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ABSTRACT

In this paper we have developed methods to statistically evaluate
form errors using a coordinate measuring machine (CMM). The
definitions of form errors in the current standards assume ideal inspection
systems. However, there is no such ideal inspection systems actuality.
Therefore, we establish practical mathematical definitions of form errors
which can be applied for continuous or discrete measurements. They
consider the characteristics of manufactured surfaces by assuming that
the deviations from the nominal surface follow a Normal distribution.
Importantly, these definitions are verified by measuring the real parts.
Therefore, these definitions can serve as practical guideline for the

inspection of real systems.

In current CMM practice, there are no commonly accepted sample
sizes for estimating form errors which have a statistical confidence.
Practically, sample size planning is important for the geometric tolerance
inspection using a CMM. We determine and validate appropriate sample
sizes for form error estimation. Also, we develop form error estimation
methods with certain confidence levels based on the obtained sample sizes
in various form errors: straightness, flatness, circularity, and cylindricity.
The determination of sample sizes use the new approach which is based on
the maximum expectation of the straight prediction interval at a certain
confidence level. The straight prediction interval is a new development
which covers the variations of manufactured surfaces. This approach for
estimating form errors, based on the proposed sample sizes, is superior to

the current practice because it leads to better measurements



approximation. The proposed sample sizes and estimating method are
verified by a simulation study and real part measurements. Furthermore,

it considers the characteristics and functionality of manufactured parts.



1. Introduction

High precision manufacturing, and thus increased new and
improved high precision processes and machines, is in great demand
today. This increasing demand is caused by the need: 1) to eliminate fitting
problems and to promote assembly, especially in automatic assembly; 2) to
improve interchangeability of components; 3) to improve quality control
through higher machine accuracy capability which, in turn, will reduce
scrap, rework and conventional inspection; and 4) to achieve further
advances in technology. Many advanced (precision) technology products
depend entirely on one or more components being manufactured to

tolerances or dimensions in the micro- or even nanotechnology range.

One of the tolerances considered in precision manufacturing is the
form tolerance. Form tolerance is confirmed by evaluation of form errors.
Evaluation and confirmation of form errors are executed by a computer
controlled Coordinate Measuring Machine (CMM). It is one of the most
widely used tools. Automobile companies alone are estimated to have over
300 CMMs. Generally CMMs are used for discrete measurements. Most
CMMs use unique software programs, programs developed by their
manufacturer, and, as a result, give different assessment of tolerances.
These variations are due to the discrete measurements and mathematical
definitions of tolerances built into the programs [Placek(1989) and
Weill(1988)]. The tolerance we are dealing with in this paper is form

errors.

Formal definitions of form errors are given in current standards

(ISO 1101 and ANSI Y14.5). Form errors are the linear distance between



two parallel geometrical curves or surfaces. These surfaces contain all the
elements of the manufactured object surface. The American National
Standards Institute in conjunction with the American Society of
Mechanical Engineering offers the following definition of form error: "the
error of form is considered as being that deviation from the nominal
surface which is not included in surface texture (ANSI/ASME B46.1-1985)".
These definitions assume perfect (continuous) measurements. However,
continuous measurements are impossible as we can never measure actual
maximum (peak) and minimum (valley) points, the points which
theoretically contain all the elements of the surface. Therefore, this
definition is limited to ideal measurements and does not lead to

mathematical definitions for discrete measurements.

To compensate for this limitation in the standards, it is current
practice to estimate form errors as the sum of the algebraic maximum and
minimum deviations from discrete measurements. These deviations are
obtained from estimated surfaces. These surfaces are estimated by the
various methods [ElMaraghy, Wu and ElMaraghy (1989),
Shunmugam(1987, 1986), Fukuda and Shimokobe (1984), Murthy (1982),
Murthy and Abdin(1980), Kakino and Kitazawa (1978), Gota and Lizuka
(1977)]. These estimated surfaces vary or change depending on the number
of discrete (sample) measurements. Consequently, the estimated form

errors also vary.

The evaluation of form errors (e.g. straightness, flatness, circularity,
and cylindericity) using a coordinate measuring machine (CMM) relies on
discrete measurements. However, definitions of form errors in the current

standards (ISO 1101, ANSI Y14.5) assume perfect (continuous)



measurements, not discrete measurements. Therefore, there is no
commonly accepted method for calculating form errors using discrete
measurements; it is current practice to satisfy the definitions of the
standards using discretely measured points. However, current practice
does not consider the uncertainty of manufactured surfaces. As a result, it
is not possible to give statistical confidence to the estimated form errors or to
suggest statistically reliable minimum sample points. At the same time,
the number of measured points needed to be large enough to provide

reliable results.

Theoretically, the minimum number of points to calculate form
errors are straight forward. As an example, a minimum of three points
are necessary to get a straightness error. Two points are used to estimate a
straight line and one point is used to get the information about the
uncertainty of the estimated straight line. If all three measured points lie
on the perfect straight line, then there is no straightness error because the
third point does not give any information. If they are not on a straight line,
the third point gives information about the straightness error. However,
there are no surfaces or curves whose uncertainty information can be
explained by one point. Therefore, the theoretical minimum number of
three points are not enough to obtain information about form errors.
Additional measurements are needed to get statistically reliable
information. By establishing a statistically reliable minimum, the

manufacturer does not have to measure an inordinate number of points.

In order to overcome the problem of inconsistency or change, we
propose new definitions of form errors which can be used for discrete

measurements. Also, these new definitions can be applied to the



continuous measurements. In other words, these definitions have the
ability to represent the continuous measurements by the discrete

measurements.

One of the methods used to approximate continuous events by
discrete events is probability distribution. It has often been assumed that
there is a Normal (Gaussian) distribution [Greenwood and Williamson
(1966)] of the deviations from the general surface shape of all manufactured
parts. However, variations [Weckenmann and Heinrichowski (1985),
Bourdet, Clement and Weill (1984)] in manufactured surface shape
characteristics are significant due to various types of manufacturing
processes. We take these effects into account with probability distribution.
Then, we classify form errors into two cases depending on the surface
shape characteristics; without systematic variation and with systematic
variation. Form error without systematic variation occurs when the
manufactured surface shape is the same as the specified shape. Here,
form error depends on the deviations from the desired surface shape. Form
error with systematic variation is the case that when manufactured
surface shape is different from the specified shape. Here form error is
more affected by the varied shape than by the deviations from the varied

shape. In both cases, deviations are assumed to follow normal distribution.

2. Proposed Definition without Systematic Variation

If it is assumed that manufacturing process is noisy, then the
deviations of the product surface from the nominal (designed) product

surface can be expected to follow a normal distribution. A nominal surface



is the intended surface contour which is usually shown and dimensioned
on a drawing or descriptive specification. Theoretically, normal
distributions have no finite minimum or maximum values. However, such
large values are not found among the deviations. Practically, most of the
data values lie within +3¢ (standard deviation) of the nominal surface and
these are the range from +3c to -30, called the range of natural tolerance
limits. If we define a form error as 60, then we can say that this range
contains all the elements of a manufactured surface from a practical point
of view. Therefore, this range satisfies the definition of the standard (ISO
1101). Accordingly we propose the following definition which can be applied

to any kind of form error.

Form error is 6 or the range of natural tolerance limits when
the deviations from a nominal surface follow a Normal
distribution.

Because we usually do not know the exact value of the standard
deviation, we estimate the standard deviation from a sample. When the
sample size is large enough to be considered a continuous measurement,
we can use the estimated standard deviation to obtain form error. The
estimated standard deviation is, however, a random variable. When the
sample size is small, the estimated form error could vary depending on
sample size and the form error can be overestimated. We will consider that

problem in the later section.



8. Proposed Definition with Systematic Variation

Because the characteristics of manufactured surface vary due to
types and noises of manufacturing processes, we need additional
definitions of form error to identify those surfaces. Surface characteristics
are influenced by clamping setup, residual stresses and tool wear. Even
though various surface characteristics have been described by
Weckenmann and Heinrichowski [1985], and Bourdet, Clement and Weill
[1984], and are shown in Fig. 1, we consider the second order polynomial
curve for straightness and the special second order surface for flatness.

These are combined with Gaussian case in this section.

When the second order polynomial represents the straight
manufactured surface, we can define the straightness error in a new way

while still satisfying the definition given in ISO .

When the surface shape is perfectly fit to the second order
polynomial, the distance, between the line which passes
through two end points and another line which is parallel to
the previous line and which is tangential to the second order
polynomial, is defined as a straightness error (See Fig. 2).

However, no surface can be perfectly fit to the second order
polynomial function because of manufacturing noises.
Therefore, the straightness error is estimated by the variation
of the shape of second order polynomial model (See Fig. 3).



(a) Spiral

/-\ (b) Convex or Concave

VYV © Sinusdidal

(d) Gaussian

Note:Each of (a), (b) and (c) can be combined with case (d)

Figure 1 Possible Surface Characteristics
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Figure 2 Straightness Error in Second Order Polynomial Fitting
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Figure 8 Possible Straightness error in Second Order Polynomial Fitting
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The new definition of a straightness error for the second order
polynomial can be described in a mathematical expression because the two
end points are decided by a specified straightness error given in the
specification. A specified straightness error could be for a whole length
(total straightness) or a partial length (straightness per unit length). Let
the curve shape be a second order polynomial form, then its real function,

its estimated function and its two assessment lines are

y=Po+Pix+Pox2+e €~N(0,62)
y= bo + b1X+ b2X2

yi=ap+ax

Yo=¢Cp+a1Xx

respectively. xpm., and xp;, are two end points of the given straightness

range. Then two expected end points will be
(Xmins bo + b1Xmin + b2xm?n)’ (Xmax» Do + b1Xmax + b2xm%x) .
The slope of two assessment lines, a;, can be calculated

a b2Xm2ax +b1Xmax - b2xm%n -b1Xmin
1 -

Xmax - Xmin

= bl + b2 (xmax + xmin) . (2

When y; = aj + a;x is passing through two expected end points, a; can be

calculated as

(1)



of confidence based on the confidence interval of the true coefficient y. (1 -

a)*100 per cent confidence interval of coefficient yis

C - t(1-a/2; n-4) s(C) < y< C + t(1-0/2; n-4) s(C)
where n: number of measurements
8(C): estimated standard deviation of y

1-a: confidence level.

We can calculate the possible flatness error using the upper or lower
bound value depending on the surface characteristic (lower bound for
concave form and upper bound for convex form). The appropriate sample

size problem will be discussed in the later section.

4. Various Surface Shapes in Real Parts

We conducted real parts measurement using a CMM to observe the
surface shapes and the deviations. This experiment was performed using
the Sheffield Cordax RS-30 DCC CMM at the CMM Lab in the University of
Michigan. A 165mm long bar (Fig. 4), a 200mm long bar (Fig. 5), and a
60x30mm rectangular bar (Fig. 6) were measured every 1mm. Also a
100mm long cylinderical bar was measured along the cylinder axis every
1mm (Fig. 7). From these measurements we can say that the 165mm bar
and 100mm cylinderical bar surfaces satisfy the condition . The condition
is that the deviations from the nominal surface follow the normal
distribution. The 200mm bar and the 60x30mm bar surface satisfy the
condition. The condition is that the deviations from the characteristic

surface shape follow the normal distribution. The characteristic surface

16



shape depends on the manufacturing process characteristics. Therefore,

we can say that our proposed definitions are appropriate for real parts.

17
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Figure 68 Surface Measurements of 60x30 mm area
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5. Proposed Approach

We define form error as 60 or the function of the surface shape
parameter in previous sections. We usually do not know the real values of a
standard deviation or a surface shape parameter. They are estimated from
a estimated nominal surface. The nominal surface is estimated from
sample measurements. It is estimated because we do not know the exact
location of real nominal surface (Fig. 8). Therefore, there are two
variations in estimating form error: 1) variation in possible location of the
nominal surface, and 2) variation within the estimation of standard
deviation or surface shape parameter which involves probability
distribution. We use the linear regression method to estimate the nominal
surface. To use the linear regression method, we make assumptions based
on the fact that machining processes are always disturbed by various noises
which are independent of the form of the surface. Hence the cumulative
effect of these noises is subject to the central limit theorem and is governed
by a Normal distribution [Greenwood and Williamson (1966)]. Under these
assumptions, we can make basic assertions that involve probability

distributions.

Let our manufactured surface be represented by the functional form

Z; = fIX;,Yy) + ¢
where f(X,Y;): function of manufactured surface
fX;,Y;) = Bg + B1x; (for simple straightness case)

g; : combined noise



1. ¢; is a normal random variable with mean zero and variance 2

(unknown), that is,
g; ~ N (0, 62), E(g;)=0, V(g;)=02.

2. ¢; and g; are uncorrelated, i # j, so that Cov(g;, &) = 0

and Z; and Z;, i # j, are uncorrelated. Thus
E(Z) = fX;,Y;), V(Z)=o02
Based on these assumptions, each observation comes from a normal
distribution centered vertically at the level implied by the proposed model.

The variance of each normal distribution is assumed to be the same.

Reference Measuring Axes

Measured Surface

/ X

Measuring Part Estimated Nominal Surface

Figure 8 Reference measuring axes in a CMM and estimated nominal

surface
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We can simply use these estimated standard deviation or surface
shape parameter values to obtain form errors without considering
statistical confidence. We will not know much about the variations of the
real nominal surface and the probability of parameter estimations.
Therefore, we use a prediction interval length that considers the variation
of real nominal surface ahd the variation of parameter estimation. The
prediction interval length (PI) can be represented by the function of the
sample size, a specified point and an estimated standard deviation in

general linear regression analysis.

PI = 2+t(n-p,1-a)*{1 + fin,P)}*VMSE
where t(n-p,1-a): upper (1-a) percentage point of t-distribution

with (n-p) degrees of freedom
f(n,Pg): function of sample size n and a specified point P,

MSE: estimated variance

When a certain PI, with given sample size n, confidence level (1-a) and
MSE, is approximately equal to 60, we can say that it is an estimated form
error. The bands of the PI, however, are curvilinear and our objective is to
“find linear bands which cover the maximum variations of the nominal
surface and its estimation. The maximum PI is chosen at a given sample

size (Fig. 9).

However, the interval estimate of the PI is a random variable because

the sample standard deviation (or vV MSE) is a random variable. The

expected prediction interval is compared to 66. We can say that PI at that

sample size is an estimation of form error which has no systematic error



when the expected length of the maximum prediction interval, at a certain

sample size with a certain confidence level, is approximately equal to 6.

The upper or lower confidence limits of the surface shape parameter at that

sample size can be used to estimate form error. This has a systematic error

with the same confidence level because the confidence interval of the

surface shape parameter is narrower than the PI with the same sample

size.

Prediction Interval Bands

"
u"":"
o “I""". ‘/‘/ Estimated Line

Interval Bands

Figure 9 Illustration of Maximum Straight Prediction Interval Bands

The statements above can be represented in mathematical terms as

follow;

PI(P) =2 *t, 1 oo {1+ Py (PP Py) 2 VMSE (12)
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where PI(Pg) : length of prediction interval at P
P : specified column vector of P
P : observation design matrix
MSE : estimated variance of least square residuals

p: # of parameters estimated

o: confidence level.

Since the residual error variance (MSE) follows a Chi-square
distribution

(n-pMSE o
o2 Xn-p

the expected length of the prediction interval (E[PI]) can be represented as
follows
o
E[PI] =2t 1../9 h(n,Py) —Exn-o] (13)
ty p,1-0/2 0 m‘ n-p

where h(n,Py) = { 1+ Py (P'P)! Py)V2

_M(n-p+1)/2] .
Eltnpl = ——_——I'[(n-p) 2] V2 (See Appendix A)

I'(n) = Gamma function

©0

= J xn-1 e-X dx,

If E[PI] = 60, we can determine the appropriate sample size needed to
estimate the form error when the confidence level is given. Or, we can
determine the appropriate confidence level when the sample size is given

which satisfies



tn p,1-0/2 0(n,Pp) .E%n_'l__;;] =3. (14)
In this section we are only considering sample size determination when the
confidence level is given for straightness, flatness, circularity, and
cylindericity errors. The proposed new approach for determining the
appropriate sample size and for estimating form errors not only satisfies
the proposed definitions but also accounts for the possible variations in the

estimating procedure.

6. Sample Size Determination

In this section, we explain the procedure for determining sample
size using the prediction interval approach for various functional forms.
Observation matrix P is constructed with the assumption that each

measurement is equi-distance in every dimension.
6.1 Simple Straight Line Function

The general simple straight line regression function from sample

size n is represented by

Y=b0+b1x.



In the simple straight line case, the maximum value of Po'(P'P)'lPo can be

obtained at one of two end points. As an example, we have (% + 0.5) when

n=3 as follows:

1-1
h[i ﬂ =% 0] R=aveaD

P (PP Py = (5 +0.5)

In the same way we can get the maximum value of Py'(P'P) 1P, for different

sample sizes. Then, we can find the appropriate sample size which

satisfies the following condition:

E
{2t) 2 1.02 Po(PPY 11’())1/2“[111—.1] }=6 (15)

Vn-2

where 1-a: confidence coefficient of prediction interval.

The appropriate sample sizes with 95% (0=0.05) and 99% (=0.01)

confidence for the simple straight line function are 7 and 24, and are shown

in Tables 1 and 2 respectively. Numerical values for E[x, p] are in

Appendix B.



Sample Size| $n-2.1-0052 | Eln2lV02 | 1+Xo'XX)1Xo |  EPIKG
142+ 050

3 12.706 7979 +3+0 27.454
1

4 4.303 8862 1+7+045 9.944
1

5 3.182 9213 1+5+040 7416

6 2.776 9400 l+5+0.36 6.448

7 2,571 9513 147+ 032 5.916
1

8 2,447 9594 1+3+029 5.585

Table 1 Sample Size for Simple Straight Line Function with a=0.05

SampleSize | tn-2.1:0012 | Eln2lNn2 | 1+4Xg(XX)1Xp |  EPIG
2 2.845 9876 1*%*"'12 6.066
P3| 2.831 9882 1*';"3'* 0.12 6.030
% 2.819 9887 1"'212’“0'12 6.008
% 2.807 9892 1*%*“'” 5.955

Table 3.2 Sample Size for Simple Straight Line Function with a=0.01

6.2 Second Order Polynomial Curve Function

The general second order polynomial regression function from

sample size n is represented by



Y = by + byX + boX2.

As an example, the maximum value of Py(P'P)" 1Py will be (i + 0.7) when

n=4 as follows:

b X X2

1 1 1 41/64 0 -45/64
P=|113 1M (p'P)-1=[ 0 9/20 o]

1-13 19 45/64 0 8164

1 1 1

Py=(1, 1, Dor( -1, 1)
ool 1
Py (PP Py =G+ 0.7).

In the same way we can get the maximum value of Py'(P'P) 1P, for different

sample sizes. The appropriate sample sizes with 95% and 99% confidence

for the second order polynomial curve function are 9 and 36.
6.3 Simple Plane Function

The general simple plane regression function from sample size n is

represented by
Z= bo + b1X + ng

As an example, the maximum value of Py'(P'P)" 1Py will be (‘1—1 + 0.5) when

n=4 as follows:



P4

400
(P'P)'1=[83 ﬂ Py=(1, 1, 1) or (1, -1, -1)

N
b ek ek e O
Ptk ek b
b b ek

Py(PP)'P) = (% +0.5),

In the same way, we can get the maximum value of Po'(P'P)" 1P for

different sample sizes. The result is similar to the simple straight line
function except for the number of parameters to be estimated. The
appropriate sample sizes with 95% and 99% confidence for the simple plane
function are 8 and 25.

64 Second Order Surface Function
In this case we consider only the specific form of a surface
Z =bg + byX + boX2 + bsY.

As an example, the maximum value of Py'(P'P) Py will be (% + 0.8) when

n=>5 as follows:

b X Y X2

1-1-1 1 1 0 0 -1
J111 1 ol | 014 0 0
P=100 0 PPY"=| o 0 14 0

111 1 1 0 054
111 1-



Py=(1,1,1 Dor(,-1,-1, 1)
oyl 1
Po(P'P)"Pg = (5 + 0.8).

In the same way, we can get the maximum value of Po'(P'P)'lPo for

different sample sizes. The result is similar to the simple straight line
function except for the number of parameters. The appropriate sample

sizes with 95% and 99% confidence for the simple plane function are 9 and
36.

6.5 Circular Function

The linearized deviation (Fig. 10) is used [Shunmugam (1986)] to

estimate the circle from n observations which are represented by polar

coordinates (rj, 6;):

e; =1 - (R + xoCos6; + yoSine;) (16)
where R = radius of the estimated circle

X0, Yo = coordinates of origin of the estimated

circle.

Then, the desired regression function can be written as follows:

1; = Ry + x9Co86; + ySin6; 17



estimated circle

X

Figure 10 Linearized Deviation from Circle

andif Y = i, bo = Ro, b]_ = X, b2 =Yo Xl = COSOi and X2 = Sinei, then

Y= bo + b1X1 + b2X2 (18)

Because Cos0 cannot be represented by the linear combination of Sin6

and there are three parameters to be estimated, Eq.(18) is exactly same as
the simple plane function. Therefore, the appropriate sample sizes with

95% and 99% confidence for circular function are 8 and 25.

6.6 Cylindrical Function

The linearized deviation (Fig. 11) is used Shunmugam (1986)] to

estimate the cylinder from n observations which are represented by

cylindrical coordinates (rj, 6; z;):

31



e; =1; - [Rg + (xg + 19z;)Cos6; + (yo + mz;)Sin6;] (19)
where R = radius of estimated cylinder
X( = x coordinate of origin of estimated cylinder
Yo =y coordinate of origin of estimated cylinder

19, mgy = slopes of estimated cylinder axis.

Axis of cylinder
XO+ 10 Zi
yo + mozl

Estimated Cylinder

Figure 11 Linearized Deviation from Cylinder

Then, the desired regression function can be written as follows:



r= RO + xoCosei + yOSinSi + loziCosei + moziSinei

(20)

andif Y = T, bo = Ro, bl = Xy, b2 =Yo b3 = 10, b4 = my, X1 = Cosei, X2 = Sinei,
X3 = z;Cos6; and X4 = z;Sin6;, then

Y = by + byXj + boXy + bgX3 + bXy

(1)

As an example, the maximum value of Py'(P'P) Py will be (% + 0.82) when

n=6 as follows:

11 0 -1 0
L1 V3 3 33
22 1010
,1¥3 1 V8
272 10 1
P= 2
110 5 0
, 193 3 38
2 °2 10 10
, 1 V35 53
12 2 10 "10-
(3 2 283 5 m3
2 3 "9 3 3
2 T 323 19 17W3
3 15 35 A A
9 35 35 @ 2
5 19 13V3 5 40V3
3 21 63 2 21
53 1W3 19 40V3 45
L3 22 22 a7 -




1 V3 5 5V3

Py=(1,10,-1,00r 135 -5 3p 70
oyl 1
Py (P'P)"'Pg = (5 + 0.82).

In the same way we can get the maximum value of Po'(P'P)’lPo for different

sample sizes. The appropriate sample sizes with 95% and 99% confidence

for the cylindrical function are 13 and 55.
7. Testing the Aptness of the Proposed Sample Sizes

Appropriate sample sizes were obtained based on the expected length
of the prediction interval. These sample sizes require a minimum number
at a certain confidence level. Estimated form errors are the length of the
maximum prediction interval at the same confidence level. To verify the
aptness of this proposal, a simulation study was conducted and real parts

measurements were made.
7.1 Simulation

In the previous section, we obtained the appropriate sample sizes for
various functions with two different confidence levels. To test the aptness of
these sample sizes, we conducted a simulation study for the simple straight
line function. We expect that similar results will be obtained in other

functions.

We generated 1000 normal random number sets, each of which

consists of 1000 numbers, with a mean of zero and a standard deviation of

A



0.001, to test the aptness of the sample sizes. We assume that each data set

represents all the surface elements of a measured part. By observing each

data set, we can say that straightness error of each set is 0.006 (6c).

We collected sample sizes from 3 through 25 numbers from each set
with equi-intervals. In other words, we assigned the number 1 to 1000 for
each number in each data set assuming that each number represented a
serial measurement location. As an example, with sample size 7, we
collected values which have assigned numbers of 1, 167, 333, 500, 667, 833
and 1000. Next, we estimated a straight line using each sample based on
the least squares estimation. From each straight line estimation, we
collected square roots of the mean square error (MSE) values and calculated
estimated straightness error, and calculates mean and standard deviation
of those values (Table 3 and Fig. 12). The constants multiplied by VMSE to
estimate straightness error are different depending on the sample size and
the confidence level. Exact values of these constants are obtained using
Eq.(13). Even though the constant values at sample size 7 and 24 are not
exactly 6 (Table 4), the estimated straightness errors are not significantly
different from that of multiplied by 6 because the VMSE value is very small
in practical form error measurements. The same mean value of 0.006 was
the estimated straightness error of the sample sizes 7 and 24 for 95% and

99% confidence level, respectively.

Based on these results, we can say that our sample sizes were
appropriate for each confidence level. Also, the mean value of the
estimated straightness error was calculated by simply multiplying 6 by
VMSE for the practical purpose (Table 5). We can observe that our proposed

definition is appropriate. This means that if we do not have to worry about

b



the confidence level, then simply estimated straightness error can be a
reasonable estimation. We can determine the confidence level at each
sample size using Eq.(14). However, we did not calculate these confidence
levels because our objective is to verify the sample size at a certain

confidence level (95% and 99%).



Mean of 95% Std.of 95% Mean of 99% Std. of 95%
Sample Size Confidence SE | Confiednce SE | Confidence SE | Confiednce SE

3 0.0337 0.0190 0.1686 0.0953
4 0.0102 0.0049 0.0236 0.0113
5 0.0075 0.0030 0.0138 0.0055
6 0.0066 0.0023 0.0109 0.0037
7 0.0060 0.0018 0.0094 0.0029
8 0.0055 0.0015 0.0084 0.0023
9 0.0054 0.0014 0.0080 0.0021
10 0.0051 0.0013 0.0075 0.0019
1 0.0050 0.0011 0.0072 0.0016
12 0.0049 0.0011 0.0070 0.0015
13 0.0048 0.0010 0.0068 0.0014
4 0.0048 0.0010 0.0067 0.0013

0.0047 0.0009 0.0066 0.0013

0.0047 0.0009 0.0065 0.0012
17 0.0047 0.0008 0.0064 0.0011
18 0.0046 0.0008 0.0063 0.0011
19 0.0045 0.0008 0.0062 0.0011
20 0.0045 0.0007 0.0062 0.0010
21 0.0045 0.0007 0.0061 0.0010
2 0.0044 0.0007 0.0061 0.0009
23 0.0044 0.0007 0.0060 0.0009
% 0.0044 0.0006 0.0060 0.0009
25 0.0044 0.0007 0.0060 0.0009
Note: SE: Straightness Error ~ Std.: Standard Deviation =~ Real SE = 0.006

Table 3 Mean and Standard Deviation of estimated straightness error with
95% and 99% confidence for different sample sizes
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Constant for 85% Constant for 9%
Sample Size Confidence Confidence

3 34.408 172.384
4 11221 25.881
5 8.049 14.777
6 6.860 11.378
7 6.219 9.753
8 5.821 8.819
9 5.559 8.224
10 5.359 1.796
n 5.200 7471
12 5.068 7.208
13 4974 7.019
“ 4.895 6.862

4.824 6.726

4.773 6.610
17 4.706 6.507
18 4.655 6.414
19 4.608 6.329
20 4.584 6.279
21 4543 6.209
2 4.504 6.142
23 4.487 6.102
p 4471 6.077
25 4439 6.020

Table 4 Constants multiplied by VMSE for estimating Straightness Error




Sample Size Straightness Error (6+VMSE) Standard Deviation
3 .0059 .0033
4 .0055 .0026
5 .0056 .0022
6 .0058 .0020
7 0058 0018
8 0057 .0016
9 .0058 0016
10 0058 0014
1 .0058 .0013
12 .0058 0013
13 .0058 0012
u .0058 0012

.0059 0012

.0059 0011
17 .0059 .0010
18 .0059 .0010
19 .0059 0010
20 0059 .0009
21 0059 .0009
2 0059 0009
3 0059 .0009
% 0060 0009
% 0060 .0009

Note: Real Straightness Error = 0.006
Table 5§ Mean value and Standard Deviation of Simply Estimated
Straightness Error without considering Confidence Level
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7.2 Type I and II errors of the proposed approach

The purpose for estimating form error is to evaluate the conformance
of a product tovits tolerance. However, we cannot guarantee 100%
assurance unless we measure all the surface points of the product.
Therefore, we determined the minimum sample size with a specified
confidence level. Now we want to see the tolerance conformity in terms of

Type I and Type II errors.

We estimate a form error using the length of the prediction interval
at a specific sample size. However, it is a random variable because of

VMSE. This interval has its own confidence interval with a given specified

confidence level (1-y). When we assume that the manufacturing process is

in-control, we are interested in determining the out-of-control state or the

increment of variance (Type I error). A Type I error is (y*100)% assuming

that this specification is the upper confidence limit of the estimated form

error with (1-y) confidence. Therefore, when the specification is given, the

Type I error can be obtained as follows:

Ho (Null Hypothesis):  62< o2
H, (Alternative): 02> o2 (22)

where o2: estimated variance

0(2): desired (or tolerable) variance

PIP) =2+t 1 o (1+Pg (PP Py} 2VMSE

and we already know (- ;?SE ~ Xn%p
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we want to find the probability to reject the Null Hypothesis

p(WRUEE L 2 )=
0

Pr(VMSE > o, x“ p”) )=y

Pr( P> \[_PL 0’\/ (x“ 2y _, (23)

Therefore, we can find Type I error y by solving the equation when

the specification is represented by the multiplication of the standard

deviation (C*co):

(Xnp.y)

- (24)

C=2%ty,1.qn(1+Py (PPYI Py )2

When we assume that the manufacturing process is out-of-control,
we are interested in determining the in-control state. This decision is a
Type II error. A Type II error can be obtained when the state of out-of-
control is given. We assume that the state of out-of-control is the increment
of variance by the multiplication of the standard deviation. It also can be

expressed as follows:

Hy (Null Hypothesis):  (Ko)2 2 (Cop)2
H, (Alternative): (Ko)2 < (Coy)? (25)
where (Ko)2: estimated variance
Co: specification

K: out-of-control state



we want to find the probability to reject the Null Hypothesis

(n-p) MSE
Pr( ( C00)2

VMSE ,/( 2,1
pr( R ¢ Co, x‘l‘lf’l’)l )14
PI_C_ [ nfp1p .
Pr( PI< ng_K%\/ =1 (26)

Then, we can obtain the Type II error B by solving the equation

| NEERT
Z=2et, | o(1+Pg (PPYIP)V2 —2‘%“— @

In order to test the procedure for obtaining Type I and II errors, we

< Xn?p,l-ﬁ )= l'B

generated 5000 normal random number sets with a mean of zero, and a
standard deviation of 0.001. Each of them had 1000 numbers. We collected
samples of size 7 and 24 with equi-intervals from each set for 95% and 99%
confidence, respectively. Then, estimated a straightness error for each

sample size.

For both sample sizes, we obtained a mean value of 0.006 which is the
same as the estimated straightness error. However, their variation (Fig.
14) is different because of the difference of the sample sizes. When we
assumed that the specification is 90 or 0.009, the Type I error for sample
size 7 was a little bit greater than 0.05 and for sample size 24 was much less

than 0.005. It was obtained by following procedures.



standard deviation two times.

(lnZp,y)
C=2%t, 1 s {1+ Py (PP Py)12 \/ —ap" fromEq(3.13)

where C=9,p=2

For n=7, a=0.1
2+t 0102 (1+Pg (PP Py)2=6.22

For n= 24, 0=0.02
2%t 1o (1+Pg (PPY1Py}2=6.05

2 _ 2 _
X500 = 1107 X32.0005 =42.80
2 _ 2 _
X2, =1047 X3,y =48.69
2 _ 2 _
X501 =924 X5,001 =40-29

Then, yis a little bit greater than 0.05 for n=7, a= 0.1
vis much less than 0.005 for n= 24, 0=0.02.

To test for the Type II error, we did the same procedure except for the

standard deviation of 0.002. The mean value of the estimated straightness
error was 0.012 as expected. Their distributions are shown in Fig. 15. We
can obtain the Type II error for sample size 7 as a little bit greater than 0.1

and for sample size 24 as a little bit less than 0.05 because we increased the

procedure.

(UnZp,1-8)
2wty an 1+ Py (PRIRG2 ~PRLE from Bo.(3.16)

It can be also obtained by following



where C=9, K=2, p=2

2 _ 2 _
5,105 =439 X9,1.0.05 = 12.34

2 _ 2 _
x5!1‘B b 2.62 X22,1-B - 12.17

2 _ 2 _
X501 = 161 X5,10.025 = 1098

Then, B is a little bit greater than 0.1 for n=7, a= 0.1
B is a little bit less than 0.05 for n= 24, a=0.02.
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7.3 Experiments with Real Data

In addition to the simulation, we conducted real part measurements
using the CMM to assess the straightness error. This experiment was
performed using Sheffield Cordax RS-30 DCC CMM at the CMM Lab in the
University of Michigan. A 165mm long rectangular bar was measured in
increment of 1mm (Fig. 4). Based on these measurements we concluded
that its straightness error is approximately 0.006mm. We collected sample
sizes 3 to 25 from these data with almost equi-interval. For each sample
size, we estimate 95% and 99% confidence straightness errors (Table 6). A
200mm long bar was measured in the same way (Fig. 5) and the estimated
real straightness error was 0.017mm. Sample sizes 4 to 15 and 36, with
almost equi-interval, were collected. These Estimated straightness errors,

using Eq.(9), are shown in Table 7 and Figure 17.

The estimated straightness errors have a tendency to decrease when
the sample size is increased even though there are some fluctuations (Figs.
16 and 17). We expected those fluctuations because our form error
estimation approach uses \/M—SE_, . Even though we did not get the exact
value of a straightness error at the desired sample size, we got reasonably

estimated values around the desired sample size.



Sample Size 95% Confidence (mm) 99% Confidence (mm)
3 0.014 0.070
4 0.007 0.016
5 0.008 0.015
6 0.009 0.015
7 0.005 0.007
8 0.006 0.008
9 0.005 0.007
10 0.005 0.007
1 0.008 0.011
12 0.005 0.008
13 0.006 0.008
14 0.004 0.005

0.008 0.011

0.005 0.007
17 0.007 0.010
18 0.006 0.009
9 0.005 0.007
2 0.005 0.007
21 0.007 0.010
2 0.005 0.007
23 0.005 0.006
p.3 0.007 0.009
p-3) 0.005 0.006

Table 6 Estimated Straightness Error for 165mm long bar




Sample Size 95% Confidence (mm) 99% Confidence (mm)
4 0.050 0.191
5 0.026 0.041
6 ' 0.018 0.021
7 0.019 0.022
8 0.019 0.021
9 0.019 0.021
10 0.019 0.021
1 0.017 0.018
12 0.020 0.022
13 0.017 0.018
4 0.018 0.019
15 0.017 0.019

0.015 0.016

Table 7 Estimated Straightness Error for 200mm long bar
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8. Comparison to other Techniques using Simulation

We proposed an alternate approach for estimating form errors in
previous sections. We can compare the results of this proposal with those of
current approaches in order to test its aptness. The Least Squares (LS) and
the Minimum Deviation (MD) approaches are used for comparison
purpose. We only considered straightness for simplicity because other form

error cases will give the similar results, .

We used normal random numbers to test the various approaches
because it has often been assumed that there is a Gaussian distribution
[Thomas (1982)] to all manufactured parts that are being measured.
However, whatever approach is applied to estimate the straightness error,
the estimated value is a random variable because it is estimated from the
combination of random numbers. We compared the expected values as well

as several example cases.

We generated 5 sets of 1000 normal random numbers with a mean of
zero and a standard deviation of 0.001 to represent 5 different surfaces.
From these numbers, we said that the real straightness error is
approximately 0.006 for each surface. We collected samples of size 7 and 24
from each set. We collected 1st, 167th, 333rd, 500th, 667th, 833rd and 1000th
numbers at equi-distances of sample size 7. The same procedure was

applied to sample size 24.

By applying three different approaches -- prediction interval, least
squares and minimum deviation -- we estimated straightness errors for

each simulated surface. Actually we did not calculate the results of the
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minimum deviation approach because they are always less than or equal to
those of the least squares approach. The estimated straightness errors of

each approach are given in Table 8 for sample sizes 7 and 24.

Case Real PIMethod LS Method . MD Method

Sample Size 7 P 7 A4 7 A4
Surface 1 0.006 0.005 | 0006 | 0002 | 0.004 |<0.002 | <0.004
Surface 2 0.006 0.004 | 0008 | 0.002 | 0.005 |<0.002 |<0.005
Surface 3 0.006 0.007 | 0.005 | 0.003 | 0.003 |<0.003 [ <0.003
Surface 4 0.006 0.005 | 0.006 | 0.002 | 0.005 |<0.002 | <0.005
Surface 5 0.006 0.004 | 0.006 | 0.002 | 0.004 | <0.002 | <0.004

where PI: Prediction Interval
LS: Least Squares
MD: Minimum Deviation

Table 8 Estimated Straightness Errors using Different Approaches

We compared the expected values of each approaches to show the
generality even though the prediction interval approach gives results close
to the real value in the cases above. The expected value of the prediction
interval approach was given in previous section as follows:

E[PT] = 2 t, , 1 o h(n,Py) —n\/_czp-w(n-p) (28)

where h(n,Pp) = {1+ Py (PP Py)L2



M(n-p+1)/2] V2

w(n-p) = E[Xn-p] = I'[(n-p)/2]

I'(n) = Gamma function

(-]

= J xn-1 ex dx

For the least squares approach we used the expected values of the range,

X(m) - X(1), in the order statistics [Sarhan and Greenberg (1962), Harter
(1969)]. We did not use the residual because the difference between
maximum and minimum residuals is always less than or equal to the

difference between maximum and minimum values in certain sample size

from order statistics. If we have a sample of n observations, X;, Xy, ..., X,

and rearrange them in ascending order of magnitude as

X(1) £ X(9) < ... £X(p)s

we call X(;) is the rth order statistic. X; are assumed to be statistically

independent and identicaly distributred. The expected value of the kth
largest observation, in a sample of size n from a standard normal

population (u=0, 62=1), is given by

!
E(Xao) = Gy | XL5- 00k [5+ 0Pk o dK (29

2
where oX) = L xp(- )—;‘)
2n



X
OX) = J¢(X)dX

Utilizing Eqs.(28) and (29), we obtained the expected values of the estimated

straightness error for the different sample sizes as given in Table 9.

Case Real PIMethod LS Method MD Method
Sample Size 7 p." 7 p." 7 4
Straightness 0.006 0.006 | 0006 | 0.003 | 0.004 | <0.003 | <0.004

* We assume that the population is a normal distribution with u=0 and 6=0.001.

Table 9 Expected Values of Estimated Straightness Error in different
Approaches

9. Conclusion

This paper has presented two definitions for various form errors
which can be operationalized and represented in mathematical terms even
with discrete measurements. This chapter has aléo presented a procedure
for determining the appropriate sample size and a formulation for

evaluating form errors using the CMM.
These new definitions have the following characteristics.

1) They consider the characteristics of manufactured surfaces.

2) They can be represented in mathematical terms.
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3) They can be used to determine appropriate sample sizes with a
certain confidence level.

4) They were carefully tested by measuring the real surfaces.

The approach for sample size determination have the following

charaterisitcs.

1) It determines the sample size with a new criterion which is applied
to the expectation of prediction interval with various confidence levels
(95% and 99%).

2) It can be used to determine the confidence level when the sample size
is given.

3) It uses the least squares criterion to estimate the desired feature in
functional form.

4) It can be used to calculate Type I and II errors when the specification

is given because it is statistically well defined.

The results of testing and verifying of this new sample size determination

approach are as follows.

1) It was carefully tested for determining the sample size for
straightness, flatness, circularity and cylindericity.

2) The formulation was carefully tested for determining the
straightness and flatness errors from simulated data and real
measurement data.

3) Finally and most importantly, the results were tested and shown to be

successful and satisfactory.



The approach proposed in this paper can provide a useful basis for
further research for estimating form errors using the CMM. The
formulations developed for straightness and flatness errors can be extended
to a higher order of dimensional geometric tolerances. Consequently, the
formulation can be established to estimate true geometric errors using the

CMM.



Appendix
A. Expectation of y,

The probability density function of x]% distribution is

X

k k x
2 2 2

f=— G e
F(§

The expectation of %, can be calculated by substituting Vx into x in applying

the definition of expectation,

k k X
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B. Table for Numerical Values of E[xn_p]/\/ n-p

Elyp.oJNnp
0.7979
0.8862
0.9213
0.9400
0.9513
0.9594
0.9650
0.9693
0.9727
0.9754
0.9776
0.9794
0.9810
0.9823
0.9835
0.9845
0.9854
0.9862
0.9869
0.9876
0.9882
0.9887
0.9892
0.9896
0.9901
0.9904
0.9908
0.9911
0.9914
0.9917
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