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Split Questionnaire Design 
 
 

Abstract 
 

Instead of the heuristic randomization methods to design split questionnaires that are 

currently used in applied and academic research, we develop a methodology to design the split 

questionnaire to minimize information loss. Because the number of possible questionnaire 

designs is exponential in the number of questions, we apply the Modified Federov algorithm, 

using Kullback Leibler Distance as a design criterion, to find the optimal splits. First of all, we 

illustrate the efficiency of the Modified Federov Algorithm on a small synthetic questionnaire, 

which enables the enumeration of all possible designs for comparison.  Second, we compare the 

efficiency of split questionnaires generated with the proposed method to multiple matrix 

sampling (randomly generated designs) and a heuristic procedure based on principal components 

analysis, on synthetic and empirical data. We generate split questionnaire designs selecting either 

entire blocks of questions (between-block design) or sets of questions in each block (within-

block design). Finally, we illustrate that due to reduced respondent burden the quality of data 

using split designs increases, compared to a full questionnaire in a field study.  
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INTRODUCTION 

Market researchers have traditionally collected consumer information on preferences, 

attitudes, consumption contexts and lifestyles, by means of often very long questionnaires. In 

doing so, they need to make tradeoffs between reasonable survey length and the value and 

quality of additional information. Questionnaire length is a concern since it affects the quality of 

the data collected in several ways (Berdie 1989). Long questionnaires lead to higher non-

response, item non-response and early break-off rates. They also cause an increase in the use of 

undesired response styles, increased time to collect the data, and respondent fatigue and 

boredom. Survey respondents are reported to become fatigued and irritable when questioned last 

for more than twenty minutes. Many studies indicate that longer questionnaires have lower 

response rates than shorter ones (Adams and Gale 1982; Bean and Roszkowski 1995; Dillman 

1991; Dillman, Sinclair, and Clark 1993; Heberline and Baumgartner 1978; Roszkowski and 

Bean 1990).  

Motivation 

We propose a method to design split-questionnaire surveys as an effective tool to reduce 

respondent burden without sacrificing the inferential content of the data. Although Good (1969, 

1970) already called for the development of split-questionnaire methods to collect survey data 

more efficiently, in the next thirty-five years no systematic research on how to best design split-

questionnaires seems to have been done. Two decades ago, Herzog and Bachman (1981) advised 

that a researcher who needs to use a long questionnaire might be well advised to split the 

material into at least two parts and administer those parts in different orders to different random 

subsets of the sample. In their split questionnaire survey design the original questionnaire is 

divided into sub-components and subjects respond to a randomly selected set of components 
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only. A similar idea of designing randomly split questionnaires is applied in what has been called 

“Time sampling”. Here, questions are administered in a randomly rotated fashion to different 

parts of the panel in different episodes (Sikkel and Hoogendoorn 1995). Incomplete designs in 

educational testing are based on a similar approach. In test construction the researcher 

administers subsets of the total available item pool to the available subjects. The matrix sampling 

design is used for that purpose (Shoemaker 1973, Thayer 1983), in which a test instrument is 

divided in sections, and groups of sections are administered to subjects in a randomized fashion.  

             Each of those previous studies has thus used a randomization approach to design split 

questionnaires. The important question remains how to optimally split the questionnaire, such 

that the least information is lost. Currently, no methods have been published to address that 

problem, and here lies the contribution of the present study. Raghunathan and Grizzle (1995) 

mention that ad-hoc splitting strategies may depend on the purpose and the contents of the 

survey, contextual placement of certain items, and the partial correlation coefficients of the 

items. These correlations may be readily available in tracking or syndicated studies, because here 

the researcher knows which (groups of) variables are correlated, from their previous 

measurements. In cross-sectional studies prior knowledge about inter-relationships between 

variables can be obtained from a pilot study. However, even when such prior information is 

available, the construction of a split-questionnaire design such that a minimum amount of 

information is lost is a challenging task. Since the number of possible split-questionnaire designs 

is exponential in the number of questions, it is not feasible to consider all possible splits in 

designing a questionnaire for real-life applications. Therefore, we suggest, in line with previous 

practice in marketing research, to utilize the natural structure of the questionnaire, in which 

questions are placed in blocks. Mostly, several questions measuring for example one particular 
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attitudinal or lifestyle trait are administered as a group or block. We use this block-structure to 

generate split-questionnaire designs in two different ways: selecting entire blocks of questions, 

which we call a “Between-block design”, or selecting questions in each block, which we call a 

“Within-block design”. In the between-block design, a “split” comprises of the allocation of 

selected blocks of questions and respondents answer all questions in these blocks; in the within-

block design, a split comprises of sets of selected questions in each of the blocks and respondents 

answer only those questions in each block2. For the first method, given the coherent 

interpretation of the questions in one block, the problem then simplifies to how these blocks 

should be administered to respondents in an optimal way. On the other hand, for the within-block 

design we need to choose questions in each block optimally. The choice between the within-

block and the between-block design should be based on substantive issues, as well as statistical 

properties of the two types of designs, as will become clear in the sequel of this paper. We focus 

on the problem of how to best develop a split-questionnaire and propose a method to optimally 

choose the splits (a set of blocks of questions or questions in each block offered to a respondent).  

Outline of the paper 

The main contribution of this paper is to propose a method to design split-questionnaires. We 

apply the Modified Federov Algorithm to find the optimal design from all possible designs 

because of its fast and reliable properties. This method has been previously applied in a different 

context in the design of conjoint experiments (Kuhfeld, Tobias and Garratt 1994). We propose to 

use Kullback-Leibler (KL) Distance between the complete and split-questionnaire data as an 

optimization criterion. The algorithm searches the candidate splits for the split that is optimal in 

terms of the criterion. As explained above, we study both between-block and within-block split 

                                                           
2 We acknowledge one anonymous reviewer for suggesting the within-block design to us. 
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questionnaire designs. The split questionnaire, once administered, results in data missing by 

design, which may result in lack of identification of all parameters from the observed data (Little 

and Rubin 1997; Rassler 2002). Specific overlap of the splits of the questionnaire may help to 

avoid that identification problem. We explain how to construct identified split-questionnaire 

designs, and how to impute the missing data with the Gibbs sampler. Using a small simulated 

questionnaire we enumerate all possible designs and compare that with the result of our design 

generating algorithm, which reveals that it recovers the optimal split in all cases. We compare 

the efficiency of split questionnaires generated with our procedure to (random) matrix sampling 

designs on synthetic data. In practice, market research companies design split-questionnaires by 

randomly choosing blocks, or questions in each block. These methods are similar to the multiple 

matrix sampling techniques used in testing theory (Shoemaker 1973), and will therefore 

constitute an appropriate benchmark.  

            We then apply our approach to data obtained from a questionnaire on web attitudes and 

perceptions (Novak, Hoffman, and Yung 2000) to assess the performance of optimal between- 

and within-block designs empirically, and compare them to matrix sampling designs and 

heuristic designs constructed based on a principal components analysis of pilot data. We 

investigate the sensitivity of the optimal split questionnaire designs to changes in the prior 

parameters from the pilot study. Finally, we investigate the extent to which the proposed split 

questionnaire design method may result in better data quality than the complete questionnaire, by 

studying respondent burden, boredom, and fatigue in a field application of the web-attitude 

questionnaire. Our conclusion is that optimally splitting questionnaires is worth consideration for 

improving the efficiency of questionnaires and the resulting data quality.   
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The subsequent sections are organized as follows: Section 2 examines issues in designing 

a split-questionnaire. In section 3, the design criterion is introduced; the Modified Federov 

Algorithm and the construction of identified split- designs are explained. In section 4, we discuss 

multiple imputations of the missing data and the estimation of the fraction of missing 

information. Section 5 provides a simulation study to investigate the performance of the 

proposed split questionnaire design method, section 6 provides the empirical application and 

section 7 summarizes the field study. Finally, in section 8 the results of this research are 

discussed and concluding remarks are offered. 

 

CONSTRUCTING THE SPLIT QUESTIONNAIRES 

Finding an optimal design for a split-questionnaire involves finding the configuration of 

question sets (i.e. those questions given to one respondent, or a “split”) such that a minimum 

amount of information is lost as compared to the complete questionnaire. The design of a split 

questionnaire, as we propose it, involves two steps. First, one needs to assign questions to blocks 

with homogeneous content. Second, one needs to allocate either selected blocks to splits, or 

selected questions within blocks to splits, resulting in between- and within-block designs, 

respectively. In the first step one wants to keep thematically closely related questions in the same 

block3. Raghunathan and Grizzle (1995) call this the contextual placement of questions. We start 

from the assumption that the questionnaire already consists of a number of blocks with questions 

that need to be kept together, and we will utilize that natural structure of the questionnaire. Our 

approach is thus very suitable for questionnaires comprising of items to measure several multi-

                                                           
3 A block structure, if not available a-priori, can be generated using cluster analysis of a pilot with the full 
questionnaire (Rassler 2002). 
 



 8 

item constructs. These are very common in marketing research. Each split questionnaire design 

is defined by three sets of parameters: the number of splits, the number of blocks/questions per 

split, and the sampling fraction responding to each split. In this study we investigate the first two 

parameters and assume throughout that splits are distributed evenly and at random to 

respondents. We propose to choose splits from all possible combinations of blocks (between-

block designs) or from all possible combinations of questions in each block (within-block 

designs), using the Kullback-Leibler distance as a measure of information loss, computed from 

prior parameter estimates.  

 

MEASURING INFORMATION LOSS 

 Optimal Split Questionnaires Using KLD  

We use the Kullback-Leibler (KL) measure, the distance between two probability 

models, to choose the best among all possible designs. The KL-distance was developed by 

Kullback and Leibler (1951) from “information theory’’. Here, it is first applied to design 

construction. The KL distance defines the distance between the probabilistic models f and g for 

as the (usually multi-dimensional) integral:  

(1)                                           ∫= dy
yg

yf
yfgfI )

)|(

)(
log()(),(

θ
                                         

I(f,g) is the “information’’ lost when g is used to approximate f. An equivalent interpretation of 

minimizing I(f,g) is finding an approximating model that is the shortest distance away from “the 

truth”. If f(y) and g(y|θ) are multivariate normal distributions with common variance-covariance 

matrix then the Kullback-Leibler distance reduces to the Mahalanobis distance (Bar-Hen and 

Daudin 1995), which is frequently used as a distance measure in the literature. 
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        We assume that the optimization of the split-questionnaire design (SQD) is done under one 

external constraint fixed by the researcher, which is the total number of splits (K) desired. We 

assume that the researcher knows this number from prior considerations, or that issues related to 

the implementation of the questionnaire dictate it. The optimization can also accommodate any 

other practical constraint, such as one that induces respondents to answer a fixed number of 

(blocks of) questions, i.e. each candidate split should contain a predetermined number of blocks. 

These constraints are illustrated below. After generating K splits and evenly distributing these 

splits to respondents, the Kullback-Leibler distance is calculated. In our notation, K denotes the 

total number of splits, N is the number of respondents, B is the number of blocks, Qb is the 

number of questions in block b, Q is the total number of questions, )QQ(
B

1b
b∑

=

= , Y is the data-

matrix containing the answers of the respondents and D is the questionnaire design matrix with 

0/1 entries (i.e. a fully observed matrix of indicators whose elements are zero or one depending 

on whether the corresponding elements of Y are missing or observed): 





=
otherwise

dij 0

i respondent  togiven is j question if1
 

Now f(Y|D) is the likelihood of the incomplete data with respect to the split questionnaire design 

matrix and f(Y) is likelihood of the data with respect to the complete questionnaire. The 

Kullback-Leibler distance between the complete data likelihood f(Y) and the split data likelihood 

f(Y|D) is defined as:  

(2)                                                      ,dY
)D|Y(f

)Y(f
ln)Y(f)D(KL ∫ 








=                                                          

                                                            )]D|Y(fln[E)]Y(fln[E −= , 
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where each expectation is with respect to the true distribution f(Y), where YN×Q = [Y1, Y2, 

…,YQ]. The most efficient questionnaire design (D) minimizes KL(D). The first term on the right 

hand side in the equation for KL(D) is the same for each possible design since it is derived from 

the complete questionnaire. Consequently, maximization of the second term on the right hand 

side suffices. Since f(Y) is the same for each possible design, lnf(Y|D) will be  maximized in the 

sequel. Minimizing the KL distance can be seen as finding the split questionnaire that yields 

incomplete data that are closest in expectation to the data that would have been obtained with the 

complete questionnaire. 

We will assume the form of lnf(Y|D) to be a multivariate normal, as a function of the 

parameters µ and Σ, as shown below. In Appendix I we provide an extension of the KL distance 

for mixed data consisting of continuous and discrete variables using a general location model. 

But, multivariate normality is often assumed for responses of scales in many marketing surveys, 

including those measuring attitudes, satisfaction, lifestyles etc. (Huber et al. 1993). In addition, 

the normal distribution has minimal KL distance to any unknown distribution function (O’ 

Hagan 1994), and in this case minimizing the KL-distance is equivalent to minimizing the 

Mahalanobis distance.  

We have Q-variate normal data NQ(µ, Σ) with µ = (µ1, ….., µQ) and ΣQ×Q. For now, µQ×1 

and ΣQ×Q are assumed known. These are considered prior information that can be obtained from 

past data or through a pilot experiment. The aim is to construct the design using µQ×1 and ΣQ×Q as 

prior information. Thus, we have the following optimal design criterion:   

(3)    [ ]))D(Y()D())'D(Y(
2

1
)D(ln

2

1
)2ln(

2

p
),,D|Y(Lln obs

1
obs

n

1i

D µ−Σµ−−Σ−π





−=Σµ −

=
∏  
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with pD is the number of parameters under design D, n the total number of respondents, 

Yobs=Yijdij the data observed under the split-questionnaire D, and µ(D) and Σ(D) denote the 

subvector of the mean vector µ and the square submatrix of the covariance matrix Σ which are 

obtained from complete data estimates from a pilot study, respectively, that pertain to the 

variables that are observed in design D. 

 Identification Issues in Constructing SQD 

            When we construct a split questionnaire design, we should be able to estimate all 

parameters from the observed incomplete data. We call a design that enables the estimation of all 

parameters (of the multivariate normal distribution) a fully identified design. Clearly, not all 

designs are fully identified. We illustrate the identification problem briefly through the following 

example. Assume we want to estimate the parameters of a multivariate Normal distribution for 

three blocks, X, Y and Z in a between-block design. However, we have a split A- with only X 

and Y and a split B- with only X and Z observed together. We have 

)Z,X(V)X(V)Y,X('V)X|Z,Y(V)Z,Y(V 1−+=  with V(Y,Z) the covariance matrix of Y and Z, 

V(X) the covariance matrix of X, and V(Y,Z|X) the covariance matrix of Y and Z conditional on 

X. We can estimate V(X,Y) from split A, V(X,Z) from split B, and V(X) from both splits,  but 

we cannot only directly estimate V(Y,Z|X) from the available incomplete data. However, if we 

assume conditional independence of the Y and Z variables given X, we have 

)Z,X(V)X(V)Y,X('V)Z,Y(V 1−=  and can estimate V(Y,Z), since all terms on the right hand 

side are estimable (see Gilula, McCulloch and Rossi 2004; Rassler 2002; Rodgers 1984). 

However, if we use this conditional independence assumption in a model for imputing the 

missing data, this implies that for all parameter estimates or statistics subsequently computed 

from the imputed data this conditional independence assumption should also hold. That 
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assumption is a strong one, which may limit the usefulness of such split- questionnaire designs in 

practice.  

      Rassler (2002) and Gilula, McCulloch and Rossi (2004) suggest (in the context of 

data-fusion) to use informative priors in the imputation to overcome the identification problem. 

The use of priors adds information that enables estimation of the parameters that are not 

identified by the split questionnaire design. The fact that V(Y,Z|X) is inestimable results in non-

positive definite variance-covariance matrix V(X,Y,Z), which we can avoid using prior 

information. If one uses the Gibbs sampler for imputation, as we will below, such prior 

information also overcomes lack of convergence. Using informative priors for the means and 

covariance matrix of the normal distribution results in an imputed dataset devoid of conditional 

independence properties induced by the design, which is highly desirable. Since the design itself 

is constructed based on such prior information, it is natural to also include that same prior 

information in imputing the missing data. However, it is even more desirable to address the 

identification problem by constructing designs that do not suffer from it, which we do below.    

If all possible pairs of questions occur in an optimal split questionnaire design, this 

ensures that all parameters of a multivariate normal distribution are identified and estimable from 

the observed data. Let us consider the between-block design: if we have a questionnaire with nB
 

blocks and we impose the constraint of nS blocks per split, then the number of splits K, for a fully 

identified design needs to satisfy 
( )
( )1

1

−
−≤≤









SS

BB

S

B

nn

nn
K

n

n
, where 









S

B

n

n
 is the size of the candidate 

split-set. Note that is a necessary, but not sufficient condition. In practice one can easily check 

the identification of any design by looking at the (D’D) matrix: only designs with all off-

diagonal elements greater than 0 are fully identified designs. In generating constrained split 
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questionnaire designs, we recommend that one only considers fully identified designs by 

imposing the identification constraint ∀
≠

≠′
ji

ji dd ,0)(  , and employ the prior information used 

to construct the design also in imputing the missing values. This is what we will do throughout 

the remainder of this paper and we recommend it in general as a procedure for constructing split-

questionnaires. 

Efficient Design Generating Algorithms  

In order to find the most efficient K splits out of all possible candidate splits (NS = 2Q, 

with Q the number of questions), all 







=

K
N

Q

D

2  possible designs should be generated and 

evaluated. In most practical situations, it is not computationally feasible to find the global 

maximum of ln[f(Y|D)] among all possible K subsets out of 2Q points, since it is usually not 

possible to list all ND-designs because run time is exponential in the number of candidates. As a 

result, we need to use an efficient design-generating algorithm. Such an algorithm searches 

among all possible candidate splits for one that improves a given criterion.   

We apply the Modified Federov algorithm to obtain the optimal questionnaire design. 

Kuhfeld, Tobias and Garratt (1994) suggest the Modified Federov algorithm, since it is robust 

and fast, and apply it in the different context of constructing conjoint designs. For split-

questionnaire designs, we begin by building a candidate split-set (C, a NS×Q matrix), which is a 

list of potential splits. If there are N individuals, then N/K individuals will be assigned randomly 

to each of the K splits. Each alternative split-questionnaire design consists of an N x Q matrix D 

with K different split patterns. Each entry in the matrix is a 0 or 1, indicating whether a question 

is included or excluded in that particular split. The starting design is chosen at random. The 
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algorithm exchanges its splits (i.e. each row of the matrix) with the candidates. It finds the best 

exchange (if one exists) for the first split in the starting design, by sequentially processing the 

candidates. Then it moves on to the second split, and so on. The first iteration is completed once 

the algorithm has found the best exchanges for all of the splits (rows) in the starting design. 

Then, the algorithm moves back to the first split and continues to replace it with each candidate 

and continues in that fashion until no improvement is possible. To avoid local optima, the whole 

process is restarted with different (random) starting designs and the best design is selected.  

Generating Between-Block and Within-Block Designs 

In constructing between-block designs, first of all we generate all 2B possible splits of 

blocks. We assume that all questions in one block are assigned to the same respondent. That is, if 

we have five blocks with four questions and one particular split is 11010, we will use dij=[1111 

1111 0000 1111 0000]. Using the Modified Federov algorithm, we choose K different splits from 

all candidate splits and obtain the optimal design, ensuring that it is  identified by checking off-

diagonals of the (D′D) matrix.  

                  Whereas the construction of between-block designs is feasible in this manner that of the 

within-block design is not, in most practical situations. Because of the enormous size of the 

design space for within-block designs, even generating the candidate split set is nontrivial. 

Therefore, we choose questions from each block using a “greedy” approach, as follows. Instead 

of optimizing of the full within-block split design, we generate splits for each block sequentially. 

For block B there are BQ2  possible splits with QB the number of questions. We first find the 

optimal K splits in the first block using the Modified Federov algorithm as described above, 

assuming the other blocks are complete. Then, we find the optimal splits in the second block 

searching across the candidate splits, given the optimal splits of the first block and assuming the 
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remaining blocks are complete. We continue this procedure by sequentially passing through the 

remaining blocks, finding the optimal splits for each block given the optimal designs of the 

previous blocks and assuming the remaining blocks complete. Thus, we obtain an optimal, or at 

least an improved, solution by sequentially producing locally optimal designs within each block. 

Unfortunately, it proves not easy to produce fully identified within-block designs using the 

“greedy” approach just described. We therefore produce locally identified designs by checking 

the Db′Db matrix of each block b separately. However, this does not guarantee the appearance of 

all question-pairs in the complete design, which is needed for the design to be fully identified. 

Thus, the constructed within-block split questionnaire designs are neither fully identified nor 

globally optimal, but, are still more efficient than designs constructed by choosing questions 

within each block at random or with heuristic procedures. We investigate this in detail below.  

 

      MULTIPLE IMPUTATIONS WITH GIBBS SAMPLING 

           The within- and between-block split questionnaire designs produce datasets with 

intentionally missing data. To obtain complete data, instead of using a single imputation, which 

ignores uncertainty due to imputation and therefore underestimates the variability of the resulting 

estimates (Rubin 1987), we use Bayesian proper multiple imputations by drawing values of 

missing data (Ymis ), and µ and Σ from their full conditional posterior distributions using Gibbs 

sampling (Gelfand and Smith 1990). We use informative priors, µpr and Σpr, obtained from the 

full questionnaire in a pilot study, with n0 and ρ the prior number of observations and degrees of 

freedom on which the µpr and Σpr are based, respectively. Let Σobs,obs, Σmis,mis, and Σmis,obs denote 

the sub-matrices of Σ formed by the indices corresponding to the observed and missing Y values; 

µobs, µmis denote the corresponding sub-vectors of µ. The conditional distribution of Ymis, given 
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Yobs, µm, and Σ is normal with mean )Y( obsobs
1

obs,obsmis,obsmis µ−ΣΣ+µ −  and variance 

obs,mis
1

obs,obsmis,obsmis,mis ΣΣΣ−Σ − . The Gibbs sampler iterates between:  

      1) draw )1t(
misY +

 given µ0, Σ0, and Yobs: 

(4)         ( )obs,mis
1

obs,obsmis,obsmis,misobsobs
1

obs,obsmis,obsmisobs
1)(t

mis );Y(MVN~Y|Y ΣΣΣ−Σµ−ΣΣ+µ −−+
,   

      2) draw Σ(t+1) given µ(t) and )Y,(YY 1)(t
misobs

1)(t ++ =  from: 

(5)         )SS)1n(,n(IW~Y| mprobsobs
)1t( +Σ×ρ+−ρ+Σ + , 

where S is the sample covariance matrix and )
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y)(
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n
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n

m
S ′µ−µ−

+
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= ,  
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)1t(
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The Gibbs sampler is easy to implement and enables quick imputation of the missing values. 

Estimation of the Fraction of Missing Information 

            The incomplete data generated through the split-questionnaire design contain less 

information on the parameters than the complete data. We estimate the fraction of missing 

information of the parameters using the missing information principle (Orchard and Woodbury 

1972). Since the complete data information is the sum of the observed data information and the 

missing data information, we can write: 

(7)                                










θ
−

θ
+

θ
=

θ )ˆ(V

1

)ˆ(V

1

)ˆ(V

1

)ˆ(V

1

obsobs

. 

Here )ˆ(θV is the complete information on θ estimated from the Fisher information matrix. 

)ˆ( obsV θ is the expected observed data information, which we estimate after the multiple 
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imputation of the missing data with the Gibbs sampler. If we divide both sides by the missing 

information and take the fraction of missing information (γ) to be equal to the missing 

information divided by the complete information, we obtain: 

(8)                                          

)ˆ(

1
)ˆ(

1

)ˆ(

1

θ












θ
−

θ
=γ

V

VV obs  

This quantity shows how much information there is in the data on the parameters in question, 

and can be used as a statistic to evaluate the efficiency of split-questionnaire designs. 

  

SIMULATION STUDIES 

Before we extensively investigate the performance of split questionnaire designs on 

empirical data below, we first illustrate them on simulated data. We conduct two simulation 

studies, focusing on between-block designs. First, we investigate the performance of the 

Modified Fedorov algorithm in identifying the optimal design. Second, we compare optimal split 

questionnaire designs to matrix sampling designs.  

We construct a split questionnaire design that is small enough to enumerate all possible 

designs, which makes it possible to investigate the performance of the Modified Federov 

Algorithm in finding the optimal design. Let Yij denote the answer of respondent i ∈ {1, …., N} 

to question j∈ {1, ……., Q}, which forms the complete data matrix Y. We assume a between-

block design, with B = 5 blocks and each block containing Qb = 4 questions, so that in total we 

have twenty questions. We generate Y from a multivariate normal distribution with given µQ×1 

and ΣQ×Q. The matrix X is an NS×B matrix containing NS possible or candidate splits, 1 denoting 

an included block and 0 denoting an excluded block. There are 32 candidate split points 



 18 

contained in the matrix X, but unrealistic or undesirable combinations such as one where none of 

the questions is asked (a row with only zeros in the design matrix X) or where just one block of 

questions is asked, are excluded, as indicated in the candidate split set shown in Table 1. Even 

under the external constraint that fixes the number of desired splits (K), there are many possible 

designs. For example, there are in total 5311735 (= 26!/(16!10!)) different designs for K = 10 

splits. We choose K splits from the candidate split matrix in Table 1, and distribute these splits 

evenly to one hundred subjects. We do this both with the Modified Fedorov algorithm and 

through complete enumeration. The matrix D contains the design with the K splits. We eliminate 

the responses of the subjects from the complete data matrix (Y) according to the split design (D) 

and compute the KL distance. We choose the SQD design with the maximum lnf(Y|D) among all 

possible designs as the optimal design. We investigate three different numbers of desired splits: 

K = 5, K = 10 and K = 15. 

[INSERT TABLE 1 ABOUT HERE] 

The time that the Modified Federov Algorithm needed to find the optimal questionnaire 

design with K=5, 10 or 15 splits is compared to that for complete enumeration in Table 2. All 

calculations are done with a Pentium 3 computer, using the GAUSS software. For the Federov 

algorithm, we used 10 iterations, and 1000 different random starts. All 1000 random starts 

produced the same optimal design in all three cases in 1/10th or less of the computation time of 

complete enumeration, as shown in Table 2. This indicates that the performance of the Federov 

Algorithm as applied to the problem of split questionnaire design is highly satisfactory.  

[INSERT TABLE 2 ABOUT HERE] 

 We now illustrate the performance of optimal between-block split questionnaire designs (SQD) 

relative to matrix sampling designs (MSD) in a second simulation study (within-block designs 
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are investigated more extensively in the empirical application below). We have six blocks and 

five questions per block. We optimally design the questionnaire and impute the resulting missing 

data with the Gibbs sampler. We investigate constrained and unconstrained between-block 

designs, with 5 or 10 splits. To assess the performance of the proposed method, next to the 

fraction of missing information, we compute the KL-distance and the Bayes information 

criterion (BIC), where BIC=-2×lnf(Y|D)+ln(N)×2. Further, we calculate the mean absolute 

deviation (MAD) and the root mean square error (RMSE) of the estimates of variance and 

covariance parameters for the SQD and the MSD relative to the complete data (the optimal 

design procedure improves efficiency and thus affects only variance and covariance estimates). 

The results are shown in Table 3. We obtain better values for the BIC- and KL- statistics and less 

missing information for the SQD as compared to the MSD. Parameter estimates are also closer to 

the true values for the SQD: the MAD is equal to 3.143 for 10 splits and 2.817 for 5 splits while 

these values are equal to 3.730 and 3.210 for the matrix sampling design. The  missing 

information for the unconstrained split designs is 24% (ten splits) and 27% (five splits), and 22% 

and 29%, for constrained split designs, respectively, when we eliminate 50-60% of the questions. 

In contrast, the fraction of missing information for the MSD is consistently higher. Since these 

results support the performance of the SQD, we investigate its performance in an empirical 

setting in the next section.  

[INSERT TABLE 3 ABOUT HERE] 

 



 20 

EMPIRICAL DATA APPLICATION 

We apply our procedure to a previously published empirical dataset obtained with the 

“Project 2000 Ninth GVU Survey Web Attitude and Perceptions Questionnaire4”, which assesses 

on how people use the Web and their attitudes towards using it (Novak, Hoffman, and Yung, 

2000). This type of survey, applied repeatedly to the same panel for purposes of tracking 

consumer attitudes and behavior, may benefit from the application of split questionnaire designs 

since it is conducted on a regular basis with an almost identical structure. Although this 

particular application is less than ideal to illustrate the performance of SQD, since the 

questionnaire is relatively short, we consider the use of a published questionnaire and publicly 

available data attractive. There are sixty-five questions, grouped into nine blocks according to 

content. The first block contains five questions about the role of the Web in life, the second 

block consists of eight questions on feelings while using Web, the third block is composed of 

five questions related to the Web activities, there are seven questions in the fourth block about 

perceptions on using the Web, the fifth block consists of seven questions about attitudes on using 

the Web, the sixth block contains eight questions about people feelings towards using the Web, 

the seventh and eighth block comprise of respectively ten and nine questions about attitudes and 

perceptions and the last block contains questions on flow and usage of Web information. The 

questions are assessed on 9-point Likert scales and are considered to be continuous and normally 

distributed for the purposes of the present study.  

Data are available for two waves of the study conducted in two consecutive years. We 

use these as initialization and validation data, containing 500 and 1150 respondents, respectively. 

All data are complete. The advantage of having access to complete data is that it allows us to 

                                                           
4 http://elab.vanderbilt.edu/research/topics/flow/project2000.gvu9.htm 
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assess the performance of the SQD. A disadvantage of using such complete data is that we may 

underestimate the effect of the split questionnaire design, since we do not procure the advantages 

of improved quality of the responses due to reduced respondent burden. Therefore we also 

construct a field study with this questionnaire that we report on in the final part of this paper. The 

initialization data are derived from a first wave of the survey, which we use for creating the split 

questionnaire. From the initialization data we calculate the complete data parameter estimates. 

This enables us to obtain the design, using the Federov algorithm to minimize the Kullback-

Leibler distance. We investigate the following designs, where all designs in this study are 

constructed to be fully identified:  

a) Optimal split questionnaire (SQD) and matrix sampling designs (MSD), 

b) Designs with five or ten splits, 

c) Between-block and within-block designs, 

d) Unconstrained or constrained designs. 

We consider the MSD (matrix sampling design) as a benchmark for the between-block design. 

For the within-block SQD, we use as benchmarks a random questionnaire design (RQD, in 

which questions within blocks are randomly assigned) as well as an ad-hoc procedure based on a 

principal components analysis of the items, as explained in more detail below. We use about the 

same total number of questions in all designs. We generate the MSD by randomly choosing five 

or ten splits from the candidate split matrix and evenly distributing them among respondents, 

eliminating responses from the complete data matrix Y according to the design in question. For 

the RQD we apply the same procedure for each block separately, each time randomly selecting 

splits from the candidate split set. Since we have access to the complete data, we apply the 

constructed designs to those data to generate the missing data pattern. To compare the designs, 
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we compute the KL distance and BIC statistics, the fraction of missing information, and MAD 

and RMSE, after imputing the missing data with the Gibbs sampler. We use informative priors 

obtained from the initialization data, for all designs. We run the Gibbs for 3000 iterations and 

save the last 600 draws from the predictive distribution for Ymis as imputations; iteration plots 

show that the chains converge well before the end of the burn-in period.  

Between-Block Designs 

The MAD and RMSE measures shown in Table 4 reveal that the estimated parameters for 

the optimal SQD design are close to the complete data parameters. For both the five- and ten-

split cases, the SQD improves significantly over the MSD, the MAD being 35% and 45% 

smaller respectively, and RMSE 34% and 45%. The improvement of the optimal designs over 

the currently used matrix sampling designs is substantial. The reason for the better performance 

of the five-split design, which results in 32% lower MAD and 31% lower RMSE than the ten-

split design, is that the lower number of splits is associated with a smaller percentage of missing 

questions. For this particular application, the five-split optimal SQD results in a reduction of 

around 66% of the questions, with only a 14% information loss. With ten splits we obtain a 

greater reduction in the number of questions as compared to five splits. Here, while the SQD 

results in a 14% loss of information, for the MSD the fraction of missing information is larger, 

18%.  The split questionnaires with five and ten splits are provided in Figure 1.    

[INSERT TABLE 4 AND FIGURE 1 ABOUT HERE] 

In addition, we investigate the case where constraints are imposed on the SQD. In 

particular, we construct designs in which each split consists of exactly five blocks. We choose 

this number, since we need at least five splits to generate fully identified designs under the 

constraint of five blocks per split. We repeat the design construction and imputation procedure 
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on the empirical data, using five and ten splits, fixing each split to contain five blocks. The 

results are given in Table 4. We focus first on the five-split design. In this case we reduce the 

number of questions with about 44%, while it was 66% for the unconstrained SQD. As a results, 

the constrained SQD yields 9% of missing information, while the unconstrained SQD yields 14% 

of missing information (these numbers are 7% and 14% respectively for the ten-split SQD). The 

fraction of missing information is also less for the constrained SQD than for the constrained 

MSD, as expected, but the logL(D) and BIC for the constrained designs are worse than for the 

unconstrained designs. The RMSE and MAD measures reveal that the SQD estimates are close 

to those of the complete data, these measures are even smaller that for the unconstrained design. 

They are better than for the comparable MSD’s, although the differences are smaller than for the 

unconstrained designs. The reason is that the constraints strongly limit the degrees of freedom 

for improvement over the MSD, since they reduce the size of the candidate split set. The optimal 

constrained five and ten-split designs are shown in Figure 2. 

[INSERT FIGURE 2 ABOUT HERE] 

Within-block Designs 

           Using the prior estimates from the initialization data, we also construct optimal within-

block designs by selecting questions within blocks, as described above. We compare the optimal 

SQD with designs in which the questions within blocks are selected randomly (RQD). To also 

compare to a stronger benchmark, we construct split designs using principal component analysis 

(PCA)5. We extract five and ten Varimax rotated components to construct the splits. Questions in 

a block are discarded for a split if they contribute the least variance for that component. Every 

                                                           
5 We acknowledge an anonymous reviewer for this suggestion. 
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question was included at least once, and the design has the same number of questions as the SQD 

and RQD designs.  

         The results are shown in Table 4. We reduce 41% and 52% of the questions with the five- 

and ten- split within-block designs. The BIC and KL-distance of the optimal within-block 

designs are lower than the random design and the principal components design. The optimal 

within-block designs are also somewhat better in terms of RMSE and MAD of the parameter 

values, but the differences are not as large as for the between-block designs. The PCA designs 

are in between the RQD and optimal SQD on these measures. The average percentage of missing 

information is around 7.8% and 5.6% respectively for the optimal five- and ten-split designs. 

These numbers are better than for the corresponding random designs, with 8.7% and 6.0% 

respectively, and for the PCA designs, with 8.4% and 5.8%, respectively. The fraction of missing 

information for within-block designs, however, is substantially lower than for the between-block 

designs.  MAD and RMSE of the five-split within-block designs are 31% and 23% lower than 

those of the between-block designs. For the ten-split designs they are 41% and 40% lower than 

those of the between-block design. However, the MAD and RMSE of the within-block designs 

are comparable to those of the constrained between-block designs. The optimal within-block 

designs are shown in Figure 3.    

[INSERT FIGURE 3 ABOUT HERE] 

          The estimates of the variances of the responses to the questions for the prior data, full and 

split questionnaires (after imputation) are shown in Table 5. As can be seen from the table, the 

prior estimates are close to complete questionnaire estimates of the current study. This illustrates 

the value of such prior estimates for the construction of split designs, but we further investigate 

the sensitivity of the optimal between- and within-block designs to these prior parameter values. 
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For this purpose, randomly draw 50 sets of values from the sampling distribution of the 

parameters obtained from the initialization data and obtain optimal ten-split unconstrained and 

constrained between-block designs and within-block designs based on each of these sets. On 

average, we found 9.7 splits to be the same across these replications for the unconstrained 

between-block design6. For the constrained ten-split between-block design we find a lower 

average number of corresponding splits, 5.5. For the within-block design, on average only 2.2 

splits were the same. Clearly, the within-block design is much more sensitive to the choice of the 

prior than the between-block designs. The size of the full candidate split set, as well as the use of 

the greedy design generating algorithm contribute to the high prior sensitivity of the within-block 

design. We find the sensitivity of in particular the between-block design to the prior specification 

highly satisfactory.      

[INSERT TABLE 5 ABOUT HERE] 

 

FIELD STUDY 

The above analysis illustrates that optimally designed split questionnaires can be 

beneficial, but only address that issue from a statistical perspective. In this section, we look into 

the behavioural issues of providing subjects split-questionnaires. We conducted a field 

experiment to investigate whether with split questionnaires one may reduce boredom, fatigue, 

and completion time, which ultimately should increase the quality of data. We will also 

investigate respondents’ attitudes towards the questionnaires, and assess whether using split 

questionnaires improves the reliability of constructs, compared to the full questionnaire.   

                                                           
6 The maximum is 10, if all prior values yield exactly the same design, since there are ten splits in the design. 
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           For the field study, we use the exact questionnaire that was used in the empirical study 

above. We asked additional questions about boredom, which is scaled 1 (not at all bored) to 9 

(extremely bored), fatigue which also is scaled 1 (not at all tired) to 9 (extremely tired). In 

addition, we assessed attitudes towards the questionnaire (three questions, five-point scale: 

repetitive-varied, very long-very short, boring-stimulating). We tested the full questionnaire, a 

ten-split between-block design, and a ten-split within-block design (see above) each on 63 

subjects recruited from the subject pool from [withheld for confidentiality]. In total 189 subjects 

responded to 21 versions of the questionnaire that were displayed on computer screens in the 

experimental lab. Computer aided questionnaires allowed us to record the exact time it took 

respondents to complete them. These average times to complete the full and split questionnaires 

differed significantly, 8 minutes for the complete, and about 6 minutes for each of the split 

questionnaires. This is a significant reduction of about 25% in completion time, for a 50% 

reduction in the number of questions. Note that even the full questionnaire with 65 questions can 

be completed relatively quickly -the longest it took any respondent was 10 minutes-, which 

makes it more difficult to identify the behavioural effects of the split questionnaires.     

The mean scores for the scales are shown in Table 6. A MANOVA across all measures 

reveals a significant difference between the complete and between-block design (p<0.01) and the 

complete and within-block design (p<0.01), but not the between the latter two. The mean 

boredom score for the full questionnaire is 5.44, which is significantly higher than that for the 

within-block questionnaire, which is 4.98. The differences with the between-block design, which 

has an intermediate boredom score of 5.23, are not significant. This may indicate that feelings of 

boredom are primarily caused by repetition of the relatively similar questions within blocks, 

which occurs less in the within-block design. The respondents that completed the full 
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questionnaire report feeling more tired than those receiving the between-block design, the mean 

scores being 4.32 and 3.57. The within-block tiredness score is intermediate, 3.73, and not 

significantly different from the other two. This may point to feelings of tiredness being more 

strongly associated with switching between different topics, which occurs less often in the 

between-block design due to a reduction of the number blocks. The split questionnaire designs 

are evaluated more favorably than the complete questionnaire, the between- and within-block 

designs being seen as less repetitive (5.32 and 4.20 versus 5.68) and less boring (4.77 and 4.42 

versus 4.94) than the complete questionnaire. The scores for the within-block design are 

significantly better than those for the between-block design. The within-block design is also 

considered to be significantly less long than the complete questionnaire design (3.13 versus 3.68; 

and 3.54 for the between-block design, which is not significantly different from the former two). 

The shorter perceived duration of the within-block design may be associated with its lower 

perceived boredom discussed above, since its actual duration is about 20 seconds longer than that 

of the between-block design (the longer duration may have to do with the reading and processing 

of the separate instructions for each block).    

[INSERT TABLE 6 ABOUT HERE] 

In short, split questionnaire designs decrease completion time, fatigue, boredom and non-

response and are evaluated more positively by respondents, where it seems that the within-block 

design has a somewhat more favorable behavioral effect than the between-block design. These 

effects may impact the quality of the data. For each of the three questionnaires, respondents 

could skip every question displayed on the screen. There were 33 skip-responses for the full 

questionnaire, 7 for the between- and 5 for the within-block design. These responses start only 

after the first twelve questions and mostly occur in the last half of the questionnaires. This 
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indicates that the use of split questionnaires may substantially reduce item non-response. Second, 

the effect of the questionnaire design on the average item variances and Cronbach’s alpha were 

investigated. The questionnaire consists of 13 constructs that are each measured with several 

items. There were no statistically significant differences in the average Cronbach’s alpha, 

estimated after multiple imputation of the missing data of the between- and within-block split 

questionnaire designs. But, we did find significant differences in item variances between the full 

and split-questionnaire designs. The differences between between-block and within-block 

designs are not significant. The average item variance for the full questionnaire is 3.34, which is 

significantly higher that for the between-block design, with 2.36, and the within-block design, 

2.30. This means that subjects who answered the questions in the within-block or between-block 

design responded to the items that measure the same construct more consistently. Thus, the 

quality of the data we obtained from the between-and within-block split questionnaire designs 

tend to be better than that of the full questionnaire. Again, we note that with a maximum average 

completion time of eight minutes the complete questionnaire is relatively short. For longer 

questionnaires the effects may be even larger.        

  

CONCLUSION 

Split questionnaires present opportunities for application in consumer panels, offering the 

potential to obtain higher quality information from respondents faster and at a substantially lower 

cost. This paper first proposes a methodology to split questionnaires optimally into sub-

components at minimal information loss, by applying optimal experimental design methods. We 

proposed the Kullback-Leibler Distance as a design criterion, applied the Modified Federov 

algorithm to search over the design space, and illustrated that good designs can be constructed 
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rapidly in spite of the demanding task. Split questionnaire designs were shown to have desirable 

statistical and behavioral properties, relative to complete questionnaires or questionnaires 

constructed with ad-hoc methods. 

We have investigated two different types of split questionnaire designs based on the 

contextual placement of questions in blocks. The first method, producing between-block designs, 

places blocks as a whole into different split-versions of the questionnaire. Optimizing the 

allocation of the blocks across the splits is a much more feasible task than allocating individual 

questions to splits. Additional constraints, such as on the number of blocks per split, can easily 

be accommodated and may further reduce the number of questions asked from each respondent. 

Between-block designs result in estimates close to those obtained from the complete data and 

reduce completion time and respondent fatigue. The second method, producing within-block 

designs, is based on choosing questions in each block. For these designs, the optimization task is 

very demanding, so that we needed to use a greedy algorithm to find the optimal design. As a 

consequence, the within-block designs are not strictly optimal nor can they easily be constructed 

to be fully identified. But, they do provide improved efficiency, yielding parameter estimates that 

are closer to the complete data estimates and less missing information than designs constructed 

with heuristic procedures. Their performance in terms of parameter estimates and missing 

information tends to be better than that of the between-block designs, but they are substantially 

more sensitive to the values of the prior estimates.  

Our field study shows that the behavioral reaction of respondents to split questionnaires 

is more favorable than to the complete questionnaire, in terms of duration, boredom, and fatigue 

amongst others. The response to within-block designs tends to be more positive than that to a 

between-block design, since respondents feel less bored, and think that the questionnaire is less 
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long, boring and repetitive. The between-block design, however, results in less respondent 

fatigue. The choice between the within-block and between-block designs may therefore be based 

on either statistical or behavioral criteria. From our investigation, it appears that the between-

block design has better statistical properties, since it is feasible to construct fully identified 

designs with little sensitivity to the prior estimates.  However, the within-block design still 

performs quite satisfactorily, yields parameter estimates comparable to constrained between-

block designs, and elicits a more positive reaction form respondents. However, the high 

sensitivity of these designs to prior estimates warrants further study.   

The validity of the prior knowledge to construct the split-questionnaire design is an 

important issue. Whereas prior knowledge can be easily obtained in panel or tracking surveys 

conducted on a regular basis with almost identical questions and blocks, it may be less easy to 

obtain in other settings.  In those cases subjective prior distributions for the model parameters 

can be assessed, which in many cases would involve the elicitation of priors from consumers, 

decision makers or other subject-matter experts. Chaloner (1996) provides an overview of the 

various approaches to elicitation based on the ways people think about and update probabilistic 

statements. It is of interest to consider prior uncertainty on the parameters in constructing the 

designs, and to construct designs integrating the design criterion over the prior distribution of the 

parameters (Sandor and Wedel 2001). This may in particular be worthwhile for within-block 

designs, which were revealed to have high sensitivity to the prior specification. For between-

block designs, in particular in panel data applications such as the one presented above, this may 

not be needed, since the prior parameter values can be fairly precisely estimated from the 

available pilot data, and the designs themselves were shown to be quite insensitive to the prior 

parameter values. We leave these issues for future research.            
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APPENDIX A: KL-DISTANCE FOR MIXED DATA 

The incomplete data log-likelihood of mixed data is derived below using the general location 

model (Olkin and Tate1961; Krzanowski 1975). We have data matrix YN×(p+q)=(X,Z), where 

X=(X1,.., Xp)′ and Z=(Z1,…,Zq) represent the continuous and categorical variables, respectively. 

Each column variable in Z, zj has cj levels, and these categorical variables form a q-dimensional 

contingency table with a total number of cells ∏=
q

j
jcC . The frequencies in this table are 

contained in W = (
q21 ccc w,........w,w ). The marginal distribution of the categorical variable Z is 

multinomial( ),.....,(|w c21 ′πππ=π ~multinomial (π) with ∑
=

=π
C

1i
i 1 ) and the conditional 

distribution of the continuous variables (X) given categorical variables (Z) (i.e. given a particular 

cell) is multivariate normal with different means across the cells defined by the categorical 

variables, but with a common covariance matrix ( ),(N~,,wZ|X ii ΣµΣµ= , where µi is the 

mean of X in the cell specified by z, and Σ is the common conditional covariance of X across 

cells of the contingency table). The KL-distance in this case reduces to the incomplete-data log-

likelihood: 
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Table 1 

CANDIDATE SPLIT SET FOR A FIVE BLOCK BETWEEN-BLOCK DESIGN  

  Block 1 Block 2 Block 3 Block 4 Block 5 
NS Q1-4 Q5-8 Q9-12 Q13-16 Q17-20 

1 0 0 0 0 0 
2 1 0 0 0 0 
3 0 1 0 0 0 
4 0 0 1 0 0 
5 0 0 0 1 0 
6 0 0 0 0 1 
7 1 1 0 0 0 
8 1 0 1 0 0 
9 0 1 1 0 0 
10 1 1 1 0 0 
11 1 0 0 1 0 
12 0 1 0 1 0 
13 1 1 0 1 0 
14 0 0 1 1 0 
15 1 0 1 1 0 
16 0 1 1 1 0 
17 1 1 1 1 0 
18 1 0 0 0 1 
19 0 1 0 0 1 
20 1 1 0 0 1 
21 0 0 1 0 1 
22 1 0 1 0 1 
23 0 1 1 0 1 
24 1 1 1 0 1 
25 0 0 0 1 1 
26 1 0 0 1 1 
27 0 1 0 1 1 
28 1 1 0 1 1 
29 0 0 1 1 1 
30 1 0 1 1 1 
31 0 1 1 1 1 
32 1 1 1 1 1 

                   Note: The size of the restricted split is 26 by excluding the splits with indices 1 to 6.
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Table 2 

PERFORMANCE OF THE MODIFIED-FEDEROV ALGORITHM 

K # of Possible 
designs (ND) 

Complete 
Enumeration (sec.) 

Modified Federov 
Algorithm (sec.)1 

5 splits 65780 260  20 
10 splits 5311735 10456  50  
15 splits 7726160 13343  78 

      1 The modified Federov Algorithm results are based on 1000 random starts. 
 
 

Table 3 
 SIMULATION RESULTS FOR BETWEEN-BLOCK DESIGNS 

Design Unconstrained Constrained Unconstrained Constrained 
  10 Splits   10 Splits   5 Splits   5 Splits   
 Measure SQDa MSD SQD MSD SQD MSD SQD MSD 

MAD 3.143 3.730 2.471 2.773 2.817 3.210 3.001 3.102 
RMSE 3.454 4.283 2.753 3.252 3.288 3.764 3.514 3.701 

γb         0.243 0.317 0.217 0.284 0.269 0.306 0.294 0.304 
% Missing 0.600 0.600 0.500 0.500 0.533 0.533 0.500 0.500 

BIC 5232 7193 8777 8989 4570 8170 8764 8796 
logL(D) -2608 -3589 -4380 -4486 -2277 -4077 -4374 -4390 

a SQD = Optimal Split Questionnaire Design, MSD= Matrix Sampling Design 
b γ is the fraction of missing information. 
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Table 4 

COMPARISON OF DESIGNS ON EMPIRICAL DATA 

      
BETWEEN-BLOCK DESIGNS 
      

  Unconst.  Const.   Unconst.  Constr.   

  10 Splits   
10 Splits-
5Blocks/Split 5 Splits   

5 Splits-5 
Blocks/Split 

  SQD MSD SQD MSD SQD MSD SQD MSD 

MAD 0.265 0.483 0.169 0.197 0.180 0.277 0.148 0.159 
RMSE 0.378 0.682 0.240 0.319 0.262 0.399 0.203 0.215 

γ 0.143 0.182 0.074 0.134 0.140 0.170 0.089 0.109 

%Missing 0.735 0.735 0.492 0.492 0.662 0.662 0.440 0.440 

BIC 18410 30298 57284 57655 15070 38740 64489 64675 
logL(D) -9195 -15139 -28631 -28817 -7525 -19360 -32234 -32327 

      
WITHIN-BLOCK DESIGNS 
       

    10 splits    5 splits     
  SQD RQD PCA   SQD RQD PCA   

MAD 0.156 0.163 0.164  0.125 0.125 0.129   
RMSE 0.227 0.243 0.251  0.201 0.211 0.216   

γ 0.078 0.087 0.084  0.056 0.060 0.058   
%Missing 0.515 0.515 0.515  0.406 0.406 0.406   

BIC 44134 45186 45085  54890 55126 54979   
logL(D) -22056 -22582 -22532   -27434 -27552 -27479   

a SQD = optimal Split Questionnaire Design, MSD= Matrix Sampling Design, RQD = Random 

Questionnaire Design, PCA = Principal Components Design   
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Table 5 

VARIANCE ESTIMATES AFTER IMPUTATION1  

  Full Full Between Within   Full Full Between Within 
  Wave Wave Con. Unc.   Wave Wave Con. Unc. 
  1 2 SQD SQD SQD    1 2 SQD SQD SQD 
1 2.29 2.27 2.27 2.16 2.36  34 3.19 3.09 3.45 3.47 3.64 
2 2.56 2.38 2.38 2.34 2.54  35 3.41 3.51 3.96 3.95 4.29 
3 1.92 2.22 2.22 2.16 2.20  36 2.17 1.78 1.88 1.88 1.84 
4 1.96 2.13 2.13 2.14 2.08  37 1.96 1.89 2.14 2.07 1.98 
5 2.33 2.15 2.15 2.19 2.41  38 2.49 2.47 2.76 3.03 2.58 
6 4.35 4.14 4.66 5.02 4.33  39 1.87 1.84 2.06 1.92 1.88 
7 2.63 2.36 2.50 2.74 2.34  40 2.04 2.29 2.65 2.07 2.49 
8 2.82 2.81 3.02 2.97 3.17  41 2.80 2.79 2.93 4.54 3.16 
9 2.29 2.52 2.79 2.49 2.76  42 3.85 4.00 4.45 5.19 3.95 
10 1.69 1.89 1.98 1.98 2.19  43 2.90 2.89 3.12 3.97 3.08 
11 3.08 3.11 3.30 4.01 3.13  44 4.59 4.34 4.85 7.28 4.41 
12 2.42 2.51 2.74 2.72 2.88  45 4.13 4.04 4.66 4.97 3.96 
13 2.69 2.28 2.71 2.71 2.32  46 2.95 2.92 3.37 4.76 3.02 
14 1.86 2.18 2.18 2.31 2.24  47 3.04 3.20 3.75 4.52 3.52 
15 3.77 3.62 3.72 3.87 4.03  48 4.87 4.60 5.64 6.23 4.66 
16 4.31 3.87 4.05 3.91 4.08  49 4.86 4.66 4.77 6.09 4.70 
17 5.48 4.62 4.74 4.66 5.21  50 3.77 3.96 4.66 5.84 4.51 
18 3.25 3.54 3.60 3.67 3.59  51 3.05 3.05 3.11 3.49 3.19 
19 4.97 4.62 5.25 5.23 5.03  52 2.13 2.22 2.52 2.96 2.25 
20 4.79 4.86 5.29 5.63 6.46  53 5.38 5.48 5.85 7.17 5.50 
21 3.08 2.91 3.08 3.55 3.06  54 4.89 4.59 5.19 6.51 5.00 
22 2.87 2.90 3.07 2.99 3.24  55 3.19 3.47 4.25 5.62 3.44 
23 3.06 3.43 3.59 4.09 3.61  56 5.03 4.67 5.19 7.20 4.79 
24 5.22 5.36 6.07 6.03 5.75  57 2.94 3.12 3.44 4.03 3.29 
25 2.27 2.04 2.28 2.53 2.28  58 2.93 2.77 2.99 3.78 2.94 
26 4.40 4.08 4.30 4.53 4.40  59 3.52 3.60 3.81 5.00 3.58 
27 5.33 5.49 5.97 6.34 5.49  60 6.78 6.74 7.07 7.81 6.91 
28 3.66 4.20 4.59 5.24 4.35  61 4.54 4.68 4.87 5.26 4.75 
29 2.76 2.96 3.08 3.20 3.02  62 5.21 5.23 5.37 5.97 5.56 
30 4.83 4.87 5.42 6.04 5.10  63 1.07 1.12 1.19 1.23 1.27 
31 3.45 3.88 4.59 5.37 3.97  64 1.66 1.84 1.85 1.95 1.93 
32 4.12 4.25 4.65 5.51 4.64  65 0.56 0.53 0.55 0.60 0.52 
33 1.43 1.41 1.71 1.61 1.60        
1 From the full questionnaire from the first and second wave survey, the constrained and unconstrained 

between- and within ten-split optimal designs  
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Table 6 

ITEM MEANS AND SD’S FROM THE FIELD EXPERIMENT  

  
FULL 

QUESTIONNAIRE   
BETWEEN-

BLOCK SQD   
WITHIN-

BLOCK SQD 

Duration 476.92  344.48a1  364.02b1 

 (95.01)  (146.552)  (93.57) 
Boredom 5.44  5.23  4.98b1 

 (2.09)  (1.95)  (2.00) 
Fatigue 4.32  3.57a2  3.73 

 (2.55)  (2.27)  (2.02) 
Repetitive  5.68  5.32c1  4.70b1c1 

 (1.37)  (1.22)  (1.78) 
Long  3.68  3.54  3.13b1 

 (1.54)  (1.56)  (1.25) 
Boring  4.94  4.77c1  4.42b1c1 

 (1.28)  (1.11)  (1.25) 
Cronbach's alpha 0.66   0.66   0.67 
      
Item Variance 3.34   2.36a1   2.30b1 

            
 

Notes: The values in parenthesis are standard deviations. N=189. Duration mean values are in 
seconds. Superscripts indicate the significance of the differences between means of the full & 
between- (a), full & within- (b) and between- & within- (c) block questionnaires; 1 p=0.05 , 2 
p=0.10 
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Figure 1 

OPTIMAL UNCONSTRAINED BETWEEN-BLOCK DESIGNS  

FOR THE EMPIRICAL DATA 

THE OPTIMAL 10-SPLIT UNCONSTRAINED BETWEEN-BLOCK SQD  

 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 
Resp.No.  Q1-5 Q6-13 Q14-18 Q19-25 Q26-31 Q32-40 Q41-50 Q51-59 Q60-65 

1-115                   
116-230                   
231-345                   
346-460                   
461-575                   
576-690                   
691-805                   
806-920                   
921-1035                   

1036-1150                   
 

THE OPTIMAL 5-SPLIT UNCONSTRAINED BETWEEN-BLOCK SQD 

 Block 1 Block 2 Block 3 Block 4 Block 5 
Block 
6 

Block 
7 

Block 
8 

Block 
9 

Resp.No.  Q1-5 Q6-13 Q14-18 Q19-25 Q26-31 Q32-40 Q41-50 Q51-59 Q60-65 
1-230                   

231-460                   
461-690                   
691-920                   

921-1150                   
 

Note: shaded are observed, blank are missing blocks. 
Note: Description of Blocks: 
Block 1: Five questions about the role of the Web in life. 
Block 2: Eight questions about the feeling while using the Web  
Block 3: Five questions related to the Web activities feeling while using the Web 
Block 4: Seven questions about and perceptions on using the Web  
Block 5: Seven questions about attitudes and perceptions on using the Web 
Block 6: Eight questions about people feelings towards using the Web 
Block 7: Ten questions on attitudes and perceptions 
Block 8: Nine questions about attitudes and perceptions on using the Web   
Block 9: Six questions about flow and usage of the web.   
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Figure 2 

THE OPTIMAL CONSTRAINED BETWEEN-BLOCK DESIGNS  

FOR THE EMPIRICAL DATA 

 
THE OPTIMAL 10-SPLIT 5-BLOCK BETWEEN-BLOCK SQD  

 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 
Resp.No.  Q1-5 Q6-13 Q14-18 Q19-25 Q26-31 Q32-40 Q41-50 Q51-59 Q60-65 

1-115                   
116-230                   
231-345                   
346-460                   
461-575                   
576-690                   
691-805                   
806-920                   
921-1035                   

1036-1150                   
 

THE OPTIMAL 10-SPLIT 5-BLOCK BETWEEN-BLOCK SQD  

 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 
Resp.No.  Q1-5 Q6-13 Q14-18 Q19-25 Q26-31 Q32-40 Q41-50 Q51-59 Q60-65 

1-230                   
231-460                   
461-690                   
691-920                   
921-1150                   

 

Note: shaded are observed, blank are missing blocks. 
Note: Description of Blocks: 
Block 1: Five questions about the role of the Web in life. 
Block 2: Eight questions about the feeling while using the Web  
Block 3: Five questions related to the Web activities feeling while using the Web 
Block 4: Seven questions about and perceptions on using the Web  
Block 5: Seven questions about attitudes and perceptions on using the Web 
Block 6: Eight questions about people feelings towards using the Web 
Block 7: Ten questions on attitudes and perceptions 
Block 8: Nine questions about attitudes and perceptions on using the Web   
Block 9: Six questions about flow and usage of the web. 
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Figure 3 

THE OPTIMAL WITHIN-BLOCK DESIGNS FOR THE EMPIRICAL DATA 

THE OPTIMAL 10-SPLIT WITHIN-BLOCK SQD 

Bl. 1 Bl. 2 Bl. 3 Bl. 4 Bl. 5 Bl. 6 Bl. 7 Bl. 8 Bl. 9 
Q1-5 Q6-13 Q14-18 Q19-25 Q26-31 Q32-40 Q41-50 Q51-59 Q60-65 

00110  00000101 00101  1100000  0011101  00011111 0110001100 011111100  111010 
11111  11111111 11111  1000100  1101010  01000010 0011100100 111000111  011111 
00011  10000001 10100  1010000  0101010  00010001 1100110100 011011111  100010 
10010  01000100 01001  0100001  0111110  11011110 0111110010 100111001  110010 
10100  01010000 00111  1000001  1001001  10101100 1110111010 110011010  010011 
01100  10010000 00011  0010010  1101110  10010010 0100011110 010111011  001101 
00101  00101000 11000  1000010  1110101  00011100 1001111101 001011001  110101 
11000  10010000 10010  0010001  1100110  01011110 1011011011 110011101  010001 
01001  01000100 00110  0011000  0010011  11100011 1110010111 011000001  110111 
10001  00110000 10001 0001001  0111100  10110111 0000000011 101011010  110011 

 

 

THE OPTIMAL 5-SPLIT WITHIN-BLOCK SQD 

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 
Q1-5 Q6-13 Q14-18 Q19-25 Q26-31 Q32-40 Q41-50 Q51-59 Q60-65 

00110  01101101 00110  1010110 1111111 01100100 1110011101 000101010 101011  
10010  10000101 11111  0101100 1101110 11110111 0000110011 011111101 011101  
11111  00100011 01110  1011110 1101100 11011000 0111101011 111111111 100111  
10100  01001111 00011  1101001 1001101 11101111 1101101110 100001101 110010  
00101  11111111 10001  0110111 0101010 11001010 0001011001 000111000 001011  

 

 

 

 

 

 

 




