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ABSTRACT

We present a version of the gravitational method for Linear
Programming, based on steepest descent gravitational directions.
Finding the direction involves a special small "nearest point problem,"
that we solve using an efficient geometric approach. The method
requires no expensive initialization, and operates only with a small
subset of locally active constraints at each step. Redundant constraints
are automatically excluded in the ‘main computation. Computational
results are provided.
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1. INTRODUCTION

A new approach for solving linear programming problems ( LP ) called "the
gravitational method." was introduced in the recent paper [ 25 ]. The method needs an
initial interior feasible solution, from which the method traces a piecewise-linear descent
path which is completely contained in the interior of the feasible region. For this reason,
the method is an interior method. In each stage of the method, only a small locally
defined set of constraints ( these are the "touching” constraints or "active" constraints
according to a special definition pertinent to this method ) plays a role in the major
computation, hence the method can be viewed as an active set method. The method can
also be seen as a variant of the gradient projection method([28,29], since the
directions taken by the method are in the form of the projection of the negative gradient on a
face of the feasible region. However, it is very different from the usual gradient projection
method both in the directions chosen, and in its philosophical foundations. Each step in the
method finds a descent feasible direction and moves in that direction. These are the basic
building blocks of methods of feasible directions pioneered by G. Zoutendijk [41,42,43],
for this reason, the gravitational method can be viewed as a special case of methods of
feasible directions.

The gravitational method involves one or more stages. Each stage consists of an
alternating sequence of direction finding and step length routines. The direction
finding routine finds the direction to move by solving a small locally defined quadratic
programming problem in the form known as "the nearest point problem"[ 23 ] . The
major part of the computational effort of the algorithm goes into this routine. The step
length routine performs a straight move in the selected direction, to the maximum extent
possible, until a face of the feasible region blocks the movement in that direction.

For large scale practical problem solving, the gravitational method has several major
advantages over other methods for linear programming. These advantages are ;

1. Karmarkar's method, as it appeared in [16], needs an expensive initialization
effort to transform the linear program into Karmarkar's canonical form. The
gravitational method needs no such expensive initialization.

2. All the other interior point methods ( Karmarkar's method, Method of Centers,
Homotopy methods, etc.[1,2,3,5,10,12,13,15,16,17,19,20,27,28,29,30,31,32,36,
39]1), and all the variants of the Simplex Method, operate on all the constraints in
every step. In the gravitational method however, only a small subset of constraints
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(called the "touching constraints” ) comes into the major computation in each step
of the method, and therefore the computational effort in each iteration is significantly
less than that of other methods.

3. Practical linear programming models usually contain quite a few redundant
constraints. In the gravitational method, redundant constraints never enter into
the major computation i.e. in the direction finding routine.

4. The assumption of primal or dual nondegeneracy plays an important role in
establishing finite convergence of the Simplex Method.[7,24] No such
nondegeneracy assumption is required for the finite convergence proof of the
gravitational method.

5. All the other interior point methods generate only a "near optimum" interior feasible
solution at termination. All of these methods depend on a final procedure, which is
based on a pivotal method, to convert this near optimum solution into a true
optimum solution. This final procedure may need a significant number of pivot
steps (up to as many as the number of variables in the problem), hence it could
become computationally expensive. The versions MGM1 and MGM2 of the
gravitational method discussed in Section 9 do not need any expensive final
procedure like this, since they terminate with the actual primal optimum solution, if
one exists. However, if the dual optimum solution is also wanted, some additional
computation may be required.

In this paper, we present the steepest descent variant of the gravitational method,
called SDGM in Section 6, and its finite convergence proof. However, in order to get an
efficient practical computer implementation we modify this original method, and develop
two variants called MGM1 and MGM2 (Section 9), both of which also have the finite
convergence property.

We provide the summary of a computational experiment comparing the performance
of the gravitational method and the well-known Simplex Method under the computer
implementation "MINOS version 5.0"[21]. This computer experiment reveals some
promising results which will require much further testing.
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2. OVERVIEW OF THE METHOD

We consider an LP in the form,

Maximize T

subject to T (1)

n

where A is a matrix of order m by n, x € R™ is the row vector of primal variables,
be R™ is a column vector, and ce R" is a row vector.

The dual problem of (1) is
Minimize z(x)=c X (2)
subject to Ax 2b

where A, b and c are same as in (1), and x € R™ is the column vector of dual variables.

An LP in this form ( 1) is said to be in "standard form." Before applying the
Simplex Method, an LP is usually transformed into standard form by well known simple
transformations.(7,22,24]. To solve an LP by the gravitational method, we first transform
the LP into standard form, and then apply the gravitational method on the dual of the
problem, which will be in the form ( 2 ). When the gravitational method is applied on ( 2),
it will produce an actual optimum solution of ( 1) in a finite number of steps, if one exists.
However, in some cases, additional computation is required to obtain a dual optimum
solution (i.e. an optimum solution for (2)), when one exists.

To apply the gravitational method on the LP (2), we assume that a strict interior point
of the feasible region( i.e. a point xO satisfying Ax® > b ) is available initially. If an

interior point is not available, we transform the LP ( 2 ) by introducing an artificial variable
Xn+] and modify the problem as follows

Minimize ¢ x + Mxp+1

b (3)
0

subjectto AX + exXp+l
Xn+1

v v

where e=(1,.,1)Te R®and Misa positive number which is significantly larger

than any other number in the problem. Many existing interior methods use this type of
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augmentation, and this is equivalent to the usual big-M augmentation with one artificial
variable as explained in the literature on the Simplex Method[7,22,24].

Let x° ;> maximum {0,b; : i= 1 to m). Then, (0,...0, x°n+1 ) is a strict

interior feasible solution of (3). Thus the modified problem ( 3 ) has a known interior
feasible solution, and is in the same form as (2).

So, we will assume that an initial interior feasible solution x© for ( 2 ) is always
available. We also assume that ¢ # 0, as otherwise every feasible solution to (2 ) is an

optimum solution, and the initial interior feasible solution can itself be taken as an optimum
solution, and ®=0 is an optimum solution for (1).

The overall scheme of the gravitational method applied on (2) is explained by the
following. Let K be the feasible region of ( 2 ). We introduce a heavy spherical liquid drop
centered at xO with radius €, which is chosen positive and small so that the entire drop is
completely contained inside the feasible region. Make the faces of K impermeable "walls"
separating the inside of K from the outside. Then, introduce a powerful gravitational force
in K in the direction -cT, which is the negative gradient of the objective function in (2), and
release the drop. The drop will fall under the influence of the gravitational force. During its

fall, the drop may touch the boundary of K, but the center of the drop will always be at a
distance 2 € from the nearest point to it on the boundary.

First, the drop will move through the interior of K in the direction of the gravitational
force -¢T until it is blocked by a face of K, that we call the "blocking face." The falling
drop will exert a pushing force in the gravitational direction, -cT, on the blocking face,
which will result in a reaction force from the blocking face. After this action and reaction,
the drop will roll down on the face itself until it is blocked by another face.

At some point in its fall, the drop may be touching one or more facets of K, which
are called "touching facets," and the constraints in ( 2 ) that define these facets are called
"touching constraints" at the center of the drop. Being pulled down by the gravitational
force, the drop will push these facets, and the facets will react. Then, wherever the
balanced force leads the drop, the drop will move. If, however, the reaction forces of the
touching facets completely cancel out the gravitational force, the drop will halt. This final
halting position is the lowest possible point in the direction - ¢T, that the drop can get to in
K. If the radius of the drop, €, is sufficiently small, the touching constraints of (2) at this
final halting position, will determine an actual optimum solution of the LP (1).
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In Figure 1, we illustrate the path of the drop in its gravitational fall in a 3-
dimensional problem with an optimum solution.

Gravitational

initial center of the drop x° — /5 Force
° l

XN

Figure 1 Illustration of the path of the drop in its fall under
the influence of the gravitational force.

The method traces the path taken by the center of the drop as it falls freely under the
influence of the gravitational force. We denote this path by V.

The gravitational method consists of a sequence of steps where, each step consists of
the following two substeps.

Substep 1 - Find the gravitational direction at the current interior feasible solution.
This is defined to be the direction in which the drop will move next when it is in
position with its center at the current point. There are two possible outcomes in
this substep.

i). It may be determined that the drop cannot move any further, in this case
the drop halts.

ii). The gravitational direction at the current center may be obtained, then go-
to Substep 2.

Substep 2 - Move as far as possible in the gravitational direction determined in Substep 1.
In this substep, we move the drop straight in the gravitational direction to the
maximum extent possible, until it is blocked again by the boundary of the
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feasible region. The step length of the move is determined by the usual
minimum ratio test.

If this step length is finite, update the center and go to the next step. If the step
length is infinite, the objective function is unbounded below on the set of
feasible solutions of (2). In this case, (1) is infeasible.

A stage in the gravitational method begins with the release of the drop and ends
either when the drop halts or, when the step length in some step turns out to be oo, If the
drop halts, from the equations of force balance, we can get a feasible solution for (1), and
thus a lower bound on the optimum objective value in ( 2 ). A final special step is carried
out at that time. This final special step involves projection on the affine space determined by
the touching constraints at that time, treated as equations. If this final step yields a feasible
solution for (2), we have the primal and dual optimum solutions for ( 1 ). Otherwise, we
perform the radius reduction process in which we define a new drop with a reduced radius
to initiate the next stage. The gravitational method yields an actual optimum solution for
(1), after at most finite number of stages.

3. NOTATION

For ease in reading this paper, we summarize the notation here.

|'F | cardinality of a set F

\ set difference symbol, e.g. F1\F2 = {i:iin F1,but notin F }
vl Euclidean norm of a vector v

K The feasible region of (2 ), { x: Ax2 b}

Aj. i-th row of A

Aj. a matrix consisting of rows Aj, forie J

B(xT, &) spherical liquid drop centered at the point xT with radius €

x0 initial interior point of K
xT center of the drop after r steps
J(X) index set of touching constraints for the drop B(%, € ),

thisis {i: Aj X=b;+ell Aj I}



G(X)

JB(yT)

Rpos(F)

BFS
SDGM
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set of descent feasible directions for the drop B(X, € ),
thisis { y:cy<0,and Aj.y20forallie J(X)}

gravitational direction at xT, this is the steepest
descent direction among those in G(xT)

index set of blocking constraints in the direction yT,
thisis {i: Ajy' <0}

piecewise linear path of the center of the drop in its gravitational
descent in a stage. It is the piecewise linear path
connecting x0, x1,...

row vector of variables in the nearest point problem corresponding
to the gravitational direction firtding subroutine in a step. Dimension

of 1 changes from step to step , it is always equal to the cardinality
of the touching constraints index set in that step.

the matrix consisting of Tows Aj, for i in the index set of touching
constraints in a step. There is a variable in 1 for each row of D.

The residual vector in a step, it is arow vector in R™. Itisc - n D
with the optimum ) in that step. If € # 0, the gravitational direction

T
in that step is : .

E I

Defined when F is either a matrix, or a set of row vectors in R™ It
is the cone which is the nonnegative hull of row vectors in F.

Basic feasible solution.

Steepest descent gravitational method, that is, the one based on
the direction finding routine discussed in Section 6.

4. INITIALIZATION

To initiate the first stage of the method, select € to satisfy,

A;j.x0 - bj

0 < € < minimum [W: i=1tom }
1e

(4)
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A x0 - b:
Since the Euclidean distance of x© from the hyperplane {x:A;.x=bj} isﬁ,
1

the liquid drop B( x0, € ) does not intersect any of the hyperplanes { x : Aj. x =b; }, for
alli=1,..m.
Release the drop B(x©, € ), and let it fall under the influence of the gravitational
oT
force. The initial gravitational direction y© is ﬁl_’ since J(x0) is empty ( i.e., B(x9,¢)

does not touch any boundary face of K ). Now we discuss how to carry out the step
length and direction finding routines in each step of this stage.

5. STEP LENGTH ROUTINE

This routine is used to determine the step length in substep 2 in each step in a stage of
the gravitational method. Since the drop remains inside the feasible region K always, we
have to ensure that,

Aj. x - bj - :
WE €; for all i=1,...,m, foreveryxe ¥ (5)

Let xT be the present position on the path ¥, and let yT be the gravitational direction at
xI. The index set corresponding to the touching constraints at xT is

A;. xT - b;
JOxT) = (i i =e) (6)

If the step length is A, the new point will be xT+AyT, and this point must satisfy ( 5 ),

namely,

Aj. (xT+AyT) - b;
i ||A-y||) : 2¢g,foralli=1,tom (7)
1

Since xTis on the path ¥, we know that xT satisfies (5 ). As we move in the direction yT,

however, the Euclidean distances from the center of the drop to the facets of K may
change. To determine the maximum value of A subject to ( 7 ), we need to examine only a

special set of constraints called the "blocking set", corresponding to the index set;

JB(YN) = {i: Aj.y'<0)} (8)
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since, the i-th constraint in ( 2 ) becomes closer as the drop moves in the direction yT only
if ie JB(yY).

If J(xT) N JB(yT) # @, the drop cannot move at all in the direction yT, since the
constraints Aj. x 2 b; forallie J(xT) n JB(yD), will block its move. The fact that yT is

chosen as the gravitational direction at xT should therefore imply that J( xT )A\JB(y) =@.

This will be the case in SDGM, by the manner in which the direction finding routine is
carried out.

If JB(y") = @, (7 ) holds for all A 2 0, and hence the maximum step length is .
Since yT is the gravitational direction at xT, it will be a descent direction for z(x), that is,
cyf < 0. In this case, { x : x = xT+A yI, A 2 0} is a feasible halfline and since ¢ yf <0,
Z(X) goes to - o along this halfline. So z(x)'is unbounded below on K, and we terminate
with the conclusion that (1) is infeasible.

If JB(yT) # @, the maximum step length is
AjxT-bj-e LA I
“AGYT

So, the step length in this case is 6, this moves the center of the drop to the next
point xI*+1= xT+0 yT, with which the method proceeds to the next step.

0 = Minimum {

rie JB(yD) (9)

6. GRAVITATIONAL DIRECTION FINDING ROUTINE IN SDGM

Suppose the drop is in position with its center at X. So, X must satisfy ( 5 ). The
version presented in this section seeks the steepest descent direction among all the
directions that the drop can move from the present position. Hence, the version of the
gravitational method discussed in this section will be called the steepest descent
gravitational method, or SDGM. We show that the problem of finding the steepest descent
gravitational direction is a special case of a well known quadratic programming problem
called the "nearest point problem."

We define the set of descent feasible directions at X, denoted by G(X), to be the
directions y satisfying,

cy < 0

Ai(X +Ly) -bj
TA;

v
™

(10)

for all i=1,...,m, and for some A >0
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The set G(X) consists of all directions along which the drop can move a positive length in
gravitational descent, while still remaining inside K, when its center is in position at X.
Clearly, GX) ={y:cy<0,and Aj.y = Oforallie J(X) }.

J(X) =@ if and only if the entire drop B(X, €) is strictly in the interior of K without
intersecting the boundary of K. In this case, G(X) = {y : ¢ y < 0}. The gravitational
direction in this case is the direction of the gravitational force itself (since the drop can

T
: e -C
move in all directions in this case), namely TeTr

Now, suppose J(X)# @. In this case, the gravitational direction at X is a direction
selected from G(X) along which the drop can move from its current position. There are
many different principles which can be uled for making this selection. One principle
discused in [25] based on gradient projection, may take several steps before making the
selection. In the version presented in this paper, we define the gravitational direction as the
steepest descent direction among all the descent feasible directions at X, that is, those in

G(X). Hence, it is the optimum solution of the following problem.

Minimize cy
(11)
subject to AJ(;(). y =20

1 - yTy 290

Notel : This (11) is in the same form as the problem for determining the direction of

movement in G. Zoutendijk's methods of feasible directions [41,42,43], particularly that
labelled "AZ1 with Ly norm criterion." We would like to point out the differences. Our

direction finding problem (11) comes from our physical model of the falling drop, here € is
the radius of this drop, it has to satisfy (4), and it is the Euclidean distance of the present

interior feasible solution X to each of the touching facets. In Zoutendijk's method with
AZ1, ¢ is a positive parameter used for anti-zigzagging precaution. These two problems

can lead to completely different answers. As an example, consider the linear program,

Minimize X] +2 X9

subject to 32 xq 20
8x9 20
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Let i=(l,1)T and e=1. For this example, Zoutendijk's AZ1 with L) norm criterion leads
to the direction finding problem

Minimize Y1 +2y,
subjectto 1 - yTy 20

which has the solution ("/—_51-, ;[_—52). For the same example, our problem (11) is

Minimize Y1 +2y,

subjectto 32 y1 20
8y, 20
1 - yTy 20

which has the solution (0,0).

Besides, the manner in which we use the direction finding problem (11) is very
different from that in Zoutendijk's method with AZ1. Later on we develop
implementations( MGM1 and MGM 2 ) in which only a subset of the linear constraints in
(11), those corresponding to a linearly independent subset of row vectors, is used.
Furthermore, we use an efficient geometric approach for solving the direction finding
problem, which is entirely different from Zoutendijk's approach.

Now we continue our discussion of the gravitational method. For ease of notation,

we will denote the IJ(X) | by n matrix A IR). by the symbol D. Consider the following
quadratic program.
Minimize (c - nD)(c - nD)T
(12)
subject to N 20, where 1 is a row vector (1, :i€ J(X) ).

Let P =Rpos(D). If 7 is an optimum solution for ( 12 ), then 7] D is the nearest point
(in terms of the usual Euclidean distance ) in P to the point ¢. Hence, ( 12 ) is a "nearest
point problem."
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Note2 : In [43], Zoutendijk shows that the problem of determining the direction of
movement in his method of feasible directions "AZ1 with L, norm criterion" is equivalent
to a nearest point problem. His formulation of the nearest point problem is different from
(12) in two ways. First, as pointed out in Note 1 above, the system of linear inequality
constraints in his direction finding problem can be quite different from those in (11) under
the gravitational method. Second, even if these constraints are the same, Zoutendijk's
nearest point problem is the following:

Minimize (-c¢ - yT)(-cT - y)
subjectto Dy =20

which is different from (12). Zoutendijk's s the problem of finding a nearest point in a
cone defined by linear inequalities. On the other hand, (12) is the problem of finding the
nearest point in a cone which is expressed as the nonnegative hull of the touching
constraints row vectors. The form in which (12) is expressed, makes it possible for us to
use efficient special geometric procedures discussed in [23,26,33,34,35] to solve it.

See Fig. 2 for an example. In this example, the coefficient vectors corresponding to

the active constraints are called { A1 » A, }. The nearest point of Zoutendijk's method is

2-}
p1 in Fig.2 (a), and the nearest point in the gravitational method is p2 in Fig. 2 (b).

Ai.X20 Ai.X20

A,.X20

Figure 2
(a) (b)

The nearest points in Zoutendijk's method and the gravitational method.
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Zoutendijk [43] proved the equivalence of his direction finding problem to the nearest
point problem considered by him, by showing that the optimality conditions for the two
problems are the same. In the following lemma 1, we will prove the equivalence of (11)
and (12) using exactly the same technique.

[LEMMA 1]
Foreachmn 2 0, define § = ¢ - nD.

Let 7 be the optimum solution for ( 12 ), and letg = ¢ - N D.Definey by
y = CET/NEN, ifE 20
= 0, if€ =0

Then, Y is the optimum solution for ( 11)

[Proof]

Both (11) and ( 12 ) have optimum solutions. Both are convex programming
problems, and hence the first order necessary optimality conditions are both
necessary and sufficient for optimality in them.

Leto=(w;:ie JX)),d€ R! be the Lagrange multipliers corresponding
to the constraints in ( 11 ). Remembering that D=A I). the first order
optimality conditions for ( 11 ) are,

(i) ¢- oD +28yT=0

@) Dy 20, 1-yTy 20 (13)
(iii) o 20, 8 20

(iv) oDy=0, (1 - yTy)=0

Let u =( Wj:ie J(X)), be the Lagrange multipliers corresponding to the
constraints in ( 12 ).The first order optimality conditions for ( 12 ) are,

(i) -2¢DT + 2qDDT -p =0
(i) nz0, u=20 (14)
@)  unT =0

Since 7] is an optimum solution of ( 12 ), there must exist a vector fl such that
(M, ) satisfy ( 14 ). Define

o gl
] I
N — I

e -ADII (15)
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and verify that (®, §, ¥) satisfy ( 13 ). Hence, the lemma follows. M

Hence, if Eat 0, the gravitational direction at X is - ET/ I E II. If however E =0, we

will now prove that G(X), the set of descent feasible directions at X, is empty.

[ THEOREM 1]
Let E = ¢ - 7] D where 7 is an optimum solution of ( 12 ). Ifz =0, GX)=0.

[ Proof ]

By hypothesis, T is a feasible solution for the system.
nD =c¢

n 20

Then, by Farkas' lemma, the following system is infeasible.
cy< 0
Dy=0

which is the system that defines G(X) n

Let 1] be an optimum solution for ( 12 ). 7 is called an optimum T-vector for this

step. E= ¢ - M D is called the residual vector in this step.

IfE =¢-MD = 0, by Theorem 1, G(X) = @, this implies that the drop B(X, ¢)
cannot move any further in gravitational descent, and hence it halts. The equation ¢-fjD=0
also shows that the gravitational force acting in the direction -¢ is completely cancelled out
by the reaction forces of the touching facets of K,(nonnegative combination of normal
vectors to the touching constraints, i.e. 7 D ) in this case.

To find the gravitational direction at the point X, we therefore solve the nearest point
problem ( 12) (where D = A IX). ). We will refer to (12) as the nearest point problem in

this step.

IfE =0, the drop halts and the present stage in the gravitational method is over. The
final special step ( this either yields optimum solution for ( 1) and ( 2 ), or a feasible
solution for (1) together with a lower bound for the optimum objective value in ( 2 ) and
the center and radius for a new drop to start the next stage, if more stages are needed) to be
carried out at this time is discussed in Section 8.
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IfE #0,5 =- &1/ IE Il is the gravitational direction at X, with this the method
proceeds to the step length routine.

The problem ( 12 ) is a quadratic programming problem in which the number of
variables is equal to the number of touching constraints at X. It is hoped that the number of
touching constraints would be small, also, ( 12 ) is a special quadratic program in the form
of a nearest point problem for which very efficient special methods are available
[23,26,33,34,35]. The gravitational method using the direction selection procedure
discussed above, based on (11) and (12) will be called SDGM, since it always uses the
steepest descent directions. Later on we will modify the procedure and develop other
versions of the gravitational method.

7. SOME PROPERTIES, AND FINITENESS OF A STAGE
IN THE GRAVITATIONAL METHOD SDGM

The i-th constraint is said to be a redundant constraint in ( 2 ), if its removal from (2 )
does not change the set of feasible solutions.

Suppose the i-th constraint in ( 2 ) is a redundant constraint. Then, by well known

results from the theory of linear inequality systems[18,26], we must have a row vector;
v=( Vp:p= ltom, p#£i) € R ™1 ,V 2 0, such that

Ai. = z Dp Apu
p=l to m
p#i (16)
bj £ X Vp bp
p=1 tom
p#i

In this case, we will say that the i-th constraint is a type 1 redundant constraint in ( 2 ) if
and only if

i) there exist a vector v satisfying ( 16 ) with exactly one positive entry, and all the
other entries (0, and

ii) the second condition in ( 16 ) holds as an equation for that v,

or a type 2 redundant constraint in ( 2 ), otherwise. Thus, a type 1 redundant constraint is a
positive scalar multiple of another constraintin (2). A type 1 redundant constraint in (2)
defines exactly the same feasible half space defined by one of the other constraints in (2),
that is, this pair of constraints are geometrically identical. This is definitely not the case for
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type 2 redundant constraints.

[ THEOREM 2]

A type 2 redundant constraint will never be included in the touching set of
constraints in the gravitational method.

[ Proof ]

Let Ky denote the set of feasible solutions of the system obtained by deleting the

first constraint from ( 2 ).

Suppose 1 € J(X) for some X € V. Let x be the point where the drop B(X,€)
intersects with the hyperplane H1 = { x : Ql. x =b1 }.So, xhis a boundary
point of B(X, € ), and since B(X, €) is inside K, H] must be the tangent
hyperplane to B(X, €) at x1.

Let T={i:2<i<m,andisatisfies A; xh=bj}.

If T =@, the fact that A, x > b; for all i = 2 to m implies that x] is an interior
point of K1, Since we know x! is a boundary point of K, and K C K 1,and
K1# K, the first constraint is not a redundant constraint in ( 2 ).

If T # @, by the arguments mentioned above, for each i € T, the hyperplane
Hi= { x: Aj, x =Dbj } must be the same as the tangent hyperplane to B(X, € ) at
x, that is, same as H1. This implies that the first constraint must be a positive
scalar multiple of the i-th constraint in (2 ), for all i € T, hence the first constraint
is a type 1 redundant constraint in this case.

Hence, every touching constraint at any time in the gravitational method must be a
nonredundant constraint, or a type 1 redundant constraint in ( 2 ) u

Type 1 redundant constraints are easy to detect. If the rows of A are normalized ( or
scaled ) so that Il Aj, Il =1 for all i = 1 to m, type 1 redundant constraints correspond to
constraints which are exactly the same. From each such group of identical constraints, all
but one can be eliminated. Theorem 2 shows that if ( 2 ) has some type 2 redundant
constraints, they will never enter into the gravitational direction finding routines.

A stage in the gravitational method is always initiated with a drop completely inside
K, and may consists of several steps. Step 1 begins with the center of the drop in the initial
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position. For r21, step r+1 begins with the center of the drop at the point where it was
after the move in the gravitational direction computed in the previous step. We will use the
following notation for the discussion in this section.

xI' = center of the drop at the beginning of step r+1 in this stage

n" = the vector of 1-variables in the nearest point problem corresponding to the
gravitational direction finding routine in step r+1 in this stage.

ﬁr = optimal T-vector in step r+1

&'= ¢ - i D, the residual vector in step .

The dimension of n% is | J(xT) I.

[ THEOREM 3]
In a stage of the gravitational method SDGM, the Euclidean norm of the
residual vector strictly decreases as we move from one step to the next.

[ Proof ] Letr 2 1. We will now prove that | E+1 i1 <1 ET 11,

By Lemma 1, the gravitational direction at xT is yf = -ETT/ IIEr Il, and

X+l = xT 4+ Ayl (17)
where A > 0 is the step length determined in the step length routine in step
r+1 ( Ay is finite, otherwise we would have terminated in step r+1). From

Lemma 1, we again have,
ALENYT =- (AL yDIET IS 0, forallie J(xI) (18)

DefineS={i:ie J(xI) andAi_(Er)T=0 }.So Aj yF=0forallieS.
Forie J(xT), by definition, Aj xT = bj + € Il Aj_ Il

So, forie S, by (17), AjxI*+1=bj+ell A;ll, thatis,ie JxI+1),
Hence, S C J(xI*1),

Also, since Aj, yT> Oforallie J(xT)\ S, by (17 ), we know that
(J(xT)\S) N J(xr+l) =@,

Hence, S = J(xT) N J(x+1),

Define the row vector of variables p=( L j:1€ S).

Let Er = AS..
Consider the problem
Minimize (¢ - pEp) (¢ - pE )T (19)

subjectto W =0,
From the proof of Lemma 1 ((15), and (iv) of (13) ), we know. that
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forallieJ(xT)\S, ﬁri = 0. From this we conclude that [l = ( T—]ri 1ie §S)
is an optimum solution for ( 19 ), and that

C - }IEr=C'ﬁrDr=zr.
Let N = J(xT*1)\ 8= J(xI*+1 )\ J(xI).
xI*+1 = xT+ ) yT, where 0 < Ar < oo was chosen by (9). This implies that
some i € JB(yT)enters J(xT*+1), so N # @.

Then, NN JB(y') ={i:Ajy'<0}={ i:Ai_Er>0 }.
So for 3 positive and sufficiently small,

IET- S A l<IETN forallie N (20)
Now consider the nearest point problem in Step r+2. It is,
Minimize (¢ - 1" Dp)(e - 1D T (21)
subject to ntl 2o,
Define ir+1= (A1+1:ie Jxr*1)) where
A= =A% forie S (22)
=0 ,forie N.

Clearly, nT+! is a feasible solution for ( 21 ), and
A -
c- ﬂr+1 Dryp=c - GE =¢&".
(20 ) implies that whenever we increase the variable nir+1 from 0 in ﬁ”’ 1

slightly, the objective value in ( 21 ) strictly decreases, for eachie N.
Thus, for (21 ), at the feasible solution ﬁr+1, foreachie N, the direction
of increasing the variable nir"'l leaving other variables fixed, is a feasible

strict descent direction. Since ﬁi”'l is the optimum solution for ( 21 ), this
implies that

EFLZ = e - D 2<lie - A™*ID 12 =18 2 W

[ THEOREM 4 |
A stage in the gravitational method SDGM takes at most a finite number of steps.

[ Proof ]
The result in Theorem 3 implies that any subset of {1,...,m} can appear as the touching
set of constraints in a step, at most once. Hence, after a finite number of steps, the
stage must be over either by reaching the unboundedness conclusion (if the step length
becomes o in some step), or with the drop halting (if the residual vector becomes 0 in
some step.) |
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[ THEOREM § ]

Suppose the drop halts with its center in position at X.
Let N=( ﬁi :1€ J(X)) be an optimum solution of (12 ) with D = AJ@.. Define

the row vector T = (T :i=1to m) where
T o= ﬁi ,forie J(X) (23)
= 0 ,else.

Then T is feasible to the dual problem original LP (1). In this case, the LP (2) has an
optimum solution, and the optimum objective value in it, z*, satisfies

b £ 2*¥ £ ¢X (24)

[ Proof ]

Since the drop has halted, E=c-ﬁ A J(i).=0' This and 7 2 0 imply that T is feasible
to (1). (24) follows from the weak duality theorem of linear programming. W

Under the conditions stated in Theorem 5, clearly X, T are primal and dual optimum
solutions corresponding to the perturbed LP
Minimize z(x) =cx
subject to Ajx 2 bj+¢ lIA; Il ,forallie J(X) (25)
Ajx = b Jforallie({ 1,..m}\JX)
So, if € is sufficiently small, ¢X - & b will be small. Then, X can be taken as a near

optimum solution for ( 2 ). However, if € is not sufficiently small, this conclusion may not

be valid. At this point, we have the following result.

[ THEOREM 6 ]
Suppose the drop halts with its center in position at X. If the following system has
a feasible solution, every feasible solution of it is optimal to (2 ).
Apx  =bi ie J® (26)
2 bj ,ie {1,.m}\JX

[ Proof ]
Let T be the dual feasible solution defined in Theorem 5. If X is any feasible
solution to (26), X and T are primal and dual feasible solutions satisfying the

complementary slackness optimality conditions for ( 2 ).
Hence, Xisan optimal to (2) u

When Theorem 6 holds, we have optimum solutions for both (1) and (2). Otherwise,
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we reduce the radius of the drop and go to the next stage. In the following section, we
provide a simple radius reduction scheme which is guaranteed to yield an actual optimum
solution for (1) in a finite number of stages, hence proving the overall finite convergence of
the gravitational method.

8. THE FINAL SPECIAL STEP IN A STAGE, AND FINITENESS OF THE
OVERALL GRAVITATIONAL METHOD.

It is possible for the drop to halt in a stage, and not to have a point satisfying ( 26 ) in
Theorem 6. Figure 3 shows an example where this occurs.

Gravitational
Force

Figure 3 : An example where the drop halts without
reaching an optimum solution.

Consider a stage in which the radius of the drop is €. Suppose this drop halts with its

center at position X, and T is the feasible solution of (1) obtained as in Theorem 5. If
A I®). has full row rank, T is a BFS of (1). In Section 9, we discuss two modified

versions of the gravitational method called MGM1 and MGM2, in which the direction
finding problem is of the same form as (11), but only has a subset of linear constraints that
correspond to a linear independent set of row vectors. There we will prove that both these
methods MGM1 and MGM2 also have the finite termination property for each stage. In
those methods, whenever, the drop halts in a stage, the corresponding T will be a BFS of

(1), because of the linear independence of the constraint coefficient rows in the direction
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finding problem.

In SDGM, suppose A I®). is not of full row rank. Then T may not be a BFS of (1).

Starting from the point T, apply the well-known pivotal method of moving to a BES of (1)
without decreasing the objective value in (1)[24 page 123; 26, page 474]. This method
takes at most IJ(X)! pivot steps and leads to a BFS of (1), say %, satisfying { i : >0} C

{i:W;>0}. Inthe sequel, ¥ will denote T if A I®). is of full row rank, or the BFS of
(1) obtained by this process beginning with 7.

Let F={i:%; >0 }, and E=Ap, Since, 7 is feasible to (1), we have
TE=c (27)
and because E has full row rank, it can be verified that
#=cETEETYL (28)

IfE is a square matrix, that is, if ® is a nondegenerate BFS of (1), the system A;.x=bj for
alli e F has a unique solution, say X, and (26) is feasible iff this X satisfies A;.x 2bi for
allie F.IfE is not a square matrix i.e. if % discussed above is degenerate BFS of (1),
checking whether ( 26 ) is feasible or not, itself becomes a feasibility problem, which, in

general, is as hard as solving another LP. So when the drop halts, we perform a special
final step.

Here we assume that all the data in A, b, and ¢ are integer, and that L is the size of
this data, that is, the total number of binary digits in all this data. We will now show that if
€ is sufficiently small, then when the drop halts, the solution % obtained as above must be
an optimum solution for (1).

[ THEOREM 7 ]

Ife< 2 5L, when the drop halts with its center at X,
the BFS T obtained above is an optimum solution for (1).

[ Proof ]

As mentioned earlier, X and T are respectively primal and dual optimum solutions
associated with the perturbed LP (25), since they are feasible to the respective
problems and satisfy the complementary slackness conditions for optimality.
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So,
cXx=Tb+e I TIA;

ie J(X)
Since, {1: 7 >0 } C{i: T; >0}, Xand T also satisfy the complementary slackness
conditions for optimality for (25), hence, % is a dual optimum solution associated with
(25). So,

cX=TTb+e I T;lIAl

ie J(X)
By the manner in which T was obtained from T, and the weak duality theorem,
Wehave Tb <® b < ¢ X. So, we have,
Ogextb =¢ T R;lAl

ie J(X)

g23L
22L jfe < 2-5L
because 7 ; < 2L forall i ( this follows from standard results under the Ellipsoid
algorithm [24,26], since L is the size of (1), and % is a BFS of (1)).

N 1IN

Therefore, if z* is the optimum objective in (1), we have
2*-Fbgex-%b <22l

Again by the well known results under the Ellipsoid algorithm [24,26], the fact that
2% -% b<22L, and that % is a BFS of (1), imply that z* - % b = 0, that is,

T is an optimum solution for (1). n

When the drop has halted, if € is not small enough, that is if € is not less 2'5L, we
carry out the following final step.

SPECIAL FINAL STEP IN A STAGE

Let® be the BFS of (1) computed as above, at the end of the stage. As discussed
above, let F={i:%;> 0 }, and E=Ap.. Let d be a column vector of b; forie F.

Compute,

X =x%+ET(EETyl(d-E%) (29)

X is the closest point toX on the flat {x | Ajx = bj,ie F}. If % is feasible to (2), then it

is optimal to (2), and ® 1is optimal to (1). Otherwise, go to the radius reduction process
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explained below.
THE RADIUS REDUCTION PROCESS

By the above results, any radius reduction scheme in which the radius of the drop
becomes less than 2-3L in a finite number of reductions will guarantee the finite
termination of the overall gravitational method. So, if % computed in (29) is infeasible to
(2), we divide € by 2 and go to the next stage beginning with the new drop in position with

its center atX. ( See [30] for a more interesting radius reduction scheme. )

With this process, whenever the drop halts and a stage is completed, either we find
optimum solutions of both (1) and (2), or we go to the next stage after reducing the radius

of the drop by half. When this continues, either we find optimum solutions for (1) and (2),
and terminate, or after a finite number of stages the radius of the drop becomes < 2-5L,

Suppose the drop halts in this final stage with its center in position at xT. Letn' be the

feasible solution of (1) obtained as in Theorem 5 at the end of this stage. Beginning with
xT, use the pivotal method discussed above to move to a BFS of (1) without decreasing the
objective value of (1)[24, page 123; 26 page 474], and let this BFS be n*. Use the same
method to move to a BFS of (2) beginning with xT, without increasing the objective value
in (2), and let this BFS be x*. By Theorem 7, t* is an optimum solution of (1). A similar
argument shows that x* is an optimum solution for (2).

[ THEOREM 8 ]

Each stage in the gravitational method SDGM i finite, and the method terminates
after at most a finite number of stages.

[ Proof ]
The finiteness of a stage has already been proved in Theorem 4.
If the objective function in (2) is unbounded below, the method discovers this
at the end of the first stage, Stage 1, and terminates.

Otherwise, as discussed above, the method goes from one stage to the next,
each time reducing the radius of the drop by half, until either optimum
solutions of both (1) and (2) are obtained in some stage, or the radius
becomes less than 2L in a finite number of stages.

In this final stage, optimum solutions of both (1), and (2) are obtained as
discussed above. |
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If we take the initial radius € very small, the method requires only one stage.
However, we observed a close inverse relationship between the initial radius € in Stage 1,

and the number of steps required for the first halt, on problems with optimum solutions.
The larger € is the faster the drop makes the first halt. Furthermore, in most cases, when

the drop halts in Stage 1, system ( 26 ) turned out to be feasible, and the point/)\( in(29)
optimal to the problem.

There are many possible choices in implementing this method. The subject of
obtaining the best implementation is the object of continuing research. The modifications
that we made in the original method to obtain an efficient implementation, and other
implementation issues, are discussed in the next section.

THE PARAMETRIC FLAVOR OF SDGM

One of the referees of this paper has given the following geometric interpretation of
SDGM. Define K¢ to be the convex polyhedron obtained by shrinking the feasible region

by translating each constraint hyperplane by Euclidean distance of €, that is,
Ke ={x: Aj.x 2 bj+¢ lIA;ll, foralli=1tom }.

Then, the center of the drop in SDGM lies within K, when the radius of the drop is
€. So, the path taken by the center of the drop in SDGM can be viewed as that of a steepest
descent feasible direction method for minimizing ¢ x over K¢ [41,42,43]. Thus, overall,
SDGM solves a sequence of linear programming problems with feasible region Kgr, where
ef=¢/2",r=0,1,2,... When € is chosen appropriately, K¢ could have a much simpler
facial structure than K and so the linear program: minimize ¢ x over K¢, becomes easier to
solve. In most cases, we observed that the bigger the value of the initial €, the smaller the

number of steps to the first halt. The results in Table 2 in Section 10 support this
observation.

9. MODIFIED VERSION OF THE GRAVITATIONAL METHOD

The major piece of work in each step is the solution of the nearest point problem (12).
Efficient geometric algorithms for this problem are discussed in [23,26,33,34,35]. Using
these, it is possible to implement the gravitational method SDGM exactly. However, from
the discussion in Section 8, it is clear that the work at the end of a stage becomes a lot
simpler if the matrix D in problem (12) is of full row rank. Also, the cone Rpos(D) is a
simplicial cone iff D is of full row rank, and in this case the nearest point problem (12)
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itself becomes a lot simpler, and the efficient special methods discussed in [23,26,33,35]
based on the concept of "projection faces" can be used to solve it. For these reasons, we
will now develop modified versions of the gravitational method ( to be called MGM ) in
which the direction finding problem always leads to a nearest point problem of form (12)
with the set of row vectors of D remaining linearly independent.

These MGM's differ from the SDGM only in the direction finding routine used in

each step, and all the other aspects in these methods (e.g. initialization, step length routine
etc. ) are the same as in SDGM.

REVIEW ON THE NEAREST POINT PROBLEM.

In this section, D will always be a matrix whose set of rows is linearly independent.
Let D be of order p by n and rank p. Rpos(D) is then a p-dimensional simplicial cone in
R™. Since the set of row vectors of D, i§ linearly independent, with this D, the optimum

solution ] for (12) is unique, and 7] D is the nearest point in the simplicial cone Rpos(D)

to ¢. We now review briefly, some well known facts on this nearest point problem.[ 23 ]
Foreachsubset I' C { 1,....p }, Rpos(Dr_) is a face of Rpos(D), T is the index
set corresponding to this face. With respect to the given point c, Rpos(Dr) is said to be a

projection face of Rpos(D) if the orthogonal projection of ¢ in the linear hull of
[Di.:ie I'}isin Rpos(Dr,), that is,

if  ¢(Dp)T( Dy, DR, T) 1D e Rpos(DL)
orif ¢(Dp)T( D DTyl  20.

See Figure 3. If T C { 1,...,p } is such that Rpos( Dr,) is a projection face of
Rpos(D), the n-vector corresponding to it is defined tobe 1 (") = ( ni( [')) where

ni(I‘)=0forallie {L.p}\T,
(n(T):ieT) = e¢(Dp)T(Dp, Dy, Tyl

and the residual vector corresponding to it is defined tobe § (I') =¢ - (T ) D.
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Figure 3 : The cone Rpos( D ) when D is of order 2 by 2.
Given the point ¢, Rpos(D1.) is a projection face, but
Rpos( D3, ) is not a projection face of Rpos(D ).

Given two sets '} and I’y C {1,...,p}, both of which correspond to projection faces
of Rpos(D), the projection face Rpos(Drz_) is said to be closer than the projection face

Rpos( Drl_ )if I &( Do) li<il &( [1) 1, thatis if n( Ty ) D is strictly closer to ¢ than
ny) D.

The following results can be proved directly. See [23,26,33,35].

1. The optimum solution of (12) in this case is n (I ) for some TI'C{1,...,p}
corresponding to a projection face of Rpos(D). Also, if 7 is the optimum solution of

(12), let I‘={i:ﬁi>O], then Rpos(Dr.) is a projection face of Rpos(D).

2. Let T'C{1,...,p} correspond to a projection face of Rpos(D). n(I)is the optimum
solution for (12) iff

gr)(Di)T £ 0, foreachie (1,..p}\T (30)

3. Let T'C {1,...,p} correspond to a projection face of Rpos(D).
Foreachie { 1,..,p }\ T satisfying

& D (D)T>0 (31)

let T=TU(i}. Then the face Rpos(DI-;.) contains points strictly closer to ¢ than

n( DD.
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Based on these results, we have the following procedure for obtaining closer and
closer projection faces.

PROCEDURE A : A PROCEDURE TO GET A CLOSER PROJECTION FACE

Let I C { 1,...,p } correspond to a projection face of Rpos(D). If (30) is satisfied,

N(I') is the optimum solution for (12). Otherwise, this procedure can be used to get a new
projection face closer than Rpos(Dr-.).

Find anie { 1,..p \T such that (31) holds. In this procedure we maintain a
current index set, I\, and a current m-vector, ﬁb‘, corresponding to it. The procedure
involves repeated applications of the following s‘chcme. If the procedure does not terminate
during one application of the scheme, an element is deleted from the current index set and a

corresponding change is made in the current n-vector. T_]h always stay 2 0, so

T]BDB_E Rpos(D) always.

Initially, define the current index set tobe N =T" U { i }, and the current n-vector

corresponding to it to be nb‘ = (nt( I'),forteI; n, = 0, otherwise ).

The Scheme :

Find the orthogonal projection of ¢ on the linear hull of {D;:te N}.
Suppose itis ¥ By Dy, . Irp =(B:te D) =0, theindex set
tel

corresponds to a projection face of Rpos(D) closer than Rpos(Dr ),

terminate the procedure.

If [3B is not 2 0, we move from the point ﬁhDh. ( the current point in
Rpos(D) ) toward the point BBDB_ ( which is outside Rpos(D), since [3h
is not 2 0 ), along the line segment joining them, and find the last point on

this line segment that is contained in Rpos(D). This move brings us closer to
c. Find

A = minimum { (™ /(7> - B™ ) :te T such that ™ <0) (32)



Gravitational Method for LP 28

Let s be the value of t which attains the minimum in ( 32 ), break ties
arbitrarily. Define B = B\ (s}, AD1= (B1:te D) where

A =(1-AmD +ApD forte b,
It can be verified that ﬂtb1 2 ( and that the point ﬁh1DB1_ is the last point
on the line segment joining ﬂka. to BBDB. that is in Rpos(D). With

By as the new current index set and ﬁh1 as the m-vector corresponding to it,

repeat the scheme.

This procedure terminates with a projection face of Rpos(D) which is strictly closer
than Rpos(Dr-.) after at most | T | repetition of the above scheme. See [ 23,35]

One way of solving the nearest point problem (12) is the following. If none of the
rays Rpos(D;j), i=1,top,isa projectign face, n = 0 is the optimum solution for (12),
terminate. Otherwise, find the closest projection face among the rays Rpos(Dj ), i= 1 to
m. Then use the above procedure to find a strictly closer projection face. Repeat until the
optimum solution is obtained. See [23,26,33,35].

In [23], this kind of a geometric procedure has been combined with a dimension
reduction step on the LCP associated with (12), leading to an efficient algorithm for (12),
one could use that algorithm instead.

MODIFIED GRAVITATIONAL METHODS

Each stage of the gravitational method begins with the liquid drop in the strict interior
of K. Consider a stage. In this stage, the nearest point problem in the first step, Step 1,
has no constraints, and therefore corresponds to an empty D-matrix. Thus, in Stepl, the
matrix D is of full row rank.

Now consider a general step, Step r+1. Let xT be the position of the center of the
drop at the beginning of this step. We will use the following notation, for discussing the
changes in the modified methods.

Jr index set of rows of A corresponding to the constraints in the nearest point
problem in Step r+1.
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Dr A I this matrix will always have full row rank, it is the D-matrix for the
nearest point problem in Step r+1.

Sr This subset of Jy is the index set of rows of A in the final projection face
obtained in Step r+1.

Tt the n-vector of dimension | Jy | corresponding to the projection face

Rpos( ASr. ) of Rpos(D,) .
gt the final residual vector obtained in Step r+1, it is ¢ - T D.

Y definedif EF 0, itis - (N /I ET I, it is the gravitational direction in
Step r+1.

Nr set of all i which tie for the minimum in (9) in the step length routine
in Step r+1.

Clearly, if i € S}, Aj.( EI')T= 0, so the definition of S; corresponds to the definition
of S in Section 7. Select an element from N, arbitrarily, let it be q,- Then define

Jrs1=Srulq ), Dpyi=A Jr+1.- H Dy is of full row rank, this choice guarantees that
D, 1 also inherits this property. Use D, | as the D-matrix for the nearest point problem

in the next step.

With this modification, since we may not be using all the touching constraint rows in
the formulation of the nearest point problem, it is possible that the step lengths in some
steps may turn out to be zero. But the gravitational directions so obtained are always
descent directions. We now provide a summary statement of the implementation.

The version of the gravitational method called MGM1 uses the directions obtained by
solving the nearest point problem constructed above, to completion, in each step.

The version of the gravitational method called MGM2 does not solve the nearest point
problem to completion in any step, but applies Procedure A to get a closer projection face,

exactly once in each step. The D-matrix for the nearest point problem in Step r+2 is
D.,1=A Il Beginning with the projection face corresponding to S obtained at the end

of Step r+1 ( this face, Rpos(ASr.), is a facet of the cone Rpos(D,, 1) for the nearest
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point problem in Step r+2, by the definition of D, ¢), it applies Procedure A discussed

above exactly once, to get a closer projection face of Rpos(D;,1). S, is defined to be

the projection face at the end of this application of Procedure A. The M-vector

) ) ) -1+l -1+l -1+l
corresponding to this face, N( S, )isdefinedtobe n  and § =c- 7 Dpypis

defined to be the corresponding residual vector. We know that the projection face

-1+l -r
Rpos(ASr+ 1.) is strictly closer to ¢ than Rpos( Asr‘ ), hence Il & I <g I

—r+l
If € = 0, the stage terminates, otherwise, the gravitational direction in this step is

+1  prl T 4 ) o
defined to be y'**=-(& ) MIE Il. The fact that y is a descent direction and that

1+l -T
N Dy isclosertocthan n Dy imply that yr+1 is also a descent direction. The stage

is continued.
THE FINAL SPECIAL STEP IN A STAGE IN MGM1 AND MGM2

Assume that all the data in A, b and c are integer. Suppose the drop halts, and a

stage is completed in either of these methods, with its center in position at X. Let D =Aj.

be the D-matrix for the nearest point problem considered in the final step of this stage, and
letn=(1M:ie J) be the final n-vector obtained from this problem in the method. Since

the stage is completed, we must have ¢ - 1_1]—) =(. As in Theorem 5, define

Tl =1 ,forie j

= 0 , otherwise.

Then, 7 is feasible to (1), and it is a BES of (1) since D has full row rank in both of these
methods. Computc/)\( as in (29) of Section 8, using D for E. Ifk is feasible to (2), then X
and T are optimum solutions for (1) and (2) respectively. If X is infeasible to (2),bute £
2'5L, (when L is the total number of binary digits in all the data in A, b and ¢ ), use the

pivotal method discussed earlier to move to a BES of (2) beginning with x, without
increasing the objective value in (2)[ 24 page 123; 26 page 474], and let the BFS obtained

to be x*. Then, © and x* are optimum solutions for (1) and (2) respectively. If X is
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infeasible to (2) and € is greater than 2'5L, reduce € by half and go to the next stage

beginning with the center of the drop in position with its center at X.

[ THEOREM 9 ]
In both the versions MGM1, MGM2 of the gravitational method, each stage is finite.
Also, the method terminates after at most a finite number of stages, assuming that all the
data are integer.

[ Proof ] Consider a stage. In each version, we obtain a new (and nearer)

projection face in every step, that is Ilérll strictly decreases as r increases. So,
a projection face cannot repeat in either version. Since there are at most a
finite number of projection faces, the stage is finite in each version. The
proof of finite termination of each of the versions MGM1 MGM?2 is similar to
the proof of Theorem 8. u

AN IMPLEMENTATION, GRAVITY 1, OF MGM2

We summarize the steps in one stage of the modified gravitational method discussed
above. If the drop halts in a stage, the final special step is carried out as discussed above.

Initialization : Initialize the stage as discussed in Sections 4,8.
Step 1 :Set Jo=0, S,=0,7° =0.

General Step r+1 for r 21

Select an element q__; from the set N;._; obtained in Step r.

Define Jy= S 1w {q ), Dr=A A Apply Procedure A just once, to
get a closer projection face for Rpos(D,) than RPOS(Asr_l,)- Let S; be the
index set of rows of A corresponding to the new projection face obtained.
This projection face is the final projection face obtained in this step. Find 7j T
and gr.

If £7 =0, the drop halts and the stage is over.

If Er # 0, the gravitational direction in this step is y = -( Er Il Er Il, go to
the step length routine and determine Ny If step length is infinity, terminate,

z(x) is unbounded below on K, and (1) is infeasible. Otherwise go to the
next step.
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Figure 4 shows the various steps on a two dimensional example. In the example, we
have three constraints. From the initial point, the drop travels through the interior of the
feasible region in the direction -cT. Then we solve the first direction finding problem and
get the direction - §1. The movement in the direction - E,l is blocked by another constraint,
the direction finding routine then gets the next direction - F,z. Then eventually the vector ¢
gets into the nonnegative hull of the set of normal vectors to the touching constraints and
the algorithm terminates.

O - gi 4 A2 T
e ey -C
1 D‘/ 2 /> Al

A1.X2 b1

Fig 4 A two dimensional example illustrating the sequence of nearest point problems.

The main computational task in direction finding is to compute a factorization of
DI‘-(DI‘-)T for a given index set I'. We use LU decomposition of D (Dr,) T, and

update it when I" changes.

As the algorithm proceeds, two types of updates on this LU decomposition are
needed. One is updating it with one newly added index, which can be done in O(kz),
where K is the cardinality of the set I. The other is updating the decomposition for deleting
an index from the set I" which costs O(K3), where K is an integer number smaller than k,
and determined by the location of the element to be deleted. In most cases, this updating
effort is much less than the effort involved in updating the inverse of a full n by n matrix in
the Simplex Method.
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10. COMPUTATIONAL COMPARISON WITH SIMPLEX METHOD

Tests were carried out on LP's in form (1) with m ranging from 10 to 400 and n
ranging from 5 to 200. Entries in the A-matrix were selected randomly between - 50 to 50,
and the b and ¢ vectors were generated so that both the primal and dual problems are
feasible. The same set of problems were solved using MINOS 5.0[21], and the first
version of the program called "GRAVITY 1" for MGM2 written in FORTRAN, on IBM
3090-400/VM main frame machine at the University of Michigan. For each test problem,
MINOS 5.0 was given the primal problem to solve (this is in form (1), or standard form)
and GRAVITY 1 was given the dual problem.( as in form (2) ) We provide the average
CPU seconds per problem, in Table 1 ( each entry in the table is the average of 5 to 10 test
problems, more test problems were run for smaller sizes).

During the computational experiment, we observed an interesting property of the
gravitational method. The bigger the radius of the initial drop, the smaller the number of
steps to the first halt. In other words, if a dual feasible solution exists, we can find one
faster (feasible to (1) in Section 2, which is in standard form), by making the radius of the
drop large in the first stage. As explained in Section 2, we can make the radius of the initial
drop arbitrarily large by taking the value of X%, to be as large as we want. The results in
Table 2 indicate that this leads to a speedier discovery of a dual feasible solution when one
exists.

Table 1 Performance Summary

CPU Time in seconds
Variables Constraints MINOSS.0 GRAVITY1
5 10 0.085 0.018
10 20 0.160 0.050
10 30 0.210 0.087
20 30 0.412 0.205
20 40 0.473 0.272
10 100 0.511 0.253
50 100 4.112 2.514
50 200 8.214 6.015
60 200 12.405 8.989
100 200 38.399 28.420
150 300 212.946 93.950

200 400 539.346 249.810
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Table 2 Number of steps taken in the first stage
in 10 different cases.

Problem size Value of x4 in the initial point (0,...,0,x%;,1)

Variables Constraints 1.0E+09 1.0E+06 1.0E+03 1.0

30 50 52 97 101 102
30 50 54 90 90 82
50 100 111 205 252 272
50 100 99 193 237 233
75 100 136 208 249 268
75 100 115 221 258 262
100 200 182 458 643 660
100 200 177 460 618 672
150 300 295 770 1099 1144
150 300 282 713 948 1100

Considering the results in Table 2, the ideal radius reduction scheme seems to be one
in which the radius of the drop is selected to be quite large at the first stage, and then
reduced drastically after the first halt if it is necessary to go to the second stage. With such
a scheme, most problems in our computational experiment are solved in at most two stages.
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