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CHAPTER I

INTRODUCTION

Current structural design practice calls for decreasing struc-
tural tﬁickness as a result of weight limitations; as a consequence,
many structures are permitted to buckle and are then used in the post-
buckled state. Members that previously served only in a nonstructural
capacity are used to sustain loads greater than those predicted in the
usual "Euler load" sense. In addition, structures subjected to these
high static loads are frequently expected to survive dynamic disturb-
ances. This is particularly true in aircraft and space structures where
the stiffness and dynamic characteristics of a buckled rectangular panel
have become important with increasing flight speeds. The buckling of
the skin panels, whether caused by air loads or by thermal expansion,
will cause a marked reduction in the stiffness of the structure. The
changes in frequencies and mode shapes that take place as a result of
thermal expansion affect the various static and dynamic instabilities
considerably. The purpose of the present study is to determine the
dynamic characteristics, that is, the natural frequencies and mode
shapes of vibration of a rectangular plate, in terms of a load para-
meter both before and after buckling.

The free vibrations of elastic bodies or structures about
the unbuckled equilibrium configuration have been studied extensively
before. The natural frequency and the mode shape of vibration are ob-
tained from the solution of an eigenvalue problem. If such a body or
structure is first preloaded statically, then the resulting frequency

of vibration is increased by tensile stresses or forces and decreased
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by compressive forces. In the case of compressive loading, it goes to
zero when the compressive force reaches the buckling load.

The most familiar example of such a problem is the lateral
vibration of a simply supported bar which is axially loaded. The square
of the frequency of the vibration is linearly related to the axial
force. Willers(l) has calculated the decrease in the natural frequency
of a clamped circular plate under uniform radial compressive forces.
Massonnet(2> and Lurie(B) have shown the existence of an intimate re-
lationship between normal vibrations and instability. A definitive
discussion can be found in the book by Bolotin.(h) In general, within
the framework of linear theories, whenever the mode shape of buckling
and of vibration in the presence of axial load are the same, the square
of the natural frequency varies linearly with increasing axial load
until it vanishes at the corresponding buckling load. This property
is often used to predict the buckling load by extrapolation of a few
points obtained experimentally at relatively low loads on the frequency
squared=-load curve.

The buckling of a simply supported plate under edge compres-
sion was first studied by Bryan(s) in 1891. The buckling loads for
plates that are not simply supported have been investigated extensively
by Timoshenko.(s) These problems are all solved within the framework
of linear classical theory under the assumption that the deflection of
the plate 1s small in comparison with its thickness; therefore the
solution applies only to the incipient state of buckling. It is ob-

- vious that the linear theory of plates no longer applies when the be-

havior of the plate above the buckling load is to be investigated.



A set of nonlinear differential equations for plates with
large deflections was introduced in 1910 by von Kérmén.(7) Owing to
the nonlinearity of the equations, there exist relatively few exact
solutions. However, various approximate solutions have been presented
by Cox<8) and Timoshenko,(6) and a more accurate solution of the
problem of large deflections has been given by Marguerre.(9) By means

(10)

of Fourier series Levy "has obtained an "exact" solution to the
large deflection equations of von Kérmén for square plates. Friedrichs
and Stoker(ll’le) have used methods of perturbation, power series and
asymptotic expansions to solve, in a very exhaustive manner, the prob=-
lem of a simply supported circular plate subjected to radial compressive
loading. Alexeev,(lj) using a method of successive approximations,

has obtained a solution for the square plate buckling into both one
buckle and two buckles. Masur(lu) has utilized a stress function space
together with a minimum energy principle to obtain a sequence of solu-
tions with error estimates for the post-buckling behavior of plates.
With the exception of the analysis of Alexeev,(13) all of the above
studies of the post-buckling behavior of plates are concerned with
primary buckling.

Secondary buckling has been observed through experiments,(l5’l6’l7»
and in the case of circular plates, the instability of the primary buck-
ling mode has been pointed out by several authors.(ll’lu) Further,
Steingmmlmﬁyused a perturbation technique to convert the nonlinear large
deflection equations of von Karmdn into a set of linear equations and

to investigate the post-buckling behavior of simply supported rectangu-

lar plates by solving the first few of the equations. His investigation
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indicates possible changes in buckle pattern; the same has also been
noted by Kbiter.(l9)

Bisplinghoff and Pian(zo) have treated the case of vibra-
tion of a thermally stressed rectangular plate which is simply sup-
ported and free to displace laterally. Shulman(gl) has considered
the case of a uniformly heated plate with two opposite edges simply
supported and with generalized support conditions on the other two
edges. Both papers consider the small vibrations of the plate in
its pre- and post-buckling states, the analysis of the latter being
approximate. Herzog and Masur(za) have treated the case of vibration
of a buckled circular plate by means of both perturbation techniques
and power series expansions. Their analysis is "exact" within the
limits of classical plate theory, small amplitude vibration and in
the sense of a converging series which has been truncated.

The present study is concerned with the linearized vibrations
of a rectangular plate relative to a static buckled configuration, and
with the instability of the buckling modes. Both the static and
dynamic equations of equilibrium are solved by perturbation techniques.
If perturbation coefficients up to the third order are included, the
results are acceptable for a significant range of the loading parame-
ter. For large values of the latter the frequency of vibration of the
plate is obtained by means of the Galerkin method while the static

\

problem is solved by a method similar to the one due to Marguerre.



CHAPTER II

FORMULATION OF THE PROBLEM

In what follows we consider the xy plane to be the middle
plane of an elastic, isotropic plate and 2z the direction of the
lateral deflection. The plate is subjected to membrane forces in the
plane of the plate. For the sake of convenience, the index notation
is used for the general discussion of the problem, with Latin sub-
scripts 1, J and k taking the values of x and y, a repeated subscript
representing the sum of all allowable values of that subscript, and
a comma followed by a Latin subscript denoting appropriate differentia-
tion.

Let a plate of thickness h Dbe subjected to prescribed edge
thrusts ATy on B' and tovdisplacements AU; on B", in which
B = B' + B" forms the boundary of the region R of the middle plane
and A 1is a parameter assuming increasing positive values. The mem-
brane displacements and stresses wuy; and tij’ respectively, may then

be conveniently characterized by

— [e] 1
uy = xui + Ui
] (2.1)
'
tij = }‘tij + Tij

In Equations (2.1) the first terms on the right side correspond to the
unbuckled state and are governed by the customary "generalized plane

stress"” equations

o E l-v, o o o o
L. = —(u; . s = t;.
tiy - [ 5 (ul’J + uJ’l) + Vuk,ksij] 31
in R (2.2)
o
t.. =0
ij,d



t9yny = Ty on B'

(2.3)

u? = Uj on B"
1

in which E and v are Young's modulus and Poisson's ratio, respec-
tively, sij is the Kronecker delta, and n; are the components of
the unit outer normal.

The second (primed) terms in Equations (2.1) represent the

changes induced by buckling and satisfy the set of equations

vt _ B l-v,, ' ' L =
Ty = Tpl o WUy, Uy g H W W ) e v (U W08 ) =Ty
7! =0
13,3
Tijnj =0 on B! (2 5)
Ui =0 on B" .

in which the static deflection W satisfies the additional equation

DAAW - h(MTy + T{;)W 35 =0 inR (2.6)

and appropriate boundary conditions on B. In Equation (2.6) A stands

for the Laplacian operator and D, the bending stiffness, is given by

_ B0
b= 12(1-v2) (2.7)

The separation of the solution into two parts in line with
Equation (2.1) has been found convenient because of the linear homo-
geneity of Equations (2.4) and (2.5) in U; and Tij . That is, for
a given function W(x,y) these equations represent a boundary value

problem whose solution may be expressed symbolically by means of

! 1
Ty =z (Wav,9 (2.8)

in R
(2.4)
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The operator so defined obeys appropriate superposition principles, e.g.,

gy = Gy + (Y + G« (B (2.9)
It is also noted that for sufficiently small values of A (say, A § lo),
Equations (2.4), (2.5), and (2.6) admit only trivially vanishing solu-
tions. For A > A, these represent unstable configurations. Other
(i.e. buckled) configurations exist in that case, although not all of
these may be stable.

If a small vibration w(x,y)eimt

is superimposed on W, then,
after linearization with respect to w, the governing equation of motion
is

- (o] ! - ' - -
DAAW h(xtij+Tij)w,iJ htijw’ij hpw = 0 (2.10)

in which

po= puf (2.11)

with p representing the mass density. The dynamic membrane stress

tij (or rather its amplitude) is given symbolically by

1y = % W, g, + W30, 5D (2.12)

if in-plane inertia is ignored.*

We consider now a rectangular, simply supported plate covering
the region O $x ¢ a, O < y Sb. It is postulated that the edges are
made to approach one another by a specified amount and are then held

fixed during the vibration. This seemingly artificial type of boundary

¥Por the case of shallow shells this has been Justified in Ref. 23.



condition is equivalent to fixing* the boundary while the plate is
heated uniformly; this is considered to be a reasonably realistic
representation of actual conditions.

The complete set of boundary conditions for the static case

is therefore as follows:

By (W)
Bg(w)fz W,XX(OJy) = w,xx(aIY) = W,yy(xro) = w,yy(x’b) =0 (2'lh)

uO(O:Y) = VO(X)O)

w(0,y) = W(a,y) = W(x,0) = W(x,b) =0 (2-15)

0; uo(a;Y) = Up, Vo(x;b) = Vg

(o] — 0 — 1,0 (@] _
V,X(O:Y) = V’x(a:Y) = u,y(x,O) = u,y(x:b) =0

U'(O;y) =U'(a,y) = V'(x,0) = V'(x,b) =0
(2:16)

!
o

V;x(o:Y) = V:x(a:y) = U;y(X,O) = U;y(xrb) =

Ugp and Vg are the magnitude of the displacements which are required
to cause the plate to buckle in the linear sense; thus the value of A
determines the extent to which the critical deformation (or temperature
increase) has been exceeded.

For the dynamic case the boundary conditions are

By (w) = w(0,y) =w(a,y) =w(x,0) =w(x,b) =0 (2.17)

By(#) = W 1(09) = v x(a,¥) = W 1y (5,0) = W (x,0) =0 (2.18)
u'(0,y) =u'(a,y) = v'(x,0) = v'(x,b) =0
V;x(07Y) = v;x(a;Y) = u;y(x,O) = u;y(x’b) =0

]|

(2.19)

in which u' and v' are the dynamic displacement amplitudes of a

point in the x and y directions, respectively.

* Actually, fixity is assumed only in the normal direction, while the
plate is free to slide in the direction of the boundary. This type
of shearless constraint reduces the computational labor enormously,
yet is believed to introduce no significant deviation from the com-
putationally far more intractable condition of full fixity.



CHAPTER III

THE PERTURBATION SOLUTION

In this chapter we obtain a solution to both the static and
dynamic problem through a perturbation expansion. As usual this
method is operative only within a limited range of the perturbation
parameter; for large values the series converges too slowly to be
handled without excessive labor. In the present case the results ob-
tained appear to be acceptable up to a value of at least ten of the
post-buckling parameter A. The static portion is similar to previous
work by Stein,(lg) but has had to be rederived in order to make the
dynamic portion comprehensible.

We consider first the static case. It is required to solve
Equation (2.6), in which tgj and ug satisfy Equations(2.2) and
Tij’ U{ and W satisfy Equations (2.4), with the associated boundary
conditions Equations (2.13), (2.1k4), (2.15) and (2.16).

Equations (2.2) and (2.15) represent the usual problem of
plane elasticity, whose well-known solution for a rectangular plate is

uw(x,y) = Ug 5.1)

vo(x,¥) = Vg

oI g

where Ur and Vg are found later on.
We now assume the functions W and A to be expandable in
a power series in terms of an arbitrary parameter e in the neighbor-

hood of the point of buckling e = O, that is, with W= W(x,y,e€),

w=ewD 4 SuB) 4 Suld) 4 . (3.2)

P
[}

A + e2k2 + e“xh Foeeen (3.3)
-9-
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*
Here w(n) are functions of x,y only and €, the perturbation

parameter, will be assumed to be monotonely increasing as buckling
The fact that W 1s odd and A

progresses. is even in ¢

easily verified upon substitution in the relevant equations. For

may be

the sake of brevity these steps are omitted here.

Since at the

point of buckling,

€ =0, A,

for the Euler buckling load.

is identified as the load parameter

In view of Equations (2.8) and (2.9)

Tij can be expressed in terms of the arbitrary parameter e as
follows:
5 (p)
Ty = ) pTig (3.4)
p=1l
in which

p l <w(p-l)W

The membrane stress equilibrium

the additional displacements as

1 ] t
U,xx + -E— U,yy + - V,xy
1=y 1+v
1 A 1] i ]
Vioy T2 Vx5 Uixy

In view of this the additional displacements
expanded in a power series of the same arbitrary parameter

series is expected to start with the second power of ¢

+ W(P‘Z)W(g) +

’

- wf?wf?'”) (3.5)

equations can be written in terms of

W W - - =W
» X XX 2 Y XY 2 ’wayy
1+v l-vy
= Wy 2 oxy -5 VoW xx
U' and V' can also be
€, and the

and to contain

* Superscripts in parentheses are intended to identify the variable and

not to act as an exponent.

Whenever possible, however, parentheses

will be omitted where there is no possible confusion and will be in-

cluded only if necessary.

(3.6)
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only even expansions. Thus,
v = 2u@ 4 M) L (3.7)
vo= 2y (W) (3.8)

When these expansions are substituted in Equation (2.6) and
other relevant equations, the requirement that each coefficient in the
power series vanish individually leads to a set of linear differential
equations with associated boundary conditions. These equations can be
solved in sequence.

For el the differential equation is

1
L (W)= Do - hkotgjwl;ij =0 (3.9)
and the boundary conditions are
By (Wh) =0 (3.10)
B, (W) = 0 (3.11)

This is the linear eigenvalue problem for the buckling of a rectangular
plate subject to edge compressions or displacements. It is now assumed
that the edge displacements are such as to induce a hydrostatic plane

stress,¥* that is,

l-v
Ug =-—=a
E
Vg o= - 1-v (3.12)
E
o
tij = = Sij

There exist an infinite number of eigenvalues and eigenfunctions. The
normalized deflection function

Wt = h sin MMX gip n%y (3.13)
a

¥ This corresponds to the case of uniform heating of a thermally
isotropic plate.
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in which m and n are integers, automatically satisfies the boundary
conditions. This fixes the physical meaning of € as representing
the amplitude of the first term in the perturbation expansion. The

associated eigenvalue takes the familiar form

_ D m2x2 | n2g2
o =g (G T

) (3.14)
Any combination of m and n in the above expression can be identified
as an eigenvalue of the differential equation. If only the first buck-
ling mode is of interest, the lowest eigenvalue associated with the
first buckling mode is obtained by choosing m =n = 1 regardless of

a

the aspect ratio 5 of the plate.

For ¢ the differential equation is

Ly (W) = hagtQywhy 4 + 15 ks (3.15)
in which
2, - : () (3.16)

with Wl given by Equation (3.13).
The associated boundary conditions are

B (W) =0 (3.17)
0 (3.18)

By (W)

The differential Equation (3.15) here is nonhomogeneous, but
the associated homogeneous equation is identical with Equation (3.9).
This homogeneous system has the nontrivial solution wl. The nonhomo-
geneous differential equation therefore has a solution if and only if
the right hand side of Equation (3.15) is orthogonal to Wl.(Eh) When

Equation (3.9) is multiplied by W5 and Equation (3.15) by WL, after
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integration by parts and in view of the boundary conditions, this

orthogonality condition becomes

TS W W 5dA

Jwl iwf jA

Furthermore, the solution is not unique. Any arbitrary multiple of wl

(3.19)

added to a particular solution is also a solution of the differential
Equation (3.15). Let W5 be a particular solution. Then W5 is, in
general, given by

L (5.20)
The choice of the value of @z 1s arbitrary. For convenience of compu-

tation let
/ tlelw5 =0 (3.21)

then

 51W,1% jan
(o]
[ A3y, o

(3.22)

This is always possible, since in the present case
ftIJWlWldA=-leWldA<O (3.23)

Let the vector E? denote any stress field Tij symbolically,

and let the inner product of two vectors ﬁa and 'Tﬁ be defined by

.M -n [ 1@ EB aa (3.24)
ij 1iJ
in which E?J is the strain associated with the stress T?d . In view

of the positive definiteness of the strain energy and of the symmetry
of the stress-strain coefficients, it follows that ?u --ﬁu is positive
definite and that 7@ . T -8 . Fo |
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By Equation (3.16), through the application of Green's
theorem, and in view of the boundary conditions, it can be shown
that

T =2 h [ ompwuiaa (5.25)

Likewise we define

7. (W) =n [ Ty wn da (3.26)
Equation (3.19) can be written
P LF
}\2 = Ffo ) "f2 (327)

Since, for positive A, TO - F2 ig negative, [see (3.23)], and since
?2 . ﬁQ 1s positive definite, A, is always positive. This, in turn,
confirms the well-known fact that the load parameter increases with
increasing buckling amplitudes near the buckling point; the latter
therefore represents a point of stable equilibrium.

For ¢2 the governing differential equation is

Iy (WD) = hagtSyWsy + BALES W gy + BTR 41y + TY iy (3.28)
in which
2 (N0 + aV,y) (>.29)
with associated boundary conditions
B (W) =0 (3.30)
B, (W) =0 (3.31)

As before, the right hand side of Equation (3.28) must satisfy the

orthogonality condition if the equations has a solution for W>. Thus,

1 b1 1
\ = - i T§JW?1W’JdA + [ orf bt aa 3.32)

[ 4534 438
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Let W”? be a particular solution of Equation (3.28), then
W5 = ﬁs + (15Wl (5-55)
Let, for convenience,
o.1 .5
from which
o —
LS e
o
[ 34,4, jaA

(3.35)

a5

In terms of the inner product notation, Equation (3.32) reduces to

ol

in which Equation (3.29) has been utilized. Since T .2 can be
either positive or negative, no conclusion can be drawn relative to
the sign of the value of 1) .

The equations which contain higher powers of € can be solved
in the same manner; however, the calculations become exceedingly cum-
bersome. For the range of values considered here no further expansion

has been found necessary.

We now consider the vibratory motion of the plate. It is noted
that the method of solution in the dynamic case is similar to the one
used above and hence only the essential points are presented.

The equation governing the motion of the plate 1s Equation
(2.10). For the sake of convenience, it 1s presented again:

- ht, W - phw = 0 (2.10)

(@] 1
DOAW - h(ktij + TiJ) o1y 13 13

with

' 1
tiJ =2 <W:iW:J + W,iW’J> (2.12)
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subject to the boundary conditions
0 (2.17)

0 (2.18)

By (w)
By(w)

Here, A, tgj, Tij and W are now assumed to be known. The differential

equations and the boundary conditions are linearly homogeneous in w,
and once again we have an eigenvalue problem in which u represents the
eigenvalue. For each eigenvalue paH? there exists an eigenfunction
pqw(x,y) which satisfies the differential equation as well as the
boundary conditions. The prescripts p,q denote the pqth mode of
vibration.

We assume that the eigenfunction w and the associated

bq

eigenvalue can be expanded in a power series in terms of the same

pgt

parameter € as in the static case, that is,

k)

W o= pqw(o) + &8 qu(2) + eh pqw( + tees (3.37)

pq

(9) 1+ @ peu®) 1 eh w4 .. (3.59)

pg* = pgt Pq

The fact that pgW and pgu are even expansions in € may be easily
verified upon substitution in the relevant equations. For the sake of
brevity these steps are omitted here. In view of Equation (2.12)

pqtij can be expressed as

' (1) 3 (3) > (5)
pqtij = epqtij + € pqtij + € pqtij + oeeen (3.39)

with

e 1 <S§ WD) () L (0) ey
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Upon substitution of these perturbation expansions in Equation (2.10)

a new sequence of differential equations is obtained whose solution

follows procedures analogous to those presented for the static case.

From here on the prescripts p,q will be omitted, it being

understood that w(n), u(n) and tig) denote the nth perturbation

coefficients of the deflection, frequency squared and membrane stresses

functions, respectively, for the pqth mode of vibration of the plate.

Whenever there is a possibility of confusion, or a specific mode of

vibration is referred to, the prescripts will be added.

For €© the differential equation is
o o o 03,,,0
Lo(w°) = DAWO - hagtPywliy - wOhw® =0
with the associated boundary conditions
Byj(we) =0

Bp(w°) =0

This is satisfied by the normalized* function

in which p and q are integers, provided that

o B, R 2R R

The membrane stresses tl can now be obtained from

13
1 1 »
i3 =3 < W0y + W?i”%3>

*
Naturally the linearized vibration solution is subject to an

arbitrary amplitude factor.

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)
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For €° the differential equation is
Lo(w?) = h(aptQy + T53)w055 + htggWyy + uhwd (3.46)

and the boundary conditions are
By (W) =0 (3.47)
Bp(w2) =0 (5.48)

1]

As before, the right hand side of Equation (3.46) must satisfy an
orthogonality condition¥* if a solution is to exist. After some manipu-

lation this leads to

(AT + )+ (wOw°) + B . T
ue = 2 (3.49)

h [ (w°)2aa

The solution of the differential Equation (3.46) is not unique; any
multiple of w° added to the particular solution is also a solution

of the differential equation. For the sake of convenience we let

[ wAean = 0 (5.50)
Thus, we is determined and t?j can now be obtained from

3 1 2 2 (o) (o)

Yij =2 <W%iw,j I gy W,iW?j> (5.51)

For ¢* the differential equation is
L o o 2 b o 2 2
L2(W ) = htij(khw,ij + l2w,ij) + hTijw,ij + hTijW,ij

(5.52)
+ntd gl g+ B P g 4 W+ pPne?

* Note that this orthogonality condition is different from the one
pertaining to the static case.
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and the associated boundary conditions are

By (W) =0 (3.53)

0 (3.54)

Again, the orthogonality condition determines the value of
-
y (P T O0) « 0 + ) (B0 + B TR (i)

n [ (w°)2da

V)

(3.55)

while the deflection function wl+ satisfies

f wHilda = 0 (3.56)

Since the static deflection is truncated at the coefficient
w5, there is no sense in pursuing the solution of the dynamic problem
beyond this point.

The results of these calculationsare given in Appendix A for
the general case of a rectangular plate. The first part deals with the
static problem. Algebraic expressions are given for the expansion terms
in the deflection W(x,y), the additional stresses Tij(x,y), the load
parameter A, and the additional membrane displacements U'(x,y) and
V'(x,y). These are not necessarily based on the assumption that the
plate buckles freely immediately after its unbuckled equilibrium con-
figuration becomes unstable; however, the case of m =n =1 is the only
one which has practical significance.

The dynamic response for the same case is computed next.

Again general algebraic expressions are given for the vibration modes,
membrane stresses, and frequency parameters. Only the lowest two modes

p=1l,g=1 and p =2, ¢ =1 are considered; an obvious, and trivial,
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extension is easily obtained for p =1, g =2 through a suitable
exchange of variables.

Higher buckling-modes (say, m =2, n = 1) are of course
associated with larger critical buckling parameters; however, as the
lowest buckling parameter A, 1is exceeded, at least one frequency
becomes imaginary and the associated unbuckled equilibrium configura-
tion becomes unstable and hence physically meaningless. Nevertheless
it is conceivable that if the plate were forced into one of these
higher buckling modes (perhaps through the application of kinematic
constraints), its equilibrium may again become stable for sufficiently
large buckling amplitude. A necessary and sufficient criterion for
such a condition is that the square of the smallest frequency of vibra-
tion becomes again positive.

This may be physically significant. As has been observed
and commented on repeatedly, buckled plates often snap from their
original buckling configuration into another one. Just when this type
of "secondary bucklipg" takes place is conjectural and has been the
object of some speculation; for example it has been postulated that a
sultable criterion is obtained when the energies in the primary and
secondary states are equated.(25) In any event it is safe to state that
a snap~through from a stable configuration into an unstable one can be
ruled out. The lowest loading parameter at which the secondary configu-
ration becomes stable may therefore be considered a lower bound to the
secondary buckling parameter.

Charts showing the frequencies of vibration for specific cases

are given in the present paper for several such higher buckling modes,
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and in Appendix A are included the general algebraic expressions for
the vibration modes, membrane stresses and frequency parameters of the
lowest two modes p =1, g =1 and p =2, g =1 if the plate has
buckled into the second mode m =2, n = 1. The general algebraic ex-
pressions of p© and ue are given for any vibration mode and for any
buckling mode. These expressions are generally rather complex and have
therefore been deleted from the main body of the paper.

For the special (and, near the buckling point, most important)
condition of m =n =p =q =1, the formulas become much simpler.
Since, for that case, w° = W1, it follows from Equation (3.40) that

we =0 (3.57)
as expected, which in turn implies that Tl - 212 and w2 = 5W5. When
these relations are substituted in Equations (3.49) and (3.55), it

follows, after some manipulation, that

—’
2 yre . e @ xe
o = — = 2(— + '—-') Ao (358)
h [ (W)2an 8 b2
- - -
20,10 . M2 4 3a 70 . (WOWL) + 15TH . TR 2 2
W 2 =5+ ) N (5.59)

n [ (wl)2aa

For the rate of change of frequency of vibration with respect

to the load parameter in the neighborhood of buckling (e = O) one obtains

Lin dy _ Lim au /ar _p(® (3.60)
e—0 dx e=—0 de de Ap

For the vibration mode p =q =1, p(g) is positive and so is the value
of %% at the point of buckling, as anticipated since the plate is stable
in the immediate post-buckling neighborhood. A similar, though less im-

portant, conclusion is reached for any vibration mode satisfying p=m, q=n.



CHAPTER IV

THE ENERGY METHOD SOLUTION

In the perturbation method, the rapidity of convergence of
the perturbation series is always an issue. 1In some problems the
series converges fairly rapidly, in others it converges only for a
rather small range of values of the load parameter X. An indication
(though not fully conclusive) of the convergence of the perturbation
series is the agreement between the results obtained from the trunca-
tion at the term P and eB-l. The present calculations show satis=-
factory convergence for a technically significant range of the load
parameter. Nevertheless the truncated expressions become unreliable,
as expected, when the buckling amplitudes reach very large values.

To cover this range at least approximately an energy method is employed
in this chapter.

The static condition is analyzed by a method similar to the
one of Marguerre-Papkovitch.(9) The deflection of the plate is assumed

to be expressed by means of
W= Ot + G + CaW (4.1)

in which Wl, W2 and W are geometrically admissible functions and
Cl’ C2 and 03 are parameters whose values are to be determined from
the theorem of minimum potential energy. With this assumed deflection
function, the additional membrane stresses Tij can be obtained from

Equation (2.8), that is,

: 201l |, (2m22 | 2m33 12 13 23
T, = CiTyy ¢+ 02T§J + cBng + 0TS + € C5Ty3 + 05T (M.2)

-2
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in which
T%% = <V,1W,j
2 -1 ()
2} )

T = <?}iw? + W wlj>

i3
B 21 (PP, PR

L

2

1

2

L

2
12 1 1 1
Tij ) <w;iw€J + W%iW,J>

1

2

1

23

1

The additional potential energy V, that is the difference
in the potential energies of the buckled and unbuckled states, is de-
fined by

V=T, + U - AW (&.3)

in which

>
207 EAA = T"7f'

Up = g’f [(l'v)w,ijw,ij + Vw,iiw,jj]dA
h
2 13713

éi
]
'

h 40
5 [ tW,4W, 4A

After application of Green's theorem, membrane stress equilibrium

equations (T = 0) and boundary conditions, the membrane strain

13,3

energy Up 1s now given by

Up = T!'. W _ W ,dA L4
If the edges of the plate are simply supported, the bending strain

energy U, reduces to

Uy =3[ W, 44¥, 5508 (4.5)
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Since tgj = =- 81j s Wg Dbecomes

W, = g T (4.6)

Upon substitution of Equations (4.1) and (4.2) into Equation (4.3) we

have
V= (g - W+ (0 - WED)G ¢ (0 - w)ch
+ (O + BFP2 4+ 50 4+ 010 T2 + 01CsT + CposT)  (M.7)
(5L + 5192 + 810 + 0y0 12 + cy05T + B o))
in which¥
G = 3 WiV
Uy = 31 Wii 0
R = 21 W0
Wil = 12_1 i w}iw}idA
Voo = 2l W1 s

33 _ b 35
W= =/ W W dA

(0]
no

Setting the first variation of the potential energy equal to zero leads

¥ Terms such as U%e, W%E etc. may also appear; however, if W(n)
are chosen to be orthogonal functions, these terms vanish from the
above expression.
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to

2ot - agh)ey + 2(FE T3 + (B2 F2 4 L. PR)e B
+ (B2 4 g B0)0008 + 3@ TE)cBe, + 3B T)ces
+2(P T2 4 T2 ) 0,0, + (T2 F2)GE 4 (B2 T 4 P12, #93) 2,

P (P2 F2 L )8« (B2 FD)E =0 (4.88)

(B2 - WiE)e, + 2(FF2. T98)c] + (T12. F2 4 oL, F12)c2c,
L (P3RS, ge2, ?55)cec§ + 3(FP2. )¢ 2 + 3(F2. ) 505
+ (2. T+ T2 W)0i0p05 + (0. B20)cd + (B2 F12 + 313, #23)¢, 2

LS L B2 WERe, 4 (B B2 <o (1.8v)

2(193 - wPd)es + 2(103. B3)cd + (T3 P 4 gL B3) e,

+ (P20 4 2. 0oy + 32 T cf + 3B FP) 0,0l
+2(P2. T2 L) 0i0,05 + (PTG + (B TP2 L HR P B,
v (P27 L P2 P30, 3 + (P2 D) =0 (4.8¢c)

C1, Co and 05 can be solved in terms of the load parameter A from
Equations (4.8).
The deflection functions of the lowest buckling mode can be
assumed to be of the following form
wl =sin L x sin X y
a b
We = sin 5_aTLxsin % y (%.9)

wo

P s 3w
sin L x sin
a Ty
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This assumption is not without Jjustification. wl is the buckling mode
as predicted in the linear theory. The formation of a We wave along
the unloaded edges and in the direction of the loads has been observed
experimentally in the buckling of a simply supported plate subjected to
longitudinal edge compressions. It is therefore reasonable to include
both W2 and W5 functions in the present problem. Note that Wl is
also the first term of the perturbation series for W and (W° + w3)
is the second term of the perturbation series for a square plate.

An exact solution to the dynamic problem is generally out of
the question, in spite of its linearity, because of the presence of
functions of x and y as coefficients in the relevant differential
equations. For this type of problem the Galerkin method (which, for
conversative systems of the present kinds, represents essentially a
modified energy method) yields comparatively good approximations which
are known to constitute upper bounds to the exact eigenvalues. ¥

If the vibration mode is assumed to be of the form

N

wo= 2 apwy(x,y) (4.10)

n=1

then this technique leads to the linear system

g aPpp =0 (m=1,2, ..., N) (4.11)
n=l
in which
Pon = Pop =D [ (&%) (&w™)aa + NTO (W) 4+ T . (W)
+ 0. (W) - b [ wTaa (4.12)
e ey ) (v.13)

* No such statement can be made here, of course, as long as the static
problem itself has been solved only approximately.



-27-

These equations have a non-trivial solution for a, if

determinant |Pyy| = O (4.14)

from which p 1is computed.
In the present analysis four terms have been used in the

approximating series, namely,

wl = sin ™X gin W

w2

sin ™X gin 21

(4.15)

WD = sin gﬂi sin
w' = sin

The squares of the frequencies of the various modes are plotted as
functions of the load parameter A, with the results shown in the
chart.

To determine the stability and instability of the buckling
modes it is necessary to examine the second variation of the potential
energy V. The latter is given in Equation (4.3), which, for convenience,

may be written symbolically
Vo= Uy (W, W) + Uy <ww> <w»> - 5 B0 (ww) (4.16)

The following expansions identities are also useful:

Up (W+w) = Uy (W, W) + 20, (W,w) + Up(w,w)

Uy (Waw) = Uy <ww> <ww> + 4y <ww> <WW>
+ 2Up <ww> <ww> + LU <WW> <WW> (4.17)
v iy ) Gy U (o) ()

TO. (Wew) = TO« (WW) + 2TC. (Ww) + T° - (ww)
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A configuration is in equilibrium if the potential energy assumes a
stationary value. By standard methods this leads to Equation (2.6)
in the present problem. The second variation of the potential energy,
which determines the stability or instability of the buckled state,

takes the form

5V(WW3nn) = Up(n,n) + 2Uy <ww> <nr> + by <Wn> <Wﬂ>
- % AT - (n7) (k.18)

After some integrations by parts and upon application of the boundary

conditions, this leads to

82V(WW;n)

D h o} . h !
[ 15,1195 - 5(015 + Digdn 4y - BorygW gglnda (k.19)

in which

(¥,an,5 + 1,19, 5) (4.20)

N+

It may be of interest to note that in view of Equation (2.10) the eigen-
values u, are equal to the stationary values of this expression pro-
vided the function n(x,y) is chosen to be the associated normalized
vibration mode wn(x,y). Since positive values for all uy, have pre-
viously been identified with stability this confirms the familiar con-
nection between stability and the positive definiteness of the second
variation of the potential energy.

It is recalled that A 1is the ratio of the edge displacement
to that required for the initial instability. Now let 9y be the ratio
of the edge compressive force caused by the prescribed edge displacement

to that required for initial instability. Then 7y 1is related to A
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by the equation

o 1
] (ktijo+ Tiy)ds (4.21)
J Aotiy ds

in which the integrals are along a loaded edge. The buckled state is
often characterized by its 7y versus A curve, i.e., the load-shortening
curve. The intersection of the load-shortening curve of one mode (say

the symmetric mode which corresponds to the lowest buckling load) with

the load-shortening curve of another mode (the antisymmetric mode which
corresponds to the next lowest buckling load) usually indicates a possi-
bility of the change of buckling modes. Just when and where this type

of secondary buckling takes place is conjectural. Various authors(25’26)
consider it reasonable to apply the equal energy criterion to determine
the change of buckling modes. Hence, the primary buckling mode may change
to the secondary buckling mode when

V1 =Vo (h.22)

in which Vj 1is the potential energy associated with the primary buckling
mode and Vo that associated with the secondary buckling mode.

In the present analysis, the vibration method and equal energy
criterion are used to determine the stability of the buckling modes and
changes of buckling modes. In addition to the problem stated in Chapter II,
the stability and change of buckling modes of a simply supported rectangu-
lar plate subjected to uniaxial edge compression is also investigated by
the present method. The details of this analysis are presented in

Appendix B.



CHAPTER V

RESULTS AND DISCUSSION

Charts showing the frequencies of vibration and the load-
shortening curves are given in nondimensional quantities u', A' and
A", in which p' = u/u(g)“ % o, A = 2/2(5)2 g and A" = x/h(g)2 g_ .
All calculations are based upon the value of Poisson's ratio v = .30.

Figure la shows the relation between u' and A' for small
values of A' for a square plate subjected to plane hydrostatic pres-
sure. The results are obtained from the perturbation series which con-
verges satisfactorily for A' < 16. Only the two lowest vibration modes,
i.e., p=1,q=1 and p =2, q =1, about the lowest buckling con-
figuration (m = n = 1) are plotted. It is interesting to note that p'
increases practically linearly with A' in the vicinity of initial in-
stability for both the symmetric (p = q = 1) and antisymmetric (p = 2,

q = 1) vibration modes.

The frequency of the symmetric vibration mode is strongly
affected by the increase of A', the rate of increase of u' after
buckling being twice as much as the rate of decrease before buckling.

For example, with A' =4 and u' = 5.8, the "stiffness" of the plate
has increased to 2.41 times that of the unbuckled state while the maxi-
mum deflection at the center of the plate is only 1.5 h. This rapid
increase in the stiffness after buckling is important in flutter analysis.
In general, the vibration mode associated with the initial buckling mode,
that is, p =m and q = n, is the mode affected most strongly by the
increase of A'. For further increase of 1A' the frequency of the
symmetric vibration mode becomes higher than that of the antisymmetric

-30-



mode. This is not unreasonable since the antisymmetric vibration is
primarily inextensional while the symmetric vibration is primarily
extensional.

The results of the same problem as shown in Figure la but for
a larger range of values of A' are shown in Figure 1b. The solid
lines represent the perturbation solution up to A' = 50; however, the
results become less reliable since, for A' > 20, the perturbation
series for the symmetric vibration mode converges rather poorly. 1In
contrast, for the antisymmetric vibration mode it still converges
satisfactorily for values of A' up to 40. The dashed lines represent
the results of Equation (4.14) when the approximating series takes the
form of Equation (4.15). It is noted that after a further increase of
A', the frequency of the symmetric vibration mode increases less rapidly
and eventually becomes again less than that of the antisymmetric vibra-
tion mode. This is due to the fact that for large values of A' two
nodal lines appear in the symmetric vibration mode, which therefore be-
comes more nearly inextensional. Figure 2 shows the shapes of the sym-
metric and antisymmetric vibration modes for various values of A'.

Figures 3a and 3b show the relation between 7y and A' for
the same case of a square plate subjected to plane hydrostatic pressure.
The perturbation results are shown in Figure 3a, the energy method re-
sults in Figure 3b. The rate of increase of 7y after buckling is only
one fourth as much as that before buckling (as against one half in the
case of uniaxial edge compression).

Figure L4 shows the relations between p' and A' for rectangu-

lar plates of various aspect ratios. The plates are assumed to be forced
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for Square Plate under Hydrostatic Pressure
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into the second buckling mode (m =2 and n = 1) through the application
of artificial kinematic constraints which, however, do not restrict the
freedom of dynamic vibratory motion. For m =2, n =1, the vibration
mode associated with negative pu' corresponds to p =q =1. For all
other modes, un' 1is positive in the viecinity of the initial instability
and up to values of A' which are of interest to us; hence they are not
considered here.

The solid, dashed and dashed-dotted curves represent '
versus A' for the p =q =1 vibration mode of plates of aspect ratio
1, 2 and 2..45, respectively. It is noted that p' remains negative
for all values of A' > 1 for aspect ratios of 1 and 2, respectively,
at least within the limit of the truncated series.* For an aspect ratio
of 2.45 ' becomes positive at A' = 7.70; moreover, the truncated series
shows satisfactory convergence for the range of values considered. This
means that the m =2, n =1 Dbuckling configuration will become stable
even after the removal of the artificial kinematic constraints for suffi-
ciently large values of A'. In this case secondary buckling from the
fundamental mode into the second mode may occur; in contrast such secondary
buckling is ruled out for a square plate under hydrostatic pressure.

Figures 5, 6 and 7 show the load-shortening curves of the
lowest buckling configurations (m =1, n =1 and m =2, n = 1) for the
plates considered in Figure 4. For a square plate (Figure 5) the edge
displacement in the antisymmetric buckling configuration (m =2, n = 1)

increases with decreasing load when A' > 7.0, confirming the previous

* s1low convergence raises doubts as to the reliability of this statement
for a/b = 2.
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conclusion that the antisymmetric buckling configuration for a square plate
remains unstable. Figures 6 and 7 treat the rectangular plates of aspect
ratio 2 and 2.45, respectively. It is interesting to note that a new
equilibrium configuration (not shown) becomes possible at the value of
A" at which the antisymmetric buckling configuration becomes stable. This
secondary bifurcation and the unstable character of the new configuration
can be shown by considering the first and second variations of the potential
energy. The value of A' associated with equal potential energies for the
two stable buckled states is also indicated in Figure 7.

The possibility of secondary buckling from the fundamental mode
into a yet higher mode (m = n = 2) is treated in Figure 8, which shows
the p' versus A' curves of a square plate subjected to plane hydro-
static pressure after the plate has been forced to buckle into that mode.
Only the two vibration modes p =q =1 and p =2, q =1 produce nega-
tive values of p'. It is noted that these values remain negative; hence
for a square plate the buckling configuration m =n =2 1is also unstable.
This is confirmed by the load-shortening curves of the m =n =1 and
m =n =2 buckling configurations shown in Figure 5. Since the two
curves do not intersect the possibility of snap-through from the symmetric
(m =n = 1) buckling configuration into the antisymmetric (m = n = 2)
buckling configuration is ruled out.

The behavior of plates subjected to uniaxial edge compression
is radically different. This has been treated by Stein(ls) and others
and is corroborated in Figures 9 and 10. 1In this case even a square
plate exhibits a stable antisymmetric (m = 2, n = 1) equilibrium configu-

ration when A" Dbecomes sufficiently large. This change-over from
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static Pressure m = n = 2 Buckling Mode.
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instability to stability is again accompanied by the emergence of a new
unstable configuration (again not indicated in the figures). It is

noted also that the values of A" so defined (representing lower bounds
to secondary buckling) as well as the values of A" associated with
equal potential energies are very much smaller than in the case of hydro-
static pressure. This is in good qualitative agreement with reported

test results.



CHAPTER VI

CONCLUSIONS

It has been demonstrated that perturbation techniques can be
used effectively to analyze the dynamic behavior of rectangular plates
after they have buckled. The ensuing series show satisfactory conver-
gence for a technically significant range of the load parameter.

Natural frequencies of vibration have been shown to be ex-
tremely sensitive to buckling amplitudes, displaying the most pronounced
increase in connection with the symmetric vibratory mode. For suffi-
ciently large load parameters this mode, which is primarily extensional,
ceases to be associated with the longest period of vibration; however,
it becomes more nearly inextensional as buckling proceeds and may there-
fore again return to its previous fundamental position.

The stability of higher buckling configurations has been in-
vestigated by studying the real or imaginary character of the frequencies
of vibration about these configurations. The results indicate that all
plates under uniaxial edge compression, and rectangular plates of suffi-
ciently large aspect ratio under hydrostatic edge pressure, may eventually
exhibit stable secondary buckling modes. The concomitant load parameters
represent lower bounds to "secondary buckling loads" which signify the
possibility of a sudden snap-through from one buckling configuration into
another. This phenomenon had been widely observed before; the present

calculations tend to conform with previously reported experimental results.
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APPENDIX A
LIST OF FUNCTIONS - HYDROSTATIC EDGE PRESSURE
(1) sStatic Functions
(a) Deflection
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(2) Dynamic Functions
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(3) General Algebraic Expressions for pq“(o) and pqu(2)
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APPENDIX B
VIBRATIONS OF A SIMPLY SUPPORTED RECTANGUILAR
PLATE UNDER UNIAXTAL EDGE COMPRESSION
This problem concerns itself with the vibrations of a simply
supported rectangular plate which is subjected to prescribed total edge
thrusts at x =0 and x = a. The differential equation governing

the static deflection of the plate is again

DAAW - h(xtgj + Tij)w;ij =0 (B.1)
in which
o -1 0
ti,j = (B'2)
0 0
o1 )
Ty =5 <w,lw,3> (B.3)

The operator (B.3) is identified with the same set of equations as in
the main body of the paper, except for a change in the boundary conditions.
That is, instead of U'(a,y) and V'(x,b) vanishing, the new boundary

conditions read

]

k3 (B.4)

ks, (B.5)

U'(a,y)

V'(x,b)

in which kl and k2 are determined from

b
Of T (8,y)dy =0 (B.6)
] =0 (B.7)

T' (x,b)dx
J T (x)

Alternately, the previous set of boundary conditions may be used and two

uniform additional tensile stresses, one in the x direction and the
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other in the y direction, may be superimposed so as to satisfy
Equations (B.6) and (B.7). In the dynamic case, this problem has the
same differential equation and same boundary conditions as in the
main body of the paper except tgj takes the form of Equation (B.2).
The method of solution for this problem is the same perturbation
method presented in Chapter III and hence it is not repeated here.

The general algebraic expressions for the static deflection,
the static additional membrane stresses, the load parameter and the

static additional membrane displacements are as follows:

w=ewll) 4 Swl®) 4 ... (B.8)
Tij = eETgi) + e”T§§) o, (B.9)
AN=dg + e+ e o+l (B.10)
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he 2 2 2 2 (1r9 h
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2 2 2 2 (22 ®n?
2
AR {l6k(1nrr)[ (37 +v(F)T + (F) cos 2—1:1}‘] sin Sgry - b8 v}
+ (B.12)
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w(l) = n sin BT x gin BX Ty
a b
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Note that A now becomes the ratio of the prescribed compression to
that required for the initial instability. Let £ be the ratio of the
edge displacement caused by the prescribed edge compression to that

required for the initial instability; then ¢ 1is related to A Dby
b

1 '
. e + B.J'U (a,y)dy (5.13)

o)
Aou

The A versus { curve is now the load-shortening curve. The lowest
buckling mode is given by m = a/b and n = 1.

The general algebraic expressions for the deflection and the

frequency parameter of the vibration mode p =q = 1 about the buckled

configuration m =n =1 are
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7
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The general expressions for the frequency parameter of the vibration
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The general expressions for the frequency parameter of the vibration
modes p=1q=1,p=2q=1,p=2q9q=2 and p=3qg=1 about

the buckled configuration m =3, n =1 are
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For the cases of a =b and a =2b results are shown in Figures 9

and 10.
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