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ABSTRACT

The electromagnetic scattering behavior of a spherical shell with a circular
aperture is studied. The shell is assumed to be perfectly conducting and infinitesi-
mally thin, and is illuminated by a plane wave symmetrically incident upon the
aperture. The application of the method of least square error, as well as of a
modified versionis fully discussed. The modification consists of the separating
out of the appropriate surface field behavior near to the edge of the aperture,
and was oarriedJ out to overcome the slow convergence and marginal accuracy of
the original approach. The marked improvement provided by the modification is
clearly evident.

The numerical study is limited to the frequency range corresponding to
0.8 <ka <4.85, where a is the radius of the spherical shell, and numerical
values of the backscattering cross sections for the aperture angle 6,=30° and 900,
as well as for the tangential field components over the boundary surface for
90=30°, are presented. To verify these results and to obtain more physical
insight into the scattering behavior, experimental measurements of the back-
scattering cross sections for 6,=15°, 30°, 45°, 60° and 90°, and of the current
components for 90=30(,) are obtained using two sets of spherical shell models.

It is observed that a spherical shell with aperture-on incidence has, in general,
a higher backscattering cross section than a solid sphere except at values of
ka near to the cavity resonances, where marked reductions occur. A com-

parison of the numerical and experimental results is made.
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CHAPTER 1
INTRODUCTION

In the general area of electromagnetic scattering, impedance loading
has received much attention as one of the more promising techniques for
radar cross section control, especially for the reduction of cross sections
in the resonance region. This technique provides a wide degree of control
over the scattering behavior by varying the loading impedance which is
introduced over a restricted portion of the scattering surface by means
of a cavity structure, lumped elements, or transmission line with asso-
ciated loads.

The loading technique has been known since the early 1920's (O'Neil,
1928; Meissner, 1929), when it was common practice to use lumped inductors
and capacitors to detune the supporting structures of a transmitting antenna
and, hence, reduce the fields radiated from them. However, Iams (1950)
in his patent of '"Radio Wave Conducting Device" was the first to apply the
impedance loading technique for the control of scattering properties at
microwave frequencies. He used a coaxial loading together with a dielectric
coating to effect a wide-band reduction of the scattering from metallic posts
in a parallel-plate assembly. More recently, several investigators, Xs
and Schmitt (1958), Gerbes and Kearns (1963), and Chen and Liepa (1964a,
1964b) have studied the scattering cross section of a thin center-loaded
cylinder. Chen and Liepa presented a complete analysis of the back scattered
fields for arbitrary angles of incidence on a thin cylinder of length £,

0 < < 2), and fully demonstrated the capability of loading for cross section
reduction. In fact, it was shown that for every value of £/)x within the chosen

range, a loading exists for which the cross section is almost zero.



For thick cylinders, Sletten et al (1964) have shown experimentally
that impedance loading is still effective using center-loaded cylinders
approximately /2 in length and \/8 and X/4 in diameter. A theoretical
treatment of loading of moderately thick cylinders was later given by
Chen (1965). Liepa and Senior (1966) have studied the scattering behavior
of a metallic sphere loaded with a circumferential slot in a plane perpen-
dicular to the direction of incidence. Later Chang and Senior (1967) extended
the analysis to the general case of arbitrary angle of incidence.

In most applications so far, the loading technique employed has been
the simple one of backing a slot with a cavity. From all of these previous
studies, it would appear that the realization of the loading required to give
(for example) zero back scattering cross section over a significant frequency
range is very difficult to attain due to the peculiar frequency characteristics
of the required loading. It was found that the susceptive components of the
optimum loading (f;>r zero back scattering) has primarily a negative frequency
slope and is almost precisely opposite to the behavior characteristic of any
passive network. As a result, any simple loading device such as a radial
cavity-backed slot will be severly limited in its frequency bandwidth, and
more sophisticated techniques, non-linear or active, would have to be
employed in the synthesis of the loading to increase the bandwidth. This is
the main reason why the impedance loading method has not yet found any
operational application to radar camouflage. To increase the bandwidth,
active circuit synthesis approaches, using NIC's (negative impedance con-
verter) or operational amplifiers, seem to be attractive and are currently
receiving attention. The use of a non-uniform transmission line, filled
with a lossy dielectric or even ferrite meterials, could also be considered.
Nevertheless, it is clear that the nature of the load required for zero back

scattering is a function of the cavity design, and in order to obtain some



basic understanding of the impedance loading problem, it is desirable that
the aperture-cavity aspect of the loading problem be studied in more detail.

The present work is directed at the problem of an infinitely thin, per-
fectly conducting spherical shell with a circular aperture of arbitrary angle
cut into the shell. In fact, therefore, we have a sphere loaded with a spher-
ical cavity coupled through a circular aperture. It was felt that the loading
with a spherical cavity could be particularly appropriate to the sphere geometry
since the fields inside and outside the spherical shell are separable in the
same spherical coordinate system, suggesting that the natural resonances
of the cavity could be convenient for manipulating the scattered field.

The problem of a perfectly conducting spherical shell with a conical
hole, which degenerates to our case when the shell thickness approaches
zero, has already been rigorously formulated by Uslenghi and Zich (1965).
However, when the shell thickness approaches zero, the formulation breaks
down due to the ed'ge singularity at the edge of the aperture. For a spherical
shell whose angular extent is less than 7, so that the shell is less than a
hemisphere, Blore and Musal (1965) and Raybin (1965) have estimated the
back scattering cross sections for incidence on the convex side at or near
to the direction of the symmetry. The procedure was a high frequency one
in which the physical optics value of the specular contribution was modified
by the addition of an edge diffracted contribution, and the results obtained were
reasonably close to measured data. For the case of a hemispherical shell
with an electric dipole at its center, Yen (1959) has obtained a low frequency
solution by using an iterative process in solving the integral equation for the
current density induced on the shell. To the authors' knowledge, however,
the electromagnetic problem of a spherical shell which is larger than a
hemisphere has not been treated in either an exact or approximate sense as
far as concrete answers are concerned. The present work, therefore, has

both practical and theoretical interest.



Electromagnetic scattering by separable bodies has been treated extensively
in the literature with presentation of both exact and approximate solutions. How-
ever, when these bodies are cut so that only parts of them still remain -- such
as a spherical shell segment -- the scattering mechanism is, in general,
drastically changed, and difficulties also arise in the treatment. For the
acoustic problem, Sommerfeld (1949) has used the method of least square
error to obtain a system of linear equations for the diffraction coefficients;
and more recently Thomas (1963) obtained a low frequency solution using
an iteration method developed by Williams (1962).

In the analysis, we assume that a plane electromagnetic wave is
incident symmetrically on the aperture, and several different approaches
to the solution of this problem are discussed. The most promising one
is the method of least square error. This is described in detail, and the
method is then modified in order to separate out the correct surface field
behavior at the edge of the aperture. The numerical results of the modified
method are compared with those of the original method and a marked improve-
ment is shown.

To obtain some insight into the scattering behavior of a spherical
shell and also to confirm the theoretical results, a series of surface and
backscattering measurements were made in the range 0.8 < ka < 4. 85 for
the aperture angle 6_= 15°, 30°, 45°, 60° and 90°. It was found that the
spherical cavity plays quite a significant role in the modification of the
scattering, especially at frequencies near to those of the cavity resonance.
The numerical results are compared with the experimental results for

60 = 30° and 900, and good agreement is found.



CHAPTER II
THEORETICAL FORMULATION

2.1 Geometry and Field Expressions

Let us consider an infinitely thin, perfectly conducting spherical shell
with its center at the origin, 0 and the spherical segment given by R = a,
60 <6 < m as shown in Fig. 2-1. In Fig. 2-1 the spherical polar coordi-
nates (R, 0, f) are related to the Cartesian coordinates (x, y, z) by the
usual transformation x = R sinf cosp, y = Rsinfsinf, z =Rcosf. Assum-
ing a linearly polarized plane electromagnetic wave is incident in the direc-
tion of the negative z-axis with its electric vector parallel to the x-axis,

the incident field becomes

El - Qesz ,
. . (2.1)
A
Hl - -yYesz )

where k is the propagation constant, Y is the intrinsic admittance of free

t
W has been suppressed.

space, and a time factor e
The incident field of Eq. (2.1) can be expressed in terms of spherical

vector wave functions as follows:

o _
i_ .o 2ntl (0 (D
E = Z } n(n+l) [Mbln JEeln] ’

=1
(2.2)

©
i_ . .0 2n+l (1 (D
H =3 E b A1) [Eoln Mein]
n=1

(1) (1)

where M~ and N' ' are the spherical wave functions (Stratton, 1941):
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z//n(kR) Pn (cosh) sin

——S;n =FW OET Teme cos ®POC
- fl‘lk;iR')‘ ge (cose) cos ¢6 ,
Y = aern) h{ P (cos) S° mpR+
smn (kR)2 n sin
i R LI
- L P (cos) . e

kR sin6 cos

with

Vo (kR) = kR £ (KR)
7 (kR) is the spherical Bessel function of order n, and the prime denotes
differentiation with respect to the entire argument. P (cos ) is the Legendre
function of degree n and order m as defined, for example, by Stratton.

The total field due to the presence of the spherical shell can now be

expressed in forms similar to those for the incident field, but with unknown

amplitude coefficients. Thus in region I (R< a):

I_ (1 (1)
E= i [An—oln -JBnEeln] !

0=l (2.3)

I_ 1) (GVIN I
= 2 [nN(oln -jBnMeln] d

=1

and in region I (R > a):



=g+, pl-g'+p° (2.4
where
T (4) (4
E = z [CnMoln -1b, —eln] !
n=1

o : ( (2.5)
8 _ 4) 4
H =Y z [Cn oln -anMeln] )

n=1

Here, the subscript s designates the scattered field. From the requirement
that the scattered field represent an outgoing wave at infinity, M _(4) and N(4)
differ from M(l) and N(l) in having w (kR) replaced by §’ (kR) = kR h(z)(kR),
where h( )(kR) is the spherical Hankel function of the second kind. The co-
efflcients An' Bn‘ Cn and Dn are determined by the boundary conditions,
which require the cqntinuity of the field through the aperture and zero tan-
gential electric field at the surface of the perfectly conducting spherical
segment, and the edge condition (Meixner, 1949). Once those coefficients
are obtained, all the field quantities are determined everywhere.

Since the surface current density on the spherical shell is directly related
to the tangential magnetic field, He
They can be expressed, in a notation similar to that of Kazarinoff and Senior

(1962) as follows:

and H¢ are of primary concern to us.

at the inside shell surface:

n; (2,0.9) = Y sinp T} @) , (2.6)

H; (,0,0) = Y cosp T, (6) , (2.7
where

® P (cose)
'rll(e)=1 — z [Anw;(ka) & p (c086) + B_y, (ka) W]
n=1

(2.9)



o 1 (cosh)
TI(G) =j = A w' n + jB (ka)Q— Pl( 0s6)
2 ] k z " sing ! nd/n 9 “n\° !
n=l (2.9)
and at the outside shell surface:
Hy (2,6,0) = Y sinp T, (6) (2.10)
¢ (a 6,0) =Y cosf T ) , (2.11)
where
il K n2ntl 5 1
T1 6) = j o 2 |:Cn Cr'l(ka) + ( D) n(kaﬂa—6 Pn (cos6)
n=1
P (cos6)
. n 2ntl
t] [Dn fn(ka)+ j (ot D) w< ) sme } (2.12)
. P (cos )
o, .1 20l
T2 (0) = T ka i I:C § (ka) + n(n+1) n( )] T sing
n=1
. . _2ntl 9
+ j [:Dn Cn(ka) +j (ot D) wn(k )] P (cosB) p . (2.13)

In the far zone the expressions for the scattered field can be obtained
by replacing tn(kR) and fr'l (kR) by the leading terms of their asymptotic
expansions for large kR, viz.:

§n(kR)~ Jn+1 o -jkR

2

f;l(kR)'ane -jkR

The transverse components of the scattered electric field in the far zone

then become
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_JkR
E, = jeosp = R Si (6) (2.14)
s IR
E¢ = -jsinf R sz(e) (2.15)

where ST (6) and Sg (6) are defined as the far field scattering amplitudes

and are given by

1

® P (cos#)

S, _ N n o 9 pl

s} (6) = z j [Cn L—— D =P (cose)] (2.16)
n=1

s n 0 1 Ptll(cose)

S2 6) = i j [Cn 0 Pn (cos@) - Dn_?in—G_—J . (2.17)
n=1

The radar cross section is therefore
a(6, ) =“oe(9,¢) + a¢(6,¢) , (2.18)

where g, (6,0) and % (6,0) are the component cross sections given by

2

0, (0,9 = "7 coszplsf (49)|2 , (2.19)
)Lz 2 S 2

ogf6,9) =2 sin psS 0] . (2.20)

2.2 Various Approaches

There are various ways of approaching this kind of boundary value
problem. One of the common approaches is by means of integral equations
in terms of the unknown aperture field. For our problem, if we introduce
two unknown functions for the tangential components of the electric field
in the aperture, we obtain two coupled integral equations involving infinite
series. These integral equations can be converted to an infinite set of

linear independent equations if we express each unknown function as a series
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of functions orthogonal over the aperture (0 <6 < 90). The coefficients

in the series are, of course, unknown and are to be determined. When

in the course of numerical computation each infinite series is approximated
by a finite series, the final (approximated) results depend on the choice
of the orthogonal functions used for the series expansions for the aperture
field components. For a good approximation a proper function with an
unknown constant may be introduced to represent each unknown function,
in addition to the series of the proper orthogonal functions; and by appro-
priate choice, it would appear that the resulting series could be made to
converge rapidly. It is, however, not easy to find the optimum proper
functions even though the method of trial and error might lead to ones
which are adequate.

In the second method, we can apply the variational technique to
obtain the backscattering cross section. The variational method has
received a good deal of attention in antenna and scattering problems
involving simple geometries such as a thin disc or wire, in which this
method is capable of giving an accurate approximate solution with a
minimum of computational labor (Schwinger, 1947; Tai, 1952).

We consider a scalar function U defined by

U= ﬂgl-g ds (2.21)
L

where J is the surface current density at the conducting surface S. The

function U can then be expressed in the form (Mentzer, 1955)

2
s
ﬂ Hgﬁ-g' ds'ds
S 0

U= ]Xk_ (2.22)
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where Go is the free space Green's dyadic function given by

"60<3/15'>=<?+ VV) L__ .- ik|R-B]

e
2 ) 4r |[R-B : (2.23)

It is easily shown that the expression for U in Eq. (2.22) is stationary with
respect to variations of the surface current density, J, about the correct
value. The relation between the function U and the backscattering cross
section can be written as

2 2
o(o) = k 5 hlﬂ i s (2.24)
47Y IE I

so that, for the computation of the backscattering cross section, it is
sufficient to get an accurate determination of U.

For the case of the spherical shell segment, the total current density,
Jd t is expressed as’a sum of the current densities inside and outside shell

segment, and Eq. (2.22) then becomes

2
2T T it
[f f E-J sin9d6d¢]
0
0 0
2T T 2T T
- 1
ff[f f its o sinO'dB'd{bJsinOdeQ)
g'Y =
) 90 o} 60

(2. 25)

Y
U= ik

A variational solution can be obtained by writing the current density in the

t M
J = 2 a (2.26)
- n_n

n=1

where the functions ¢n are independent of each other. The coefficients,

form
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. a.., are determined from the linear system of M equations;

M’

i=4,,2,... M . (2.27)

As noted in connection with the integral equation approach, the accuracy of the
approximation again depends on the choice of the functions, ¢1, ¢2, cee ¢n.

Thus, either approach requires a careful study of the physics of the
problem to guide the choice of a proper set of expansion functions, and it
proved extremely difficult to find such functions for the present problem.

The presence of the cavity is the main complicating factor, but other points
which should be noted are:

1) In the integral equation approach the scattering coefficients are
obtained indirectly after the aperture field is obtained. This requires
additional computations.

2) Although the variational technique can lead to a good approximation
to the backscattering cross section, the approximation of the near field
quantities is, often, not reliable. Moreover, since the numerical solution
of each approach mentioned above is carried out by reducing it to a matrix
equation, it is rather convenient and preferable to obtain the matrix formu-
lation directly from the physical characterization of the boundary value
problem.

Such an approach has been followed by Uslenghi and Zich (1965) for
the case of a perfectly conducting spherical shell with a conical hole. The
problem has been rigorously formulated by applying the usual mode matching
techniques. When the shell thickness approaches zero, the problem degen-
erates to our case, but the formulation, unfortunately, breaks down due to
the edge effect of the aperture. As a similar but alternative approach, the

method of least square error can be applied in matching modes through the
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boundary. The method is, in a sense, somewhat akin to the variational
method and provides the best approximated matching through the boundary
in the sense of least squares. The application of the least square method

will now be considered.

2.3 Method of Least Square Error

We here seek to find the scattering amplitude coefficients, Cn and
Dn’ in Eq. (2.5) by using the method of least square error. We shall
proceed to the matrix formulation by imposing the boundary conditions
directly to the field expressions given in Eqs. (2. 3) through (2.5).

The condition of zero tangential electric field at the surface of the

. A 1T A TI
perfectly conducting sphere segment (RXxE =RxE

= 0for60<9_<_ )
requires that for 90 <6< m

o [ Prll(cose) 5 )
z Ay (ka) ——— - jB y! (ka) &= P (cos)| =0 ,  (2.26)
n=1

] 1
0] 5 1 - Pn(cose)
Y (At 35 B o0 - iB ) Lm0, 229
n=1

1

o [ Pn(cose) 5 1
Z C,t(ka) o - §D ¢! (ka) = P (cosd) [= G (6), (2.30)
n=1
o [ 5 1 Prll(cose)
2 [Catall®) 5 By (eosd) - D5 ) =— | =000,

=
1
—

where

(2.31)
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© Pl(cose)
_ .0 _2ntl n s 9 1
G,(0) = - z b h(at) l:‘/’n(ka) sind 19y, (ka) 5 P, (cos6) ]
n=1 (2.32)
1
[00) P (cosh)
.n 2ntl 9,1 o n
Gz(e) - 2 ) n(n+1) [wn(ka) 8_6- Pn(cose) B Jd/n(ka) sin6 ]
n=1 (2.33)

Also, the continuity of the tangential components of the electric as well as
A A

the magnetic field through the aperture (R x(_}E_II- EII) =0, Rx(EI— EII) =0

for 0<6< 60) requires that for 0 <6 < 90:

Ptll(cose)
[Cn Cn(ka) - Anwn(ka)] Sin0 -] [D C' (ka) - B ([/‘ (ka)] — P (cosB)

s

n=1

= Gl(G) - (2.34)
(o8] 5 P (cosG)
z [C ¢ (ka) -A Y (ka)] % Pn p! (cos6) -] [D ¢ (ka) -B W' (ka;] Sin0
n=1

= Gz(e) , (2.35)

1

® Pn(cose)
z C ¢ (ka) -A U/ (ka)]—P (cos6) - J[Dn Cn(ka)—ann(ka)] Sind
n=1
® Pi(cose)
2 C §‘(ka) -A 1//' (ka )] ey -j [D ¢ (ka) -B (// (ka)] — P (cosO)
n=1

=j G0 . (2.37)
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From Egs. (2.28) through (2.35), by making use of the orthogonal
properties of the Legendre functions, it can be shown that the scattering

amplitude coefficients Cn’ Dn are directly related to the coefficients

An’ Bn by
_ n 20+l |
Cnfn(ka) -—[An-] —n(n+1)_ z//n(ka) , (2.38)
L n 2o+l | .
Dng’n(ka) = [Bn-] n——(n+1)_ g{/n(ka) . (2.39)

(n=1,2,3...)

Hence, if we substitute Eqs. (2.38) and (2. 39) into Egs. (2. 28) through (2.31)
and (2. 34) through (2. 37), and eliminate the coefficients An and Bn’ we

obtain non-trivial equations for the scattering coefficients Cn and Dn as

follows:
o [ P (cose) 8
z C §’ (ka) ind -]D gl (ka) 8 P (cos@)| = Gl(e) , (2.40)
n=1 J
. 1 )
& P (cos0)
z Colulk® 5 % o F (°°SG) -iD ¢ (ka) — o | = Gy(6) . (2. 41)
n=1 .
for60<0§1r, and
Q Cn D]1 Prll(cose)’
2 ka) 90 f(cos6) - AR (2.42)
n=1 -
ol C, Ptll(cose) D 2 .
y (ka)  sind - 0 (ka) 59 Fn H(coso)| =0, (2. 43)

n=1

for 0<6<0 .
- )
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We now seek to solve for the unknown scattering amplitude coef-
ficients Cn and Dn’ starting from Eqgs. (2.40) through (2. 43) by applying
the method of least square error. Two arbitrary weighting factors will
be introduced and will later be replaced by quantities specifying the relative
weights to be attached to the two boundary conditions -- one for the tan-
gential components of the electric field on the conducting surface and the
other for the tangential components of the magnetic field through the aper-
ture.

By introducing weighting factors W1(>0) in Eqs. (2.40) and (2. 41),
and W2(>0) in Eqs. (2.42) and (2. 43), and retaining only the first M

terms, the total square error, £M can be written as

P (cose)

2
T
Ey = W, f G,(6) - Z[c ¢ (ka) T —— -jDHC;l(ka)g-e-Ptll(cose):l sin6do

1 2
T Pn(cose)
+W1f G2(9) -% C § (ka) P (cosG) ]D §’ ( )_—s-iFG_ sin6dh
6 =1
0

0

ol M 1 5 1 1 Pn(cose)
+W2 2 Cn wn(ka) 0 Pn(cose) -JDn ‘//r'l(ka) ey sin6de
0

n=1

2

1
6 | M P (cosH)
o) 1 n 3 1 9 .
+W2f 2 [Cn Wn(ka) e W' (ka) 0 P (cose] sinfdé .
0

n=1

(2.44)

For least square error we require that
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QO

E €
M _ ad X ) m=1,23...M (2. 45)

@
o

from which we obtain

il 2m2(m-l-1)2
z ot Ykt (ka)s - [wm(ka)tn(ka) -

n=1
W M
2 . |
v—v— W] mn(eo)} cn+12 [wm(ka)gn(ka) ;
n=1
W
- : .n _2n+l
W, pka)t] (ka)] S n'®y) By= ¥ (ka)i ravsT

n=1

X {p(k) fmlorl) (fl‘“) n‘Lmn“’oil +jw;1(ka)§mn(eo} . (240

M [ W, . ] o)
- E P! (ka)¢ (ka) - = —F——>r c -
m n W, wn(ka)fm(ka) mn 0 n

n=1
2m2(m+1)2
-j Tomtl tl/;n(ka)fr'n(ka)émn- ll/r'n(ka) Ct'l(ka) -
n=1
W

2 1 n 2ntl
- 1 1% L (6 ) D= l//' (ka)
Wl wn(ka) fm (ka)] } i : (n+1)

2 2
. 2m (mt1)
X %H(ka) Smn(90)+]¢/n(ka) [ ) amn_Lmn('eo):I} , (2.47)

(m= 1:2:3:"0~: M)
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where the asterisk denotes the complex conjugate, 6mn is the Kronecker

deltaand L. (0 ) and S_ (6 ) are defined by
mn' o mn' o

00 5 5 Plln(cose) Ptll(cose)
Lmn(90)=f 0 P (cos6) % ‘o P (cosb) + oy oy sin6do,
0

(2.498)

1 1
6 [P (cosh) P (cosh)
_ o m o .1 n o 1
Smn(eo)—f [_sine 50 —P (cosB)+ =m0 o0 P (cosG)] sinfdg .
0

(2.49)

In order to arrive at weighting factors W1 and W2 having some physical

significance, let us consider the following square error functions (by letting
C_=D =0 for all n> M), normalized with respect to the corresponding incident

field components. For the tangential electric field on the conducting surface

(R=a, 6 <6< m:
f27r
fzw

and for the tangential magnetic field through the aperture (R=a, 0<6 < 60):

2
BT a2 sin6dodp

27 _1_
2 -t R-a |
27r 12 . (2.51)
_1_
It is clear that the smaller the quantities gl and 52 become, the more

accurate the solution. However, 3] and 52 cannot be minimized at the

E +E a sm6d6d¢

(2.50)

a2 sinfdodp

a? sin6dodp




20

same time. We here define the total (mean) square error &, which we
would like to minimize, as the ratio of sum of numerators to that of denom-

inators in Eqs. (2.50) and (2.51),

2T 2 1 2
E +E sinfdodp + ——2 -_ sin6dodp
: R:a
5 2T 2T 1
I f E sinfdodp + f f — s1n6d6d¢
—t
0 o R=a Y
o (2.52)
Since
E. -+ cosP G_(6) = cosb cosf o} ka cos0 (2.53)
0 ka 1
R=a
E = L sinf G_(0) = - sinf ol ke cosd (2.54)
Al ka 2
R=a
we have
2r P72 4 13
E sinfdddp= 7| =+cos® + = cos 6 ) N (2.55)
=t R- 3 o 3 0
0 % -2
)

and also, from Eq. (2.5) with Cn= Dn= 0 forall n > M,

2r o | . . 2 i T P (cosG)
I f -E:;+'E't L_ sinfdodp = —k;2 f G1(9)-% C ¢ (ka) === smG
0o Jo_ -8 ( 6,

n=1
5 1 2 T
-ant‘I'l(ka) ") Pn(cos(-))] sin6d6+f G (6) Z[C § (ka) . P (cose) -

2

P (cos6)
-]D §( ka) —SHG—_ sinfdo ) . (2.56)
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Similarly,
2T @O 12
oL H sinfdodp =7r(il- -cosf - lcos36 ) (2.57)
Y2 -t R-a 3 o 3 o
0 % B

27 @O 2 6 | M

ol II . __m 0 1 o 1
I I 5 E H, . sinfdodp = ——-(ka)z J- Z[Cn __¢n(ka) " Pn(cose)
0 - 0 |n=1
2
Pl(cose

1 n

)
B .
1D, ¥ (ka) “sind ] sin6do

60 M ) Prll(cose) 19 2
+f z Cn 'l/n(ka) prava Dn (/} (ka) 2 P (cos6 sin6do
0

n=1
(2.58)

Substituting Eqs. (2.55) through (2.58) into Eq. (2.52), and letting& =EM,

we obtain
3 1
W.=W_= ¢ —F , (2.59)
1 2 8 (ka)2

&Ey=CptEy - (2.60)

where 2
P (cosB)
E = = f 9)— [C §’ (ka) —— ]D §'(ka)——P (sose] sinfdo
2

T P (cosb)
+f G (9) 2 C C (ka)-— P (cosH) - ]D § (ka) -s—é—— sinGdG} ,
6

° (2.61)
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Pl(cose

2

—L— N P( 6)-3D_ 1 Fyloosd ingdo
2 ny (ka) ae coso)-] ny(ka)  sind Sin
n=

I
oo|oo

Sx

2

1
6 | M P (cosh)
o 1 n , _1 9 .
+ f Z[Cn ‘//n(ka) v Dn (//' (ka) 20 Pn(cose] sinfdo

0 n=1

(2.62)

E g 2nd EH are square errors related to the electric and magnetic field
components respectively. The weighting factors given by Eq. (2.59) are
convenient since we are dealing with the total mean square error function
EM and only a single constant need be given to determine the number of
modes, M, regardless of the values of ka and 60, for the same degree
of error.

If we substitut':e Eq. (2.59) into Eqs. (2.46) and (2. 47), and re-arrange,

we obtain the matrix equation

[bpq] yq] = gp] , (pg=1,2,..., 2M (2.63)
where the following notations have been introduced:
Pom-1,20-1" 2—%2%1_)2 [‘/’m(k“)]2 n+[W )
-t//n(ka)wm(ka)] L 6 (2.64)
by 0ol 20= [W -z//;l(ka)g//m(ka):l S CRR (2.65)

2 2
_2m (mt)” [, 2 1
2m,2n  2mtl [wm(ka)] 6mn+[§;1(ka)§’;’;(ka) )

-w;l(ka)w;n(ka)] L 6) . (2. 66)
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1 '
me, 2n—1—[§n(ka)§’$(ka) wn(ka) wm(ka)] smn(eo) ’
) ¢ (ka) o
Yon-1" wn(ka) n ’
¢ (ka)

Yon~ V! (ka) n

gzm 1— _¢/ (ka) z
B Lmn(60ﬂ+j(//;l(ka) Smn(eo) ’

= (p' (ka) z

2 2
. 2m (m+1)
+an(ka) [ 2mt+1

. 2ntl

( n+1) 2m+1

o 20t

n(n+1) l/}n(ka) Smn

©)

6mn B Lmn(eo)]

It should be noted that for the special case in which wr(ka) =

2 2
y (i [Zm (me))”

(2.67)

(2.69)

(2.69)

mn

(2.70)

(2.71)

0, Eq. (2,38)

gives Cr = 0 and the expression [Cr(ka) / x//r(ka)] Cr in Eq. (2.68) must be

replaced by

g

_ir 2r+1
r(r+1)}°

Similarly, if ¢! (ka) = 0, we have D_= 0, and [¥! (ka) / x//‘r(ka)]

must be replaced by

r
[B -1i
T

2r+1
r(r+1) ]|

Dr in Eq. (2.69)

The 2M unknown scattering amplitude coefficients, Cn and Dn (n=1,2,...M)

can now be approximated in the least square sense by solving the 2Mx 2M
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matrix equation (2.63) obtained by imposing the boundary conditions and
letting Cn= Dn= 0 for all n> M. The coefficients, Cn and Dn do not
enjoy the property of finality. However, this approximation converges to
the exact solution as M approaches infinity. In actual computation, there-
fore, the number M must be large enough to give sufficient accuracy, but
small enough to keep the computation time reasonable. It is well known
that in solving large systems of linear equations, matrix iterative methods
(Varga, 1962; Cole et al, 1967) give distinct advantages, most notably with
respect to the speed of execution, over conventional matrix inversion methods,
provided the corresponding iterative matrix has a reasonable rate of con-
vergence. TFortunately, the matrix bpq in Eq. (2.63) is Hermitian and
also positive definite if 90 # 0, and it therefore guarantees that the Gauss-
Seidel iteration will always converge when applied to Eq. (2.63) (Appendix B).
The number M can be determined according to the accuracy we require.
For example, we may require the total square error 6 M to be less than a
given small positive quantity 6. It is known that the accuracy of the solution
improves as 6 M approaches zero, and if we have EM = 0, the expression
becomes exact, except at the points where it has a discontinuity or singularity.
Nevertheless, &.

M
an accurate computation of the error would require a knowledge of the tan-

is not a measure of the error in the customary sense since

gential components of the electric and/or magnetic fields over the entire
boundary surface. However, it should be noted that € M provides at least
a valid measure of error for the tangential electric field at the conducting
spherical shell where we know Rx_E_]I =Rx EH = 0.

It is expected that the solution of Eq. (2.63) will converge only slowly
to the exact answer as M increases due to the field singularity at the edge

of the aperture. From the edge condition it is readily seen that at the

boundary surface the 6-component of the electric field for 60 <6 and also



the 6 -component of the magnetic field for 6 < 60 vary as the inverse square
root of the distance from the edge, while the f-components have no singularity
at all. Consequently, the infinite series involving the scattering amplitude
coefficients, Cn and Dn in Egs. (2. 40) and (2.42), which are respectively
related to the 6-components of the electric and magnetic field at the bound-
ary, introduce significant errors near the edge when the series are approxi-
mated by the first M modes even if the number M is chosen large. To
overcome the slow convergence of the solution due to the edge effect, the
above least square method can be modified by separating out the correct
surface field behavior at the edge of the aperture. This modified method

is presented in the following section.

2.4 Modified Formulation

To separate out the field having the edge behavior from the total field
expression, we should first of all determine functions which satisfy not
only the edge condition but Maxwell's equations as well. It is in general
extremely difficult (if not impossible) to obtain such functions explicitly.
But since the general formulation of solution presented in Section 2.1 is
in terms of spherical vector wave functions (and therefore each term satisfies
Maxwell's equation), and must contain the edge singularity, a possible approac
is to pinpoint those terms which can become infinite at 6 = 60 and thereby
separate out the singular point.

Let us therefore examine Eqs. (2.40), (2.41), (2.42) and (2. 43) which

are related to E; s E; s Hé - Hg and H;) - H;')I at R=a, respectively. We
know from the edge condition that both functions ES and HI -HII satisfy

0 6 6
Dirichlet's conditions with 19 -Gol_l/ 2 singularity, and hence the terms

in the series expansion of each function are O(%) for n large (Carslow,

1930). On the other hand E; and H;) - H¢ are bounded and otherwise
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satisfy Dirichlet's conditions, and hence the terms in the series expansion
of each function are at least O(rl—l) for n large. Therefore, together with

the asymptotic forms, for large n,

¢ (ka)wi ——[(2n-1) .... 5:3:1]

" (ka)"

¢! (ka) ~ -i (ka)n n [(2n-1).... 5-3-1]

wntka) o - [(enrD) (20D ... 5:3:1]

w{.jkaf (k:)“ - (20D (2n-) ... 50341
Pi(cos6)~ A roms < <n+-;—)e+% , n>> sﬁ)

91 ’ 2n . 1\, 7 ) 1
" Pn(cos9)~n 7 5in0 sin (n+2)(-)+4 s, N>> sing ’

a close examination of each term in Egs. (2.40) through (2. 43) reveals that

' 9 1l ~olL
D_¢(ke) 2 P (cos6) o(ﬁ) ,

and only the series

00 00

ZCn w_l(_k-;) 0 P (cosG) and zD §' (ka) ——P (cos0)

n=1 n=1
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have

6 -(-)ol -1/2 singularity at the edge.

Since, from Appendix C

0 006 90
= 0
2 'yn 0 P (cosB) = )
n=1 sin 0
06 ¥2(cosb —cose + =
o08 v( ) ‘r2(cose -cosh) ’
(2.72)
sin26
—cos@'V2(cos6 cosH )+
. 42(cose—cos0 )
0
zan 50 P (cosB) =
n=1 0 , 6 <6<m
(2.73)
where
Y = Re {an} , (2.74)
6n = Im {an} , (2.75)
a = 2 b - L b ——"-1-'—'—" b
n (2n-1)(20+3) n  (2n+5)(2n+3) n+2 (2n-3)(2n+1) n-2°’
(2.76)
bn _ e1(n+ 1/2)6, , (2.77)

we notice that Eqgs. (2.72) and (2. 73) behave the same as the 6-components
of the magnetic and electric field respectively in the neighborhood of the edge.

Now, introducing some constants K. and K_, if we let

1 2’
Cn = cn+K1¢n(ka) 'yn s | (2.78)
1
Dn d +K2 C ) 5 , (2.79)

,0 <9<7r

:,0<0<6
(0]



28

Eqgs. (2.40) through (2.43) can be rewritten as

[00) P (cos@) 5 1 003 P (cosG)
W [eatylle) Tog -Ia5 k) o P, (eosd)| 1K Y 1 (ka)t () -
n=1 n=1
®
-szz an =P L (cost) = G,(6), 0 <6< (2. 80)
n=1
® 5 1 P (cos(-)) [00) 5 1
z cntn(ka) (cosG) ]d § (ka) ~ind Klz'ynwn(ka)tn(ka)gé- Pn(cose) -
n=1 n=1
00} P (cosO)
]Kzz 5 e =G0), 0 <O<T (2.81)
n=1

1
P (cos6) ®
[c L2 ; (cose) -jd_ L o }+Klz 3 pl (cos0)-

Me

1// (ka) 00 n ¢'(ka) sind o0

n=1 n n=1
6 P (cosb)
-jK z w'(ka)g s ———=0,0<0<0, (2.82)
1 1

o) Pn(cose) 1 9 o) Pn(cose)
Z “ny (ka) smg % U (k) %0 P (°°Se)+Klz'Yn sind
n=1 n=1

-jK 2 w(ka)g'(ka) ae P Hcose) =0, 0<0 <6_. (2.83)

We again apply the least square method to Egs. (2.80) through (2. 83) retaining
only the first M terms for the coefficients cnand dn' Since the series having

the coefficient K2 in Eqs. (2.80) and (2.81) and having the coefficient K1 in
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Eqgs. (2.82) and (2. 83) vanish according to Eqs. (2.72) and (2.73), the total

square error, 5M is given by
3 1 T P (cosG)
EM= s 3 G (6) 2[ § (ka) -]d §’ (ka)—-P (cose)]
sinf
(ka) 0
0
Jod) P (cosG)
12 AN (ka) ¢y (ka) -~ sinfdd +
n=1
1
T Pn(cose)
+I G2(9)-§[ §(ka) P (cosG) ]d §’ (ka) vy ]

0 n=1
0

00 5 1 2

—Klz ¥ g, () (ka) = P (cos) | sin6dd+

n=1

60 M 1 Pn(cose)
f 2 [cn (p (ka) 86 0" (cose) ]d 1//' (ka) sinf ]
0 |n=1
6 P (cosb)

-JK 2 (//' (ka)t (ka) sme sinfdg +

1
9, & P (cos0)
° n j 1 9
f z[cn (ka) sinf - dn lﬁ' (ka) 90 p (cose)]
0

n=1

2
-jK z zp‘(ka)f'(k) 89 (cosG) sinfdb , (2.84)
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.where we have used the same weighting factors W1 and ‘Wz given in Eq. (2.59).

The requirement that

agM agM
—=— =0 , (m=1,2,... M
acm adm
and
2y _ %y
81 8K2

leads to a linear system of 2(M+l) equations in the 2(M+1) unknown coefficients
CM’ dl’ d2’ cees dM’ Kl’ K2. After some manipulation
those equations can be written in matrix form as

=] = 5], o=tz ... 200 (2.85)

Cis Cos onne

where the following notations have been introduced:

2 2
_2m (mtl) 1 i
“2m-1,20-1"  2mt] wm(ka)gm(ka)amn+[¢m(ka)§;1(ka)

—wn(ka)rn(ka)] Lmn(e o) , (2. 86)

1

*am-1,20" [W) ~Yplka) fr'l‘ka’] S (%) - (2.87)

—2—m—2(}£t1-)ii'(k)'(k)6 +_.__]‘___
qom,2n 2mtl Uppika)€ (ka)e ',D;n(ka) C;;:;(ka)

-V/r‘l(ka) §t'1(ka)] Lmn(eo) , (2. 88)

|1
om, 2n—1—[¢;n(ka)§$(ka) - ‘”n(ka)gn(ka)] s_(6) . (2.89)
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qom-1,2M+1" ¢ (ka)C" (ka) “2M+l, 2m-1
m m

_ 2mi(mt1)*
- 2m+1
£=1

|
89m, 2M+1~ ¢’ (ka)€™ (ka) “2M+l,2m
m m

o)
= - z 'yzwz(ka)fz(ka) Sfm(eo) ,
1=

—

Vi (ka)¢ (ka)a m-1, 2M2

[00)
z w,;(ka)t' (@ S -
=1

qoM+2, 2m-1"

= wl‘m(ka) C;n(ka) a

29M+2, 2m 2m, 2Mi+2
'z U (ka)¢'™* (ka) fm' o
e ),

AoMHL, 2M+2 C2M+2, 2MH1

2

[00) 2 2
m |’Y£¢’£ (ka) gl(ka) -

doM+1, 2M+1 2+1
1=1

vmwm(kamm(ka)-i T, (ka)e, (k) L, (60)),

(2. 90)

(2.91)

(2.92)

(2.93)

(2.99)

00
D) z T ket (ka)v, "y, (ka) €, (k) L, (6 ), (2.95)

i=1 £=1
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[0 9] 6. 6:::
1 £
b2M+2:2M+2=2 f Stk p Gty ')+ (%9

i=1 £=1
X = 1 (¢] (2 97.)
2n-1 wn(ka) n '’ ’
X =-j —— d (2.99)
o zp;l(ka) n °’ ’
Xy = Ky - (2.99)
e LV (2.100)
00 2 2
_ £ 20+1 2m”(m+1)
fom-1= z ey @ [ om+l  Com” Yl m(eo)] ¥
2=1
tigy (ka) 8, 6)p (2.101)
e L 2+l om(mt1)>
_ L2041 o ( }
fom ZJ TIPS L4 b S!Zm(eo)ﬂwll(ka)l: omrl | Oim le(eo)]
i=1
(2.102)
[00) 00 2
- sk ! 2£+1 M)‘Z
foMe1™ - 2 "y (ka) ¢ (ka) 23 0(e+1) ‘/’z(ka)[ orl Oti
i=1 1=1
- 1/
L, i(60)] iy, (ka) 8, i(90) (2.103)
forisn = © . (2.104)

(m,n: 1,2,....,M)

Although some of the above matrix coefficients are more complicated in nature

than those appearing in Eq. (2.63), the solution of Eq. (2. 85) gives rise to
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less error than that of Eq. (2.63) if the dimensions of the matrix equations

are taken equal. The labor involved in obtaining a solution to a specified

degree of accuracy is therefore less if Eq. (2. 85) is used rather than Eq. (2.63).
At the surface, R=a, the scattered tangential electric field can be ‘

written in terms of the solution of Eq. (2. 85) as

S ) M Prll(cose)
EG (2,6, 0)~ ka Z [X2n-1wn(ka) §n(ka) sinf
n=1
1
5 1 ® Pn(cose)
+x2nwn(ka)§n(ka) 0 Pn(cose) +X2M+1 Z'ann(ka)c’n(ka) g +
n=1
T X049 ["1’9(6) cosf (2. 105)
s <1 & d 1
E¢(a,9,¢)~ ™y z [xzn_lwn(ka)fn(ka) 0 Pn(cos9)+
n=1
1
Pn(cose) 00} 5 1
+x2nwn(ka) g’n(ka) _sEe—_]‘L Xo i+l z'ynwn(ka) Cn(ka) %0 Pn(cose) +
n=1
(0) » sing (2. 106)

oz T

where l"'l 6(6) and I"l ¢(9) are, for convenience, defined as

sinze
A{ 2(cosh -cosd 3'

- cosO /12(cos9-coseo)' , for 0<6 <90

Pl, o=

o , for60<6 <7
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- 12(cose—cos607 , for 0<6< 60

Pl, ¢(G) =

0o , for90<0_<_7r' '

Also, the surface current components are, at the inside shell surface,

I jkacosO | j 0 1
NS - 1 -
T1(6) cosf e + - 2 [XZn-l g[/n(ka)t’n(ka) vy Pn(cose)

n=1
1
Pn(cose) © 5
-x, ¥ (ka) ¢ (ka) ———o }+  — 2 v Y (ka) §‘n(ka) 5 P (cos6)-
n=1

(ka) Prll(cose)

2M+2 Z n tp' (ka) sinf ? (2.107)
M P (cose)
I Jka cose J . _
T, (6) ~ L z [ YLt (ka) ——
n=1
1
' 5 1 ® ' Pn(cose)
-Xann(ka) §n(ka) 8_6_ Pn(cosf))+x2M+l Z'Yn(pn(ka)tn(ka) sinf
n=1
03] "Wn(ka)
~Xor 49 Z <Sn m) 0 P (cos6) s (2.108)
n

n=1

and, at the outside shell surface,



M
j : 0 1
T111(9)~ —cosd &) 2080, I{l:; 2 {x (ka)§ (ka) aePn(cosE?)
n=1

P (cos@) @ 5 1
- X, w'(ka)t (ka) ey ]+x2M+1 2 'ann(ka)t;l(ka)@Pn(cosG)-

n=1

[09) Cn(ka) Prll(cose)

~XoM+2 Zén ¢! (ka) sinb ’ (2.109)
n=1 n
M Pl(cose)
I Jkacose _1_ .
TZ(G) z [XZn—lwn(ka) Cn(ka) sinf
n=1
® P (cosB)
Xy U1 (ka)t (ka) 59 T (cose)] X el 2 A n(ka)’;’ (ka) prev
n=1
® f(ka) 5 1
~XoNE2 26n § T ke 90 P (cosO) . (2.110)

n=1

In the far zone, the scattering amplitudes are, from Eqgs. (2.16) and

(2.17),

o M 0 Pn(cose) . 5 1
sn(e)fu 2 j [xzn_lwn(ka) Sind -]xznw;l(ka) @Pn(coseﬂ+

n=1
[o0) P (cos@) 00} n 1 9
+X2M+1 z] A zp (ka) R RSN 2 6n § () 90 —P (cosG)
n=1 n=1

(2.111)
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M Pl(cose)
SS(G)N jlf1 X v (ka) §—P1(cose) -jx. ' (ka) L
2 2n-1"n 90 n 2n"n sinf
n=1

1
o 1 Pn(cose)

= n 0 1 =
+X2M+1 z] ‘ann(ka) % Pn(COSG)—] XoM+2 2 ) 6n C;l(ka) sinf
n=1 n=1

(2.112)

It should be noted that Eq. (2.85) can also be solved by the Gauss-
Seidel iterative method. This is easily shown by associating Eq. (2. 85) with
a positive definite Hermitian matrix after some matrix transformations
(Appendix B). Even though we have overcome the slow convergence due
to the edge behavior of the field, the order of the matrix [apq] has to be
increased, as ka increases, to maintain a given accuracy of solution. In
consequence, the use of the Gauss-Seidel iterative method is both convenient

and desirable if ka is large.



CHAPTER III
NUMERICAL RESULTS

3.1 Results of the Original Method

A computer program with double-precision mode (about seventeen
significant decimal digits) was written for the University of Michigan
IBM 360 computer to calculate the surface and far fields. The scattering
amplitude coefficients, Cn and Dn (n=1,2, . . . M), were first computed
from Eqgs. (2.63) through (2.71), obtained by the unmodified least square
method (we will henceforth refer to this as the original method). From
these, all the field quantities were then computed.

The backscattering cross sections of the spherical shell with the
aperture angle, 90= 30° were computed with various values of M ( =
number of modes incorporated), and they are given in Fig. 3-1. The
results indicate that the solution converges slowly as M increases except
in the region where ka is small (less than about 1,2). This is further con-
firmed by comparison with the experimental results given in Fig. 4-4,
Chapter IV. Even with a fairly large M, say M=40, the computed results
differ considerably from the experimental results in the region of ka > 2,0.

In order to examine the accuracy of the solution over the boundary
region, the tangential components of the total electric field were computed
from the approximate scattering amplitude coefficients, Cn and Dn
(n=1,2, .. . M) for M=30 and 50 with ka=2,0 and 00=300. Their amplitudes
are plotted in Figs. 3-2a and 3-2b. From the edge condition, we know that
the field E 0 at the edge, 9=300, of the aperture has a singularity of order
p—l/ 2, where p is the distance from the edge. Also, knowing that the
exact tangential components of the total electric field must vanish at the
conducting surface, R=a and 30°<6 < 180° , we see that the results give

a poor approximation to the exact field near the edge of the spherical shell.
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Although the results for M=50 are an improvement ovei‘ those for M=30
and also give some indication of the field singularity at the edge, it is

believed that the rapid oscillations appearing in E_ over the aperture

do not represent the actual field characteristics. Seince only a finite number
of modes (=M) is retained in approximating the field having the edge singu-
larity, these oscillations are believed due to Gibb's phenomenon which
occurs whenever a discontinuous function is approximated by a finite series.
In order to overcome the difficulties arising from the edge singularity, the
original formulation has been modified, and all subsequent computations

were carried out using this modified method.

3.2 Results of the Modified Method

The original computer program was modified to compute the scatter-
ing amplitude coefficients from Eqs. (2.85) through (2. 104), derived by
using the modified. least square method. In this programming, considerable
care was taken in the computation of functions such as wn(ka) , §n(ka) and
Plll(cos 0) for large n. A brief description and listing of the main program
and related subroutines are given in Appendix D.

The backscattering cross sections of the spherical shell with 60=30o
and 90° were computed for 0.8 < ka < 4.8 and plotted in Figs. 3=3 and
3-4 respectively. The numbers M=10 for ka < 1.1 and M=20 for
1.1<ka < 4.8 were used in the computation except in the vicinity of ka
values where a sharp peak iﬁ the scattering cross section was expected,
where M=30 was chosen. The results near this peak appear somewhat
less accurate than those further away for the same number of modes
retained in the computation. It is, however, believed that the number
M=30 is large enough to give a reasonable approximation to the exact cross
section in the region we are interested in. To show the rate of convergence
of the solution near this peak, the backscattering cross sections and the

error ﬁM (see Eq.(2.84) ) for ka =2.4, 3.4, 4.0 and 4.7, with various
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values of M are tabulated in Table 3-1. The results obtained from the
original computation was also included to show the significant improve-
ment achieved by the modified method. Although the value of aM

cannot be explicitly related to the error in the backscattering cross section,
an error £M less than about 0.4 x 10_2 seems to provide an adequate
criterion for the computation of the backscattering cross section. The
computed cross sections are compared with the experimental results in
Figs. 5-1 and 5-2, Chapter V, and a detailed discussion will be given in
Chapter V.

The tangential components of the near field were computed at R=a
for ka=2.0, 2.5, 2.75 and 4.0 with 60= 30° to compare with either the
exact answers or experimental results and possibly to obtain some insight
into the scattering behavior of a spherical shell. In Figs. 3-5 through
3-8, the amplitude -of each tangential electric field components, and in
Figs. 3-9 through 3-12 the amplitude and phase of TIII(G) and Tg(e)
are plotted with theoretical values for a solid sphere with the same ka.

A close examination of Figs. 3-5 through 3-8 reveals that the larger the
amplitude of the tangential electric field in the aperture becomes, the
larger the error near to the edge of the conducting surface and also the
larger the amplitude of the oscillations in the aperture. Separate compu-
tations for M=20 and M=30 in Fig, 3-8a and 3-8b show quite a close
agreement between them except for different shapes of small oscillations
over the aperture. Very similar behavior can also be observed in TIII(G)
and T (9) For ka=2,5 (Figs. 3-10a and 3- 10b) rapid but small oscilla-
tlons appear 1n the amplitude and phase of T (6) while the amplitudes of
T (6) and T (6) suddenly become small over the aperture. On the other
hand, for ka—2.75 (Figs. 3-1la and 3-11b) the amplitude and phase of
TH(B) as well as T;I(G) show no such rapid oscillations, and apart

1
from the singular discontinuity at the edge of the aperture, the variations
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across the aperture are quite smooth, The computed results of the surface
field components are believed very close to the exact solution, apart from
small oscillations observed above. The results will be confirmed by
comparing with the experimental results in Chapter IV,

The bistatic cross sections have also been gomputed for 90= 30° and
ka=2.5 and 2.7, corresponding approximately to the frequencies for
maximum and minimum backscattering cross section, respectively. The
results for =0 (E-plane) and =7 /2 (H-plane) are plotted in Figs. 3-13
and 3-14 in which the curves are normalized with respect to the backscat-
tering cross section of a solid sphere for the same ka. Near the forward-
and back-scattering directions, the cross section of the spherical shell
is enhanced for ka=2.5 and reduced for ka=2.7, but in all other
directions there seems to be no significant difference between a spherical

shell and a sphere in the bistatic pattern.
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90

E - PLANE

FIG. 3-13a: COMPUTED BISTATIC SCATTERING PATTERN OF A
SPHERICAL SHELL FOR ka=2.5 WITH 90= 30°. DASHED

LINE IS FOR A SOLID SPHERE, §=0,
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180

90

H-PLANE

FIG. 3-13b: COMPUTED BISTATIC SCATTERING PATTERN OF A
SPHERICAL SHELL FOR ka=2.5 WITH 6 = 30°. DASHED
LINE IS FOR A SOLID SPHERE, $=7/2.
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FIG. 3-14a: COMPUTED BISTATIC SCATTERING PATTERN OF A
SPHERICAL SHELL FOR ka=2.7 WITH 6 ,=30°. DASHED
LINE IS FOR A SOLID SPHERE, §=0.
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FIG. 3-14b: COMPUTED BISTATIC SCATTERING PATTERN OF A

SPHERICAL SHELL FOR ka=2.7 WITH 6 _=30°. DASHED
LINE IS FOR A SOLID SPHERE. §=7/2.



CHAPTER IV

EXPERIMENTAL RESULTS

4.1 Experimental Models and Facilities

To obtain some physical insight into the scattering behavior of a
spherical shell and to confirm the numerical results, a series of
measurements was carried out on spherical shells with various aperture
angles, 60. All the backscattering and surface field measurements were
made within the L-, S- and C- band regions. Since frequencies between
these bands were not available, two different sets of spherical shell models,
about 2.55 and 3.09 inches in (outside) diameter, were used to span the
entire range, 0.7 < ka <4.85. Each spherical shell was made by joining
two hemispherical shells (cold drawn from thin steel sheet) and then cutting
a hole of appropriate size in the top of one of the hemispheres. A photo-
graph of some of the models is shown in Fig. 4-1. Altogether, eleven such
models were constructed; five models in each (diameter) set with 60 = 150,
300, 450, 60° and 900, and a complete shell (sphere) of 3.09 inch diameter.
The sphere was used for calibrating all the measured data. The shell thick-
nesses were somewhat non-uniform varying from 0.015 to 0.020 inches
for the 2.55 inch models and from 0.030 to 0.040 inches for the 3.09 inch
models.

The backscattering measurements were made using conventional c. w.
equipment in an anechoic room, where the complete backscattering patterns
for both horizontal and vertical polarizations could be taken. The surface
field measurements were performed in a tapered anechoic chamber speci-
fically designed for such measurements. A probe traversing mechanism

is mounted above the chamber and the probe, with its coaxial lead supported
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by a balsa wood tower, extends vertically through the ceiling, The mech-
anism is capable of moving the probe around a horizontal circle and in a
direction specified by rectangular coordinates as well. The photograph in
Fig. 4-2 shows a model being probed in the anechoic chamber as viewed
from the position of the antenna. A detailed description of this surface

field measurement facility has been given by Knott et al (1965). The per-
formance of this facility is known to be quite reliable in the surface current
measurements if the model is a perfectly conducting obstacle and the polari-
zation of the incident field is horizontal. For other near field measurements,
its performance is, often, not reliable, and the near field probing was there-

fore limited to the current measurements for horizontal polarization.

4.2 Backscattering Measurements

Backscattering measurements were made with all eleven models in the
L- and S- band regions and were extended to the C-band region only for the

3.09 inch models. The corresponding covered ka ranges were:

ka = 0.70 ~ 1.10 (L-band)
ka = 1.50~ 2.72 (S-band)

for the 2.55 inch model, and

ka = 0.85~ 1.40 (L-band)

ka = 2.18 ~ 3.20 (S-band)

ka = 3.30 ~ 4. 85 (C-band)
for the 3.09 inch model.

The distance from the transmit-receive antenna to the supporting
pedestal was 9 feet and the model was placed so that the plane of the aper;
ture was parallel to the axis of the pedestal. When the aperture of the model
was directed at the antenna (6 = 0), the measurement for each model was

repeated two to four times for the same ka value and the results were
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SURFACE FIELD MEASUREMENT FACILITY AS VIEWED FROM THE POSITION

OF THE ILLUMINATING ANTENNA.

FIG. 4-2
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averaged to give more reliable experimental data, The measured back-
scattering cross sections normalized to the geometrical cross section,
7Ta2, are shown in Figs. 4-3 through 4-7. In the regions 0.7 <ka<1.1
and 2.18 <ka < 2.72 where the measurements with the different diameter
models overlap, two sets of data are given. It is interesting to note that
marked reductions in the backscattering are obtained in the vicinity of the
resonant frequencies of a spherical cavity (lowest resonant mode in the
spherical cavity occurs at ka = 2,75, the first root of w'l(ka) =0 and
the next lowest mode at ka = 3. 87, the first root of w‘z (ka) = 0, and the
third at ka = 4,49, the first root of t//l(ka) = 0). These resonant effects
are particularly strong for 60 = 30° and 450. For 90 =15% it is pre-
sumed that the coupling through the small aperture is insufficient when
ka = 2.75, and for 90 > 45° the detuning of the cavity resulting from the
large size of the ?,perture can no longer be ignored.

Four complete backscattering cross section patterns in the E-plane
(@ =0) for ka = 1.0, 2.0, 2.75, and 3.0 with 90 =30% are given in
Fig. 4-8. It is observed that when ka = 1.0 the spherical shell model has
almost the same cross section as a solid sphere of the same size. As ka
increases, however, the effect ofthe cavity becomes more apparent and the
variations of the cross section as a function of 6 increase. For ka = 2.75

the relative cross section is reduced to about -14 dB at 6 = 00.

4.3 Surface Field Measurements

The current components on the outside of the spherical shell were
measured for 3.09 inch model with 90 = 300 at frequencies 2.432, 3. 344
and 3.648 GHz, corresponding to ka = 2.0, 2.75 and 3.0 respectively.
The measurements were made with the aperture of the spherical shell
directed at the antenna (0 = 0) at 5-degree intervals of 6 along the con-

ducting surface and normalized with respect to the theoretical values for a
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6,=300 ( ) AND A SOLID SPHERE (- - -). HORIZONTAL
POLARIZATION,
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solid sphere at 6 = 00. A horizontal probe (bent about 1/4 inch from the
end so that the plane of the loop is perpendicular to the lead) was scanned
all the way around the spherical shell surface in a horizontal plane (§=0)
to measure the amplitude and phase of TI; (). The data was then averaged
about the zero aspect to remove the asymmetrically induced error- compon -
ents in the probe. Since the probing mechanism is incapable of rotating the
probe along the vertical plane (§ = g), two separate measurements for
TllI (6) were taken along the upper half of the spherical shell surface for
each ka. In the first a horizontal probe was used and next a vertical probe
(with no bent portion). Of course, by taking the vector sum of these two measure-
ments, the amplitude and phase of TllI (6) were deduced.

The results are presented in Figs. 4-9 through 4-11 with the computed
values for comparison. In Figs. 4-12a and b the measured and theoretical
values of T1(6) and T2(6) for a sphere with ka = 3.0 are given to indicate
the accuracy of the measurements taken for the spherical shell. Figs. 4-12a
and b show that the experimental errors are about 0.6 dB in amplitude and
15 degrees in phase. The differences between measured and computed results
in Figs. 4-9 through 4-11 are of the same order as those in Figs. 4-12a
and b, except in the immediate vicinity of the edge where the discrepancies

can be attributed to the interaction of the probe with the edge.



79

o
‘0= ANV o0€= 6 HLIM 0°2 = ¥ 404 LNIANOJIWOD SVMH dALNdNOD ANV dIUYASVIN ®6-% “DIA
soax3o(q Uy 9
081 oSt (1A 06 09 015 0
I | 1 1
06—
-4 0°1
081 -10°¢
T
<] Ho0°¢
o
<
~
0Lz aseyq pomdwo) ---- X S
os®EyJ POINSBOy X X X 07
spnjriduy pamduro)
opnmji[duy poansed]|y O OO
o




80

o
"02=IN ANV ,0€= 6 HLIM 0°2=% 404 LNINOdIWOD AQVM'H dILNdINOD ANV AIHYNSVIN :q6-¥ “DII

sooxda(q ur @
06 09 0g 0

T T 0

08T 0s1 0clt
1 { T |

06
H
B
]
~
<
081
q ~
oseyd pomdwin) - -~ - ~ b I —Ho0°z
™~
9sBYJ pPOINses ; X X X *
onz epnjrjdury peyndwo) M

b od -
apnjIduiy PaInsea| © O O

T e —— — —




81

o
‘02=W ANV 0€= 6 HLIM SL ‘2 = ¥ 404 LNINOdAWNOD AQvHﬁm.H daILNdWOD ANV AIINSVANW B0T1-% "DIA

081
o -

go0x3o( Ul @

06

0Le -

09¢€ ~—

oseyq peomndwmop - - - -
9s8yqd POINSBOI X X X
epmydury pendwo)
opnIduy poInsSEd|N © GO

o€ 0




82

. o L) .
02=IN ANV 50€= 6 HLIM SL°2 = ®] HOd LNIANOdINOD AQVMB AdLNdWOD ANV dF9NSVIN q0T1-¥ "DId

sooa8a U1 9
06 09
| |

081 061 0ct

o€ 0
I T T

0
HT2
<]
= 06
<
081
o0Le - eseyq poyndwmo) - - - - *Sxe
aseyq poInseol X X X z x/f
opnyridmy pemdwo) oL UV *<xe _
apnm)rduy paanses|y @O ©

09¢€ Ir




83

o
‘02=IN ANV ,0€= 6 HLIM 0°€ = ¥ YOd4 LNANOJWOD AmvH“.H ILAdNOD ANV dIYNSVIN ‘BI1-¥ "DII

soaal3a( uy @
081 0S1 021 06 09 o€ 0
0 I 0
—~ 0°1
06
2% —qH o0z
2
< 081 .
|
— 0°¢
0L2
aseyq pomdwo) - - - - ﬂ/ (-] .
og s ]0°7
eYd PoINSBON X X X XS—a o _]
spmyjidury pejndwo)
spnjfiduy poansesa| © 0 @
09¢e




84

. o .
02=IN ANV ,0€= 6 HLIM 0°€ = ¥ ¥Od LNINOJIWOD AQVHNH.H dILAIINOD ANV dFYASVIN qI1-¥ "DId

0ct
i 1

seax3a( Uy @
06

09

0€ 0

081 I~

0Le

09€

aseqdq pomdwo)d - - - -

2seqd POINSBIN X X X
epnjiidury pendurop
apnjiduy poanses|y OO O

1




85

‘0°€ = ¥ o4 AYTHdS AI'IOS V 40 LNINOJNOD Gvﬁh. LOVXT ANV AIUNSVAN ‘BZ1-% "DId

s9ax3a( Ul g
081 0¢1 0zt 06 09 o€ 0

0]

081 - N
NS "]
- \
3 X
. AN
<] Ny - 0°¢
< \ X
< N\
\Nx
oLZ |- //x
. ’ X
oseqdq 08Xy - - - - //x .
oseyd paInNsSBI|N X X X /& <14 0%
opnjduy joexy —— Sx
apn)duy paansea| @ © © _ xlxl
Kl%'l 'ﬁ'+
09€



86

‘0°¢€ = B YOd JYIHJS AT'I0S V 40 INIANOIWOD ASN.H LOVXI ANV AIINSVIAN qZ21-% "DId
seax3aq Ul @

06 09 o€ 0

T i | 0

081 9 021

~
oLz | 0T 308X — — - — L'ouV X<
os®Yq POINSBOI X X X N
spnyidwy 308Xy —— * -
apnjIduy poInses|N OO O xo -~ i
09¢€ -




CHAPTER V
DISCUSSION

In order to confirm the theoretical predictions, the computed cross
sections are compared with the experimental results for 60 = 30° and 90°
in Figs. 5-1 and 5-2 respectively. The agreement is very good, although
we do observe that the experimental points lie somewhat higher than the
predicted curve in the regions near to peaks and that the experimental points
are, in general, shifted to the right about 2 percent in ka. This shift can
be attributed to the fact that the shell of the experimental model has a finite
thickness, while that used in the analysis is assumed to be infinitesimally
thin. The shell thicknesses are, in fact, between 1.9 and 2.6 percent of
the outside radius for the 3.09 inch diameter models used in the range
ka> 2.72. If, therefore, the experimental data were plotted as a function
of k times the r;ldius of the cavity, the data would match the predicted curve
as far as the shift is concerned (note that the outside radius is used in ka,
Figs. 5-1 and 5-2). This implies that the cross section of a spherical
shell depends more closely on the size of the cavity than on the outer dimen-
sion of the spherical shell.

In Chapter IV we observed marked reductions in the backscattering
cross section at values of ka near to the resonant frequencies of a (closed)
spherical cavity when the aperture is of moderate size. Hence, it must be
true that the cavity itself plays quite a significant role in the modification of
the scattering, and that the modification depends on the electrical size of
the cavity. Unfortunately, the reason for the differences between the experi-
mental and theoretical values near to the peaks is not precisely known. Al-

though the deviations are less than 1.4 dB, it is interesting to note that
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repeated measurements for the different diameter models produced uniform
"curves" differing from each other by about 1 dB in the region of the first
resonant peak for 60 = 30° (see Fig. 5-1). Since only the 3.09 inch diameter
models were used for ka > 2.72, the existence of such deviations between the two
models for ka > 2.72 is unknown. These experimental deviations could be
attributed to one of the causes: the difference in the shell thickness between

two models, non-uniformity of the shell thickness or even the unknown fre-
quency sensitivity of the experimental facility.

Returning to the cavity resonance phenomenon, an examination of the
computed and experimental data for the backscattering cross sections with
various aperture angles reveals that the marked reductions and sharp peaks
occur always at frequencies just below the free resonance frequencies of a
spherical cavity. The decrease in the resonant frequency of the cavity can
be explained by perturbation theory (Slater, 1950) if we regard the aperture
as a perturbation aipplied to the closed spherical cavity. In such a case,
power flows out through the aperture (wall) and a loss is introduced. Accord-

all)

and the resonant frequency of the perturbed cavity becomes smaller than

ingly, we have a finite Q associated with the loss through the wall (Q w

that of the closed spherical cavity. A quantitative analysis of the perturbed
frequency is, unfortunately, extremely difficult even for a small aperture
size, and no such analysis has been attempted.

In the vicinity of the resonant frequencies of the cavity, the field quan-
tities associated with the cavity are extremely sensitive to small changes in
frequency. In particular, we would expect a rapid change in the phase of the
field scattered (or reflected) from the cavity as the frequency of the incident
field varies near the resonant frequency. This phase change produces a

rapid change in scattering cross section from a maximum to a minimum
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since the field scattered by the rest of the shell (e.g. the outside surface and
edge of the shell) varies only slowly with frequency. The rapid change in
cross section is especially evident at frequencies near to the cavity reso-
nances when the aperture is of moderate size. Such a frequency sensitivity
can be seen in all cases for which 15° < 60 < 45°. Extreme instances are
shown in Figs. 4-3 and 4-4. With 60 = 150, for example, the backscattering
cross section has a sharp peak (o(0) = 3.2 7ra2) at ka = 3.82, where a

is here the cavity radius, but an increase in ka of only 0.03 is sufficient

to reduce this to a "null" where ¢ = 0.3 7ra2. As the aperture size increases
(60 > 450) the effect of the cavity resonance becomes insignificant, and no
such rapid change in the scattering cross section now occurs. It is interes ting
to note that a spherical shell with aperture-on incidence has, in general, a
higher backscattering cross section than a solid sphere except for ka near

to a cavity resonance, and that the narrow band frequency characteristic near
the resonance frequencies of the cavity is inherent in this type of geometry.

At this point it should be mentioned that ray optical techniques have been
examined in an attempt to explain and clarify the scattering behavior. Such
techniques are often valuable not only as a means of estimating scattering,
but also because of the physical insight that they provide. With the present
problem, however, the incorporation of effects due to edge diffraction, creeping
waves, transmission through and reflection at the aperture, ete., failed to
reproduce the main features of the scattering behavior as represented by the
theoretical and experimental curves, and did so even for the larger values
of ka where optical techniques are generally more accurate. This failure
is probably attributable to the presence of the cavity, and tends to confirm
the dominant role played by the cavity in determining the scattering.

Over the range 0.8 < ka < 4.85, the numerical computations carried

out using M < 30 for the matrix equation (2. 85) produced good results as
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measured by the parameter & N the examination of the tangential E-field
over the shell and the comparison with measured data for o(0) as well as
TllI (6) and TIZI(G). In low frequency region, ka < 0.8 (say), a choice of

M < 10 should be enough for accurate computation, but as ka is increased
into the high frequency region, we would expect to have to increase M at
least in proportion, and for ka > 4. 85, values in excess of 30 would be
needed. Since the difficulty (and cost) of matrix inversion increases with
the dimension of the matrix, it is obvious that the application of the present
method is limited in the size of ka that can be handled. If ka is moderately
large, say ka > 10, the Gauss-Seidel iterative method appears advantageous
as regards computational labor and machine time in comparison with more

conventional matrix inversion methods such as that used here. However, the

relaxation parameter w (see Appendix B) has to be chosen carefully in order
to provide a reasonable rate of convergence in the iteration process. The
optimum choice of w is not known and considerable effort would be needed
to obtain it.

Although the analysis in the preceding study was limited to the case of
aperture-on incidence (angle of incidence, Oi = (), the analysis can be extended
to the case of a plane wave at arbitrary incidence with respect to the plane of
the aperture. For the case of rear-on incidence (Bi = 1800), the analysis
would differ from that given here only in slight changes of functions Lmn(eo)’
Smn(eo), 'yn(eo), 6n(00) in Eq. (2.85).

As noted in the Introduction, one of the factors that motivated this study
was the investigation of impedance (or reactive) loading as a means of con-
trolling the scattering behavior of a body. Prior applications of this tech-
nique include that of loading a sphere using a circumferential slot, and
though it was found that the backscattering cross section could be reduced

to zero by appropriate choice of loading applied at the slot, any simple means
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of realizing this load was extremely frequency sensitive. The resulting
bandwidth obtained is, of course, a function of the loading device employed,
and if a cavity is used for this purpose, it is possible that the shape of the
cavity also plays a role. In searching for a cavity that could be appropriate
for reducing the backscattering from a sphere, it seemed that a spherical
cavity might be most desirable because of the similarity of the mode struc-
tures inside and outside such a region. The simplest model of the resulting
structure is the spherical shell with a circular aperture that has been inves-
tigated here, and since the aperture in this model has dimensions determined
solely by a and 60, it was felt that an exact (or accurate) solution for this
problem would avoid any uncertainties caused by the assumption of a slot

of infinitesimal width in the earlier studies of loaded spheres.

It was appreciated that our model, as it stands, does not have sufficient
flexibility for controlling the scattering ofa sphere of radius a inany pre-selected fre-
quency range. ’fhe only parameter at our disposal is the aperture angle 90,
and for 90 small, not enough power penetrates into the cavity, whereas
for 60 large, the resonances of the cavity are overly degraded. Nevertheless,
if this model were to display any real capability for reducing (or increasing)
the scattering cross section over an extended range of ka, there are several
possible generalizations of the model through which we might seek to transfer
this frequency range to any pre-selected range of ka. We could, for example,
fill our cavity with a dielectric or magnetic material. The analysis for this situation |
would be similar to that forh our simple model, and on the assumption (which
has been verified) that the electrical dimensions of the cavity are the main
factor controlling the scattering, an appropriate choice of dielectric constant
(> 1) could, for example, bring the region of cross section modification into
the vicinity of ka = 1. Alternatively we could treat a thick shell whose

internal radius b could be selected independent of a (providing b < a),
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thereby producing an additional parameter, and if necessary insert a dielec-
tric material into the cavity as well. And yet a third generalization of our
model would be to insert a dielectric sphere of radius b < a into our shell,
thereby providing a spherical shell cavity.

All of these generalizations should yield to analyses of a similar nature
to that which we have given, but because of the inherent complication of these
more general structures, it was decided to treat the most simple case first.
As we have seen, however, the simple model does not display any new capa-
bility for cross section control that would encourage us to believe in the
practical utility of the more general forms. Only in the immediate vicinity
of the frequencies at which the cavity resonates is there any marked reduction
in the backscattering cross section of a solid sphere (or shell), and thus the
bandwidth of this structure, regarded as a cross section reduction device,
is limited. There is some indication of a more general enhancement

of the scattering, but the amount is not sufficient to be of interest.



CHAPTER VI
CONCLUSIONS

This study has been devoted to a theoretical and experimental investi-
gation of the scattering behavior of a spherical shell with a circular aperture
for a plane wave at aperture-on incidence. Having postulated expansions of
the field components in terms of spherical wave functions, the method of
least square error has been applied in matching the field component at
the boundary. In order to improve the convergence and accuracy of the
solution in computation the method of least square error has been modified
by separating out the correct surface field behavior at the edge of the aper-
ture. A comparison of the numerical results obtained with the modified
method with those computed by the original method shows the significant
improvement provided by the modification.

In order t;> confirm the theoretical results, a series of surface and
backscattering measurements were made in the range 0.7 <ka < 4.85
using spherical shell models with aperture angle 00 = 150, 300, 450, 60°
and 900. It was observed that a spherical shell at aperture-on incident has,
in general, a higher backscattering cross section than a solid sphere except
in the vicinity of the cavity resonant frequencies, where marked reductions
in the backscattering cross section occur within a narrow frequency band.
For the surface field measurements, the amplitude and phase of T (0) and
T (6) components were measured for ka = 2,0, 2.75, and 3.0 w1th 0 —300.
Good agreement between the measured and computed results for both the

backscattering cross section and the surface field was obtained.
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APPENDIX A

EVALUATION OF L. (6 ) AND 8_ (6)).
mn o mn o

From Eqs. (2.48) and (2.49) we have

% (apl;l ap; pri Prll
I"mn(oo)= 36 80 @ sinb sinO) sin9do , (A1)

0

P1 BPII1 P1 BPl

0
= m n m
smn(oo) ’(sine 90 ' sin 0 89) sin9do , (A.2)
0

which ,on integrating by parts, become

1 0
L (6)= moplill‘ +nln+1) *plplem 0do (A.3)
wmn' oo =g m 99 n(n mPnsinO .
) 0=0 0
0
1.1
smn(oo) = Pn Pm:l . (A.4)
0=9°

The integral in Eq. (A, 3) can be written as (Tsu, 1961)

([ sin 6 op* op*
0 P1 m P1
(n-m)(n+m+1) | "'n 96 m 96 0=0
o
% 11 for m # n (A.5a)
plplsinedo = ﬁ
m n 1 1 1
0 sin 6_ (apx) §Pn_‘ o l:_a_ <apx)
(2n+1) J\o A=nae n| Ox \ 00 <n| 6=6
o
form = n (A.5b)
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and in the second of these the derivatives with respect to order, namely
1 1
9 9
(), e [5G
o A=n o %9 A=n

can be evaluated in closed form by using the recurrence relations for the

Legendre functions, starting with (Tsu, 1961)

i:-g—i PA (cos Ga = In (cos 2
A=0

N |

)

and
2 P. (cos 6) = cos 6| In (cos2 Q) + l:l -1,
ox A A=1 2

However, in the following it is shown that a more direct and convenient recur-
rence relation for the integral itself can be found without evaluating the deriv-
atives of the Legendre functions with respect to order.
Let us define
% 1 2
rf‘(eo) - [Pn(cos e):] sin 6 d6 (A.6)

0
(nlz = 0. 1. 2' AL 1 —<- n) ’

i
and seek a recurrence relation for the In(eo). If we also define a function
i yi

1

oP oP oP,

Lo ( x) n_ |38 )\)
Qn(e) = sin 0 Y \ 96 Pn [ak < 90 Jx=n ’ (A. 7)
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then

1
2n +1

L, . 1
1) = Q,(6,) (4.9

and from the well known recurrence relation (Stratton, 1941)

BPI

n L 1
——— = - A-g
sin 6 Y n cos 6 P (n + l) P -1 ( )

by differentiating with respect to the order n, we obtain

2 1
s G—a—(ﬁ) =(089P1-Pl )+ncosoﬂ>"
9% \Tee ¢ n - ‘n-1 B}
A=n n
.
- (n + 1) (—) . (A.10)
)Y
n-1
Substitution of Eds. (A.9) and (A.10) into (A.7) now gives
/4 1
oP opP
i ] py /] AN
Q(0)=(n+l)‘:P (—-—-—) -P (— ] -
n n\ oA n-1 n-1 3)() n
2
- cos 6 [;Pl:] + Pl Pl . (A.11)
Ln n n-1

Similarly, starting with the recurrence relation
apr ! 1
sine-s-e— '-'(n-1+1)Pn+1-(n+1)cosGPn ,

we have
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1 y
oP oP
L P __L> t(2N) |-
&t O+ :z)[:lpn(a)L '%-1(%)}
n-1 n
2
- Pl Pl + cos 0 [Pz ‘] ' (A.12)
n-1"n n-

and hence, from Eqs. (A.11) and (A.12) with (A.8) the following recurrence

relation for f:l (00) results:

1
(2n + 1)n -

2 L
106) = D {(Zn -D+Hr _(6) -

£ 2 1.2 1 £
- cos 6 l:(n +l)(Pn_1) + (n -l)(Pn) J +2n Pn-lpn }

forn >1¢ (A.13)

When £ = 1, Eq. (A.13) becomes

1
(2n + 1)n - 1)

1.\ 1
106)= { @n-Dm+1)1 . (6)

- cos Gl:(n + 1)(P11_1)'2 +(n -1) (Ptll)z-] + 2nP];l_1Pnl }

forn > 1, (A.14a)
or, using Eq. (A.4),

1
(2n + 1}n - 1

1.\ _ 1
I(o) ) {(Zn D@+ DI _(0)

- cos 0 [(n+ 1) sn-l, n-1 +(n -1)Sn' n:l + 2nSn’ n-1 }

forn > 1. (A. 14b)
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Since
11(6)= 1/3(2 - 3 cos @ +cosSO) (A.15)
l o (] () *

by direct integration of Eq. (A.6), I;(Oo) can be evaluated for all n from the

recurrence relation (A, 14).

In summary, therefore, Lmn(eo) can be written as follows:

1) When m # n
1
sin 90 1 GPm
I"mn(eo) - (n-m)n +m + 1) n(n + 1) 1:‘n a0 -
| %P
- m(m + 1) Pm '—8'5" (A.16)
6=6
0
2) Whenm = n
1 GP; 1
Lmn(eo) =| 8in 6 Pn —a—e—' +n(n + 1) In (90) (A.17)

6=0
o

where 111:(90) is given by Egs. (A.14) and (A, 15).



APPENDIX B

APPLICATION OF THE GAUSS-SEIDEL ITERATIVE METHOD

Let us consider the application of the Gauss-Seidel iterative method
to solve the matrix equation (2.63). Eq. (2.63) is repeated here for con-

venience with abbreviations, B =[bpq] , Y= yq] and G = gp]. Thus

BY=G, (p,a=1,2,....2M). (B.1)
In order to solve iteratively the matrix Eq. (B.1), we express the matrix B

as the matrix sum
B=D-L-U (B.2)

where D = diag{b b }, and L and U are respectively

11° Pogr ++++ » Poyp o
strictly lower and upper triangular 2M x 2M matrices, whose entries are the
negatives of the entries of B respectively below and above the main diagonal

of B. Eq. (B.1) can then be written as
(D-L) Y=UY+G (B.3)

which leads to the Gauss-Seidel iterative method, with the relaxation factor

w(0<w<?2),

(r+1) (r)

(D-wL) Y = { (14) D+ U} Y +uwG, (B. 4)
(r=0,1,2,....)

which can be written interms of components as

-1 M
(r+1) _ (r)_ (r+1) 2 (r)
bppyp = (1- w) bpp Yp ¥ bpq Vg + b y -g
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Y( o)

matrix Y of Eq. (B.1). If Y
ey

is an arbitrary, initial complex matrix approximation of the solution
(o) . . s
is given, a sequence of matrix iterates
is successively defined by Eq. (B.4) or (B.5).
For a given Hermitian matrix H in the matrix equation HY = Z, the
necessary and sufficient condition for the Gauss -Seidel iterative method
to be convergent, i.e. lim Y(r)
T+

definite (Varga, 1962). From Eq. (2.64) through (2.67) it is readily seen

=Y, is that the matrix H be positive

that b =b* , i.e. the matrix B =[b ] is Hermitian. The positive
pa pq pq
definiteness of the matrix B can be proved by showing that for any given

matrixgr' for p=1,2,...., 2M,

p
T Pl(cose) 2
e [b ~1 ~ v (ka) ———— w' (ka) 8 P (cos@)
yp pq] yp] Yon-1 ¥n sin6 y2
6 n=1
.0
2
T " 5 1 P (cosO)
. v ~ ? .
X sm0d6+f |:y2n_1gbn(ka)86 Pn (cost‘))+y2 ( ka) ——— 0 sin6do
6 "n=1
0
90 18 ) Pn(cose)
+J‘ ﬁ [y2n ) § T (a) %0 P (cos0)+ y2 f (a)  smd ] sin6do
0 n=1
1 2
60 " 1 Pn(cose) . 1
1o [an-1 ¢ k) sind V2 O (ka)op | (°°Se)] sinbdf
n:
(B.6)

and whose right hand side is always greater than zero for 60 > 0 unless
'3'7'1 = '372 = ... = S;ZM = 0., Since the right hand side is never negative, it is
sufficient to show that for 60# 0,

~N ~N ~
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is the only solution of equations:

M Pl(cose)
[y2n ALY

+ §2ntlfr'1(ka) g—e Prll(cos 6)] =0, (B.7)

=

n:
6 <6<7m,
o

sin6

1 " Pn (cos6)
yzt1 A (ka) Pn (cos9)+y2nz//;l(ka) — | =0, (B.9

Mz

=
it
—

6 <6<,
0

) 5 Pn(cosa)
Yon-1 ¢ (ka) 06 Pn (cos6) +F, ¢'(ka) ~ sing =0,

Mz

n=1
0<0<0 | (B.9)
(0]
Pl(cose)
o 1 n L Lo ool o
Yon-1 ¢ (ka)  sin6 Yon ¢! (ka) 20 n CosY =L
n=1 (B.10)
0<6<0
(0]

which are the necessary and sufficient conditions for Eq. (B.6) to be zero.

By adding Egs. (B.7) to (B.8), and (B.9) to (B. 10), we have

M . Ptll(cose) |
[y2n_1wn(ka)+§2n¢r'l(ka)] ——— +== P (cosf)| =0,  (B.11)
n=1
0 <6<,
(0}
M Pl( 6)
B o5 ] [ -
z Yon-1 ¢ (ka) Yon c(ka)] L sin6 o6 n o8| =
n=1
(B.12)
0<6<8

respectively.
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If we let
Prl1 (cos6) 5 )
¢n 0 = sin6 * 55 Pn (cos)

all ¢ (6) n=1,2,... are continuous everywhere and their derivatives of all
orders, ¢ (6), (82/ 56°) ¢ (6), ...., exist and are also continuous. Hence
each of the left-hand sides of Eqs. (B.11) and (B.12), which is a finite sum of
¢n(9) 's, hasthe same properties as the ¢n(9) 's. Consequently, Egs. (B.11) and
(B.12) must be satisfied not only in each of the given intervals, but also
throughout the entire domain of 6. Furthermore, { ¢1(6), ¢2(9), cees ¢M(9)}

is a set of orthogonal, linear independent functions. Therefore, each of

the coefficients in Egs. (B.11) and (B.12) must vanish. Thus, we have

Yon-1 Y, (ka) +y, ¥ (ka) =0 (B.13)

~ 1 ~ 1 _
Yon-1 ¢ (ia) T Yon € (ka) =0 (B. 14)

forn=1,2, ... , M.

Similarly, by subtracting (B.8) from (B.7), and (B.9) from (B. 10), we

obtain
[Prll(cose) 5 1 ]
~ _~ , ‘n 9

% [y2n_1 K//n(ka) anlﬂn(ka)] Sino %0 P (COSG) 0, (B. 15)
n=1

6 <6<m,

o
M P1 (cos6)
b : = _ e P1 (co 9)

Z Yon-1 ¢ (ka) RN C;l(ka) sinf Y s
w (B. 16)

0<6<6 ,

o

from which we must have
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o1 Vplka) =Ty v (ka) =0, (B.17)

1 ~ 1

Yon-1 % (k) Yon o) O (B.18)
n n

forn=1,2,..., M.

It is clear from Eqgs. (B. 14) and (B. 18) that 37‘1 = '372 =.. =0 is

~
o = Your
the only solution for any finite value of ka. However, it should be noted that
when 60 =0, Egs. (B.9) and (B.10) are deleted and hence we have only
Egs. (B.13) and (B.17). Obviously the solution of these two equations is
not unique when z[xn(ka) =0 or w;l(ka) = 0, and there now exists a non-zero
solution.

Since the matrix B is positive definite, the lower triangular matrix
(D-wL) is Eq. (B.4) is non-singular. We can therefore write

Y(r+1) (x)

= HX +w(D-wL)'1 G, (r=0,1,2,...), (B.19)

where the matrix H, which is called the Gauss-Seidel matrix associated

with the matrix B, is defined as
H= (D-wL)—1 {(1-(0) D+wU} . (B. 20)

If we define error matrices A(r) = 6(;)] , (p=1,2,..., 2M) by

-Y , r=0,1,2,..., | (B.21)

A(r} _ ¢

then from Eq. (B.4) we obtain

(x) ) (xr) , (o)

AT, r=0,1,2,... (B.22)
(r) «

A A o g

= (0 since rhm =Y.

The matrix H is of course convergent lim H
r+m >

However the rate of convergence is a function of ka, 60, M and w, and due

to its complicated expression, it is difficult to see its behavior until some

actual results of the numerical computation are available. As we can see
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from Eq. (B.22), the error matrix for r iterations depends not only on
the matrix H but also on the initial error matrix A(O), which is unknown.

Eq. (B.22) is not therefore convenient for determining the number of
iterations to give a reasonably good approximation to the solution of Eq. (B.1).
To determine the number of iterations desired for a certain error

criterion, we consider the total square error & M By using the same

notation as in Eq. (2.63), Eq. (2.60) can be manipulated to give

3 1 2 (4 1 3
€& =57 — «(ka) <—+cose +—cos6)
M 8 (ka)2 3 o 3 0
2 N 2
- R 2g - b . B.23
f ° [yp (gp f pq yq)] ( )
p=1 q=1

When the solution of Eq. (B. 1) is approximated by the rth iterative solution,
the corresponding square error &SI) follows from Eq. (B.23) on replacing
the x 's by x(r)'s, and is
p p

(f(r) = % L {r? (é +cos90+l cos390)

M (ka)2 3 3
2M
(o (, (r)
- Re [yp (ng % bpq yql )J . (B.24)
p=1 q=1

We are now able to specify the number of iterations by applying an error

criterion to &g\? . Thus, for example, we might allow

(r-1) () (r-1)
05( y —&M)/éM <a (B. 25)

where al is a given small quantity by which the accuracy of the computed

results can be decided.



APPENDIX C
SERIES REPRESENTATION OF EDGE SINGULARITY
Derivation of Eqs. (2.72) and (2.73)

In this appendix, Eqgs. (2.72) and (2.73) are derived starting from

the series expression (Magnus et al, 1966)
-u-1/2

Esixf‘@(cos 60— cos 6) ,
rG-u) i P (cos 6) cos [(n+ l)e ] = 0<6 <6
2 n 2/ o =0

n=0 0, 0<0 <1
(o]

0<6<m, Re{u}<—é- . (C.1)

When u =-1, using the relations

P-1 (cos 6) = Pl(cos o),
n n

1
n(nt1)

1
sin 6 P_l(cos ) = f P (x) dx,
0 0

cos 0
Eq. (C.1) can be reduced to
1 1
P P 6 0
1 2 (o} 1 . 1 < l)
- —— +—
vl yersy cos = + 2 2 (orD) sin 0 Pn(cos 0) cos [n 5 Go]
n=1
‘{Z(cos 60— cos 0) 0 <9o <0
= (C.2)
0 , 6<0 <7
)
0<<6<T
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Furthermore, substituting the recurrence relation

sin 6 Plll(cos 9) =

1
n(nt+1)

1
1 [ 2w Fles®
2nt+1 | (2n-1)(2n+3) sin 0

1 1
1 Pn_z(cos 0) ! Pn+2(cos 0)
2n-1 sin 6 2n+3 sin 6 ?

into Eq. (C.2) and rearranging terms we obtain

0 Prll(cos ) 0 ’ 0<6< 90
Y Temo , (.9
- {2(cose—cos6), 0 <0<
n=1 0 0
where
2 1 1 5
e — + - - T + =
Yn " (20-1)(2nt3) °°° (n 2) 90~ 2nto)2nr3) % (“ 2)90
1 3
~ (2n-3)(2n-1) cos (n— 2) 90 (C.4)

n=1,2, ...

If Eq. (C.3) is differentiated term by term after multiplication by sin6, we

have
o) 5 pl(cos ) - 0 s 0<6 <90
z " 96 "n 9
n=1 1 sin 0
- +
coseﬁ(coseo cos 6) G030 cos »(C.5)
6 <6<m.
(]

However, the above differentiated series does not converge uniformly in the
interval considered, and therefore Eq. (C.5) must be justified. When

u =0, Eq. (C.1) becomes
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00 ) 0 R 0<6< 90
2 Pn(cos ) cos [(n+ 5),60] = !

n=0 v2 (cos 90— cos0)"’ 6o< 6<m, (C.6)

from which, together with Eq. (C.3) we can write

(") Pl(cos 0)

n 2 = 1
cos 6 2 Yy simo + sin 6 2 Pn(cos ) cos [(n+ -5)60]

n=1 n=0

0 , 0<6<0
o

.2
cose‘ﬁ(cos 90— cos 6) + AV?(cosslg ?cos 5 2 60<9< T. (C.7)
0

Again, by making use of the recurrence relations

si1120 P (cos9) = (cos 9)
n 2

1 2(2n+1) 2 1 .2
" ontl [(2n—1)(2rr+3) P (cos®) - 5T B

1.2
" 2nr3 Inealcos 6)] )

m
P (cos )
m+1 _ n m
Pn (cos 6) = m cos 6 prewrat iy Pn (cos 6),

it can be shown that the left-hand side of Eq. (C.7) reduces to that of
Eq. (C.5), and, hence, Eq. (C.5) is verified. In the neighborhood of
6 =6, Eq. (C.5) behaves as 0 (1/ 6—60) if 6>0 , and the series is
properly divergent at 6 = 60.

Let us now replace 60 and 6, respectively by 7r—60 and 7-0,

and substitute into Egs. (C.3) and (C.5). Since

cos [:(n+ %)(n—eo)] = (-1)" sin[(n+ %) 90]

and
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P1 [cos(w-@)] =(—1)n+1 Pl(cose) s
n n

Egs. (C.3) and (C.5) lead to, respectively,

o Plll(cos 0) -vz(cose - cos 60) s 0<6< 60

n sin 6

& 0 , 6 <6<, (C.8)
sin20
-cos912(cose cos9) 'V?Tcos@ 5050 ),
0
i 6n aeP(cosO)- 0<6<90
n=1 0 , 6 <o<m,
0
(C.9)
where

% ° (2n-1)2(2n+3) sin ( )9 (2n+5)(2n+3) (n+ %) %

1 3
" (20-3)(2n-1) ©°° (“"2') 0, (C.10)



APPENDIX D

COMPUTER PROGRAM

1. Main Computer Program

This program computes:

a) all the matrix elements apq‘s and fp's (p,a=1,2,...,2M+2)
in Eq. (2. 85),

b) xq's (@=1,2,..., 2M+2) after inverting the matrix [apq] by
enlargement method (Guttman, 1946),

c) the total tangential electric field components Ee(a,e, 0) and
E¢(a,6, g), and the surface field components Tlll(e) and T121(6) for
6 = 0 (5) 180 degrees,

and d) the backscattering cross section and error, E e

for given 90, M, ka and IDM, where IDM is the maximum number of terms
retained in the cofnputation of the matrix elements, apq‘s and fp's. All the
computations in the main and related subroutines are carried out in double-

precision mode.
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2.  Subroutines
Subroutines used are as follows:
a) SUBROUTINE DATA
This gives Ptll(coseo), Lmn(eo) and Irll(eo) for all n,m=1,2,...IDM.

b) SUBROUTINE FSH
lpn(ka), w;l(ka), Cn(ka) and E;I(ka) are computed from the spherical
Hankel functions (calling SUBROUTINE HANKLF) for all n such that
| jn(ka)l > 10_50. For larger values of n up to n= IDM, [j xpn(ka) fn(ka)]
and [jwl'l(ka) C;l(ka)] are approximated by

2 2\ 2
: X 1 (X 1 .S I
[J‘”n(")gn(")]” 201 | 1H(20t3) (2) 3T (20+3)(20+5) (2)

3
2
- L X
3! (2n+3)(2n+5)(2n+7) ( 2 )
2
2 2
1 X 1 X
A Taon (2—) * 21(20-1)(20-3) (?) *
3
f x
3!(2n-1)(2n-3)(2n-5) 2 ’
and 9 9 3
o , 1 (nt3)  (x_ (nt+5) x| _
[””n(") t’n(ka‘)]"‘ "D Y T Tiee) (2 )+ 21 (2n+3)(20+5) (2)
9\ 3
_ (n+7) (L) X
3! (2n+3)(2n+5)(2n+7) \ 2
2 2y 2
(n-2) [x (n-4) X )
X 92 Ti(2n-1) (2)+ 2! (20-1)(20-3) (2 ¥

9 3
el
3! (2n-1)(2n-3)(2n-5) | 2
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¢) SUBROUTINE ACOEF

This computes 'Yn and 6n (n=1,2,...IDM) given in Egs. (C.4)
and (C. 10) respectively.
d) SUBROUTINE AMTRX and SUBROUTINE FFUN

Subroutines AMTRX and FFUN give the matrix elements apq's
and fp's, respectively, for p,q=1,2,... 2M+2. The maximum number of terms
retained in the sum is given by IDM.
e) SUBROUTINE DCIBYE, SUBROUTINE LEGEN and SUBROUTINE
HANKLF.

Subroutine DCIBYE inverts a given complex matrix by enlarge-
ment method. Subroutines LEGEN and HANKLF give the Legendre functions,
Pn(cose) and Ptll(cose), and spherical Hankel functions (the first or the second
kind) respectively. All three subroutines were previously developed at the
Radiation Laboratory, University of Michigan and had been used as standard
subroutines. The list of those three subroutines is therefore not given

here.



125

TITI9=a1Ir3+(aIr )Y Id= (A Tdx=d 1T =X=(aIrINI =0 TI 3= (" T-Td=%=*2))={1 NI
air=qird
=-1=q1r
ali=aiild

1+1=071
I=13
Wl <=1 & UU
Ce/(XEXxX+X%x*€="2)=(T)NI

: J
(9°91A4s=1dA ¢+*6°910s=1d +*21.:=1I ) LVWIO04 009
‘ dd=07TH 1
(I)TdA*(I)Td*I (009*9) 3LIYM (00d) dI 6
00 Z/7t00 T+ )1xIxTIxx(1I-J7=11J11d0 | § 8
6 01 09
00°C/7100° " T+I7*I=1T)1d0  O1
6 01 09

G HX({TFII)V=dd=XxI3I=(1)1dU
NS/(1)1d=dd
TT OL 09 (8=0°1T *31 (67685€99C6G ¥ 1 "E=VIAI)ISYVUIII
0T 0L 09 (00°0 °03° viHL) 4I
(CITd*Nd*VIHI*TINIO3IT TV

I=14d
WaI*it=1 1 0U
00°0=0H

tVIHRLTINTSU=NS
(V1iHL ) S0J4=X

(WAI)INI*(WAI)1da*(Wwal)id S (WAI*WAI)X1 NOISN3WId
‘ 00y IVII9gT
Wal* gIr*alId4¢aii*1r*w 43931NI
tZ=v)r 8xv3g 111wt ———
2
(008 *XTI*NI*TdA*Td* WAl *W*VIHL)VLIVO 3INIINOY8NS

sounmnoxqng Jo 311




126

N3

N3N13Y
J
.azcmoﬁﬂmoaionuﬁﬂduadvm~XJV~—O~090~ 311d4M (008) 4dI
Gl 2L 52X (T U)X T=4) LvWwd0d 629
WAI*WAal (629¢9) 311¥M (008) 4l
JNINTINGD 2
nh-Zﬁ*a¢H+muv*mu+aHuﬁ&D*ﬂH~A&*Zmﬂﬂn-~xa S
“H 0109
(D)X= x1
. SACREEIFIEINELS
|uuv-\naﬁvﬁQO*nJ-AQ*A0H+Juv*quladvﬁ&0*ﬂmVH&*»0A+M&V*mm~*ZmN~Ao-XJ
g gl g9 (103717 31 *
=14
IT*1=T1T % 0d
. - I=1I4
War*it=1 % od
J
T6"610Es ) 1VWI03 [0} &/
(WAI*T=I“(I)I)NI)(OT9¢9) 3ILIYM (009) 41
(s (W 2L IAT*"“(TIAT-4) 1VWYEOS Ss19
Wal (s19¢9) 31IdM (008) dI
INNILNOD €

(QICd=(*T+14%°2) )/ ((QIF)Td= (1) Td=1d*°2+( (1} Tld* I



0Q° 1=¢wd3al
_0Q%1=1wd3l

N=N3
WaI‘I=N _S6_0Qd

(01°8102+= (N)dL3Z .+ D
¢XZ401°8102% = (N)L13Z 4*XZ2°%Is= N 1DUX3 ASVIe*XT%:104) IVWHOd 66€

127

(W)dL13Z¢(W)L3Z*W*66E LNIYUd

I-I=n 16
AA=AQTH 9
AC=CAH
(6°L102.:s=(1)dL3Z $/746°L1A2+=(1)13Z +4214=10:) LVWYOH 0e9

(1)d1374(1)13Z2%1 (0€9%9) 3I1I¥M (008) dI
(dNVL3*(I1)dNISd)IX1dWIa=(1)dL32Z
AAxI4+AQIH=VI—=dNV.L13
AF%Id-CAIH*VM=(1)dNISd
AC=VX=(1)INISd
(AA=*AT)IX1dWIO=VN=(1)13Z

16 04 09 (05-G°1 °31° (Ar)S8va) dI
(AASAT VI I*Z)dDINVH 11VD

1=I4

Wai*i=1 9 oa

U/ (V) S02A=-=AQTH

A/ UVA)INISA=rATH
0Q°2/VAxVN=22V)

)
_(WQI)JINISJ*(WAIINISd*(WUI)d13Z*(WQI)13Z NOISNIWIG
004 V21901

d1324437 91#X3IVdWUD
NN*N ¥393LINI
1WAl *W ¥393LNI
(Z-V) 8%1v3d L1211dwWl

: J

13Z%13Z°WAI*W*V1I3HL*VX)IHSY 3INILNOBYNS

(00Q°TM*M*dNISA*NISd*d



128

aN3
NINL3Y
(01°610:=TM +°01°610:+=M =4) 1VWIO0S 0H9
’ IM*M (0%949) 3L1dM (009) 41
- ___Im/s00°e=1m __
(EX+X:00°€+00° %) =VAXUAN=TIM
(VX=VXN%0U°8)/700°E=M
XX X=X
(vi3Hl )S0ddU=X

J
I ) 3NNILNOD = S6
(01°810A2s= (N)JOUISds *X2D
*01°8102%:= (N)OYISds*X2*%I+=_N JLVWIX0UddV LSAIHs*XT*s0s) LVWIOd = 00% __
(N)JL3Z*(N)L3IZ*N*00% ANIYd (I °03°N) 4dI

(00°0*((00°T+N3%00°2Z) =V ) /YWNS=EWNS— )X 1dWIA=(N)d13Z
(00°0¢ (00" 1+N3%00°2)/ZWNS=TWNS =V )X 1dWIA=(N) 132
3NNILNUD 26
N9IS=N9IIS

wzumbmmzzthAZw.+¢z:mm¢z:m
ZWY3 L +2WNS=2NNS

" ((W3I-NI%00°2)%NN)/22UVNxZWd3IL =2WH3L
NOIS-=NI9IS
 IWY3Lx(dI+NI ) =NIIS+EWNS=EWNS _
TWEILENIIS+TWNS=TWNS
((dI+NI*0Q°2)*=NN)/22VA=xTWY3L=Twd3L
0Q° T-NN%0d°2=w3
0Q°T+NN%0Q°*2=d3
€¢*T1=NN 26 0d
______N3=%nNS
0Q° T+NI=EWNS
0Q°1=2nNS

0Q°1-=NITS



129

GN3
i NgNl3Y T
INNILNOD 414
(EZNI®(0A°T+2ZN3NI7(N)E=="(Z+NIV
((0Q°T=¢N3)x( I
VA E=¢NITT7 (Z-NJ18= (eCNIF(0U I=¢NITI/INTE*T0U 0 00 CTXTdWIU =TNJV 00T

02 01 09
(TO@*T-2¢N3T (00 €=-2ZNIA) )/ (Z-NIYE=(eZNI=(D

0Q°S+2N3) ) /(2+N)8~- (€ZN3I%=(0Q°T-2N3))/(N)Ex (00°0°0A°2)XTdWIA =(N)V 6t
0¢ 01 09

((0Q°T1-2N3)%x(0A°€E—-2ZN3))/WA3L-(EZNI I

*nOGWm+N2w-\—h+2vmlAMNZW*AOO<ﬁIN2w~y\ﬁzum*AOQqC.OQ-NqXJQZUDnﬂzud
((OONVINISQ*(09NV)S0IA)X1dWIa=( N)&

OVIZHIxT0AS“+N3IT=09NV
08=Wd3L (2 03 °N) dI

66 01 U9 (2 "I9°NT J1
( (OINVINISQ*(09NV)SODIU)IXTdWIA=(Z+N)Q

{OUS " ZFNITOVISHI=UINV
00T OL 09 ((Z2-0ONN) °19°N) 41

00°e¥ZN3I=edNT
N3%0Q°Z=ZN3

N=N3
ONN*TI=N 02 00

=W T=0ONN
((OONVINISA*(09NV)ISODA)X1dWI0=wWd3lL .

"O9NV==0INV
( (OONV INISA*(09NV)S020)X1dwIA=09

0U®Z2/0VLI3HL=0INV ™
/6L68G€59¢26S1I»1°€/1d vivd

000118 08 *WEaST* tWI NIV ITFEX3ITIdW0ID
(Z-0*H-V)8x1v3Yd LIJITNdNWI

(WTI*0VI1I3HL*V)dJ300V 3INILNOY8NS —



130

(1) IWa31-=(1)rwa3L
(¥d13Z/77130%00°0)XAdAIA=(1)dwd3lL
(Y13ZxWVI—=*00°0)XTdWIA=(1) Iwy3L
(1)d137Z=¥d13Z

(1)13Z=4132
ISOANIW=(1)v=13U
(1)v=nve
WIT3Tw=1 9 Ua
T+1IVX3IN=3IW
3NNILNDD S

AﬁJvazmwh.OﬁZOuolﬂqumwh
(1) IWH3L)ICNODA=(T)MWEIL

((N)dL3Z=(1)1dNISd) /70130a=(1)dwa3l
(1)137(1INISd=WVI=(1)IW¥3L

(00°0¢134d)X1dwd0=2130
ISONIWx=(1)v=130

(1) V=WV

1JDVX3IW*1I=1 § Ud
C+Nxl=¢2CN
_T+nx2=12wW

(00°1-400°0)X1dWIA=ISNNIW

. Zo049 1v21901
ISONTWNOD*ZNOD * TNOD *AWNS *dWNS *Z2ZWNS * TZWNS 9T %X31dW0)
(WINTd  (WIT WIIX1* (I 1)dNISd* (WI1I)NISd NOISN3AIQ
(200T)dW¥3IL* (Z00T)FWAIL  (200T) Ty L (200T)WaIL 9T=XI1dNOD

2430M%¢D13A*dZd*Zd* (WIN)V *(XVI*XVI)XV *T1dvd *¥dvd D
¢d492%9D0¢ ANauu.Nauu 1d2D°¢ auu.ﬁzmdvahww..zwq.hww 91%=X31dW0D

X7 gxvay
XVI/WIAQ/NOWWO?)

(Z-0°H-V) 8=1v3d 11J211dwl
L e (20ug*id*v D
XV14d13Z°137*dNISA*NISA*2ZWAI*WIT* W LIDVXIW XVIXILWY INILNOYYNS




131

. NUD=dwWd 3l
(1 F)IX 1= (F)WY3 L= (1) dwdIL=N0UD
AWPIL+CWNS=CWOS
NOJ=dwWd31
(140X 1= (C) FWYdIL= (1) IWYIL=N0D
WIN*AVFE=F 6§52 0J
_A#A=AVE

00°0=fwWNS
0g°0=2fwWnNs

(1* DX 1= (IWd3L=IWwd3 L +dWd31=dwd3IL)=2ZN0UID

. ISONIW=(1)dwWd3L=1IwWd3L
(1)dwWwd3L=dwa3l

(141 Xx1-(00°1+13%00°217_3

gcoo~+Jmynﬁoooa+AMv*4w*Jw*ODoNv*.mzmwh%aidwk+mzmwh*mzmwh.nﬁzcu
ISONIWx(T) IWd3L=IWd31

(1) TIWd31L=dWd3L
(1) Td=(TIWIIL+AWNS=AWNS _ _
(V) Id%=(7) IWYIL+dWNS=dWNS

| _1=13
. IWI1*1=1 s2 0d
1-WI1=1wi

(00°040U°0)X1dWIA =22nWNS
(00°0°0Q°0)X1dWIA=TZHWNS _ _
(0Q°0*0U°*0)X1dwIA=anNS

(00°0°00°0)XdWIA=dWNS

INNILNOD
(1)dWid31-=(1)Wd3L

9




132

(T+WZ*wWe)v J
 12ZWNS=WVIxTZdII=(TZW*TEWIXV

(T+WZ*T1-We)V J

(WL)V=WV)
INNILNOD 9<
(1*ANIIX A= () IWEIL+TZWNS=T2ZWNS
wil¢i=1 92 0d
(00°040G°0)X1dWIA=T2ZNWNS

.awu*azmvazmma-\umwcx =¢ZNOJD
(92%(WIINISd)/I430%=1NOD

(000°040Q0° 1) X1dW2A=2430X
((WI)d13Z)9CNOIA=d9D
((WI)13Z)9rNOJ23=92
WI)d13Zx=(WI)dNISd*IDI=2d20
(WI)13Z%(WI)INISd%22=1Zd2D
)%(0Q° T+Wd ) xW4xW3%00°2=22
1-8W=18wW
Wix Z2=8W
WI=wd
Wel=wl 22 04

‘.Nmz.wmz.xqaﬁdmz Z2ZWIXV
.~+:N.N+zw.< J

T(0G°0%0G°0) X 1dWIA=(22ZW* TZWIXV
(Z+W24T+W2IV D

ﬂ ZZWNS=(2ZW*  2ZWIXV
(Z+W242+nW2)V D

Amz:mu.amz.awz.x<
(T+WZ2TI+nWC)V J

INNILNOD 4
2rWNS%0Q°2+2N0D+22WNS=22HNS
FWNS=00°2-TNUD+12WNS=T12KWNS
INNILNCD sG¢
YWYI L+ 2L WNS=2WNS




133

IWIl¢1=1 82 UUu

(00°0°00°0)X1dWIU=22ZWNS
(NZ*2+W2)V

AWNS=(N) Td=(TUN*ZZH )XV
(I-NZ*2+W2)V

 (Zd-2NBD)#(N) Td=(WI)Td=(TIN* W)XV
B e ___ tI-NZ*wWe2)V

J

J

e N J
(dZd-TNOD) = (N) Td*=(WI ) Td=(GN*TEW)IXV

(NZ*T-we)vVv J

J

J

YVd+dII=(IN*GW )XV
. _(NZ2*w2)Vv
TdVd+1dII=(TaN* 18w )XV
o . AI-=NZ*1-wW2)V__ D
(dZd—-2NOD)%=(N*WI)X1=¥vd
(Zd-INOD)*(N*WI)X1=Tdvd
(N)dL13Z%(N)JINISd=dZd
(NJ13Z%(NINISd=2d_
IJANILNOD el
12d42J=1d3J)
2d22=dJJ
. €2 01 09 (WI®3N°N) dI
00°0=1d2D
0Q°0=d22_
I-9gN=T19YN
N=Z2=8N__
We¢i=N 12 0Q
dWNSx(WI)Td==(T2W* 8N )XV




134

ON3
NdNL 3d

3NNILNOD 666
INNILINOD 866

(6°8102¢=(4421%

)

14214 )XV

1 46°8T10A21=( %2144 4214 )XV 1) 1LVWYE0d osL
(IC* I)XVeIr® T4(r*1)xver*r¢oss iINIud

1+r=1r
22wWdl‘*i=r 866 UG

ZWal*1=1 866 0Q
666 01 09 (2008 "10N*) dI

T 3NNILNOD 2
((I8W*22ZW)IXV)IOCNOIA*=TINDI=(Z2ZW* T8W)I XV

4
(Z2+W2*T-W2)V J
((BW*2ZW)XV)ICNOIQ%2ZNODI=(2ZW TN )IXV

INNILINOD 1

. (2+WZ*we)v )
2

T ((TZW*EN)IXV)IICLNODU*dZd=(ON*T2ZW)IXV
(NZ*T+W2)V_

. u
((12w* Hmz.xqvoﬂzouc*Nau.amz 12ZW)IXV
(I-NZ2*T+W2)V )

ZZWNS=(YN*22W)XV
o 3NNILNOD B
(ISNIX D= (TIWEIL+2ZZWNS=22ZNNS



135

WIITFWIIII=WEIT T

(L3=(N)JINISH*(N)Td*(WI)1d= azwzmmavxqaiuc#uwcu = WY3L
T T I3 L+ TWYI LD=TWE3L T T
((N)Td=(WI)Td *(N)INISd*Ld=(NINISd)IXTdWIA*430D ’ =TWy3l

(N*WITXO-IL3=1d7 <1
("T+Wd%2)/7(*T+WE )= *T+Wd ) xWdxWIx*2=1d
¢l U U9 (N"IN"WIT 31
00°0=14d
hhﬂ&d.ﬁ+2&qwzwq\ﬂ T+NI%Xx*2)=430D
(0Q°1400°0)x11=11
N=N4d
s2¢*i=N 11 0Q
S3ITE3S IHL d03 JI3 S NISHd HONONT JIAVH JINS IANVWEFFI
(00°0*0G°1)=11
§ dW33I=dIwe3lT
(040°0*00d°0)=dwWd3l
WI3III=1We31 oy
(0Q°0°0A°V)=nWY3l)
WI=RT
W¢l=WI 001 Od
(00 0* 00 0)=WNSWI
T+ T2H=22HW
T+wsZ=T1ew
]
|II|I|IIIIIII+#+*4F+2Q*ht@%+*¢h+$@%+¢2ﬁ¢df+xdﬁ+2ﬁwqr¢ﬁ+>w12@¢wz&iﬂalllllll
4009 Iv2I90 -
dIWIIL*dWE3I 1T IIEXITdWOD
TWY3LCWH3L*430D%LLTWEILD*WAILIDAd 9T%xX3T1dWOD
WNS*WNSWI“(WATILIZCtWAT IV 9 TE=XITIWOD
X7 8%1v3y
tZ=0*H=Vv )y 8= 1v3d I1JITawnl
(T-WI%2)Ad ANV (WI%xZ2)Ad S3ILNAWOID NNId*x%xD
E*I3Z°V*4008*XT1* Td*dNTSA* NISA*IIVXIW*WAT*W* DIV YAIINNII INTLNIO¥ENS




136

11=C(°T+Nd)=NJ )/ (°T+NI=*2)=d430)D
- (00°1°00°0)=11=41"""

N=Nd

IDVXIW*'T=N &1 UU

(00°0°00°0V)=TWY3LD
- (0g°0*0Q°1)=11"

WI=Wd

T WAI'*JW=WI TOT 0a

(00°0400°0)=nNS

L+W=IJn
INANILNOD

001

(TSSTTATH= T IWIVTL3IZTOCNOIA%=(WIINISd=WVI+WNSHI=WNSWS
(WI)V=WVI

(6°02d2., 2°6°0202%: +%2I%4 +) 1VWHOS

oelL

(8SI)AZ*(TGSI)IAI*N (0€EL*9) 311dM (JO0O8) 4l
- WIJILJ=T(YS51IAd
TWd312-=(19SI1)Ad

1=9SI=1851
’ WI%Z2=8S1I

09

8 01 00
(+ONIO9YIANOD LION d d0d S3IAY3S ) LVWIOS

SLL

XSIL*9) 3IIIaM
INNILNOCD

11

WI3J1I=dW3d3dl
IWd3L=dTWd3L

09 01 09 (JJVv "I ((Wy3127SaVaI7 (TWIILISYVAI J
+(dWd31)SEVAI)+ (TWY3L1D)S8VAD/ ((TWH3L)S8VAI+(dIWY31)S8VAI))) 4l



137

anN3

T NInI3y
INNILNGD 8
NINnL3y
(C2HIAF*(T2HWIAd*TIZCW (0EL*9) whmmz (40089) dI
{00 0* 000 )=t 2ZWIA3
WNAS—WNSWId=(TZW )AL :
INNTINOGD 10T
TWE3LI*(WI)L13Z%(00°T*00°0)XTdWIAENVI+NNS=HWNS G6
10T 01 09
TWY3LI=((WI)L3Z)OCNODA=(WI INISAdEXWVI+RNS=WNS
S6 U1 09 (IJVXIW 19 WwWIT 31
‘ : T {WI)Y=WVI
IJNNTINOD €U
TWHd3L+TWEd3L1I=TWY31D
.4ﬂzqﬁmrazﬂqd¢;*azvmzmwm¢-w*AZuZaw&qxqmqu#mwQu =TWY31
(N*WI)X1-14 = 14 21

T ITFRIET )7 T TFRITI (O TFRI T ERNIFWAIF =13

%1 01 09 (N°3N°wWI) dI

00°0=13



Unclassified
Security Classification

DOCUMENT CONTROL DATA-R&D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report 15 clasailied)
1. ORIGINATING ACTIVITY (Corpomle author) f 2a, REPORT SECURITY CLASSIFICATION
The University of Michigan Radiation Laboratory, Dept. o UNCLASSIFIED
Electrical Engineering, 201 Catherine Street, 2b. GROUP
Ann Arbor, Michigan 48108 NA

3. REPORT TITLE

SCATTERING BY A SPHERICAL SHELL WITH A CIRCULAR APERTURE

4. DESCRIPTIVE NOTES (Type of report and Inclusive dates)
Scientific Interim

8. AUTHOR(S) (T“‘irst name, middle initial, last namo)
Seichoong Chang
Thomas B. A. Senior

6. REPORT DATE 74, TOTAL NO. OF PAGES 7b. NO. OF REFS
April 1969 137
Sa.‘ CONTRACT OR GRANT NO. 94, ORIGINATOR'S REPORT NUMBERI(S)

F19628-68-C-0071

1363-5-T
b. prosecT no. , Task,and Work Unit Nos.

Scientific Report No. 5

5635-02-01
c. DOd Element 61102F 9h, ;:,)”Tsr-ci?o?';:r-’oﬁ*r NOI(S) (Any other numbers that may be assigned
« Dod Subelement 681305 AFCRL-69-0203

10. DISTRIBUTION STATEMENT NI, L ‘
1-Distribution of this document is unlimited. It may be released to the Clearinghouse, Department
of Commerce, for sale to the general public.

11. SUPPLEMENTARY NOT 12. SPONSORING MILITARY ACTIVITY

Submitted in pauctiaiE fulfillment of the require- Air Force Cambridee Research

ments for a Doctorate in Electrical Engineering L LébOﬁgg%%igri ( 1«911213

?: ':I;I:?R?:l:versny of Michigan ‘ Bedford, Massachusetts 01730

The electromagnetic scattering behavior of a spherical shell with a circular aperture is
studied. The shell is assumed to be perfectly conducting and infinitesimally thin, and is illumi-
nated by a plane wave symmetrically incident upon the aperture. The application of the method
of least square error, as well as of a modified version is fully discussed. The modification con-
sists of the separating out of the appropriate surface field behavior near to the edge of the aper-
ture, and was carried out to overcome the slow convergence and marginal accuracy of the
original approach, The marked improvement provided by the modification is clearly evident.
The numerical study is limited to the frequency range corresponding to 0.8 <ka<4.85, where
a is the radius of the spherical shell, and numerical values of the backscattering cross sections
for the aperture angle 6,=30° and 909, as well as for the tangential field components over the
boundary surface for 6,=30°, are presented. To verify these results and to obtain more physical
insight into the scattering behavior, experimental measurements of the backscattering cross
sections for 6,=159, 309, 45 60° and 90°, and of the current components for 6,=300, are ob-
tained using two sets of spherical shell models. It is observed that a spherical shell with
aperture-on incidence has, in general, a higher backscattering cross section than a solid sphere
except at values of ka near to the cavity resonances, where marked reductions occur. A
comparison of the numerical and experimental results is made.

FORM
D D 1 NOV 651 4 73 Unclassified

Security Classitication




Unclassified

Security Classification

14. KEY WORDS LINK A LINK B LINK C
ROLE wT ROLE wT ROLE wT
Electromagnetic Scattering
Spherical Shell
Aperture
Cavity
Impedance Loading
Unclassified

Secunity Classification




NG

3 9015



