equation (14) can in this

case be written as one term instead of being separated into two:
F(B-eO (Bt 1-a) (1) | () cos® + vH(iress )] Feuprz, 3
=~3<F-«)(F1\~u)(+w)‘(+—v)’F(«.f+z,Lt-v)‘) ,

Thus

.—.1{-.
By the use of the recurrence formulas of the confluent hyper-

geometric function one can express all the F's we have in terms of

F(3/2, 3/2, 7;? and F(1/2, 3/2, -§?. The values of these functions

when operating on sin"l ~?§%ﬁk§gﬁ§- are given as follows:*

*Por derivation see Appendix III.



é‘ - e ﬁ_. ~( ")
» 4 JW) F+(3 -1
.—\l -9 ‘ -1 b-(a-
F(li’%‘ -%3")% Ptq = %L A\}%Mi ?1"(‘;/*?)

Making use of these equations, one arrives at the final result:

(18)

($5), = Ee T (3-2m)

The calculations for (q(l)/q(o))A and (q(l)/q(o))B follow the
same line as that for (q(l) /q(o) )D except that they are a little more
complicated on account of the 6 integral. We will omit the detail
calculation but remark only that it is not difficult to see that

(q(l)/q(o))A and (q(l)/q(o))Bare equal. They are

(o), = (45), = ST 0s-0m)

giving:
%%f’ L%ém—(b “IVE) (19)

II1 FORCE ON A MOVING PLATE

In this case we consider two plates placed parallel to each
other and to the y-z plane at a distance d apart. They are kept at the

same temperature but the lower plate is moving with a velocity w along
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the z-direction. The zeroth order distribution is now:

n Ty
- H'AA y o TRT(eRW) A peme
ZW%T) { ‘—“%gﬂ—é"' (20)
where‘f is a unit vector in the z-direction. The average x and y vel-
ocities are zero. The average z velocity is w/2, There is a Jump
of the velocity at both the upper and the lower plate., The force on
the lower plate per unit area is

W\C

02 = kP [ bkt ey

+mA'°)(J I dexdey dey & (-w) ¢ k(e (21)

== pwie

which is the Knudsen expression.
The calculations for the first order distribution function
and the force on the plate go along similar lines as in the previous

gsection, We found:

S
me

S e 2T 4 (xe 4)F (= % €3

o _ 2 (e-kw)?
10 = A e & + (-4 E (eney o)



24

where now

W _,© NG 3,
AN -4 G L3R VIR

3f2

) _ p0)_ /2
A=A 4G Lo+ ) IR T

The average streaming velocity in the z-direction is a linear function
of x. There is still a jump of the velocity at both of the plates.
Making use of the momentum conservation (5b2), the force on the lower

plate has the following expression:

Pxy = P T {“%Io’ff‘—jgi “%F@LI;}

where

I,= ITJ:K: {_F,, (cxc},cz) +Fo (- & C}/Cj)] CnyddeC),dfy

Thus

o) [P

d | 4
P = - L ST L S L

As in the previous case, we now assume that w is small com-

pared to the average molecular velocity, then making the development

and keeping terms linear in w only,

(0 _ o -ff'l—t | = Mgncx
o) e T [ wey ot

2
b <

2

C

E{

51
-’if

‘S‘jwfl(o) ‘S'wf@“ wf{ﬁ'—(‘{ﬁ—) e

A(c’&r\ ex)
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the term Akcz is zero on account of the conservation of momentum. In
this case the contribution to pg) /pi‘z’) due to the first two terms,
i.e. the terms with I, and I, are of the order J—%W or higher
vhile the last term givec a contribution independent of this parameter.
Using the same notations A, B, C, and D, and to this order of approxi-

mation, one has:

(‘}E%%)A :b'-,'%,} @(13)A

- o (T (o)) [ advigr e S [laz e 3

s=5
ﬁ 33‘7 F(o,%,s) Anbdbde cacg pign M

Making the proper change of variables and introducing the integral rep-

resentations of the sign function:
(—%iﬁ{) == ) 1(5+|),_n_d7/z (7;_1_) J ABMGF(G"\'s)J d_J dt[ d}z___l. ZZ
["aesit | g a6, ™[ a6 J aFdecf
;lt’(&;}wd)-rzhr(&x-?coddwe+?M«m&we_)
.e

* (Grems g - ?M w?)(ﬁrmcr - ‘}/A;AW(WAFCA-_’: 6

~§mo( wi&b&«e eed e~ ?A\m(%/&«w% Aart E.) ,,
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When all the integrations except the last one are carried out, we find:

) -3t
\-\%) =+2 7V ndvw (i~—)S '——?————?EP =) J( a0 s F(6,%,5) -

{{RF\FH)F(aF qy)a».zF(Fﬂ)(F x)ces Fla-1, P’

~(%+')(f~°<)w9 F(v(,FH, —;’T) (22)
- - - Apyq eosd
2(B-0(pri-Y oot F b Fpea, 3“?)} I fF%?
= (B~)(B+ =00 (1-ex8 8) Flw,pr2, - { }
B0 (p+ ) Flopra 36;)“(?* o (rrqenbr
Equation (22) gives for Maxwell molecules,
W T .
( % )= ‘"d\,%fcdeweﬂams){Tr—(\~cm9)w-1—££f—§——-'2°
(23)
- < \veodB ) A0 N Y
(1 reos6) dim 222 45 —— +*\F4—(\+m9)1
For elastic sphere, we get again a number:
& NZ ndwot A
‘p%': (5+26V2) (24)

ﬁ? 43



IV DISCUSSION

In sections II and III we have given the calculation and the
results of the heat flux and the drag on a moving plate for both the
Maxwell and the elastic sphere molecules. For elastic spheres both

q(l)/q(o) and p(l)/p(o)

are negative, This is to be expected, Let
us consider the heat flux, When one takes some collisions between the
plates into account; it means that some of the molecules that hit

the upper plate will not be directly from the lower plate, but only
from either of the plates after having suffered a collision with

other gas molecules. They will have a velocity distribution corres-
ponding to a lower temperature than that of the lower plate., Hence

the heat carried by these molecules will be smaller. This is of course
to be expected no matter what the molecular model is. It will probably
be difficult to prove it in general. But for the Maxwell molecules,
this can be shown even without the evaluation of the last integral.

We have anticipated at the beginning that our development
parameter is d/ﬂ. . This is clear from physical grounds, but we have
go far not put it in evidence in our expressions. For this purpose,
wve will have first to define a proper mean free path, In the classi-
cal theory, the total collision cross-section is infinite for all the
r 8 models except the elastic sphere, Hence the ordinary definition

of the mean free path has to be modified. In transport problem, it

seems most natural to use the transport cross section:

.
Gy = m‘ (1~cof'6) T(3,6) Ain 46 (25)

g O Jwae W38 F(8,%,8
o } aa K, )



-28-

wvhere the last integral has in general to be evaluated by numerical

integration. We can then define a corresponding generalized Maxwell

mean free path:

__C
x‘:ﬁ' B hﬁ:rr
where

00 ™

B W

Qn=5°?3e.fm9“ (26)
Pagqre B0

is an average transport cross section. The constant C we shall determine

by requiring 7bfy to reduce to the Maxwell mean free path for elastic

spheres.

For elastic sphere

F(8,x,s) = %—-

2

~ 2qC  __ =
QTV"‘ “'QT:,

3
. B - _ |
A= TET AT T (27)
c o NI

For a general force law, therefore:

A = 12

™ 3nag

= r3) (ﬂa‘ ST l (28)
NI (3-5) “J 4636 F(6,x5)
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One can in general write

g = 9 F (3= )

and

P= \QCO)Fz(";%'T'_‘_) '

For very dilute gases,
F, = |+0(,(~;%;) +°(z(§t_%)1+‘- -

SENICORNCIEES

To our present order of approximstion, i.e. AT/T, mv2/2k'1‘ <$ 1, it
can be seen fairly easily that the (X's and P'a are independent of
the temperature and the force constant but are dependent on the power
law 8, For elastic spheree, Equations (19) and (24) yield

o(‘(S:.oo) :-5-:5-%-‘-{?—-"»“ —-0.55,

@.(5:90) = —-—S—E-é—é——@-: - 0.?70

For Maxwell molecules one has to do the € integration numerically.

We can write Equation (16) ae

W

e T
£ - ;ﬁgé\f:liég._[ A6 4 F(6,%.5) G,(69)
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where G, (8) stands for the long expression in the braces of (16).

Since for Maxwell molecules,

A Hﬁ &dem@eF(em)

one has,
T
L :%% :-rgi}gffj 46 A 8 F(8,%,5) 7,(8)
Tr ' °
giving

-
j 464 B F(8,%,5) G, (8)
j ab A 34 F(H,x, 3)

w

- \_ZL?_ jo dBAm.Q F/(B,S)G'(B)
w oo
J dG/.mBG F/(g)s)

vhere F'( §,s) = %3; F(6,X,s). Analogously one finds from the ex-
(1) (0)

pression for p

i
B=-% | a80iud F6,9G,(®)
| [ "a6 4070 F(6,5)

-
The integral _L 46a°8 F(6,5) 15 usually called A(5). It has been
evaluated by Maxwell(5) and others (6) and has the value 0.436. We

have computed the integrals in the numerators. They give for o(' and ﬁ‘

the values

°<' (9 = 5) = -0.536
?( (3 = 5) = -0,734

(5) Maxwell Collected Papers II, p. 26.

(6) Chapman and Cowling: The Mathematical Theory of Non-uniform Cases,
p. 172.
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For a Clausius gas the functions Fl and F, must have the forms:
F= A
Fo=5(5T) 20

It may be expected that § and § will also be independent of T. This

is indeed so; from the Hilbert-Enskog-Chapman theory one finds (7)

b,

§=-L=
81 (4-537) Aa(S)

L2
=k 3£§i( i§I)5~‘ 24T

- ql®@ At
- ‘1 X(S) T) A

kT o7
=T ()
r4-57) A

8 A
= \o"’g(s,T)—a—T‘

giving for and

FAN
== = 3,6¥* for elastic spheres
Z (34'
y= 25T -5 —

32 7(4‘3%7)7(%9 \\\\‘\~{§ = 7.50 for Maxwell molecules

*
- %lz K14 for elastic spheres

wp r(Begtn)

4 ENTTER
4 5*|)F(2) 4 for Maxwell molecules

Thus we know the values of F,, F,, dF;/dM, and dF,/dM for M = 0, and

(7) Chepman and Cowling; the Mathematical Theory of Non-uniform Gases,
p. 172.

*  For elastic spheres, the exact value of § is the value given above

multiplied by 1.025, the value of S is to be multiplied by 1.016,
See Chapman and Cowling, p. 169.
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the behavior of Fl and 12 for very large M. In figures 1 and 2 we

have drawn the initial values and the initial slopes for F, and F,

for both the Maxwell and the elastic sphere model (A-the straight lines).
The curves B are the Clausius' expressions if considered as exact for
all values of M. Assuming the functions F and F2 are monotonic the
heavy dotted lines are drawn as plausible interpolations for F's as

guided by the initial values and the asympototic behavior.
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All the above results are for the case of perfect accomoda-
tion. We have also made the calculation for a general value of a,
vhere a is the fraction that is reemitted with the temperature of the
solid; (1 - a) is then the fraction that retains its original distribu-
tion. For the heat flux problem, the zeroth order distribution func-

tion is then

2 a
meC m
() -—T - g .
5(0) [ Te T -\-U-q)A(,o: g 2B ]——4——‘+Mmc"

<

S

< _m _
+[(-)A, e %+QA‘°> ﬁ}.l:%%cu_x_

The conditions (3) lead to Agg) and (2) same as before, i.e. same as

vhen a = 1, The zeroth order heat flux is however changed
0
qg ) < (2a - 1) (©

0
For perfect accomodation a = 1, qg )= q( ). When a = 1/2, it means that

half of the molecules will assume the temperature of the wall they hit
while the rest have their original temperature. The molecules going up
and down will then have the same velocity distribution. Hence there
will be no heat flux.

The first order heat flux is found to be:

) ' T, 1; I
= %a 111 (2a-1 N ak VTn (-T2)

wd_ I VRVE }
Y Sk Ga-D Nk (7 - ) .
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The I's are to be calculated from f(o) which contains also a. To the

first order in AT/T:

"VOC

£$9= eﬁ‘a—— T kT {H'(za .)(J%'T' )“TW&}

and

10) p/(e) (o) pl0) _
'S‘{'n -}'}\*

S

.."n(m__r e-% ) [('ﬁ%r ) ‘er]e-';'-r‘(m“) .

Hence all the I's are smaller than the corresponding values for perfect
accomodation by a factor 2a - 1, I° remains zero. As a result <Xl is
not changed, and neither is @1.

As a final remark we would like to mention that if one is
not interested in the general r~® model but wants only the results for
the Maxwell molecules or for the elastic spheres one can perform the
ten integrations in slightly different and more natural orders. The
manipulation is then considerably simplified and there is no need for so
many elaborate integral formulas involving Bessel functions. In the
case of the Maxwell molecules, since gI(g,6) is independent of g and
since there 1s cylindrical symmetry about the x-axis, instead of the
spherical polar coordinates g, «, P, the cylindrical coordinates
g.» 8y, and F are more convenient. For elastic spheres, I(g,8 ) is in-
dependent of 6. Instead of integrating according to the order indi-
cated in the formula on page 1% it is more advantageous to integrate
over 0 right after the t integration and to do the g integral last.
In so doing the work is considerably less, On the other hand, since
6 1s integrated out earlier, one has to calculate the four terms

A, B, C, and D (see p. 12) separately. The additional work, however



-3"(..

does not amount to too much, since one can see easily that A = B and
that the term C is extremely simple. We carried out the program men-
tioned in this paragraph first; later to have a check of the results
obtained and to get expressions for more general force laws we did

the calculations presented in sections II and III.
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Appendix I Proof of formulas (12)

To prove Equation (12), one first separates the integral I

2 - W eodX
I=J bt ( A+ Bessk) @ T, (b tiwx)

[

into the sum of two integrals, the integral from O to 7(/2 plus the in-
tegral from T/2 to 7. In the second integral, writing «= Tr-P; re-
membering that the cosine is even while the sine is odd, and Jo is even

in its argument, and making use of

W(AM“)?-;(M"z « J-4 (aeoex)
i (acesn) = VTR T, ( ocon)
one obtains
I %
T =T | % dia To (bbiast) [ AVGR Ty (aco0m) - 1B ens ™ T (aemang) |

Using the second Sonine finite integral (Watson, Bessel Functions,

p. 376):

I | Cub, sl wz2? 7 o0 ((Z533)
L J.(348)3; (Feos 6) P Bess " 040 =—4 (i‘+ ;‘I)Qb%»:'f'

we have the first equation of (12). The proof for the other equations

are similar.
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Appendix II Proof of Equations (1)

2
oo o - (F4u) - (13 avtees 9 .
J dt -t - (v )(++\r)m (Wt )"

~ 00 ~0o t

% 0  _peetr)-g (vt 2vien
"'j %_,.J_%ep(‘r wy-q (F+ +zvm)Hv) (V-.-tl—nvf‘me) p=q=1

—prv)- g (U b 2vies 8
M AR L ST

- 00

It is always to be remembered that in the integral representation of

the sign function the principal value of the integral is meant.

I'= P Jw %__;-J” 4t e-‘n(hv)z— cy(v"+t‘+ 2vtess 6)
gy (7 e JEErYV st (priem)
" P -0 .( f -—-—-T——’
o » _E(prg)-v(pa g -3yt
%:‘ZPJ dvj we | F
= - ATC
-(f-ﬂr")( +q)- zxvt'
Pj d\gJ dt p I
) =
when Y= 0, I' 1s zero; hence C = O.
T=c0"" a2 20 T praentd

ac‘n ar \ ?JW



Appendix III Derivation of Equations (18)

A P33 /) w0 - TSRS
Fla b= ¢ Flob, b,-x)
Fld 4 - #)Mﬁue 3g“;r—‘(o, ‘E‘:;SS;
SR A«u"ﬁ ,
But
e % o) = fean)
Rence

3
L3 )= -X g X2 x>
F(.l, 2, x) ‘ 3 *2’5 3!7 *
Comparing with the series
L x3 x5 ! ¢
= X = - —— e = - X X -
gbe dt 3'+ﬂ5 x{‘,3+33y J

one finds



Putting

Thus






10
11
12
13-1k
15
16-18
19-21
22-24

26-28
29-31
32-33
34
35
37
38
39
Lo-41
L2

L3
Ly -L6

b7-76

T8
9

81-8k4

85-87

DISTRIBUTION LIST

Chief, Bureau of Ordnance

Attn:
Comdr. L. Pooler, Re9e

. Gibson

. Porter

. Sigley

Ennis

. Warfield

Kershner

Besserer

Massey

Avery

Dahlstram

Sheppard

Morton

Nicholson

. Herman

McClure

A, Van Allen

A. C. Beer

AC Office (W. H. Verdier)

Naval Ordnance Laboratory

(Library)

(R. J. Seeger)

Naval Research Laboratory

Attn: Code 1100

Lt. Comdr. T. Stanwick (NODU)

Commanding Officer, NOTS

China Lake, Inyokern

Chief, Bureau of Aeronautics

Attn: Pilotless Aircraft Division

Head, Liaison Branch

Col. H. C. Beaman (AMC)

Col. Paul Elias (A¥F)

Office of the Chief of Ordnance

Fort Bliss, Texas

Attn: Major J. P, Hamill

Applied Science Corporation of

Princeton

Attn: J. F. Brinster

Bendix Aviation Corporation

(Dr. Barner Selvidge)

(A. Hoeckley)

(R. M. Russell)

(W. C. Suttle)

Consolidated-Vultee Aircraft

Corporation

(3. J. Alkazin)(2)

(J. B. Arnold) (1)

3 3 .
.

HipHY Ny QwQ»>tmd
-ao:xcnz:mm:aa:wzaemu

cy =

Capt. F. E. Manville, Re9 (8)
(1)

88-92
93-94
95
9%

99-103

104-105

106
107
108
109
110-111
112
113
11k
115-117
118-122
123-132
133

134-170

171-200

Cornell Aeronautical Laboratory
(R. Schedvin) (5)
Curtiss-Wright Corporation
(R. C. Blaylock) (2)
Experiment Incorporated

(J. W. Mullen, II)
Capehart-Farnsworth Co., Inc.
Attn: J. C. Ferguson

John Hopkins University,
Baltimore

Attn: F. H. Clauser

Kellex Corporation

Silver Spring Laboratory
Attn: V. Harris
Massachusetts Institute of
Technology

(E. G. Schneider) (5)
Michigan, University of

(A. M. Kuethe)

(W. C. Nelson)

New Mexico A and MA

(George Gardiner)

North American Aviation, Inc.
(W. Bollay)

Princeton University

(L. Lees)

Radio Corporation of America
(K. I. Korman)

Texas, University of

(C. P. Boner) (2)

Virginia, University of

(J. W. Beams)

Washington, University of
(J. E. Henderson)

Wisconsin, University of

(J. 0. Hirschfelder)

BB Reports (ABC) (3)

EB Reports (FGS) (5)

BB Reserve (APL) (10)

APL Contracts Representative
(L. I. Barbier)

Michigan, University of

(C. S. Wang Chang)

(G. E. Uhlenbeck)

Michigan, University of
Engineering Research Institute
Project File












