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Abstract

In theory, combinatorial auctions can provide significant benefits in many real-world

applications, such as truckload procurement. In practice, however, the use of such auc-

tions has been greatly limited by the need for bidders to bid on an exponential number

of bundles and for the auctioneer to solve an exponentially large winner-determination

problem. We address these challenges for VCG combinatorial procurement auctions in

which a bidder’s cost for each bundle is determined by a cost function with an amenable

structure. For example, the cost to a trucking company of servicing a bundle of loads

is based on the least-cost set of tours covering all of these loads, which can be found by

solving a simple minimum cost flow problem. Leveraging the fact that true-cost bid-

ding is a dominant strategy in VCG auctions, we suggest that the bidders’ challenges

can be overcome by specifying this true-cost function explicitly as a bid, rather than

computing and communicating each bid individually. Moreover, we propose to embed

this true-cost function directly within the winner-determination problem, using the

strength of mathematical programming to solve this problem without ever explicitly

enumerating the bids. The research challenge is then to identify this cost function,

and formulate and solve the corresponding winner-determination problem. We focus

primarily on how this can be done for the truckload procurement problem, outline a

more general framework for the approach, and identify a number of other promising

applications.

Keywords: Combinatorial Auction; Procurement; Mathematical Programming; Truthful

Bidding
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1 Introduction

The average U.S. manufacturer spends 60% of its revenue to procure goods and services

(Bureau of the Census 2005). Internet auctions are increasingly used as a procurement

method, enabling faster negotiations with broader sets of potential suppliers. Auctions can

also be used to execute complex negotiations which would be impossible with traditional

methods. Often such auctions are combinatorial in nature, enabling suppliers to express

economies of scale and scope via their bids and preferences.

Combinatorial auctions have been successfully used in practice for billions of dollars worth

of transactions. Perhaps the most famous is the series of Federal Communications Commis-

sion auctions (Cramton 1997, 2002, Binmore and Klemperer 2002, Klemperer 2002). Other

applications of combinatorial auctions include transportation services (at Sears Logistics, as

documented by Ledyard et al. (2002)), airline landing slots at airports (Rassenti et al. 1982),

operations procurement at GE (General Electric Corporation 2001), and strategic sourcing

at Procter & Gamble (Sandholm et al. 2006). Truckload procurement has been among the

most popular applications of such combinatorial auctions (Caplice and Sheffi 2006, Song and

Regan 2003, Sandholm et al. 2006).

Nevertheless, two major hurdles prevent the full realization of the benefits of combina-

torial auctions. The first is communication-based: To completely express economies of scale

and scope among all items being auctioned, bidders must construct and submit bids on

an exponential number of subsets of items (called bundles). For example, in a truckload

procurement auction, hundreds or thousands of loads are auctioned simultaneously, which

results in a huge number of possible combinations of loads to be considered. The second

hurdle is computational: The auctioneer must solve a winner determination problem over

the corresponding exponential number of bids, which in general is highly intractable. The

implications of this are pointed out, for instance, by de Vries and Vohra (2003) and Pekec

and Rothkopf (2003). Although there has been much recent research into the amelioration

of these challenges, which we survey in §2, they continue to present a significant obstacle to

the practical use of combinatorial auctions.

Both hurdles stem from an underlying assumption that all bids must be explicitly enu-

merated and communicated, which is true in the most general case Nisan and Segal (2006),

for example, in which costs are exogenously endowed. However, in many situations the bids

themselves can naturally be seen to arise from some clearly defined function. In this paper

we suggest that rather than enumerating the specific bid for each of the exponentially many

bundles, the bidder instead simply communicate the bid-generating function to the auction-

eer. This addresses the bidder’s hurdle. The auctioneer, on the other hand, is still potentially

burdened with the task of computing all bids and solving the resulting exponentially large

winner determination problem. Our second insight is that the auctioneer can embed the bid-

generating function directly into the winner determination problem. The resulting auction
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is outcome-equivalent to the explicitly enumerative auction, and under certain conditions

permits solution which under the explicitly enumerative auction would be intractable.

Surprisingly little work takes advantage of a bid-generating function explicitly in both

communicating bids and solving the winner determination problem. One exception we are

aware of is Hobbs et al. (2000), who explicitly use the cost function in bidding in an en-

ergy market auction, but do not directly address how the winner determination problem is

solved. (We review related combinatorial auctions literature in the next section.) Most work

to tackle the hurdles described above use iterative auction or bidding language approaches,

which both generally take specific bids as primitives and seek to communicate them to the

auctioneer. In contrast, we bypass communicating specific bids and take the bid-generating

function as the primitive. Iterative auctions can be shown in some settings to converge

to optimality without requiring bidders to bid exhaustively on all bundles (Sandholm and

Boutilier 2006), and results such as polynomial communications for bidding languages can be

shown for specific preference structures (Nisan 2006). Boutilier (2002) empirically demon-

strated that the winner determination problem can be solved much faster using a logic-based

bidding language which concisely expresses the bidders’ underlying bid structure, compared

to solving the auction when all combinatorial bids are explicitly specified. Similarly, our ap-

proach is most appropriate if the bid-generating functions can be succinctly communicated

to the auctioneer and the winner determination problem which embeds these functions is

tractable. In general, no known solution to the hurdles described above applies for all possi-

ble problem types and bidder preference structures (Nisan and Segal (2006) proved that with

a fully general preference structure, it is impossible to find the optimal allocation without

exponential communication in the worst case). However, in this paper we show that a rich

and important group of real-world problems can be tackled using mathematical program-

ming techniques to formulate and solve the bid-generating function and the corresponding

winner determination problem.

For instance, consider the truckload procurement problem: An auctioneer wishes to

procure truckload services to transport a set of loads, each load consisting of a full truckload

and specified by an origin and a destination. In this case, the cost to a trucking company of

serving a bundle of loads is based on the least-cost set of tours covering all of these loads,

in recognition of the fact that drivers must ultimately return to their home bases. This cost

can be computed using a simple minimum cost flow problem, which constitutes the cost-

generating function. If the auctioneer conducts a VCG auction (the auction mechanism that

is the focus of this paper, described in detail in §2.1), then the cost-generating function is

in fact the bid-generating function, because truthful bidding is a dominant strategy in VCG

auctions. Therefore, in our proposed methodology, the bidders would simply transmit the

parameters of these bid-generating functions (i.e., the parameters of the minimum cost flow

problems of each bidder), rather than explicitly listing their bids for each possible bundle of
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loads, which would be the case in a canonical VCG combinatorial auction. Resultantly, the

auctioneer’s problem is simply a multicommodity flow problem, rather than a set partitioning

problem.

1.1 Our Contributions: Embedding Bid-generating Functions in

Combinatorial Auctions

Our main contribution is to identify the benefits of using bid-generating functions directly

within the bidding and winner determination of VCG combinatorial auctions. In particular,

our methodology leverages application-specific structures within a mathematical program-

ming framework to tractably achieve auction outcomes equivalent to a fully-enumerated

combinatorial auction. In this paper, we

• introduce the notion of bidding via bid-generating functions (rather than computing

and enumerating an exponential number of explicit bids) and, more importantly, em-

bedding the bid-generating function itself (rather than the specific bids) directly into

the mathematical programming formulation of the winner-determination problem; and

• explore in detail the application of this idea in truckload procurement auctions, pro-

viding a framework for bidding and winner determination in this context.

In addition, we prove that this approach is outcome-equivalent to a VCG auction in which

all bids are explicitly enumerated; we identify a number of other real-world applications for

which the underlying bid-generating function may enable a similar approach; and we outline

several new areas of research that stem from the fundamental ideas presented here.

1.2 Paper Outline

We begin with a review of the related literature in the next section. In §2.1, we provide a

brief primer into VCG auctions, which is the auction mechanism used in this paper. Our

exploration of truckload procurement auctions appears in §3. We subsequently generalize our

methodology in §4. In §5, we discuss a few other application areas and how our methodology

may be applied in these areas. We conclude in §6 with a brief discussion of our work as well

as the future research questions it generates.

2 Literature Review

Auctions have been used for millennia to leverage competition and find market clearing

prices; the reader interested in general auction theory is referred to a recent text by Krishna
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(2002). In this paper, our focus is on combinatorial procurement auctions. Combinatorial

auctions were surveyed by de Vries and Vohra (2003) as well as Pekec and Rothkopf (2003),

while a recent book edited by Cramton et al. (2006) provides a comprehensive examination

of the theory and applications of combinatorial auctions in various domains.

Applications of combinatorial auctions in practice are diverse, as mentioned in the sec-

ond paragraph of §1. These applications have spawned long-term contracts for truckload

shipments (Caplice and Sheffi 2006, Sheffi 2004, Song and Regan 2003), airline landing slot

allocation (Ball et al. 2006, Rassenti et al. 1982), wireless spectra (McMillan 1994, Cramton

1997, 2002, Binmore and Klemperer 2002), material sourcing at consumer-goods companies

(Sandholm et al. 2006), and even school lunch programs (Epstein et al. 2002). These appli-

cations have spawned an entire industry specializing in combinatorial auctions, with some of

the bigger names being CombineNet and Manhattan Associates. This area is also related to

“smart markets”, as studied by McCabe et al. (1991), and the more general field of electronic

markets (Anandalingam et al. 2005, Wu and Kleindorfer 2005).

In this paper, we focus on procurement (or reverse) auctions. While in theory procure-

ment auctions are identical to the forward auctions where items are sold, they nonetheless

hold specific contextual challenges and have received a great deal of attention. In addition to

the procurement papers mentioned earlier, for example, Chen et al. (2005) study multi-unit

auctions for supply chains, Che (1993) studies multi-dimensional auctions, and Hohner et al.

(2003) study the combinatorial auctions for strategic goods conducted by Mars, Inc.

Despite the widespread use of combinatorial auctions, the problems we alluded to earlier

due to the combinatorial explosion in the number of bundles remain. A number of approaches

have been suggested in the literature to tackle this issue. One stream of research restricts the

bidding language, so that bidders may only bid on a subset of the potential bundles (Nisan

2000). An example of this is the XOR-of-OR bidding language, which was used by the FCC in

their 2000 spectrum auction (Günlük et al. 2005). Another approach is preference elicitation,

where the auctioneer proactively asks bidders to submit bids for specific bundles, with the

aim of quickly uncovering a “good” set of bundles (Sandholm and Boutilier 2006). Many

auction mechanisms (including the ones cited above) for combinatorial auctions are iterative,

where bidders submit bids in multiple rounds. Since bidders submit only a small number of

bids in each round, the combinatorial explosion can be overcome in those cases where the

iterations converge. Parkes (2006) is a recent survey of iterative combinatorial auctions, with

some other work including that of Kwon et al. (2005) and Ausubel et al. (2006); in fact, the

FCC auctions are typically such iterative auctions (Cramton 1997, Federal Communications

Commission 2006).

When iterative auctions are used to reduce the number of bundles considered in each

round, the auctioneer still must solve a set partitioning problem in each round in order

to determine the optimal allocation. Among others, Rothkopf et al. (1998), Bichler and
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Kalagnanam (2005), Günlük et al. (2005), Sandholm et al. (2005), have presented heuristics

and algorithms to solve these set-partitioning problems efficiently in specific applications.

Müller (2006) and de Vries and Vohra (2003) explore how the structure of the bid matrix

may in some cases result in winner determination problems which are very tractable set-

partitioning problems.

Virtually all of this research is premised on the assumption that bidders are exogenously

endowed with the valuation of each bundle – that is, there is little if any attention paid to

the question of how bidders compute their bids. It is simply assumed that the values of

the bids exist. The motivation for our research stems from the fact that there is often a

clearly-defined structure underlying this determination. For example, a trucking company

can determine their cost for carrying a bundle of loads by constructing the least-cost set of

continuous moves that cover all of these loads (this can be found by solving a straightforward

minimum cost flow problem). This cost is then the value that the trucking company would

bid in a VCG auction (in other types of auctions, this would be adjusted – for example, in a

first-price auction a markup would be added). Thus, our research focuses on understanding

and exploiting this underlying cost-generating function which bidders use to determine their

lowest cost associated with winning a bundle of items.

The idea of transmitting more information which helps the auctioneer figure out the

price of bundles for the bidders is not new. Sandholm (2002) and de Vries and Vohra (2003)

suggest an “oracle” model, where the auctioneer has access to an oracle which can reveal or

compute bidders’ costs on demand. More recently, Sandholm et al. (2006) demonstrate the

real-life use of “expressive bidding”, wherein bidders are allowed to provide more information

which actually enables the auctioneer to construct bids by changing some attributes of the

bid. The only work we are aware of that directly transmits the cost-structure in place of the

bid is by Hobbs et al. (2000) in the context of energy auctions, although they do not directly

address how the winner determination problem is solved. Boutilier (2002) uses a bidding

language comprised of logical clauses, and shows empirically that the winner determination

problem can be solved much faster than in a canonical combinatorial auction if the bidders’

costs are amenable to being expressed using a small set of such clauses. Our work takes this

line of research to its logical conclusion: the bidder should submit their entire cost structure,

so that the auctioneer can implicitly construct bids when solving the winner determination

problem.

We note that this idea cannot extend to all possible combinatorial auctions. The land-

mark work of Nisan and Segal (2006) shows that for general combinatorial auctions, in the

worst case, an exponential number of bids must be transmitted if the optimal allocation is

to be computed exactly (in the simplest example, if valuations were random). The difference

is that in several real-world examples (such as the trucking example), the cost of a bundle

is not arbitrary, and in fact stems from an underlying cost-generating function. Therefore
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the communication bound of Nisan and Segal (2006) does not apply to our work; conversely,

our approach cannot be extended to any general combinatorial auction. Indeed, one of the

main avenues of research opened by our work is the identification and formulation of special

cases where our approach does work.

2.1 VCG Auctions

In this paper, we focus primarily on VCG mechanisms (Vickrey 1961, Clarke 1971, Groves

1973). We briefly describe them here, although the reader familiar with VCG auctions

may skip to §3. For the single-item case, this mechanism is the familiar sealed-bid second

price auction, wherein the buyer procures the object from the lowest bidder but pays the

second-lowest bid. Such auctions are elegant and commonly studied because it is a dominant

strategy for bidders to reveal their true cost – overbidding does not increase the winner’s

payment but decreases the likelihood of being awarded the item, whereas underbidding can

lead to being awarded the item with a payment less than the cost to provide it. This

truthful-bidding property eliminates the need for modeling strategic, competitive behaviors

and greatly simplifies analysis.

The single-item VCG mechanism extends in a fairly straightforward manner to a combi-

natorial auction. In a combinatorial VCG auction, the payments are determined as follows.

Suppose after the bidders have submitted their bids, we determine the optimal allocation,

which costs z∗. This cost is obtained by summing over all bidders the costs of all bundles

allocated to them. In this sum, suppose z∗i is the cost incurred by bidder i. Bidder i there-

fore must be paid at least z∗i , but also ought to be paid a premium (since if they always are

only paid their cost, they might as well not participate in the auction). This premium is

calculated as follows. All of bidder i’s bids are removed from the data, but all bids by the

other bidders are retained. The new optimal solution is computed, and let z∗−i denote its

cost. Clearly z∗−i ≥ z∗; this increase (z∗−i − z∗) is the premium awarded to bidder i. That is,

bidder i is paid a total of z∗i + (z∗−i − z∗). In effect, bidder i is paid their cost, along with a

premium equal to the additional cost that the auctioneer would have incurred had bidder i

been absent.

VCG auctions are well-studied for combinatorial auctions because they are incentive com-

patible and individually rational, i.e., they induce participants to reveal their true costs or

valuations for bundles (Krishna (2002), ch. 16). Furthermore, the VCG auction is economi-

cally efficient (maximizes overall surplus), and among all efficient auctions, it minimizes the

cost to the auctioneer (Krishna and Perry 1998) (under certain assumptions). The interested

reader is referred to Ausubel and Milgrom (2006) and Krishna (2002) for further information

about VCG auctions, their properties, and applicability for combinatorial auctions. VCG

auctions are also recognized to have practical limitations (Ausubel and Milgrom 2006); in

§4.4 we discuss privacy issues and in §4.5 we explore how bid-generating functions can be
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used in first-price or other combinatorial auction mechanisms.

3 Bid-generating Combinatorial Auctions for Truck-

load Procurement

In this section, we consider the problem of truckload procurement auctions as a way to

demonstrate the details of how our methodology could be applied to a real-world problem.

We initially present a simplified version of the truckload procurement auction, describing

its bid-generating function and formulating its winner determination problem. We contrast

this with the traditional, canonical implementation of the same problem, and demonstrate

the benefits to be gained by using the bid-generating function directly, instead of actually

enumerating the bids. We then outline enhancements to our initial formulation that would

enable the capturing of more complex operational considerations. Finally, we identify the

remaining questions and future research efforts that need to be addressed before the proposed

approach could actually be implemented in practice.

Freight transportation plays a critical role in the U.S. economy. The Bureau of Economic

Analysis (2005) reported over $300 billion in U.S. transportation expenditures in 2004. More

than eighty percent of the U.S. transportation costs are for trucking, with over half of this

made up of third party truckload carriers (Sheffi 2004). Given the importance of truckload

transportation, truckload procurement auctions have attracted substantial research interest

in recent years. Caplice and Sheffi (2006) provide a comprehensive exposition of the current

state-of-the-art for procurement auctions for trucking services. Other such studies include

those by Ledyard et al. (2002), Song and Regan (2003), Sheffi (2004), Sandholm et al. (2006)

and Figliozzi et al. (2003).

Truckload carriers move full loads (i.e. trailers) directly from origin to destination, some-

times according to long-term contracts and other times as contracted through a spot market.

The auction marketplace for single loads appears to be quite robust in practice (Internet

Truckstop 2006, Huff 2006), bringing improved efficiencies to both truckers and shippers.

When a single shipper has multiple loads to be covered, auctioning them simultaneously

provides added benefits because truckers can achieve economies of scope by combining loads

into tours that reduce empty mileage and therefore total cost. However, such combinatorial

auctions have had relatively limited success; although a number of factors play into this, one

of the most critical factors is the combinatorial burden associated with taking into account

these interactions between loads (Caplice and Sheffi 2006, Ledyard et al. 2002, Sheffi 2004).

For example, with only 20 loads, there are over a million combinations of loads for bidders

to consider in order to fully realize the economies of scope; real world auctions can contain

thousands of loads (Plummer 2003), resulting in a virtually infinite number of combinations.
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Table 1: Cost characteristics of 3 truckers.

Carrier Bid load cost for each load Estimated cost for each lane l ∈ L

i ∈ N mi
j , j = 1, 2, 3, 4; ($/mile) ei

jk, defined as:

1 110.00, 124.45, 110.00, 90.71; (1.1) $0.8 per mile

2 130.00, 147.08, 130.00, 107.20; (1.3) $1.0 per mile, except e2
11 = e2

12 = 59,

e2
21 = e2

22 = e2
41 = e2

42 = 98, e2
24 = e2

44 = 40

3 120.00, 135.76, 120.00, 98.95; (1.2) $0.9 per mile, except e3
23 = e3

43 = 12

In practice, it is often the case that combinatorial auctions are run where only some

subsets of loads are bid upon. Such auctions, however, are not guaranteed to capture the

full economies of scope. The goal of our research (motivated by our experience with a

large consumer goods manufacturer) is to address this challenge, and provide a methodology

whereby the full economic value of bundling loads is realized, by both truckers and shippers.

3.1 Problem Definition

We begin with a simplified model of truckload procurement auctions. A single shipper

conducts a procurement auction for a set of loads M that they require to be transported,

with each load specified by an origin and a destination. The carriers (trucking companies)

are the individual bidders in this auction, with the set of carriers denoted N and indexed by

i. Each carrier has two sets of information governing its cost structure. First, for every load

j ∈ M, carrier i knows the direct cost mi
j of moving load j from its origin to its destination,

capturing for example, fuel, driver wages, truck depreciation, tolls, etc. Second, for every

lane l ∈ L (here, L is the set of all lanes: i.e., movements from one location to another in the

network), each carrier has an estimated cost ei
l of repositioning the truck across lane l. On

one extreme, ei
l may be zero, reflecting an existing contracted load along lane l. At the other

extreme, ei
l may reflect the need to move empty across lane l. In general, ei

l may be anywhere

between these two extremes, capturing the carrier’s estimated potential for obtaining loads

along lane j, through other contracts or on the spot market (see Caplice (1996) for cost

models involving uncertain future loads, for example, based on random arrivals, dwell times,

etc.). Since lanes l ∈ L are only used for repositioning trucks from the destination of one

load to the origin of the other, we often represent the lane l by the pair (j, k) of loads with

load j’s destination at the origin of lane l and load k’s origin at the destination of lane l.

Likewise, often the ei
l is represented as ei

jk to reflect this fact.

As a running example which we use to illustrate current auction practice as well as our
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Node A (0,0) Node B (100,0)

Node C (80,80)

Node D (0,100)

Bid Load 1

Bid Load 2

Bid Load 3

Bid Load 4

Figure 1: Initial network for truckload services procurement (x, y co-ordinates of the cities

in parentheses).

proposed approach, consider the network of four cities in Figure 1. There are four loads up

for auction, indicated by the solid lines; this constitutes the set M. The cost structure of

each carrier is shown in Table 1. For the bid loads, each carrier’s cost mi
j is just their loaded

per-mile cost (1.1, 1.3 and 1.2 for the 3 carriers respectively) multiplied by the Euclidean

distance. For the backhauls (i.e. the links from the destination of one load to the origin of

another), the costs ei
jk are for the most part given by the empty per-mile cost (0.8, 1.0, and

0.9 for the three carriers respectively) multiplied by the distance. However, there are some

exceptions noted in the table. For instance, carrier 2 has a cost of only $59.00 (instead of

$0.80× 100=$80.00) from node D to node A, which could capture carrier 2’s estimate that

they have a fairly high chance of getting a future follow-on load along this lane on the spot

market. This is reflected in e2
11 and e2

12, since node D is the destination of load 1 and node

A is the origin of loads 1 and 2.

3.2 Canonical Combinatorial Auction (CCA) for Truckload Pro-

curement Auctions

In the literature (Caplice and Sheffi 2006, de Vries and Vohra 2003), this procurement auction

is run as follows. The shipper announces the set of loads M. Each bidder i then submits a

set of bids Si = {(si
1, p

i
1), (s

i
2, p

i
2), . . . , (s

i
|Si|, p

i
|Si|)}. Here si

k ⊆ M (i.e., one or more loads),

and pi
k ∈ R is the price bid by bidder i to service the bundle of loads si

k. Note that the

bidder may not (and in practice almost never) submits bids for all possible bundles of loads;

9



Table 2: Bids provided by 3 truckers.

Carrier Bundle of loads Bid

1 {1} 190.00

{2} 214.96

{3} 190.00

{4} 156.68

{2,3} 300.42

2 {1} 189.00

{2} 245.08

{3} 230.00

{4} 147.20

{1,3,4} 465.20

{1,2,3,4} 694.74

3 {1} 210.00

{2} 237.59

{3} 210.00

{4} 173.17

{2,3} 267.76

that is, |Si| may be strictly less than 2|M| − 1. The auctioneer (shipper) then solves the

following set-partitioning problem, where variable xi
k is set to 1 if bidder i is awarded the

bundle of loads si
k and 0 otherwise:

z∗(N ) = min
∑

i∈N

|Si|∑

k=1

pi
kx

i
k

subject to :
∑

i∈N

∑

k:m∈si

k

xi
k = 1 ∀m ∈ M

xk
i ∈ {0, 1} ∀i ∈ N , k ∈ {1, 2, . . . , |Si|}.

Each bidder i is then awarded the bundles for which xi
k = 1. Since we are considering

VCG auctions, pi
k is the true cost to serve bundle si

k, and the actual payment to each bidder

is given as follows. Let z∗i =
∑|Si|

k=1 pi
kx

i
k be the total cost of bids won by bidder i. Then

bidder i is paid z∗i + (z∗(N \ {i}) − z∗(N )).

In order to achieve the full benefits of CCA, each bidder must provide a bid for each

combination of loads. In the example shown in Figure 1, each of the 3 carriers must provide

15 bids, since the 4 bid-loads can be used to create 24 − 1 = 15 non-empty combinations.
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Node A (0,0) Node B (100,0)

Node C (80,80)

Node D (0,100)

Carrier 2:
Load 1
& back.

Carrier 2:
Load 4 & back.

Carrier 3:
Loads 2 & 3,
Empty from
node C to B.

Figure 2: Allocation determined by CCA.

In practice, in all but the smallest auctions, it is impossible to enumerate all 2|M| − 1 bids.

Instead, carriers submit only a partial list of loads and bundles that they are interested in.

In fact, Plummer (2003) reported that in a survey of 644 carriers, 72% of carriers only bid

on single lanes, and even among those who bid on bundles, most submitted between 2 and

7 bundle bids. As a result, the solution quality is compromised.

In our example, suppose the bids received were as in Table 2. As the example shows, the

bidders selectively provided bids for a small number of bundles. To determine the optimal

allocation (with respect to the set of bids submitted), we now solve (E −WDP ) using these

bids. The optimal solution is shown in Figure 2. Carrier 2 is awarded loads 1 and 4, with

backhauls incurred by the carrier for each of those loads. Carrier 3’s combination bid for

the bundle {2, 3} is also accepted, along with the associated backhaul from node C to node

B. The total cost is 603.97. The actual payments to carriers 2 and 3 are 336.20 and 267.76

respectively, resulting in a total cost to the auctioneer of 647.08. As we shall see in §3.4,

this is not the lowest cost solution, due to the fact that bidders did not submit bids on all

possible bundles. The lowest cost solution actually costs 621.20, which would have been

found had all bidders bid on all bundles.

Some attempts have been made to improve the quality of combinatorial auctions when

not all bids can be enumerated. For example, bidders may specify minimum and/or max-

imum volumes for either specific lanes or their entire contract. They may also use logical

combinations of bids; for example, specifying that they can serve “either load 1, or load 2
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but not both”, or “either load 3 or the combination of loads 4, 5 and 6”. Caplice and Sheffi

(2006) provide an excellent survey of combinatorial trucking auctions in practice. While the

bidding strategies discussed above (volume conditions, logical bids) allow bidders to express

some more information beyond listing a few bundles, they are not comprehensive either.

Therefore, the set of bids received by the auctioneer is still incomplete. Furthermore, even

if a fully enumerative set of bids could be communicated, the resulting exponentially large

set partitioning problem would be intractable.

3.3 Cost Computation by Carriers in Canonical Combinatorial

Auction

The defining question that motivates our approach is the following: For a given carrier i

and bundle si
k of loads, how does the carrier compute the cost of serving that bundle, pi

k?

In the related auctions literature (Krishna 2002, Cramton et al. 2006), these valuations are

considered “exogenously endowed”; that is, these numbers are available to the truckers from

some external source, and the question of how the truckers come up with these numbers is

not addressed.

Instead, we delve into the source of these costs pi
k. In practice, if a trucker is offered a set

of loads si
k and asked to quote a price for it, the trucker will evaluate how best that set of

loads can be served, given the trucker’s current cost and network structure. If the trucker’s

current cost and network structure is captured by the numbers {mi
j}j∈M and {ei

l}l∈L, the

trucker computes pi
k by solving the following optimization problem. Let xi

j be a parameter

that has value 1 if load j belongs to the given set of loads si
k and 0 otherwise. (This notation

ties-in with our formulation in §3.4.) Define variables yi
jh for j, h ∈ si

k, which takes value

1 if the carrier repositions from the destination of load j ∈ si
k to the origin of load h ∈ si

k

and 0 otherwise. The objective function (1) sums the cost of the loaded moves and the

connections between these moves. Constraints (2) and (3) state that for each bid load in the

set, connection arcs to and from this load must be chosen.
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pi
k =

∑

j∈si

k

mi
jx

i
j + min

∑

j∈si

k

∑

h∈si

k

ei
jhy

i
jh (1)

subject to xi
j −

∑

h∈si

k

yi
hj = 0 ∀j ∈ si

k (2)

xi
j −

∑

h∈si

k

yi
jh = 0 ∀j ∈ si

k (3)

yi
jh ∈ {0, 1} ∀j, h ∈ si

k. (4)

For example, consider once again the network displayed in Figure 1. Suppose bidder

3 wanted to construct a bid for the bundle of loads {2, 3}. The bidder would set up an

optimization problem as defined above, with appropriate values for m3 and e3, and the x3

vector set to (0, 1, 1, 0). The resulting solution sets y3
23 and y3

32 to 1 and all other y variables to

zero, indicating that the bidder should create a tour that covers load 3, followed immediately

by load 2, followed by a repositioning move from node C (the destination of load 2) to B (the

origin of load 3). This has a cost of 267.76, which would be bidder 3’s bid for the bundle

of loads {2, 3}, which is in fact the case in Table 2. Bidder 1’s bid for the same bundle of

loads, however, would be 300.42; this is higher despite bidder 1’s lower per-mile costs, since

bidder 1 does not have a cheap backhaul opportunity on the lane from node C to node B.

If the auction is conducted as defined in §3.2, each carrier would have to solve the above

problem to compute bid prices pi
k for each bundle of loads they are interested in. While there

are only 15 bundles in this example, the number of bundles grows exponentially with the

number of loads. Since real-life auctions often involve hundreds of lanes and thousands of

loads, constructing bids for all bundles is ruled out. In practice, carriers do such computations

for only a small number of bundles, and follow other strategies to convey bid information

(Plummer 2003), causing the inefficiencies to which we have alluded.

3.4 Bid-generating Combinatorial Auction (BCA) for Truckload

Procurement Auctions

The crux of our formulation is the following: instead of bidding pairs of bundles of loads and

prices, the bidder submits their cost function (mi, ei) to the auctioneer, where we use the

shorthands mi and ei to represent the vectors {mi
j}j∈M and {ei

l}l∈L respectively. Observe

that both these vectors are sub-exponential in size (the first size is the number of loads

available for bid, the second size is the number of load-pairs). The auctioneer then uses this
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information to construct the optimal allocation and determine the winners of the auction,

by solving the following problem. (This eliminates the need for the carrier to compute pi
k

for each possible bundle, but instead rolls in the computation of the bundle costs implicitly

into the auction.)

Our formulation has two sets of binary variables, extending the idea behind the formu-

lation (1)-(4). The parameter xi
j defined in §3.3 now becomes a variable which determines

whether load j is awarded to bidder i (xi
j = 1) or not (xi

j = 0). The variable yi
jk, as before,

takes the value 1 if carrier i repositions from the destination of load j to the origin of load

k and 0 otherwise, and is defined for j, k ∈ M (so that the pair (j, k) ∈ L). The integer

programming formulation now follows.

z∗(N ) = min
∑

i∈N

∑

j∈M

mi
jx

i
j +

∑

i∈N

∑

j∈M

∑

k∈M

ei
jky

i
jk (5)

subject to xi
j −

∑

k∈M

yi
kj = 0 ∀i ∈ N , j ∈ M (6)

xi
j −

∑

k∈M

yi
jk = 0 ∀i ∈ N , j ∈ M (7)

∑

i∈N

xi
j = 1 ∀j ∈ M (8)

xi
j ∈ {0, 1} ∀i ∈ N , j ∈ M (9)

yi
jk ∈ {0, 1} ∀i ∈ N , j, k ∈ M. (10)

In the formulation above, the constraints (8) ensure that each load up for bid is awarded

to a carrier. The constraints (6) and (7) ensure “conservation”: that is, if a truck is covering

load j, it must move from the destination of that load to the origin of some other bid load,

and conversely. Notice that if the origin of the subsequent load is the same as the destination

of the first load j, then this repositioning move (of cost 0) is effectively non-existent and

is purely a modeling aid. These constraints together ensure that all bid loads in M are

covered as parts of “continuous moves” or “loops” by carriers, so that the truck returns to

its starting point. The objective function (5) accounts for the cost of all the loaded moves

up for bid, as well as the cost of all lanes that have to be traveled to complete round trips

for the bid loads. Indeed, the purpose of this formulation is to figure out how truckers can

best leverage their current outlook on existing and potential contracts while covering all the

loads that are up for bid.

This formulation is in fact a special case of the well-known multicommodity flow problem
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Node A (0,0) Node B (100,0)

Node C (80,80)

Node D (0,100)

Carrier 3:
Loads 2 & 3,
Empty from
node C to B.

Carrier 1:
Loads 1 & 4,
Empty from
node C to A.

Figure 3: Optimal allocation determined by BCA.

which is typically easy to solve in practice even for large instances (Ahuja et al. 1993).

Furthermore, the integrality of the y variables can be relaxed. This makes the problem even

easier to solve. We state the relaxation claim below, and defer the proof to the appendix.

Proposition 1 For any problem of the form (5)-(10), replacing the integrality constraint

(10) with the non-negativity constraint yi
jk ≥ 0 ∀i ∈ N , j, k ∈ M results in a problem with

the same optimal solution as the original problem.

As in §3.2, since we are using a VCG auction, the payments are computed as follows.

The cost incurred by bidder i is z∗i =
∑

j∈M mi
jx

i
j +

∑
j∈M

∑
k∈M ei

jky
i
jk. Then, the payment

to bidder i is z∗i + (z∗(N \ {i}) − z∗(N )).

The auction above is referred to as the Bid-generating Combinatorial Auction,

abbreviated BCA, for the rest of this paper. The auction will be generalized for other

problems in §4, but we will continue to use the term BCA to refer to it.

3.5 Illustration of BCA for Truckload Procurement Auctions

We continue with our example initiated in Figure 1, and show how BCA would solve the

same problem. BCA begins by computing the optimal allocation by solving the program

(5-10). This allocation is described below, and is shown in Figure 3.

Carrier 1 is awarded loads 1 and 4, incurring a total cost of 291.22, including the reposi-

tioning move from node C to node A. Carrier 3 is awarded loads 2 and 3, for a total cost of
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Table 3: Comparison of CCA and BCA for trucking services procurement.

CCA formulation BCA formulation

No. of Integer variables N(2M − 1) NM

No. of Continuous variables 0 NM2

No. of Constraints M M(2N + 1)

267.76 (as in CCA), including a backhaul from node C to node B, The VCG auction results

in a total payment of 320.78 to Carrier 1 and 300.42 to Carrier 3, so that the auctioneer’s

total cost is 621.20.

Notice that the auctioneer’s total cost under BCA (621.20) is lower than that under CCA

(647.08) for our example. The reason is simple: In CCA, Bidder 1 did not provide a bid for

the bundle of loads {1, 4}. Resultantly, those loads ended up being awarded to bidder 2,

who has a higher cost structure. If all bidders had provided bids for all combinations (or in

this case, if at least Bidder 1 had bid for the bundle {1, 4}), CCA would indeed have found

the optimal allocation.

This illustrates the main benefit of our work – the ability to implicitly determine optimal

bundles and allocations, without bidders having to explicitly bid on each of an exponential

number of possible bundles, nor the auctioneer having to solve an exponentially large set

partitioning problem. All of the existing methodologies in the truckload auction literature

either require (implicit or explicit) potentially exhaustive enumeration of all possible com-

binations, or run the risk that the optimal allocation is not discovered due to some bundle

not being bid upon (as was the case in our example of CCA).

3.6 Implications for Larger Scale Problems

Although having an underlying multicommodity flow structure in BCA is certainly a benefit,

the key advantage of our approach stems from the reduction in size of the winner determi-

nation problem. Table 3 compares the size of our BCA formulation for this problem with the

corresponding CCA formulation, where N is the number of bidders, and M is the number of

loads. Observe that for all but the smallest number of loads, the difference in the number of

integer variables is quite dramatic. For example, with 100 loads and 10 bidders, CCA would

have approximately 1031 integer variables, while our formulation has a mere 1000.

3.7 Additional Constraints and Requirements

While the model shown in (5)-(10) suffices to cover all loads offered by the shipper, carri-

ers may have other constraints that they would like to consider when they participate in
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such auctions. We briefly explore below how some such constraints can be modeled in our

formulation. The actual integration of these constraints into the auction methodology is a

separate, ongoing, research project.

• Carrier capacity: Suppose carrier i had a restriction of a maximum of µi on the

total miles that they can travel (due to fleet size, federal regulations, and other such

considerations). This can be modeled as follows, where cj for a load denotes the mileage

for that load, and cjk is the distance in miles from the end of load j to the origin of

load k:

∑

j∈M

cjx
i
j +

∑

j∈M

∑

k∈M

cjky
i
jk ≤ µi.

Carrier i may also have a restriction that if they are to serve this shipper, it must be for

a certain pre-specified minimum number of miles. Such a constraint can be modeled

in a similar fashion.

Likewise, if the shipper wants to impose minimum and/or maximum limits on the

amount of miles allocated to any single carrier, this can be done using appropriate

modifications to this constraint. Shippers sometimes desire such constraints in an

attempt to provide sufficient business to each carrier so as to make it a meaningful

relationship and achieve economies of scale (necessitating a minimum) while also al-

leviating risk due to a single carrier being responsible for too much of the shipping

(necessitating a maximum).

• Number of winners: The shipper might want to award loads to no fewer than imin

and no more than imax carriers, in order to make the relationships manageable while

spreading the risk. Such a restriction can be modeled as follows, where we introduce a

new variable wi which takes the value 1 if carrier i is awarded a load and zero otherwise:

xi
j ≤ wi, ∀j ∈ M, i ∈ N

imin ≤
∑

i∈N

wi ≤ imax.

• Round-trip mileage limits: One of the biggest concerns of truck drivers is the

frequency with which they are able to return home. For the trucking industry, this

translates to constructing short round-trips, ensuring that not too many loads are

strung together to form a very long continuous move round-trip.

Modeling and implementing this requirement is a challenging research problem in itself,

and is currently on-going work. However, we note that our formulation explicitly
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outputs tours. Every load j, when assigned to a carrier i by setting xi
j to one, also

results in one connecting load preceding it (yi
kj = 1 for some k), and one connecting

load succeeding it (yi
jk = 1 for some k). These variables can be used to uniquely

construct tours for every load and every carrier. Once these tours are constructed, one

can pursue several methods of enforcing the tour-length constraint (such as branch-

and-bound approaches), which is the subject of future research.

4 Generalization

The key idea in the truckload procurement auction example is that the cost of any set of

loads can be constructed by building a least-cost set of tours to cover these loads. The

tours can easily be found by solving a minimum cost flow problem using the per-mile cost

associated with the bid loads plus the estimated cost of moving between any pair of bid loads.

Thus, it is sufficient for the bidder to provide a set of arc costs, rather than enumerating all

bundles of loads, solving a minimum cost flow problem for each bundle, and then providing

this exponentially large set of bids to the auctioneer. Similarly, the auctioneer can explicitly

embed each bidder’s arc costs in a master multicommodity flow problem (i.e. one minimum

cost flow problem per bidder, linked to each other by the need to cover each bid load exactly

once), rather than solving an exponentially large set partitioning problem. The results of

this multicommodity flow problem in turn reveal the assignment of loads to bidders.

In this section, we present a generalization of this approach and discuss its properties,

laying the groundwork for other applications discussed in §5, as well as the research questions

discussed in §6. We continue to focus on multi-item, single round, procurement auctions.

However, our results also apply to forward auctions where objects are being sold; in partic-

ular, the wireless spectrum auction we discuss in §5.1 is such an auction.

The auction is conducted by a single buyer, with a set N = {1, 2, . . . , N} of prospective

sellers (bidders). The set M = {1, 2, . . . , M} is the set of objects/services being auctioned.

A bundle or combination is a subset of M, and different bidders are interested in selling

different such bundles at different prices. There are 2M − 1 such bundles. The auctioneer’s

objective is to procure one item of each of the objects in M at the lowest possible total price.

Let bidder i’s cost for bundle S be given by ci(S). (In the trucking example, ci(S) was

called pi
k, where the bundle S corresponds to the set of loads si

k.) As shown in §3.3 for the

trucking example, the bidder’s cost for this bundle is often the solution to some optimization

problem. The key idea of our approach is that instead of the bidder having to solve this opti-

mization problem for a large set of bundles, the bidder just transmits the parameters of their

optimization problem to the auctioneer as their “bid”. The auctioneer then simultaneously,

in a single round, solves one large optimization problem which determines the allocation of

goods to bidders as well as the true costs to each bidder of the bundle awarded to them.
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This approach was illustrated in the previous section in the context of truckload procure-

ment auctions, and is generalized in the second half of this section. First, we establish the

basics of a general combinatorial auction.

4.1 Canonical Combinatorial Auction

VCG combinatorial auctions are canonically conducted in a manner which is a straightfor-

ward generalization of the process discussed in §3.2, along with the VCG framework discussed

in §2.1. Recall that bidder i has a specific cost function ci, and the cost to bidder i of pro-

viding bundle S is given by ci(S). In its most elementary form, the auction proceeds as

follows:

CCA (Canonical Combinatorial Auction)

1. Each bidder provides costs ci(S) for every bundle S ∈ 2M. We require the cost function

to be non-negative (a natural assumption). Initially, we also require the cost function

to be sub-additive; that is, for every S ⊂ M and j ∈ M \ S, and for every bidder i,

we have ci(S ∪ {j}) ≤ ci(S) + ci({j}). Sub-additivity is a natural assumption stating

that the union of two bundles costs no more than the sum of the two bundles taken

separately. We remark on the implications of sub-additivity later in this section. We

also observe that the cost function in the trucking example can be shown to be sub-

additive (Proposition 4 in the Appendix).

2. The auctioneer solves a winner-determination problem, where she partitions the objects

in M and awards bundles to bidders in such a way that the total cost is minimized.

That is, the auctioneer solves the following mathematical program, denoted E−WDP ,

where the E stands for “enumeration” and the binary variable xi(S) takes the value 1

to indicate that bidder i is awarded bundle S, and 0 otherwise.

z∗(N ) = min
∑

i∈N

∑

S⊆M

ci(S)xi(S) (E − WDP )

subject to :
∑

i∈N

∑

S⊆M:j∈S

xi(S) = 1 ∀j ∈ M

xi(S) ∈ {0, 1} ∀i ∈ N , S ⊆ M.

Sub-additivity ensures the existence of an optimal solution awarding no more than one

bundle per bidder. For notational concision, we denote the cost incurred due to bidder

i as z∗i . That is, z∗i =
∑

S⊆M ci(S)x∗
i (S).

3. In order to determine the payment to bidder i, the auctioneer computes the surplus

added to the system by bidder i. That is, the auctioneer begins by computing z∗(N \i),
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which is the total cost of providing all the bundles had bidder i been absent. The

difference z∗(N \ i)− z∗(N ) is the premium awarded to bidder i, so that the payment

he receives is z∗i + z∗(N \ i) − z∗(N ).

For the rest of this paper, we use the abbreviation CCA to refer to the auction method-

ology described above. This traditional VCG combinatorial auction suffers due to the com-

binatorial explosion in the number of bundles (an exponential function of the size of the set

M being auctioned), presenting a significant hurdle to its practical implementation.

Researchers have suggested several approaches to ameliorate this hurdle for specific con-

texts, as surveyed in §2. These suggested approaches either sacrifice capturing the entire

cost function ci (losing cost optimality), and/or require several auction rounds (resulting

in increased procurement cycle times). In contrast, our proposed methodology provides

the exact optimal allocation and payments in a single round, and more importantly avoids

combinatorial explosion in the number of bids and winner determination problem size. We

formally specify and compare our proposed methodology to CCA in the following section.

Note that even if non-VCG mechanisms are considered, the problems caused by the

combinatorial explosion remain. Furthermore, if the non-VCG auction possesses well-defined

bid-generating computations on the part of bidders, our methodology is still applicable, as

discussed further in §4.5.

4.2 Proposed Methodology: Bid-generating Combinatorial Auc-

tion

Our proposed methodology eliminates the problems caused by the combinatorial explosion

for those classes of problems where the cost functions of bidders for bundles can be embedded

in tractable winner determination problems. As noted above and shown in the truckload

procurement auction, we require that the cost function ci(S) of bidder i providing bundle S

be computable as the optimal solution to some optimization problem. That is,

ci(S) = min
y∈P

c̃i
T (xS, y) s.t. Ai(xS, y) ≤ bi. (11)

In the equation above, the matrix Ai and vector bi are the bidder-specific parameters

which determine the bidder’s cost structure. To place this in the context of the truckload

example, Ai and bi are generated from the constraints (2) and (3). The y variables are

“linking” variables, which allow the bidder to model the cost of the bundle accurately; in the

trucking example, the y variables played the role of indicating which lanes the trucks would

have to travel to complete the round-trips for the bid loads, thereby affecting costs. There

is also a cost vector c̃i which is bidder-specific; in the trucking example, this cost vector was

the concatenation of the vectors mi and ei. Finally, the restriction y ∈ P enforces additional
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feasibility requirements, such as the integrality constraints (4) in the trucking example. The

vector xS is simply an indicator vector, where the jth component takes the value 1 if object

j ∈ M belongs to bundle S and 0 otherwise; this plays the same role as the x vector in the

formulation in §3.3.

There are three components in the equation above that are bidder-specific: c̃i, Ai, and bi.

We combine these three into a single structure, θi, which contains sufficient information to

construct c̃i, Ai and bi. We refer to θi as the true cost type of bidder i. Our proposed auction

is then defined as follows:

Bid-generating Combinatorial Auction (BCA)

1. Each bidder provides its true cost type θi.

2. The auctioneer solves the winner determination problem (now denoted T −WDP , for

cost Type) defined as follows. Here the variable xij takes the value 1 if bidder i is

awarded object j ∈ M and 0 otherwise.

z∗(N ) = min
∑

i∈N

c̃i
T (xi, yi) (T − WDP )

subject to:
∑

i∈N

xij = 1 ∀j ∈ M

Ai(xi, yi) ≤ bi ∀i ∈ N

xij ∈ {0, 1} ∀i ∈ N , j ∈ M

yi ∈ Pi ∀i ∈ N .

As before, we use z∗i = c̃i
T (x∗

i , y
∗
i ) to denote the cost incurred by bidder i in the optimal

solution.

3. The payment to bidder i, as before, is z∗i + z∗(N \ i) − z∗(N ).

Compared to the canonical combinatorial auction, our approach has several significant

benefits:

Benefit 1. The cognitive burden on the bidder is greatly reduced – rather than computing and

communicating an exponential number of bids, only the true cost type must be relayed.

Benefit 2. The computational burden on the auctioneer is greatly reduced by eliminating the need

to solve an exponentially large integer program, and instead solving a much smaller

program. While the resulting problem is still an integer program and thus in the worst

case can take exponential time, practical instances of such problems are routinely solved

in acceptable timeframes.
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Bidder 1

Bidder 2

Bidder n

Auctioneer

Bidder 1

Bidder 2

Bidder n

Auctioneer

1. Bidder computes ci(S) ∀S.
(too many computations)

3. Auctioneer solves
E − WDP .
(Intractable)

2. Bidder submits
ci(S) ∀S. (Too much
communication)

4. Auctioneer returns
allocation and pay-
ments.

Canonical Combinatorial Auction (CCA)

1. No computation by
bidders.

2. Bidders submit θi.
(Succinct)

3. Auctioneer solves
T − WDP .
(Tractable)

4. Auctioneer returns
allocation and pay-
ments.

Bid-generating Combinatorial Auction (BCA)

Figure 4: Comparison of CCA and BCA

Benefit 3. BCA is equivalent to the fully-enumerated VCG auction CCA (as proved below in

Proposition 2) and yields all of the corresponding benefits.

Figure 4 highlights these benefits, contrasting the canonical combinatorial auction with

BCA.

Proposition 2 Consider a combinatorial VCG auction for the set of objects M, where for

each bidder i ∈ N the cost to provide the bundle S ⊆ M is given by ci(S). Suppose there

exists a type θi for each bidder and functions c̃i = c̃(θi), bi = b(θi) and a matrix Ai = A(θi),

such that for every S ⊆ M, we have ci(S) = miny c̃i
T (x, y) s.t. Ai(x, y) ≤ bi, where x is

the incidence vector for S; that is, x is a binary vector with M components, with the jth

component being 1 if j ∈ S and 0 otherwise. Then, for any set of types {θi}i∈N , the optimal

solutions of the integer programs (E − WDP ) and (T − WDP ) have the same values.

Proof: Let x∗(E) be an optimal solution to the formulation (E − WDP ) of cost z∗(E),

and let (x∗(T ), y∗(T )) be an optimal solution to (T − WDP ) of cost z∗(T ). Observe that

z∗(T ) =
∑

i∈N z∗i (T ), and likewise z∗(E) =
∑

i∈N z∗i (E).

First, consider the solution x∗(E). Let S∗
i (E) be the set of goods allocated to bidder

i in this solution. Therefore, z∗(E) =
∑

i∈N ci(S
∗
i (E)). Define the vector x̂i(T ) to be the

incidence vector of S∗
i (E); that is, x̂ij(T ) = 1 if j ∈ S∗

i (E) and 0 otherwise. By definition,

there must exist a vector ŷi such that ci(S
∗
i (E)) = c̃i

T (x̂i(T ), ŷi) and Ai(x̂i(T ), ŷi) ≤ bi.

Let the vector x̂(T ) be defined as the concatenation of the x̂i(T ) vectors for each bidder,
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and similarly define ŷ as the concatenation of the ŷi vectors. The covering constraint in

(T − WDP ) continues to hold, so that (x̂(T ), ŷ) is a feasible solution to (T − WDP ), of

cost z∗(E). Since the optimal solution to (T − WDP ) can only do better, we must have

z∗(T ) ≤ z∗(E).

Conversely, consider the solution (x∗(T ), y∗(T )). For any bidder i, let S∗
i (T ) be the bundle

allocated to bidder i in BCA, and define the vector x(E) appropriately where xi(S) = 1 for

S = S∗
i (T ) and 0 otherwise. By definition, we have ci(S

∗
i (T )) ≤ c̃i

T (x∗
i (T ), y∗

i (T )) = z∗i (T ).

Therefore, the solution given by (x(E)) is feasible for (E − WDP ), and has cost no more

than
∑

i∈N z∗i (T ) = z∗(T ). The optimal solution to (E − WDP ) can only do better, so

z∗(E) ≤ z∗(T ).

This proves that z∗(T ) = z∗(E), which is the claim of the proposition. 2

Corollary 1 The premium paid to each bidder is the same under both CCA and BCA auc-

tions.

Proof: Recall that the premium paid to bidder i is z∗(N \ i) − z∗(N ). Proposition 2

guarantees that z∗(N ) is the same under both CCA and BCA, and so is z∗(N \ i). The

corollary now follows. 2

Corollary 2 If there is a unique optimal allocation in one of the two solution methodologies

(CCA or BCA), then the same allocation is also the unique optimal allocation in the other

auction, and each bidder gets the same total payment in both auctions.

Proof: Observe that the proof of Proposition 2 relies on showing that the optimal allocation

of one auction is a feasible allocation in the other auction of same or lower cost. Therefore,

if the optimal allocation is unique in one auction, the same allocation must be the unique

optimal allocation in the other. The cost incurred by bidder i in both auctions is therefore

the same, z∗i . Since the payment to each bidder is his cost plus his premium, Proposition 2

and Corollary 1 imply that the payment to each bidder is the same under both auctions. 2

Proposition 3 BCA is an individually rational and incentive compatible auction.

Proof:

The cost incurred in (T −WDP ) by agent i is z∗i ; by truthful bidding, z∗i is also i’s true

cost for the bundle he is awarded. Hence the payment minus cost (profit) of agent i is simply

z∗i + z∗(N \ i)− z∗(N )− z∗i , or z∗(N \ i)− z∗(N ). The value z∗(N \ i) must be no less than

z∗(N ) since the optimal allocation in N \ i is feasible and has the same cost even with bidder

i included. Hence z∗(N \ i)− z∗(N ) is always non-negative, implying individual rationality.

(As is convention, bidders’ reservation profits are normalized to zero.)
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We next prove incentive compatibility. Let z∗(N ) be the optimal value of (T − WDP )

over agent set N with truthful reporting of types, and let Ŝj be the optimal allocation to

agent j specified by (T −WDP ) when agent j reports type θ̂j , for j ∈ N . Note that the cost

incurred to the auctioneer by agent j in this optimal allocation is z∗j = c(Ŝj , θ̂j), and j’s true

cost for his bundle is c(Ŝj , θj). Suppose that θ̂j = θj for all j except possibly i. Then agent

i’s profit (payment minus cost) is c(Ŝi, θ̂i)+ z∗(N \ i)−
∑

j∈N\i c(Ŝj, θj)− c(Ŝi, θ̂i)− c(Ŝi, θi),

which equals z∗(N \ i)−
∑

j∈N c(Ŝj, θi). The first term is independent of θ̂i. The second term

is the objective function of (T − WDP ) with truthful reporting evaluated at some feasible

allocation Ŝj, j ∈ N , and therefore is no less than the optimal value z∗(N ). Hence, if all

bidders j 6= i report their true cost, i’s profit is no greater than z∗(N \ i) − z∗(N ). Since

this profit is achieved when he reports his true cost θi, we are done.

2

Therefore, it is a dominant strategy for every bidder to reveal their type vector θi truth-

fully. We discuss other issues regarding the practical implementation of BCA in §4.4.

4.3 Sub-Additivity in BCA

Recall that we initially assumed that our cost function is sub-additive; that is, the cost of a

combination of two bundles is no more than the sum of costs of the bundles taken individually.

While this is often a natural assumption, it need not always hold. For example, if a bidder

has a capacity constraint and can provide no more than 3 items, then the cost of a bundle

of 4 items is effectively infinity, which is greater than the sum of costs of two bundles of 2

items each.

If the cost function is not sub-additive, in CCA, one would add the following constraint:

∑

S⊆M

xi(S) ≤ 1 ∀i ∈ N .

Note, however, that this sums over an exponential number of variables.

In BCA, it may instead be possible to add application-specific constraints to the set

Ai(xi, yi) ≤ bi to enforce these requirements. For example, if sub-additivity is violated due

to a capacity constraint of the form that the bidder can provide no more than 3 items, then

we simply add the constraint
∑

j∈M xij ≤ 3 to Ai(xi, yi) ≤ bi. Indeed, the carrier capacity

constraint in §3.7 is one such constraint, as are the capacity constraints in §5.3.

4.4 Privacy Issues of BCA

Since BCA is incentive compatible and individually rational (Proposition 3), it is in a bidder’s

best interests to bid truthfully. Nonetheless, bidders might be understandably skeptical

about providing private information that could be of value to their competitors if divulged.
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Likewise, from the auctioneer’s standpoint, there is the risk of false-name bidding and other

forms of collusion.

Such concerns are not insurmountable, however, and we suggest that our approach pro-

vides incentive to overcome these obstacles so as to achieve the economies of scope of a

fully-enumerated combinatorial auction. Consider, as an analogous example, the related

data disclosure issues of a Vendor Managed Inventory (VMI) system. Such systems require

that companies supplying goods to retail stores be given direct visibility into the retailers’

inventory levels of their goods (Chopra and Meindl (2007), pp 518). Like our proposed auc-

tion approach, VMI systems also raise concerns about data security and privacy. Largely

due to the anticipated benefits of these systems, however, vendors such as Wal-Mart have

overcome these concerns and VMI systems are now actively used in widespread practice (Lee

et al. 1997).

In the case of auctions, trusted third-party companies such as CombineNet and Manhat-

tan Associates, can (and do) provide services such as bidder pre-qualification and transaction

confidentiality, helping to reduce the risk of collusion and the leaking of data. There is also

an emerging stream of literature in cryptographically-secured auctions (Kudo 1998, Franklin

and Reiter 1996) which focuses on data privacy as well. Although we do not wish to trivialize

bidders’ privacy concerns, we nonetheless suggest that if the benefits to bidders of releasing

their true-cost types is sufficient, then methods to overcome their concerns will be found.

4.5 BCA in a First Price Mechanism

Throughout this manuscript, we have assumed a VCG mechanism. This is because the

dominant bidding strategy in VCG mechanisms is for bidders to bid truthfully, and thus

the bid-generating function is simply the underlying cost function that bidders use to value

bundles. Our approach does not require truthful bidding (or a VCG-type mechanism),

however; we simply use this mechanism for its clarity and ease of exposition.

In fact, our approach extends to any auction mechanism, so long as the bidders have

a succinct bid-generating function. In particular, consider the first-price auction. In the

canonical version of this auction, bidders submit bids for bundles which already include a

profit markup. The auctioneer then solves the winner determination problem (E − WDP ),

and pays bidder i an amount z∗i =
∑

S⊆M ci(S)x∗
i (S) as defined in §4.1. Bidders still have

to compute their bids for these bundles, and there is some research exploring good bidding

strategies for such combinatorial auctions (An et al. 2005, Günlük et al. 2005).

In the BCA version of a first-price combinatorial auction, all we require is that the bidding

strategy be representable by succinct bid-generating functions (as is the case in An et al.

(2005) and Günlük et al. (2005)). If θi represents the parameters of the first-price bid-

generating function for bidder i, then in the first price version of BCA, each bidder simply

transmits these parameters θi. The auctioneer then solves (T − WDP ) as defined in §4.2,
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with the payment to bidder i given by z∗i = c̃T
i (x∗

i , y
∗
i ).

5 Other Application Areas

The success of implementing BCA in other applications depends on whether the bid-generating

function can be used to formulate a tractable mathematical program of the winner determina-

tion problem. In this section, we show how such a mathematical program can be constructed

for three other well-known applications of combinatorial auctions: wireless spectra, energy

markets, and operations procurement. Observe that the energy market auction is actually

a forward auction where items are sold, thus demonstrating that our approach is applicable

in both forward and reverse auctions.

5.1 Wireless Spectrum Auctions

The auction of frequencies for wireless communication has been one of the most dramatic

and insightful applications of combinatorial auctions. They have been held in many coun-

tries for different industry segments, and continue to be held: Most recently, in 2006, the

United States Federal Communications Commission auctioned frequencies to allow in-flight

cellphone usage in passenger aviation. Wireless spectrum auctions provide ample scope for

combinatorial bids: Bidders gain from scale, as well as from contiguity of regions where they

win presence and contiguity of frequencies within a single region (Günlük et al. 2005). Cur-

rently, the mechanism most favored by the FCC is an iterative combinatorial auction (Federal

Communications Commission 2006), where bidding goes on for several rounds determined

by a specific set of rules (in this particular case, 161 rounds over 29 days resulting in 104

winning bidders for 1087 licenses). BCA has the potential advantage of making the auction

a single-round mechanism, while at the same time capturing all the economic efficiencies of

a enumerative combinatorial auction.

For illustrative purposes, in this section we will focus on a simple auction of frequencies

for wireless cellphone communications (others include in-flight communications, land-lines,

broadcast spectra, etc.). In such an auction, the unit commodity is a frequency band in

one specific location (such as a metropolitan area or state). Several locations are up for bid

(typically encompassing the entire nation), and multiple frequency bands are also offered for

auction in each location.

While the valuation by each bidder of a bundle of licenses could be a fairly complex

function in general, the literature (Cramton 1997, Günlük et al. 2005) suggests that the

two biggest combinatorial components of the valuation are synergies in locations allocated

and frequencies allocated. Although other synergies can also be modeled in our framework,

in order to keep the discussion straightforward and brief we choose to focus on locational
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synergies. In the spirit of the estimated costs in the trucking example of §3.1, we assume

the bidders can compute the values of such synergies.

Locational synergies occur when the same bidder wins licenses for a set of locations which

together give the bidder more value than the sum of the individual valuations. For example,

if a bidder wins licenses for the metro areas containing New York and Philadelphia, they may

benefit from becoming a major player in that region. Therefore the bidder may be willing

to pay more for the bundle of these two locations than the sum of the bidder’s valuations

for winning each of these in isolation. Locational synergies may also occur if bidders already

have licenses in some areas and only want to cover their gaps, or they may want to focus on

large metropolitan areas, etc.

5.1.1 Mathematical Formulation

Note that although our initial model in §4 is in terms of a reverse auction, this application is

a regular auction where bundles are sold. However, the notation and formulation carry over

with minimal changes. Let N denote the set of bidders (wireless providers), indexed by i.

Let L denote the set of locations, indexed by l. Thus the individual items being auctioned

are the locations in L. We now show one possible formulation as a multi-item combinatorial

auction which allows bidders to leverage the locational synergies.

Since this is a forward auction, the locational synergies actually imply that super-

additivity holds across the units being auctioned, which is precisely what we desire. That

is, if L′ ⊂ L represents a set of locations and v(i, L′) represents bidder i’s valuation for the

bundle L′, then v(i, L′) ≥
∑

l∈L′ v(i, l). In general, the valuation function v for any bidder i

must now be specified over all subsets of L, which is precisely the combinatorial explosion

BCA enables us to avoid.

The key concept to avoid the combinatorial explosion is to associate, for each bidder i

and each location l, a synergy term w(i, l, l′) which is the added value to bidder i in location

l from having both locations l and l′. Therefore, if a bidder wins both locations l and l′, his

net valuation for the bundle (l, l′) is v(i, l) + v(i, l′) + w(i, l, l′) + w(i, l′, l). In general, if a

bidder wins a set of locations L′, his valuation is
∑

l∈L′ v(i, l) +
∑

l∈L′

∑
l′∈L′ w(i, l, l′). We

therefore associate a variable y(i, l, l′) indicating that bidder i has won both locations l and

l′, and can realize the associated synergy. For the formulation to work, however, we require

that w(i, l, l′) ≥ 0 for all i, l and l′. That is, there should be no disadvantage to winning two
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locations (locations are complements). The BCA formulation is now as follows:

max
∑

i∈N ,l∈L

v(i, l)x(i, l) +
∑

i∈N ,l∈L,l′∈L

w(i, l, l′)y(i, l, l′) (12)

∑

i∈N

x(i, l) = 1 ∀l ∈ L (13)

y(i, l, l′) ≤ x(i, l) ∀i ∈ N , l, l′ ∈ L (14)

y(i, l, l′) ≤ x(i, l′) ∀i ∈ N , l, l′ ∈ L (15)

x(i, l), y(i, l, l′) ∈ {0, 1} ∀i ∈ N , ∀l, l′ ∈ L (16)

Constraints (14) and (15) prevent the program from realizing the synergies unless both

locations are in fact awarded to the same bidder. Since this is a maximization program

and we require w(i, l, l′) ≥ 0, the program will always realize the synergies whenever two

synergistic locations are allocated to the same bidder.

Remark 1 The program (12-16) is an instance of the forward-auction version of BCA.

Proof: The value function c̃ is simply the concatenation of the vectors v and w, while the

constraints (14-15) show the construction of the matrices Ai and bi. Each bidder’s type

vector θi is simply the concatenation of the vectors v and w, capturing the valuation of any

bundle of bids. 2

Locational synergies in general may involve much more than pair-wise synergistic terms.

For example, the number of contiguous blocks awarded may have an impact on the value of

the total bundle, as may other requirements such as the proportion of blocks which are large

metropolitan areas (as opposed to rural areas), whether or not an entire state is covered,

etc. We defer these generalizations to future research.

5.1.2 Bandwidth and Other Synergies

Bandwidth synergies occur when the same bidder in the same location is awarded two ad-

jacent frequency bands, enabling that bidder to utilize the dead zone band between the two

allocated bands at no further cost. A simple extension of the above model allows us to

incorporate these bandwidth synergies within the BCA framework.

While the above provides a framework for two major synergies, one can conceive of several

other synergistic effects which dictate the value of a bundle of several location-bandwidth

pairs. A comprehensive study of incorporating all such synergies into the BCA framework is

left open for future research.
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Figure 5: Examples of non-linear cost functions.

5.2 Commodities with Non-Linear Value Functions

5.2.1 Combinatorial Auctions for Single Commodities

Combinatorial auctions are typically thought of as auctions in which many different items are

being auctioned simultaneously and the cost of providing a group of these items is not simply

the sum of the individual items’ costs. It is also possible, however, to think of combinatorial

auctions in the context of a single commodity, in the case where the cost associated with

that commodity is not linearly dependent on the quantity provided. For example, consider

the cost function in Figure 5(a). If the bidder provides one unit the cost is twenty, but if

two units are provided, the cost is only thirty (i.e. fifteen per unit), and when the provision

increases to three units, the cost is thirty-five (i.e. 112

3
per unit). Thus, if bidders are only

allowed to submit a single per-unit bid cost, they may over- or under- bid, depending upon

the quantity of the commodity that they are awarded.

Conversely, the non-linearity of a cost function can be captured (or closely approximated)

by a combinatorial auction, in which bidders are allowed to place multiple bids. Here, a

“bundle” is really an upper and lower bound within which the commodity’s cost is either

fixed or linearly dependent on the quantity. The cost structure may be a step function (e.g.,

Figure 5(a)), in which case the bid for any quantity within a given range is constant. The

bid is twenty if the quantity is in the range [0, 1], thirty for the range (1, 2], and thirty-five

for the range (2, 3]. Alternatively, for the cost function in Figure 5(b), a bid with no fixed

base cost and a marginal cost of twenty per unit would be placed for range [0, 1], a bid with

fixed base cost of ten plus marginal cost ten per unit would be placed for range [1, 2], etc.
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5.2.2 A Math-Programming Formulation for Single-Commodity Auctions

Single-commodity auctions with non-linear cost functions, such as those described in the

preceding section, are a natural fit for BCA. The work on energy auctions of Hobbs et al.

(2000) is an example of formulating a single-commodity auction with non-linear cost func-

tions as a combinatorial auction. In this section, we limit our presentation to formulating

the WDP. Our formulation is based on the use of binary variables to limit each bidder to a

specific range. Once that range is specified, the cost function becomes linearized. We start

by presenting the formulation for those cases where the value is constant within a given

range, then extend this model to the case where the value is linear relative to the award

within a given range.

Let N be the set of bidders, each of whom specifies a set of ranges Ri. Each range r ∈ Ri

is defined by an upper bound ui
r, a lower bound lir, and a constant cost for that range ci

r. Let

Q be the quantity of the commodity to be auctioned. For each bidder i and range r ∈ Ri,

we define the binary variable zi
r that takes value one if the quantity awarded to bidder i falls

within the range r and zero otherwise. For each bidder i and range r ∈ Ri, we also define

the continuous, non-negative variable yi
r, which represents the quantity of the commodity

within range ri awarded to bidder i. If the award does not fall within range ri, then yi
r is

zero. The formulation is then:

min
∑

i∈N

∑

r∈Ri

ci
rz

i
r (17)

subject to:
∑

r∈Ri

zi
r = 1 ∀i ∈ N (18)

ui
rz

i
r ≥ yi

r ≥ lirz
i
r ∀i ∈ N , r ∈ Ri (19)∑

i∈N

∑

r∈Ri

yi
r = Q (20)

zi
r ∈ {0, 1} ∀i ∈ N , r ∈ Ri (21)

yi
r ≥ 0 ∀i ∈ N , r ∈ Ri. (22)

The first set of constraints ensures that each bidder’s award is within a single range;

the objective function can be computed from these ranges, as each range corresponds to

a constant fixed cost. The second and third set of constraints force the bidder’s award to

be within his/her designated range. The fourth constraint allocates the total quantity of

the commodity across the set of bidders. The final constraints ensure the integrality, where

appropriate, and non-negativity of the variables.

To accommodate linear cost functions within a given range, the bidders instead specify

for each range r ∈ Ri a fixed base cost f i
r and a marginal per-unit cost mi

r. The constraints

above continue to define the feasible region of the problem. The objective function is modified

30



to:

min
∑

i∈N

∑

r∈Ri

(f i
rz

i
r + mi

ry
i
r). (23)

This captures both the fixed cost associated with the designated range and the marginal

cost associated with the size of the award.

Remark 2 The programs (17-22) and (23, 18-22) are instances of BCA.

Note that here we use Q in lieu of M since we are procuring multiple items of the same

object, rather than multiple objects.

5.2.3 Energy Auctions

Energy auctions provide a number of examples of single commodity auctions where the cost

has a non-linear dependence on the quantity. Such auctions can be single-seller/multiple

buyer, single-buyer/multiple seller, or multiple-buyer/multiple-seller. Examples of all three

cases and further references can be found in Hobbs et al. (2000). In particular, energy

production is often characterized by alternating fixed costs and linear marginal costs. As

certain thresholds are reached, it may become necessary to utilize an additional generator,

with a fixed start-up cost. Such cost functions provide natural breakpoints for linearization

as shown above.

5.3 Procurement Auctions with Capacity Constrained Suppliers

Purchasing agents often use procurement auctions to lower prices paid to suppliers, par-

ticulary when the item or contract is standard or well-specified and multiple suppliers can

compete. When suppliers’ production costs include significant fixed costs, a supplier’s lowest

price usually coincides with excess production capacity. Realizing that supplier bid prices

are often directly tied to capacity constraints, it is important whether or not suppliers are

able to estimate capacity. As we discuss below, this estimation problem is easily handled in

the BCA framework.

Due to the capacity constraints, a supplier who offers to produce item j must anticipate

how the offered production of j will affect his ability to produce items other than j. Capacity

forecasts are required if items are auctioned off sequentially, since when bidding on items

auctioned earliest the supplier must try to anticipate what his capacity position will be during

subsequent auctions. This creates an exposure problem for the supplier, as committing his

capacity through aggressive bidding in early auctions might backfire with lost opportunities

for greater profit in later auctions (Elmaghraby 2003, Gallien and Wein 2005). This exposure

problem can be avoided by auctioning off all contracts simultaneously.
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Consider a setting in which a buyer seeks to purchase items in the set M, where dj is

the buyer’s demand for item j ∈ M. We let N be the set of suppliers, and to keep the

exposition concise we assume that for each supplier i ∈ N , production quantity vector xi =

(xi1, xi2, . . . , xiM) costs the supplier cT
i xi to produce and must satisfy the linear constraints

Aixi ≤ bi, where (alj)i ∈ Ai represents the amount of resource l consumed by one unit of

item j and bl represents the total amount of resource l available. For instance, the resources

could be labor hours, machine time availability, or possibly production emission limits.

A canonical way to conduct this auction would be the CCA auction described in §4.1.

While it removes the need for suppliers to make detailed, complex estimates of their capacity

exposure problem (by auctioning all contracts simultaneously), its enumerative approach

means every vector, and associated cost, for the feasible region must be communicated

explicitly to the buyer by every supplier i.

Continuing with our theme of a bid-generation approach alternative, we propose that in

lieu of enumerative bidding, the buyer simply ask each supplier i to reveal (ci, Ai, bi), a much

simpler task. Then, the buyer’s winner determination problem is just a linear program as

follows, which is much easier to solve than the enumerative combinatorial problem.

min
∑

i∈N

cixi (24)

subject to: Aixi ≤ bi ∀i ∈ N (25)
∑

i∈N

xij ≥ dj ∀j ∈ M (26)

xi ≥ 0 ∀i ∈ N . (27)

Remark 3 The program (24-27) is an instance of BCA.

While for brevity we have assumed linear capacity constraints and costs, a richer cost and

capacity structure (e.g., that described in §5.2) could be incorporated with an analogous

approach, which we leave for future research.

6 Conclusions and Future Research

In this paper, we address two critical limitations of traditional combinatorial auctions: the

cognitive burden on bidders wrought by enumerative bidding, and the computational bur-

den imposed on the auctioneer by an exponentially large winner determination problem.

We address both problems simultaneously by a novel approach in which each bidder’s bid-

generating function is incorporated explicitly into the winner determination problem, rather

than through enumerative bidding as in traditional models. This greatly reduces the cog-

nitive burden on bidders, who simply communicate to the auctioneer parameters of their
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bid-generating functions. When the structure of the underlying bid-generating function is

amenable, the resulting winner determination problem becomes tractable as well.

We focus on a key example where this is the case: procurement of truckload services. We

show that the underlying bid-generating function is a minimum cost flow problem, and thus

the winner determination problem can be posed as a simple multicommodity flow problem,

which is known to be tractable in practice. It therefore becomes possible to solve instances

of real-world size to optimality; that is, users can fully achieve economies of scope.

Future research in this application area includes additional operational considerations

(some of which were discussed in §3.7), such as fleet capacities, round-trip limits, min/max

restrictions on the number of carriers, etc. The question of how to incorporate into this

model uncertainties in cost parameters (arising from the variability of the spot market for

future loads, fuel costs, etc.) is also an interesting and important open research direction.

In addition to truckload procurement, we also introduce a number of other applica-

tions where the bid-generating functions appear to be amenable to our approach. These in-

clude wireless spectrum auctions, energy auctions, and procurement auctions with capacity-

constrained suppliers. This opens a wide field of potential future research directions – adding

more realism to the applications discussed in this paper and identifying new application ar-

eas – which will benefit from further collaboration between the mathematical programming

and auction communities as well as application experts.
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A Appendix: Proofs of Propositions and Theorems

Proposition 1 For any problem of the form (5)-(10), replacing the integrality constraint

(10) with the non-negativity constraint yi
jk ≥ 0 ∀i ∈ N , j, k ∈ M results in a problem with

the same optimal solution as the original problem.

Proof: Consider any vector x̂i
j in which each element has integer value (i.e. either 0 or 1).

Given such a vector, the problem then reduces to:
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z∗(N ) = min
∑

i∈N

∑

j∈M

∑

k∈M

ei
jky

i
jk (28)

subject to
∑

k∈M

yi
kj = x̂i

j ∀i ∈ N , j ∈ M (29)

−
∑

k∈M

yi
jk = −x̂i

j ∀i ∈ N , j ∈ M (30)

yi
jk ∈ {0, 1} ∀i ∈ N , j, k ∈ M. (31)

The left-hand side A matrix of this problem is totally unimodular, because each column

contains a single element with value 1, a single element with value −1, and all other elements

have value 0. Furthermore, the right-hand side vector is integer by supposition. Therefore,

all extreme points of this polyhedron are integral. Thus, for any integer solution x, the

values of y will be integer as well and we can therefore relax the integrality restriction. 2

Proposition 4 The cost function defined by (1)-(4) in the trucking procurement problem

is sub-additive; that is, for any carrier i and sets of loads si
k1

and si
k2

⊆ M \ si
k1

, we have

pi
K ≤ pi

k1
+ pi

k2
, where si

K = si
k1
∪ si

k2
.

Proof: Let y∗
k1

be the optimal solution to the program (1)-(4) instantiated for computing

pi
k1

, with y∗
k2

defined similarly. Now consider the program (1)-(4) instantiated for computing

pi
K . The x terms in the program are defined by construction – an x variable is set to 1 if

the corresponding load belongs to si
K . Define the vector y as follows: yjh is set to 1 if and

only if (i) either j, h ∈ si
k1

and y∗
k1;j,h

= 1, or (ii) j, h ∈ si
k2

and y∗
k2;j,h

= 1. In all other cases,

set yjh = 0. This defines a feasible solution, since y∗
k1

and y∗
k2

are feasible for the programs

computing pi
k1

and pi
k2

respectively. The cost of this solution is p̂i
K = pi

k1
+ pi

k2
. Since the

optimal solution to the program has cost pi
K ≤ p̂i

K , the proposition holds. 2
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