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ABSTRACT

The definitions of profile errors in the current standards are based on
the usage of functional gauging systems and are not for discrete sampling
systems such as a coordinate measuring machine (CMM). Methods have
been developed for the statistical evaluation of form and profile errors using
a CMM. Practical mathematical definition of profile error has been
proposed which are consistent with the current standards and can be used
for both continuous and discrete measurements. Minimum sample sizes
and estimation method for profile error with a certain level of error have
been developed for a surface patch and a surface with arrays of contiguous
patches. The proposed sample sizes and estimating method have been
tested by simulation and by measuring actual manufactured part.



1. Introduction

Doubly curved surfaces appear frequently in design and development
of dies and molds used in the manufacture of automobiles, ships, aircrafts,
sheet-metal parts, plastic parts and many industrial products. These
surfaces are not, in most cases, explicitly defined. Only discrete x, y and z
data points on the surface are measured at the nodes of a quadralateral
grid using a coordinate measuring device such as a coordinate measuring
machine. Most of the available surface fitting algorithms are concerned
with accurately passing surfaces through these points. However, in the
assembly of sheetmetal parts, the profile error must be accurately
determined to fit each other part. A profile is the outline of an object in a
given plane (two dimensional figure). Profiles are formed by projecting a
three dimensional figure onto a plane or by taking cross sections through
the figure. The profile tolerance specifies a uniform boundary along the
true profile within which the elements of the surface must lie (ANSI
Y14.5). It is desired to develop a mathematical technique to evaluate the
profile error accurately and efficiently.

Even though formal definitions of profile errors are given in current
standards (ISO 1101 and ANSI Y14.5), these definitions are based on the
usage of functional gauge and are not for the discrete measuring devices
such as a coordinate measuring machine. As a result they did not specify
how many points are needed to evaluate profile errors and how to interprete
the discrtements' results.

To compensate for these limitations in the standards, it is current
practice to estimate profile errors as the sum of the algebraic maximum
and minimum deviations from discrete measurements. These deviations
are obtained from estimated surfaces. These surfaces are estimated by the
various methods [ElMaraghy, Wu and ElMaraghy (1989), Shunmugam
(1987, 1986), Fukuda and Shimokobe (1984), Murthy (1982), Murthy and
Abdin (1980), Kakino and Kitazawa (1978), Gota and Lizuka (1977)].
However, those approaches are limited to the special surfaces or curves
such as straight liné, flat plane, circle, and cylinders. Also these estimated
surfaces vary or change depending on the number of discrete (sample)
measurements. Because current practice does not consider the uncertainty
of manufactured surfaces, it is not possible to give statistical confidence to



the estimated profile errors or to suggest statistically reliable minimum
sample points.

Sample size planning were proposed by the various methods [Chang
et. al (1990), Chang and Herrin (1991), Menq et. al (1990), and Menq and
Yau (1991)]. Those approaches suggested the approapriate sample sizes.
While Chang et. al [1990,1991] considered the characteristics of concerned
surface, Menq [1990,1991] did not consider the difference between concerned
surfaces. Then, Menq [1990,1991] gave the same sample size regardless of
the concerned surface.

When we classify the surface into two cases such as single patch
surface and a combination of patches, the minimum number of points to
calculate profile errors is straight forward. As an example, a minimum of
seventeen points are necessary to get a single patch profile error when the
surface is represented by parametric bi-cubic surface. Sixteen points are
used to estimate a surface and one point is used to get the information about
the uncertainty of the estimated surface. However, there are no surfaces or
curves whose uncertainty information can be explained by one point.
Therefore, the theoretical minimum number of seventeen points are not
enough to obtain information about profile error. Additional
measurements are needed to get statistically reliable information. By
establishing a statistically reliable minimum, the manufacturer does not
have to measure an inordinate number of points.

In previous case, we use the approach that estimates surface to
evaluate profile error. However, when the surface shape is complicated it
is represented by the combination of many patches which are represented
by the parametric representation in current CAD system. Then, we cannot
get explicit single representation of whole surface while we have explicit
parametric representation of each patch. Therefore, at least one
measurement should be collected from patch to have information about the
variation of each patch profile. By comparing the variation of each patch
profile to the given profile tolerance zone width, we can make a decision
whether the considered surface satisfies the profile tolerance or not. When
the considered surface does not satisfy the given tolerance, we can find
which patch generates unexpected variation.

In the following section, the proposed new definitions of profile error
is presented. Then, the proposed approach to determine the sample size for



a single patch estimation based on the maximum prediction interval is
introduced. The approach to determine the sample size for a surface with
arrays of contiguous patches are presented. The obtained sample sizes are
tested by simulation study.

2. Proposed Definition

If it is assumed that manufacturing process is noisy, then the
deviations of the product surface from the nominal (designed) product
surface can be expected to follow a normal distribution'[Greenwood and
Williamson (1966)]. A nominal surface is the intended surface contour
which is usually shown and dimensioned on a drawing or descriptive
specification. Theoretically, normal distributions have no finite minimum
or maximum values. However, such large values are not found among the
deviations. Practically, most of the data values lie within 3¢ (standard
deviation) of the nominal surface and these are the range from +3c to -30,
called the range of natural tolerance limits. If a profile error is defined as
60, then this range can contain all the elements of a manufactured surface
from a practical point of view. Therefore, this range satisfies the definition
of the standard (ISO 1101). Accordingly the following definition which can
be applied to profile error is proposed.

Profile envelope is the largest 66 or the largest range of natural
tolerance limits among all the concerned dimensions when the
deviations from each parametric representation of nominal
curve or surface follow a Normal distribution.

Because the exact value of the standard deviation is not usually
known, the standard deviation is estimated from a sample. When the
sample size is large enough to be considered a continuous measurement,
the estimated standard deviation can be used to obtain profile error. The
estimated standard deviation is, however, a random variable. When the
sample size is small, the estimated profile error could vary depending on
sample size and the profile error can be under or overestimated. This
problem will be considered in the later section.



3. Maximum Prediction Interval Approach for Single Patch

The estimated standard deviation or surface shape parameter values
can be simply used to obtain profile error without considering statistical
confidence. However, the variations of the real nominal surface and the
probability of parameter estimations will not be known. Therefore, a
prediction interval length that considers the variation of real nominal
surface and the variation of parameter estimation is used. The prediction
interval length (PI) can be represented by the function of the sample size, a
specified point and an estimated standard deviation in general linear
regression analysis.

PI = 2*t(n-p,1-0)*{1 + h(n,Po)]*\] MSE

where t(n-p,1-a): upper (1-a) percentage point of t-distribution
with (n-p) degrees of freedom
h(n,P): function of sample size n and a specified point Py

MSE: estimated variance.

When a certain PI, with given sample size n, confidence level (1-a) and
MSE, is approximately equal to 60, it can be an estimated form error. The
bands of the PI, however, are curvilinear and our objective is to find
maximum bands which cover the maximum variations of the nominal
surface and its estimation. The maximum PI is chosen at a given sample
size (Fig. 1).

However, the interval estimate of the PI is a random variable because
the sample standard deviation (or VMSE) is a random variable. The
expected prediction interval is compared to 60. PI at that sample size can
be an estimation of profile error when the expected length of the maximum
prediction interval, at a certain sample size with a certain confidence level,
is approximately equal to 60.
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Figure 1 Illustration of Maximum Prediction Interval Bands

The statements above can be represented in mathematical terms as
follow;

PI(Pg) =2 *t, 1.0 (1+ Py (PP Py} Y2 VMSE 6)
where PI(Pg) : length of prediction interval at Py
P : specified column vector of P'

P : observation design matrix
MSE : estimated variance of least square residuals
p: # of parameters estimated

o: confidence level.

Since the residual error variance (MSE) follows a Chi-square
distribution, the expected length of the prediction interval (E[PI]) can be
represented as follows

v2_%
E[PT] = 2t 1 o2 (1+h(n,Py)) 2 mE[Xn_p] (6)
where h(n,Py) =Py (PP)' P,
ElXnpl = Mn-p+1)2] V2 (See Appendix A)

I'(n-p)/2]
I'(n) = Gamma function

-]

=d|'x"'1 eX dx.

If E[PI] = 60, the appropriate sample size needed to estimate the profile
error when the confidence level is given can be determined. Or, the
appropriate confidence level can be determined when the sample size is
given which satisfies



ElXn-p!]
boop 1-002 h(n,Po)%= 3. (7)

The most general way of expressing the continuous equation of a
three dimensional curve or surface in mathematical form is in parametric
terms. In parametric form the degrees of freedom are represented by two
independent variables, or parameters, u and v. The algebraic form of a
parametric general bicubic surface is given by the following polynomials in
vector form [Mortenson (1985)]:

pu,w) = agg udw3 + agy udw? + ag; udw + agyud

+ 323 u2W3 + 322 u2W2 + 321 u2W + 320 u2
+ 313 UW3 + 312 U.W2 + all uw + alO u

+ agg W3 + 2y w2 + 2y, W+ay,. 8)

By constructing the observation design matrix and obtaining
maximum prediction interval, we can get the appropriate sample sizes as
28 (4 by 7) and 256 (16 by 16) with 95% and 99% confidence respectively for

single patch surface.

4. Sample Size for a Surface with Arrays of Contiguous Patches

Profile error of a surface with arrays of contiguous pataches is more
practical problem rather than single patch profile error problem. Sample
size determination is necessary even though it is difficult to determine
theoretically. We define that the profile error is 60 in previous section when
we assume that the deviations from the true profile follow a normal
distribution. When we obtain the deviations from the true profile of the
considered surface by a CMM, the profile error for each patch can be
estimated by sample standard deviation. However, sample standard
deviation (s) is not an unbiased estimator of ¢ while sample variance (s2) is
an unbiased estimator as follow:




where e;: deviations from true profile
n: # of measurements in each patch

E(s2) = 62
2 12 TIn/2]
=07 Mo
where I'(n) = Gamma function

(<]

= J xn-1 g-x dx,

Therefore, we cannot simply estimate patch profile error by

multiplying 6 to the sample standard deviation. Instead we multiply by 6
. 2 12 Tn/2]
and divided by the constant, (ﬁ) m,
error. Then, we can obtain the estimated profile error without considering
confidence level. However, when we consider the confidence level, the
standard deviation of the sample standard deviation s. That is V1-c2,
1/2 _Tn/2]
[{(n-1)/2]
high confidence level is too large. As an example almost 200
measurements are needed for 99% confidence. Consequently, the
theoretical sample size cannot be used as a useful practice for CMM users.
As an alternative approach we propose heuristic method by simulation.

to estimate patch profile

where ¢ = (n?l) Theoretically, the desired sample size with

For simulation study we use normal random numbers as deviations
from true profile. We generated 5000 different sets of normal random
numbers with mean zero and standard deviation 0.001 for each sample size
from 2 to 25. Then we assumed that the true profile error was 0.006. We
estimate profile errors for each different sample sizes by
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where s: sample standard deviation
n: sample size

Average of estimated profile errors was calculated for each sample size.
estimated profile error - true profile error
true profile error ’

calculated. These average values of the estimated profile errors and

Also relative error, was

relative errors are shown in Table 1.

The estimated profile errors were decreased and close to real profile
error when the sample size was increased (Fig. 2). From these results we
can choose the desired sample size depending on the relative error rate. As
an example when the desired error rate is not more than 5%, minimum
sample size will be 10 for each patch. Therefore, total sample size for a
surface with arrays of contiguous patches will be multiplication of
minimum sample size for a patch by the number of patches on a surface.
Actually this proposed sampling plan is based on random sample.
However, it will be easy for CMM measuring procedure that the sampled
points are equally distributed on a patch. Also we recommend 16 points for
each patch because the estimation of 16 coefficients is required for the
construction of a bi-cubic surface. A bi-cubic surface is a most widely used
surface in practice.

When a surface with arrays of contiguous patches is constructed, the
boundaries of each patch should satisfy the condition of continuity.
Therefore, when we measure 16 points in a patch, 12 points on the patch
boundaries can be shared with adjacent patches (Fig. 3). Consequently
actual total measuring points are reduced.

10



Sample Size Estimated Profile Error Relative Error (%)
2 0.0096 60.0
3 0.0077 28.3
4 0.0071 18.3
5 0.0068 13.3
6 0.0066 10.0
7 0.0065 8.3
8 0.0064 6.7
9 0.0064 6.7
10 0.0063 5.0
1 0.0063 5.0
12 0.0063 5.0
13 0.0062 3.3
4 0.0062 3.3
15 0.0062 3.3
16 0.0062 3.3
1 0.0062 3.3
18 0.0062 3.3
19 0.0062 3.3
20 0.0061 1.7
21 0.0061 1.7
2 0.0061 1.7
23 0.0061 1.7
A 0.0061 1.7
%5 0.0061 L7

Table 1 Estimated Profile Error and Relative Error
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Figure 2 Estimate Profile Errors depending on Sample Size
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® : Measured Point

5. Evaluating Profile Error for a Surface with Contiguous Patches

The profile error of a surface can be determined based on the
estimated profile errors of each patch. The profile tolerance specifies a
uniform boundary along the true profile within which the elements of the
surface must lie (ANSI Y14.5). Therefore, estimated profile errors of each
patch should satisfy the surface profile tolerance because each patch is one
element of the surface. We define the surface profile error as follow based
on estimated profile errors of patches

The surface profile error is the largest value among the
consisted patch profile errors.

When all the estimated profile errors of each patch are less than a
surface profile tolerance, we can say that the surface profile error satisfies
the tolerance. When any of the estimated profile errors of each patch is
greater than a surface profile error, we can say that the surface profile
error does not satisfy the tolerance. When the surface profile error does not
satisfy the tolerance, we can find the cause area of out of specification by
observing the estimated profile errors of each patch.

Evaluation of profile error of a surface was tested by simulation. Let
a surface be consisted of four patches shown in Fig. 4 and its profile



tolerance be given as 0.09 (Fig. 5). We used four different random normal
number sets of size 16 for each patch. Sample size 16 was used because the
desired relative error rate was assumed less than 5%. Random normal
number sets with mean zero and standard deviations 0.010, 0.013, 0.012,
and 0.011 for patch 1, patch 2, patch 3, and patch 4 respectively were
generated. We assume these generated numbers were the deviations from
each patch. From these numbers (Table 2) we estimated profile errors of
each patch and compared with the surface tolerance (Table 3). From Table
3 results we can say that the surface profile error was 0.085 and it was in-
tolerance. Even though surface profile error should be 0.078 (0.013*6)
theoretically, when we consider the relative error rate as 5% (0.078%1.05 =

0.082), the obtained value is reasonable.

Figure 4 Simulated Surface consisted of Four Patches

True Profile
Figure 5 Profile Tolerance Boundaries of the Simulated surface



Measurement Number Patch 1 Patch 2 Patch3 Patch4
1 0.004 -0.015 0.017 0.006

2 0.006 -0.013 0.023 0.002

3 -0.008 -0.007 0.003 -0.012

4 -0.010 -0.007 -0.009 0.006

5 -0.005 0.019 -0.007 -0.004

6 0.011 0.003 -0.013 0.003

7 -0.002 -0.001 -0.015 0.024

8 0.017 -0.031 0.025 0.012

9 0.032 0.007 0.011 -0.005

10 -0.006 0.022 0.021 0.004

11 0.009 -0.020 0.012 -0.009

12 0.006 -0.001 -0.005 0.021

13 0.006 -0.009 -0.001 0.003

14 -0.002 -0.011 -0.014 -0.009

15 0.005 -0.021 0.004 0.008

16 0.015 0.008 0.001 0.019
Standard Deviation 0.011 0.014 0.014 0.011

Table 2 Measured Values for each Patch and Standard Deviation

Surface Patch 1 Profile | Patch 1 Profile | Patch 1 Profile | Patch 1 Profile
Tolerance Error Error Error Error
0.09 0.067 0.085 0.085 0.067

2
Patch Profile Error = 6+Standard Deviation/{(g)

172 I18]

M15/2) )

Table 3 Patch Profile Error Comparison to Surface Profile Tolerance for In-

Tolerance Case

As a second simulation test, we changed the generated random

normal numbers for patch 2 with mean zero and standard deviation 0.018
(Table 4). Estimated profile error of patch 2 was 0.122 and the surface
profile was decided by 0.122. Because of this patch, the surface was decided
as out-of-tolerance (Table 5).

Generated Values for Patch 2
-0.021 0.026 0.010 -0.012
-0.018 0.004 0.033 -0.015
-0.009 -0.002 -0.031 -0.029
-0.010 -0.042 -0.001 0.011
Standard Deviation 0.020

Table 4 Generated Values for Patch 2 in Out-of-Tolerance Case
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Surface Patch 1 Profile | Patch 1 Profile | Patch 1 Profile | Patch 1 Profile
Tolerance Error Error Error Error
0.09 0.067 0.122 0.085 0.067
ve I8l

2
Patch Profile Error = 6+Standard Deviation/ [(]_5‘) 115/2] }

Table 5 Patch Profile Error Comparison to Surface Profile Tolerance for
Out-of-Tolerance Case

For a reduced sample size case, we share the measurements with
adjacent patches. Random normal number sets with mean zero and
standard deviations 0.10, 0.13, 0.12, and 0.11 for patch 1, patch 2, patch 3,
and patch 4 respectively were generated. Shared measurements were
generated with mean zero and average standard deviation value of adjacent
standard deviations. In other words, 0.0115 for patch 1 and patch 2, 0.0125
for patch 2 and patch 3, and 0.0115 for patch 3 and patch 4 were used as
standard deviation to generate random normal numbers. These values and
estimated standard deviation values are shown in Table 6. Each patch
profile error was estimated and was compared to surface profile tolerance
(Table 7). From these results we can say that the surface profile error was
0.085 and it was in-tolerance.

Measurement Number Patch 1 Patch 2 Patch 3 Patch4
1 0.004 -0.015 0.017 0.006
2 0.002 -0.010 -0.006 0.003
3 -0.007 0.007 -0.006 0.016
4 0.002 -0.014 0.004 -0.002
5 0.017 -0.028 0.023 0.012
6 -0.005 -0.008 0.022 0.020
7 0.010 -0.011 0.008 0.000
8 -0.007 -0.001 0.003 -0.003
9 0.005 0.007 -0.005 0.008
10 0.017 -0.012 -0.023 0.014
1 0.002 -0.007 0.003 -0.002
12 0.005 -0.001 -0.003 -0.005
13 0.007 0.024 0.024 -0.005
14 -0.012 -0.015 -0.015 -0.023
15 -0.007 0.008 0.008 0.003
16 -0.001 0.024 0.024 -0.003
Standard Deviation 0.008 0.014 0.014 0.010

~ Table 6 Measured Values for each Patch shared with Adjacent Patches
and Standard Deviation




Surface Patch 1 Profile | Patch 1 Profile | Patch 1 Profile | Patch 1 Profile
Tolerance Error Error Error Error
0.09 0.049 0.085 0.085 0.061

2
Patch Profile Error = 6xStandard Deviation/{(']g)

12 T18]
M5/ )

Table 7 Patch Profile Error Comparison to Surface Profile Tolerance for
sharing measurements with Adjacent Patches

6. Conclusion

In this paper we proposed sampling planning and evaluation

procedure of a surface profile error.
patch and was consisted of arrays of contiguous patches.

A concerned surface was a single

complex characteristic of this surface, theoretical sampling plan is not
practical. Therefore, we proposed new sampling plan based on heuristic
simulation results. Even though this sampling plan did not give the exact
value of a surface profile error, it gave the reasonable estimation within the
considered relative error rate. The results of this paper can be utilized for
practical sampling plan in CMM users practice. Further investigation will

be needed for more theoretical basis.

Appendix A. Expectation of 3,
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