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ABSTRACT

In this paper we develop a method for analyzing manufacturing
processes and tolerances. This method is based on the study of the process
capability ratio (Cp). To compensate for the uncertainty of the estimated
process capability ratio, we find the upper and lower limits with a certain
confidence level depending on the purpose of the process capability ratio.
These limits can be used for general process and tolerance analysis

problems.



1. Introduction

Confirmation of geometrical dimensions and tolerances is made
more challenging by the smaller size and greater complexity of parts. In
addition, conventional measuring instruments are not suited to these size
and complexity challenges. Therefore, a coordinate measuring machine
(CMM) is widely used to accomplish this task. Generally, the output of a
CMM indicates confirmation as well as the effectiveness of conventional
process control. However, the conventional process control procedure has a
problem which does not take account the uncertainty of the parameter
estimation. The conventional process control procedures are control charts
and process capability analysis. In this paper, we discuss process
capability analysis.

Control charts are the simplest type of statistical process control
procedure. A control chart is a device principally used for the study and
control of repetitive processes. Dr. Walter A. Shewhart, its originator,
suggests that the control chart may serve, first, to define the goal or
standard for a process that management might strive to attain; second, it
may be used as an instrument for attaining that goal; and, third, it may
serve as a means of judging whether the goal has been reached.

Process capability analysis can be defined as the quantification of
process variability, as the analysis of this variability relative to product
specifications, and as an aid in eliminating or greatly reducing this
variability in development and manufacturing. A process capability study
usually measures the functional parameters of a product (product
characterization), not the process itself (true process capability analysis).
However, a true process capability analysis includes observing the
manufacturing process and controlling or monitoring the data collection
activities. Controlling data collection and knowing the time sequence of the
collection allows inferences to be made about the stability of the process over
time and allows inferences about the adequacy of the specifications. A true
process capability analysis can be contrasted with a product
characterization. A product characterization occurs when we have only
sample units of a product available and, as a result, there is no direct



observation of the process and no time history of production. In a product
characterization study we can only estimate product quality and production
yield (fraction confirming to specifications); we can say nothing about the
dynamic behavior of the process or its state of statistical control
(Montgomery [1985]).

When we measure only one dimension of a product such as length,
weight, and diameter, it is difficult to describe the dynamic behavior of the
process even though we measure 100% of the products. One dimension
cannot describe the dynamic behavior of the production process because a
product is usually manufactured by various machining processes.
However, we can describe the dynamic behavior of the process when we
measure two or three dimensions such as geometric tolerances. Because
the geometric tolerances are the description of the surface characteristics of
the part, they can contain the information of the manufacturing process
behavior. ’

The confirmation of geometrical tolerancing of manufactured parts
is usually achieved using a coordinate measuring machine (CMM). The
confirmation of geometrical tolerancing requires serial sampling points of
a manufactured part. When several parts are measured, these points
contain the time sequence of the process. This sequence data can be used
for the analysis of the stability of the process and to determine the adequacy
of the given specification. In other words, if the process is stable and if the
analysis shows that the product is out of tolerance, the given tolerance may
be too tight. However, if the process is stable and if the analysis shows that
the product is in specification but deviations are lower than the
specification, the given tolerance may be too loose. When we inspect the
sampled parts over time, the accumulated data can be used for product
characterization. Product characterization in geometrical tolerancing can
be the analysis of process performance.

Process capability indices are used to perform process capability
analysis (Sullivan [1984, 1985], Kane [1986], and Montgomery [1985]). We
can evaluate the process capability exactly and compare this value with the
recommended minimum value, when the upper and lower specifications
and the real process standard deviation are given. However, if we estimate



the process standard deviation from a sample size n, then we can evaluate
the estimated process capability. Estimated process capability is a random
variable because the estimated standard deviation is a random variable.
Therefore, we cannot directly compare the estimated process capability
with the minimum recommended value of process capability. The
minimum recommended values of the process capability ratio are given in
Montgomery [1985] and shown in Table 1.

Two sided|{One sided

Specification | Specification

Existing Process 1.33 1.25
New Process 1.50 1.45
Safety, strength or critical parameter (existing process) 1.50 145
Safety, strength or critical parameter (new process) 1.67 1.60

Table 1 Recommended Minimum Values of the Process Capability Ratio

It is necessary to determine the lower and upper limits of the
estimated process capability because the estimated process capability is a
random variable. This determination leads to two possible conclusions:
either the process is capable with a certain confidence or, because of a
certain amount of standard deviation increment, it is not capable with a
certain confidence. There could be several factors which account for this
increment such as tool wear and clamp breakage. Among various process
capability indices, we deal with process capability ratio (Cp).

2. Limits on Cp

When the upper (U) and lower (L) specifications are given, a
conventional measure of process capability is Cp. The process capability

ratio (PCR) is defined as



Because we usually do not know the true standard deviation (o), the
estimated standard deviation (s) is used to calculate PCR. Because the

A
estimated standard deviation is a random variable, estimated PCR (Cy;) is
also a random variable. Therefore, it is necessary to compare the limits of

6p with the recommended minimum values of Cy or vice versa. The limits
are either one-sided limits or two-sided limits. One-sided refers to the
confirmation of process performance and two-sided refers to both the
process performance and tolerance analysis.

The proposed definitions of form errors in previous paper (Chang et
al. [1990]) related to the estimation of 6s. Therefore, these values can be
used for process capability analysis. When we estimate form error serially,
this value contains information about the time sequence of the
manufacturing process. It can be used to monitor the dynamic behavior of
the process. When we accumulate estimated form errors over time, these
values can be used to monitor the process but, also, to analyze tolerance

design.

2.1 One Sided Lower Limits on Cp

A
When Cy, is given, we can find Cpr, which is lower limit of Cp, with a

C
Type I error of ¥ by the hypothesis test. Since =L = % , we know that (n-
Cp

C

DEB)2 follows a chi-square distribution with (n-1) degrees of freedom
Cp

denoted by x%n_l. Then

Hy (Null Hypothesis): o7 < o3

H; (Alternative): 07 > 6%
where 02 = unknown variance

0% = true variance



Pr{Type I error} = Pr{reject Hy | Hy is true}

(n-1) 0% Cp
= Pr{ 5 > X%,n-l } =Pr((n-1) (72> X%,n-l )
(50 Cp
2 02
N
= Pr{ G% > H-TX%,H-l} = Pr{ C%>H_DTX$,n-1} =7 .

A
Therefore, the lower limit of Cp, when C; is given, for determining the
process capability with a Type I error of v, is

A A [@Fn-)
Cor=Cp \ "1 . (1)

We can determine that the process is capable with a Type I error of ¥ when

A
the recommended value of Cj is at least C,,. We estimate Cp fram the

measured process by taking a random sample of size n. However, since the

minimum recommended values of C, are usually given for various process
A

conditions [Montgomery (1985)], we can find the required minimum of Cy
with a Type I error of y by representing Eq.(1) in terms of C,

n-1
(X%,n-l) .

A

This result is same as the 100(1-y)% lower confidence limit on C, which is
derived by Chou, Owen, and Borrego [1990]. Table 2 shows the lower limits

A
of Cp with 95% confidence that the process is capable.



1.0 293 | 237 | 2.09 191 1.80 171 1.64 1.37 1.28 1.23
1.1 322 | 261 | 229 2.10 1.98 1.88 1.81 151 141 1.36
1.2 3.51 | 285 | 250 230 | 216 | 2.05 1.97 1.64 1.54 148
1.3 381 | 3.09 | 271 249 | 233 | 223 | 214 1.78 1.66 1.60
1.4 410 | 332 | 2.92 268 | 251 | 240 | 230 1.92 179 1.72
1.5 439 | 356 | 3.13 287 | 269 | 257 | 247 2.06 1.92 1.85
1.6 468 | 3.80 | 3.34 3.06 | 287 | 274 | 263 2.19 | 2.05 1.97
1.7 498 | 4.04 | 3.54 325 | 305 | 291 | 279 233 | 218 | 2.09
1.8 5.27 | 427 | 3.75 344 | 323 | 3.08 | 2.96 247 | 230 | 222

1.9 5.56 | 4.51 | 3.96 3.63 | 341 | 3.25 3.12 260 | 243 | 2.34

2.0 586 | 4.75 | 4.17 3.83 | 359 | 342 | 3.29 2.74 | 2.56 | 246

A
Table 2 Lower Limits of C, with 95% confidence of process being capable




n 50 a0 0 80 0 100 200 300 400 500
G
1.0 1.20 1.18 1.16 115 114 | 113 1.09 1.07 1.06 1.06
1.1 1.32 1.30 1.28 1.27 1.26 1.25 1.20 1.18 1.17 1.16
1.2 144 142 1.40 1.38 1.37 1.36 131 1.29 1.27 1.27
1.3 1.56 1.53 151 1.50 1.48 147 1.42 1.39 1.38 | "1.37
1.4 1.68 1.65 1.63 1.61 1.60 1.59 1.53 1.50 1.49 1.48
1.5 1.80 177 175 1.73 171 1.70 1.64 1.61 1.59 1.58
1.6 1.92 1.89 1.86 1.84 1.83 1.81 1.74 1.72 1.70 1.69
1.7 2.04 | 201 1.98 1.96 1.94 1.93 1.85 1.82 181 1.79
1.8 216 | 212 | 2.10 2.07 | 2.06 | 2.04 1.96 1.93 191 1.90
1.9 228 | 224 | 221 219 | 217 | 215 | 2.07 2.04 | 2.02 | 2.00
2.0 240 | 236 | 2.33 230 | 228 | 227 | 2.18 215 | 212 | 2.11

Table 2 Continued




2.2 One Sided Upper Limits on C,,

N
When Cp, is less than the lower limit derived from given C,, by Eq.(2),
we claim that the process is not capable with a Type I error of y. The

A
variance increment can be detected by Cp if the cause of the variance
increment shows the process is out-of-control. When we have enough
information about the causes of the out-of-control state or variance

A
increment, we can detect those causes from Cp.

A
When C; is given, we can find Cpyy which is upper limit of C,, with a
Type II error of B by the hypothesis test.

H, (Null Hypothesis): 02 <k2 03
H; (Alternative): 0?>k203
where 02 = unknown variance

0% = true variance

k = variance increment factor

Pr{Type II error} = Prifail to reject Hy | H is false}

(n-1) 0% 1C
=Pr{—5 5 <x}n1) =Pr{@D) G2 <xEn1)
gz <Mhat) oy B
k2 o? k26g
=Pr{of<—7 X%nl = Pr{ —3 a1 =B

Therefore, the upper limit of C,, for determining that the process is not
capable with a Type II error of B, is

( D

We can determine that the process is not capable with a Type II error of
A

when the recommended value of C, is at most C;1,. We estimate Cp from

the measured process by taking a random sample of size n. We can also
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A
find the required maximum of Cp with a Type II error of B by representing

Eq.(3) in terms of Cpy

A Cuu n-1
Cp=— »\/ . 4
P™ k (X%,n-l) @

A
Table 3 gives the upper limits of Cp in order for the process to be described

as not capable with a 5% Type II error for three different standard deviation
increment factors of 1.1, 1.2, and 1.3.

1



n 4 5 6 7 8

k(1.1 1.2 13f1.1 12 13])1.1 1.2 13(|1.1 1.2 13|1.1 1.2 13

1.0 [2.66 244 2.25(2.16 198 183|190 1.74 1.60|1.74 159 147}|1.63 150 138
1.1 1293 268 248)237 2.18 201|209 191 176|191 175 1.62|1.80 165 1.52
1.2 | 3.19 293 270|259 2.37 2.19(227 2.09 192|2.09 191 1.77|1.96 1.80 -1.66
1.3 | 346 3.17 293|281 2.57 237|246 226 209|226 2.07 191}2.12 195 1.80
1.4 |3.73 342 3.15(3.02 2.77 256|265 243 225|243 223 2.06|2.29 210 193
1.5 | 399 366 3.38[3.24 2.97 274|284 2.61 241|261 239 221|245 225 2.07
1.6 | 426 390 3.60{3.45 3.16 2.92|3.03 2.78 257|278 255 2.35|2.61 239 221
1.7 | 452 4.15 3.83[3.67 3.36 3.10{3.22 295 273|296 2.71 2.50|2.78 254 2.35
1.8 [4.79 439 4.05|3.88 3.56 3.29|3.41 3.13 2.89(3.13 2.87 2.65(2.94 2.69 249

1.9 [5.06 4.64 4.28|4.10 3.76 3.47|3.60 3.30 3.05[3.30 3.03 2.80(3.10 2.84 2.63

2.0 | 532 488 450|432 3.96 3.65|3.79 348 3.21|3.48 3.19 2.94]3.27 299 2.76

A
Table 3 The upper limits of Cy, for which the process is not capable with 5%

of Type II error
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1.18

1.28
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1.57

1.67

1.77

1.87

1.97

1.12
1.23
1.34
1.46
1.57
1.68
1.79
1.90
2.02
2.13

2.24

1.03

1.13
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1.33
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Table 3 Continued
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Table 3 Continued
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[Example]

Suppose the required C, 2 1.2 and that the upper and lower
specifications are given. We take a random sample of size n and calculate
6p. If the required Type I error is 0.05 and the Type II error is 0.05, then
the claim of process capability will depend on the values calculated from
Eqs. (3) and (4).

Let n=20, then from Eq.(3)
CpL =1.64

and from Eq.(4)
CpU =149 fork=1.1
Cpou=137 fork=1.2
CpU =127 fork=1.3

1) If 6p > 1.64, we can claim that the process is capable with 95%
confidence.

2)1f1.49< 6p < 1.64, we can claim that the process is not capable. It
may be due to an increase in the standard deviation of up to 10%
with 5% of Type II error.

3)1f1.37< 6p < 1.49, we can claim that the process is not capable. It
may be due to an increment in the standard deviation of more than
10% and up to 20% with a 5% Type II error.

4)1f1.27< 6p < 1.37, we can claim that the process is not capable. It
may be due to an increase in the standard deviation of more than
20% and up to 30% with a 5% Type II error.

2.3 Two Sided Limits on C,

In previous section, we considered only the confirmity of process
capability not the adequacy of tolerance. In this section we focus on
tolerance. Geometrical tolerances are confirmed by sample points
measurements. These measurements should satisfy a geometrical

16



tolerance. In addition, each point has its own tolerance which each point
should satisfy. The geometrical tolerance and the point tolerance may not
be the same because of surface functionality. Therefore, even though all the
sample points satisfy the geometrical tolerance requirement, any point
might not satisfy its own tolerance or vice versa. When these things are
happen, we cannot use the results of previous section. Instead, a two-sided
test is necessary to analyze the tolerances which are too tight or too loose.
Therefore, we modify one-sided test for a Type I error to two-sided test as
follow.

H, (Null Hypothesis): o3 = ¢3
H; (Alternative): 07 # 03
where 0% = unknown variance

0% = true variance

Pr{Type I error} = Pr{reject Hy | Hy is true}
(n-1) 0%
=1-Pr(xBn1< TR <X1-y2,0-1

C
=1-Pr{yhn.1< @D @Z2<x 301 )
C

P
0(2) 2 0 9
=1-Pri gy Xyfn-1 S 0% < @D X121}
2 C2
=1-Pr{ ol Xy/%,n-l s Cp <1 X1-v2.n-1 J

:’Y_

A
Therefore, two sided limits of Cp, when Cp is given, for determining the

tolerance tightness with Type I error of v, is

A (Xy})Q n-1) A n-1
Cyrr, =C ———=—— o Cp=C —
pTL p n-1 p pTL (X'Y;Q,n- 1)

A A / (%1 %.0-1) A n-1
Coru=Cp V41 o Cp=Curu w2 (5)
X1-/2,n-1

17



We can decide that the point tolerance is too tight or too loose when we
estimate ap for the measured point of surface by taking a random sample of
size n. The tolerance is too tight when the recommended value of C, is
greater than Cyrr,. The tolerance is too loose when the recommended value
of C,, is less than Cpry. In both cases the Type I error is v. However, when
the minimum recommended values of C, are given, we can find the
required limits of (A:p with a Type I error of y. Table 4 shows the lower and
upper limits of 6p with 95% confidence. The tolerance is too loose when 6p
is greater than the upper limit. The tolerance is too tight when 6p is less

than the lower limit.

18



G TU TL TU TL TU TL TU TL TU TL
1.0 6.32 | 052 | 3.69 0.57 | 289 | 060 | 245 0.64 | 220 | 0.64
1.1 6.96 | 057 | 4.06 062 | 318 | 0.66 | 2.70 070 | 242 | 0.71
1.2 759 | 0.62 | 4.43 068 | 346 | 0.72 | 295 076 | 2.64 | 0.77
1.3 822 | 0.68 | 4.80 0.74 | 375 | 0.78 | 3.19 0.83 | 2.86 10‘.84
1.4 885 | 0.73 | 5.17 0.79 | 404 | 084 | 344 0.89 | 3.08 | 0.90
1.5 949 | 0.78 | 5.54 0.85 | 433 | 090 | 3.68 0.95 | 3.30 [ 0.97
1.6 | 10.12 | 083 | 591 091 | 462 | 096 | 3.93 1.02 | 3.52 1.03
1.7 | 10.75 | 0.88 | 6.28 096 | 491 1.02 | 417 1.08 | 3.74 1.10
1.8 | 11.38 | 094 | 6.65 1.02 | 520 | 1.08 | 442 114 | 3.96 1.16
1.9 | 1202 | 099 | 7.02 1.08 | 548 114 | 4.66 121 | 4.18 1.22
2.0 12.65 | 1.04 | 7.39 1.13 | 5.77 120 | 4.91 127 | 440 | 129

A
Table 4 Upper and Lower Limits of Cp with Type I error of 5%




n 10 15
G TU TL TU TL TU TL TU TL TU TL
1.0 2.04 | 0.66 1.92 0.68 183 | 0.69 1.58 0.73 1.58 | 0.76
1.1 224 | 073 | 2.11 074 | 2.01 | 0.76 1.73 0.81 174 | 0.84
1.2 244 | 079 | 230 081 | 219 | 0.83 1.89 0.88 189 | 091
1.3 265 | 086 | 2.49 088 | 237 | 0.89 | 2.05 095 | 205 |~ 0..99
1.4 285 | 093 | 2.68 095 | 256 | 096 | 221 1.02 | 221 1.06
1.5 3.05 | 099 | 287 101 | 274 | 1.03 | 237 1.10 | 237 1.14
1.6 3.26 1.06 | 3.07 1.08 | 292 1.10 | 252 117 | 2.52 1.22
1.7 3.46 112 | 3.26 115 | 3.10 | 117 | 2.68 124 | 2.68 1.29
1.8 3.66 119 | 345 122 | 329 124 | 284 132 | 284 1.37
1.9 3.87 126 | 3.64 128 | 347 131 | 3.00 1.39 | 3.00 1.44
2.0 4.07 132 | 3.83 135 | 3.65 138 | 3.15 146 | 3.16 1.52

Table 4 Continued




[Example]

Suppose the required C, 2 1.5 and that the difference between the
upper and lower specifications are given by 90. We take a random sample

A
of size n and calculate Cp. If the required Type I error is 0.05 and the Type
IT error is 0.05, then the claim of process capability and specifications will
depend on the values obtained from Tables 2, 3, and 4.

Let n=20, then from Table 2
CpL =2.06

and from Table 3
Cpu=187 fork=1.1

Cou=171 fork=1.2
Coy=158 fork=1.3

and from Table 4
Cpru =2.37
Cprr, =114

1 If 6p > 2.37, we can claim that the specification is too loose with
95% confidence even though the process is capable.
2) If ép > 2.06, we can claim that the process is capable with 95%
confidence.
3)If1.87< 6p < 2.06, we can claim that the process is not capable. It
may be due to an increase in the standard deviation of up to 10%
with 5% of Type II error.
4)If1.71< (A:p < 1.87, we can claim that the process is not capable. It
may be due to an increase in the standard deviation of more than
10% and up to 20% with 5% of Type II error.
5)If1.58 < 6p < 1.71, we can claim that the process is not capable. It
may be due to an increase in the standard deviation of more than
20% and up to 30% with 5% of Type II error.
6) If (A:p < 1.14, we can claim that the specification is too tight with
95% confidence when we cannot find any causes of the process
being out-of-control.
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3. Examples in Geometrical Tolerance Problem

Assuming that we measure straightness errors of machined
surfaces, we analyze the process capability using the estimated
straightness errors. The specification is 0.009mm and the process
standard deviation is 0.001mm/mm and the minimum C,, is greater than or
equal to 1.3. We conducted four case studies: when the process is capable,
when the process is not capable because the process standard standard
deviation is increased by the factor of 1.2, when the specification is changed
to 0.012mm (too loose), and when the specification is changed to 0.006mm
(too tight). We generate random normal numbers to conduct these studies.

Case 1] The process is capable.
We assume that we measure four parts which are collected serially

or randomly over time. On each part, five points, which are generated by
normal random number generator with mean zero and standard deviation
0.001, are measured by equi-distance (Table 5).

X-Coordinate Y-Coordinate
Part 1 Part 2 Part 3 Part4
0 0.0004 0.0005 0.0003 -0.001
1 -0.0011 -0.0005 -0.0011 0.0019
2 0.0014 0.0014 -0.001 0.0002
3 0.0006 -0.0006 -0.0006 -0.0008
4 0.0006 -0.0003 -0.0007 -0.0005

Table 5 Coordinate values of four measured parts

Straightness errors are estimated by converting the data in Table 5.
Table 6 shows the estimated straightness errors and the converted data.
We assume that there is no sign of the process being out-of-control. No part
is out pf specification. Then, we calculate the process capability ratio using
these converted data of 20 points. The process is capable with 95%
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confidence because the estimated process capability ratio is greater than the
minimum required value 1.78 from Table 2 with n=20, Cp=1.3.

A 0.009
Cp= 6+0.0008 = 1.875

Case 2] The process is not capable.

We assume that the data collection procedure is same as case 1
except that the data is generated with mean zero and standard deviation
0.0012 (Table 7). Estimated straightness errors and converted data are
shown in Table 8. One part is out-of specification. Then, we calculate
process capability ratio using the converted data, and as a result, the
process is not capable and the process standard deviation is increased up to
10% with a 5% Type II error. The actual process standard deviation was
increased by 20%. This decision is based on Table 3 with n=20 and k=1.1.

1.62< ép = 6%0.0009 fd%%%g =1.667<1.78

Part 1 Part 2 Part 3 Part4

E.S.E. 0.0059 0.0056 0.0035 0.0079
0.0004 0.0001 0.0006 -0.0013

-0.0013 -0.0008 -0.0006 0.0018

0.001 0.0013 -0.0004 0.0002

1.0000E-5 -0.0005 0.0002 -0.0006

-0.0002 -0.0001 0.0002 -0.0001

Note: E.S.E.= Estimated Straightness Error
Real Straightness Error = 0.006
Table 6 Estimated Straightness Errors and Converted data



X-Coordinate Y-Coordinate

Part 1 Part 2 Part3 Part4

0 0.0005 -0.0012 0.0003 0.0006

1 -0.0014 0.0023 -0.0013 -0.0006

2 0.0017 0.0003 -0.0012 0.0017

3 0.0007 -0.0009 -0.0007 -0.0007

4 0.0007 -0.0006 -0.0009 -0.0004

Table 7 Coordinate values of four measured parts

Part 1 Part 2 Part3 Part4

E.S.E. 0.0073 0.0095 0.0040 0.0067.
0.0006 -0.0016 0.0007 0.0001

-0.0016 0.0021 -0.0007 -0.0009

0.0013 0.0003 -0.0004 0.0016

1.0000E-5 -0.0007 0.0002 -0.0006

-0.0002 -0.0002 0.0002 -0.0001

Note: E.S.E.= Estimated Straightness Error

Real Straightness Error = 0.006
Table 8 Estimated Straightness Errors and Converted data

Case 3] Specification is changed to 0.012.

We use the same data as case 1 except that the specification is
changed to 0.012mm. We can say that the specification is too loose with 95%
confidence because the estimated process capability ratio value 2.5 is too
high relative to the minimum recommended value 2.05 in Table 4 with n=20
and Cp=1.3.

A 0012
Cp = 50,0008 = 25



Case 4] Specification is changed to 0.006.

We use the same data as case 1 except that the specification is
changed to 0.006mm. Three parts are out-of-specification. Then, we first
determine if the process is out-of-control. If it is not and there is no
assignable cause of out-of-control, we can say that the specification is too

tight even though we cannot detect it from the estimated process capability
ratio comparison from Table 4 with n=20 and Cy,=1.3. In this case, we

should measure another set of data to make sure the determination.

A 0.006
Cp= 6+0.0008 = 1.25>0.99

4. Conclusion

This chapter has given a procedure for determining the upper and
A ,
lower limits for the estimated process capability ratio, Cp, when the

A
recommended minimum C; is given. When Cp is used to determine

whether the process is capable or not, one sided limits (Cpp,, Cpy) are used.
A
When C;, is used to analyze the given tolerance, two sided limits (CpTL’

Cpru) are used. Depending on the purpose of the process capability ratio,

A
comparison between Cp and the upper and lower limits affects the

determination. These determinations are summarized below.

1) The process is capable
A
when Cp > Cpp,.
2) The process standard deviation is shifted by more than As; and less
than Aso.
A
when Cpy(Asq) < Cp < Cyy(Asy) .
3) The given specification is not appropriate
A A
when Cp>Cpry  or  Cp<Cprr,,
A
If Cp > CpTU
then, the given specification (tolerance) is too loose.
A
If Cp < CpTL
then, the given specification is too tight.
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The limits of the process capability ratio can be used for general
process capability analysis and, also, for geometrical tolerance analysis
problems.
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