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Abstract 

 This study examined the effects of groundwater on the distribution of steelhead 

(Oncorhynchus mykiss) in Topanga Creek, a small coastal stream in Los Angeles County, 

California.  Water quality was monitored in Topanga Creek and in surface discharge from 

20 springs on a monthly basis from April to December 2005.  Instream habitat mapping 

and monthly snorkel surveys were also conducted to determine whether steelhead 

preferentially selected habitat units with groundwater. 

 Sixteen percent of habitat units in the Topanga Creek study area received 

groundwater from known springs.  For six out of the nine months of the study, 

significantly more trout were found in groundwater areas than would be expected by the 

frequency of such sites.  The most likely reason for steelhead to select habitat units with 

groundwater during this study was differences in habitat between areas with and without 

groundwater.  Habitat units with groundwater had characteristics that were more 

favorable for steelhead such as greater surface area, greater depth, and higher shelter 

value.  Habitat units with groundwater may also have acted as refugia from high stream 

temperatures.  While there was no significant difference between temperature of the 

creek and temperature of surface discharge from springs, deep pools were significantly 

cooler than shallow pools.  Water quality in both the creek and springs was sufficiently 

good for trout throughout the study.  These findings suggest that groundwater may play 

an important role in maintaining steelhead populations near the southern extent of their 

Pacific coastal range
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Introduction 

 Steelhead are the anadromous variety of rainbow trout (Oncorhynchus mykiss).  

Throughout their Pacific range, steelhead are iteroparous and exhibit several possible life 

history patterns (Shapavolov and Taft 1954, McEwan and Jackson 1996, National Marine 

Fisheries Service 1996).  The large variation in life histories is an evolutionary response 

to the extremely variable environmental conditions in the small coastal streams used by 

steelhead for spawning (Taylor 1991, McEwan and Jackson 1996).  In addition to 

resident rainbow trout and anadromous steelhead, there are two different life histories of 

anadromy in individual steelhead.  Some individuals mature in the ocean before returning 

to streams to breed while others enter the streams before becoming mature (Shapavolov 

and Taft 1954, Taylor 1991, McEwan and Jackson 1996).       

 Anadromous adults enter the stream between December and April after spending 

one to three years in the ocean (National Marine Fisheries Service 1997).  Although fall 

and summer spawning populations of steelhead also exist in other streams (Shapavolov 

and Taft 1954), the steelhead in Topanga Creek are a winter-run population (Dagit and 

Reagan 2006).  Usually the first spawning is at three to four years of age.  Fry hatch and 

swim up after approximately one month (National Marine Fisheries Service 1997).  

Juvenile steelhead spend longer in freshwater than most Pacific salmon, approximately 

one to three years (National Marine Fisheries Service 1996).  Both eggs and juvenile fish 

do best in streams that are cool and well-oxygenated (Shapavolov and Taft 1954, 

McEwan and Jackson 1996).  
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 The historic range of steelhead along the Pacific coast of North America is from 

Alaska to the California-Mexico border and possibly as far south as Baja California 

(Shapavolov and Taft 1954).  Populations of steelhead occurring south of San Francisco 

Bay are referred to as southern steelhead (McEwan and Jackson 1996).  Most sources 

identify Malibu Creek as the current southern extent of the range of southern steelhead 

but steelhead adults were rediscovered in Topanga Creek in 2000 (Dagit et al. 2003).   

  Many factors have contributed to the decline in steelhead populations throughout 

their range.  Natural pressures on steelhead populations include highly variable rainfall, 

streamflow, and temperatures both on a yearly and seasonal basis (Nielsen 1999).  Along 

with the already highly variable environment, anthropogenic influences negatively impact 

trout populations.  In particular, diverting water for irrigation and residential use has 

severely limited streamflow in rivers where steelhead and other fish were once abundant 

(Moyle 1994, Nehlsen 1994, McEwan and Jackson 1996).  Reduction in streamflow has 

made some areas inaccessible that were once important spawning and feeding grounds 

for steelhead.  Habitat loss due to dam construction and river channelization are also 

major problems for steelhead populations (Nehlsen et al. 1991).  Dams reduce access to 

potential spawning habitat upstream as well as alter temperature and flow regimes that 

are critical for the timing of spawning.  Other human interferences such as over fishing 

and impairment of water quality also negatively impact steelhead populations (Moyle 

1994, Nehlsen 1994).  Steelhead populations in Southern California are under heavy 

pressure because a wide range of those factors occur together in this region.   

 There has been a rapid decline in steelhead numbers since the mid 1960s but 

populations of steelhead throughout their Pacific range have probably been declining for 
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a much longer period of time (McEwan and Jackson 1996).   Despite the long decline of 

southern steelhead, it was not until 1997 that the National Marine Fisheries Service 

(NMFS) listed many evolutionarily significant units (ESUs) of steelhead as endangered 

under the Endangered Species Act of 1973.  Topanga Creek’s steelhead population was 

added to the Southern California ESU (ESU 11) in 2002 when NMFS extended the 

southern boundary of the Southern California ESU to include the entire coast of Southern 

California (Dagit and Reagan 2006).  In 2000, the NMFS designated critical habitat for 

steelhead as all Pacific coastal streams where steelhead are known to occur and their 

associated riparian areas.  In some cases, NMFS designated critical habitat up to long-

standing barriers such as dams, rather than to the headwaters of the streams, where there 

was historically no suitable steelhead habitat upstream of the dam sites (NMFS 2000). 

 Records from the 1910s to early 1960s indicate that Topanga Creek once 

supported a large population of steelhead and non-anadromous rainbow trout (Dagit et al. 

2005).  While the current population of steelhead in Topanga Creek is lower than the 

creek has historically supported, the population appears to be increasing since 2001 

(Dagit and Reagan 2006).  The Resource Conservation District of the Santa Monica 

Mountains (RCDSMM) has been monitoring steelhead populations with monthly snorkel 

surveys and habitat conditions in Topanga Creek since 2001.  The goal of these studies is 

to collect data continuously on the status of the population of steelhead in Topanga Creek 

(Dagit and Reagan 2006).   

 Several studies have found that rainbow trout use areas of streams that receive 

groundwater as refugia from high temperatures during summer months (Nielsen et al. 

1994, Matthews and Berg 1997, Ebersole et al. 2001, Baird and Krueger 2003).  During 
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dry years and dry periods such as late summer and early fall, lack of water and high 

temperatures can cause stress in steelhead populations.  Droughts and water withdrawals 

are also important factors in the decline of steelhead in Southern California (Vadas 2000).  

The best recruitment of steelhead young occurred in above-average flow years, as higher 

flows maintain coldwater conditions and proper habitat for spawning and rearing in 

addition to allowing fish to move throughout the river (Vadas 2000).  During periods of 

low stream discharge, trout may become trapped in deep areas that are isolated by 

surrounding shallow water.  The minimum depth required for adult fish to move through 

a stream is 17.8 cm (Thompson 1972, as cited in McEwan and Jackson 1996).  Water 

depth requirements change throughout the life cycle of steelhead.  Bigger fish tend to use 

deeper portions of habitat units such as pools and smaller fish (age-0) use shallow areas 

with low-velocity water (Spina 2003). 

 Studies suggest that in some cases, physical habitat characteristics such as pool 

size, substrate, cover, and flow are more important factors in determining habitat use by 

steelhead than availability of thermal refugia (Nakamoto 1994).  If this is the case in 

Topanga Creek, steelhead should choose areas with favorable habitat, regardless of 

groundwater inputs.  Steelhead are also able to detect poor water quality and should be 

able to avoid areas where water quality is impaired (Atchison et al. 1987, Svecevičius 

2005).  Matthews and Berg (1997) found that the ability of steelhead to use groundwater 

as refugia from high stream temperatures was limited by low dissolved oxygen 

concentrations in groundwater. 

 Several characteristics of southern steelhead populations suggest that they have 

different habitat requirements than steelhead in northern streams.  Considerable evidence 
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exists to suggest that adaptation has lead to the maintenance of steelhead near the 

southern extent of their range (Taylor 1991).  Populations of steelhead south of Point 

Conception (near Santa Barbara, California) show more genetic variation than 

populations north of Point Conception (Nielsen 1999).  This genetic variation may be due 

to spawning fish straying from their natal streams in response to unfavorable conditions 

(Nielsen 1999).  Steelhead from Southern California are also able to withstand higher 

temperatures than steelhead from Northern California (McEwan and Jackson 1996, 

Matthews and Berg 1997, Myrick and Cech 2004).  

 Much of the research done on habitat and biology of west-coast steelhead has 

been conducted on fish in Northern California and Pacific Northwest streams (Douglas 

1995).  The flow regimes, climates, and ecology of these areas are very different from 

those of streams in Southern California.  In many cases, the research on northern 

steelhead populations does not seem to apply to steelhead in Southern California.  This is 

likely due to the need of the southern populations to adapt to more variable rainfall and 

extremes in habitat availability, streamflow, and temperatures in Southern California 

streams (Douglas 1995, Nielsen 1999).  There is also evidence that the populations of 

steelhead that live in Southern California have very different habitat needs than their 

northern counterparts (Douglas 1995).  One major difference is that in Southern 

California streams there are no other anadromous salmonids to interact with steelhead as 

there are in northern streams (Spina 2003). 

 The purpose of this study was to determine what effect, if any, groundwater 

resources have on the distribution of steelhead trout in a small, coastal stream near the 

southern extent of their Pacific range.  To achieve this goal, the following hypotheses 
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were analyzed.  (1) Steelhead should be observed near areas with groundwater inflows 

when temperatures exceed comfortable levels.  (2) If the quality of groundwater is 

intolerable or habitat is unsuitable where groundwater enters the creek, fish would not be 

expected to select groundwater sites.  To determine whether water quality was 

acceptable, I compared the quality of groundwater and water from the creek.  To 

determine whether habitat was suitable near groundwater, I compared physical habitat 

characteristics of habitat units that receive groundwater to those that do not.  GeoPentech, 

Inc., a geology consulting firm in Santa Ana California, provided a report describing 

geology of the canyon and summarizing chemical composition and isotope ratios of water 

collected during the study (GeoPentech 2006).
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Materials & Methods 

Site Description 

 Topanga Creek is a small coastal creek located in western Los Angeles County, 

California.  The 46.8 km2 watershed stretches from the western side of the Santa Monica 

Mountains near Calabasas, through Topanga Canyon, and ends at the Pacific Ocean in 

Santa Monica Bay.  It is the third largest watershed that drains into Santa Monica Bay.  

The study reach begins at the upstream side of the Pacific Coast Highway (US Highway 

1) bridge over the creek and extends 5900 meters upstream (Figure 1).  The bridge is 

near the upper side of Topanga Lagoon and provides a stable starting point for surveys 

(Dagit & Reagan 2006).  In the study reach, the creek forms a single, narrow channel that 

runs through a steep-sided canyon. 

 The geology of Topanga Canyon includes several different formations that are 

faulted and folded in many places.  These formations include volcanic, sedimentary, and 

conglomerate rocks.  The majority of the study reach is made up of sandstone and 

limestone.  Siltstone, shale, and volcanic sediments are interspersed but are not the 

dominant sediments in the lower section of Topanga Canyon.  Several faults and 

landslides intersecting Topanga Creek allow groundwater to surface and feed the creek. 

 The region’s Mediterranean climate includes dry summers and mild, wet winters.  

Peak rainfall is usually in January or February and the driest months are in late fall.  

During the dry season, flow in sections of the lower creek usually becomes subsurface 

and disconnected pools of standing water remain on the surface (Dagit & Reagan 2006).  

Average annual rainfall for Topanga Canyon is approximately 50.8 cm (LACDPW).  
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During the 2004-2005 water year, Topanga Canyon received approximately 154.9 cm of 

rain (LACDPW); 75% of the yearly total fell during December, January, and February 

(Figure 2).  Because of the extremely wet winter, no sections of creek became dry during 

the study period and creek levels never reached low-flow conditions.   

 Native vegetation in the canyon is mainly coastal sage scrub and chaparral.  

Sycamore (Platanus racemosa), California bay (Umbellularia californica), alder (Ulnus 

rhombifolia), coast live oak (Quercus agrifolia), and arroyo willow (Salix lasiplepis) are 

common near the stream and other water sources.  Non-native plants include giant reed 

(Arundo donax), cape ivy (Hedera helix canariensis), nasturtium (Tropacolum majus), 

periwinkle (Vinca minor), and eucalyptus (Eucalyptus spp.) as well as various other 

plants that have spread from landscaping in backyards and businesses.  

 The main human influences on water quality within the study reach are Topanga 

Canyon Blvd., Pacific Coast Highway, and a housing development on the southeast side 

of the creek, approximately one kilometer upstream of the Pacific Coast Highway bridge.  

The anthropogenic barriers to migration within the reach are impassible only under low-

flow conditions (Dagit & Reagan 2006).   

Fish Locations 

 Fish were located by conducting monthly snorkel surveys (Dagit and Reagan 

2006).  Snorkelers moved upstream through the creek on the surveys to prevent 

disturbance from reducing visibility during the survey (Hauer and Lamberti 1996).  

Teams of two people searched larger pools.  A single snorkeler surveyed narrow portions 

of the creek.  In all areas snorkelers looked under banks, rocks, and bubble curtains where 

present using hand-held dive lights.  A third person observed from the bank on a rock, 

 8



looking for fish that darted upstream after disturbance by the snorkelers.  When survey 

teams found a fish, they recorded the upstream distance from the Pacific Coast Highway 

bridge and/or landmarks, type of habitat, average depth, maximum depth, percent canopy 

cover, dominant substrate, and size of each fish. 

Habitat Data 

 Habitat data were recorded during stream mapping which was part of the ongoing 

Topanga Creek Watershed Southern Steelhead Trout Watershed Assessment and 

Restoration project (Dagit et al. 2003).  Stream Team volunteers mapped the creek from 

its mouth to 5900 meters upstream in October 2005.  Stream mapping methods followed 

the California Salmonid Stream Habitat Restoration Manual (Flosi and Reynolds 1994).  

Researchers identified distinct habitat units and recorded the instream distance of both the 

upper and lower limits of each habitat unit.  They also recorded physical and biological 

habitat characteristics such as depth, width, substrate type, and vegetation present for 

each habitat unit and classified habitat units according to the types outlined by Flosi and 

Reynolds (1994).  Shelter values are a measure of instream shelter complexity and are 

based on the amount and type of shelter available in a habitat unit (Flosi and Reynolds 

1994).  Higher shelter values indicate that a habitat unit contains overhanging banks and 

boulders that steelhead can use for shelter from stream currents and predators.  Possible 

values for the shelter value score range from 0 to 3 where 0 indicates no shelter; 1 

indicates one to five sheltered spaces; 2 indicates more than 5 sheltered spaces but limited 

types of shelter; and 3 indicates combinations of at least two of the following types of 

shelter: boulders, undercut banks, woody debris, root wads, bubble curtains, and 

submerged vegetation.  Members of the Topanga Creek Stream Team marked distances 
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every 100 meters by tying flags on trees or other stationary objects.  These markers were 

also used as a basis for referencing fish locations and groundwater sites within the creek.  

For additional information about stream mapping data and methods, see Dagit and 

Reagan (2006). 

Monitoring Site Selection 

 Selection of monitoring sites was not truly random.  Monitoring sites were not 

randomly selected for two reasons: (1) it was necessary to obtain a representative sample 

of geologic formations in the canyon, and (2) random sampling was not possible because 

many locations of springs were not safely accessible due to terrain.  GeoPentech and 

RCDSMM staff identified springs and possible monitoring locations using aerial 

photographs and field observations in early spring 2005.  Sixty-seven springs were 

identified within the study reach.  Twenty monitoring sites were selected to produce a 

fairly even distribution throughout the study reach, obtain water samples from a 

representative sample of each geologic formation, and ensure safe conditions for 

researchers (Figure 3).  In addition to springs, I chose five locations in the creek without 

groundwater at which to monitor water quality.  These five sites corresponded with the 

locations of Onset Stowaway recording thermometers.  

Water Quality 

 I collected water quality and flow data monthly from June through December 

2005, usually over 2 consecutive days.  Due to the large number of sites, their spatial 

distribution, and the difficult terrain in the creek bed, it was not possible to sample all 

sites in a single day.  During the September sampling, the second day of field work had to 
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be postponed to early October due to high fire danger and an uncontrolled brush fire that 

threatened the area.  To eliminate time of sampling as an influence on results, I visited 

sites in the same order each month and tried to sample each location at the same time of 

day each time.  Most samples were collected in the morning and early afternoon, 

although some samples were collected as late as 5:00 PM.  A few of the sites were also 

sampled during April and May. 

 Water quality tests were conducted both on water from surface flows of known 

groundwater sources in Topanga Creek and from the creek itself.  Instream samples were 

taken directly upstream of where surface flows of groundwater entered the creek to 

provide information on the quality of stream water for comparison to groundwater 

quality.  Conductivity, pH, salinity, dissolved oxygen, temperature, and estimates of 

volumetric discharge were taken in the field.  Water samples taken for nutrient testing 

were kept in coolers, on ice, until tests could be performed at the RCDSMM office.   

 I took samples and measurements at the same place and in the same way from 

month to month whenever possible.  When water levels became too low at four of the 

sampling locations, I chose a similar location (usually upslope) that still had water from 

which to sample.  The largest distance a sampling location had to be moved was 

approximately ten meters.  In most cases this appeared to have no effect on my 

measurements and the location only had to be moved once during the study.   

 I monitored temperature in two different ways.  I measured water temperature at 

each of the groundwater and instream control sites using the dissolved oxygen meter.  I 

also installed Onset Stowaway recording thermometers in 8 pools.  These thermometers 

recorded temperature in the creek every 30 minutes from June to October 2005. 
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 I measured dissolved oxygen (to 0.01 mg/L) using a YSI model 55 dissolved 

oxygen meter.  I measured salinity for each site as well as the elevation and entered them 

in the meter before measuring dissolved oxygen.  The dissolved oxygen meter was 

calibrated by moist air each morning before testing and it remained on throughout the day 

to avoid having to be recalibrated. 

 I tested pH using an Oakton Waterproof pH Testr2.  Before each sampling event, 

I calibrated the pH meter to a standard neutral 7 solution and either a standard 4 or 10 

solution. 

 I tested conductivity using WP Oakton ECTestr probes.  I used the low range 

probe (200 μs to 1990 μS/cm) at all sites.  Where the conductivity was over 1990 μS/cm, 

I measured conductivity using a high range probe (0 to 19.90 mS/cm).  I calibrated the 

conductivity meter using a standardized test solution (1413 μS/cm) prior to each field 

day.   

  I measured salinity to one part per thousand using a Vista model A366ATC 

refractometer (0-10% salinity).  The refractometer was calibrated the morning of each 

sampling event using distilled water to set the zero point. 

 I collected samples in Nalgene bottles for nutrient analysis later in the Resource 

Conservation District office.  Samples were collected using a standard protocol of 

opening and capping sample bottles under the surface of the water when possible.  When 

depth was insufficient to do this, water was captured in the bottle, catching as little 

sediment as possible.  I used a LaMotte Smart 2 Colorimeter to test samples for 

concentrations of ammonia.  For ammonia (as nitrogen) I used the low range (0.00-1.00 

ppm) test for all sites.  This test uses a salicylate reaction (Taras 1971).  If sites tested 
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over 1.00 ppm, they were retested using a high range (0.00-4.00 ppm) test which uses a 

Nesslerization method (Taras 1971). 

Discharge 

  I estimated surface discharge from springs using a calibrated 18.9 L bucket or a 

calibrated 1.9 L pitcher, depending on amount of discharge.  I used plastic sheeting to 

direct all surface flow from groundwater sites into the bucket.  I then measured the rate of 

discharge by capturing flow for a specified length of time (usually 20 seconds).  I 

repeated the measurement to make sure I had captured all surface discharge.  When 

measurements were not similar, I repeated the measurements until at least three 

measurements gave the same value. 

 At some sites it was impossible to capture all discharge because the seep was 

either too spread out to capture or more water was seeping from the ground down slope 

of the sampling site.  At each site, discharge was always measured in a consistent place 

and manner to ensure discharge measurements were comparable over time.  Spring flows 

could not be compared between sites.  My method only quantified surface flows and I 

had no way of measuring subsurface groundwater entering the creek, so it was not 

possible to quantify the total spring discharge into the stream. 

Site Names 

 Sampling sites were numbered in order moving upstream from Topanga Lagoon.  

The numbers were preceded by the letters HG to prevent confusion with the numbers 

originally assigned to all known groundwater sources in the watershed (Table 1).  The 

only exception to the spatial numbering scheme was that HG 23 is below HG 22.  HG 22, 

 13



which was an instream sampling site, also served as the upstream water sampling site for 

HG 23.  I also gave sites names to facilitate communication about them.  Each of the 

names describes the location of the site in some way: usually by taking the name of a 

nearby pool or other instream landmark. 

Spatial Analyses 

 To be able to compare data from snorkel surveys, stream mapping, and spring 

locations, I created a route using a National Hydrography Dataset (USGS 1999) shapefile 

of the main stem of Topanga Creek in ArcMap 9.0.  A route is a tool that displays spatial 

data along a line feature such as a road or a river.  Routes use measurements from a point 

along the line to create a new shapefile that can display attributes of sections of the line 

feature.  I created a shapefile of instream mapping data by locating the upstream 

distances of the upper and lower limit of each habitat unit along the route I created for 

Topanga Creek.  This route used the Pacific Coast Highway bridge over Topanga Creek 

as the reference point (0 m).  This allowed all instream measurements to be located along 

the route using the same instream mapping distances which were used to locate fish and 

landmarks in the field.  This shapefile provided the basis for identifying which habitat 

units received groundwater from springs in the canyon. 

 To determine where surface flows from springs intersected the creek, I used three 

methods.  Springs that were immediately adjacent to the creek were located along the 

route using their upstream distance, which was identified during field surveys.  For 

springs that were on tributaries of Topanga Creek, I used the location of the confluence of 

the tributary with the creek.  For spring sites that were not in the creek or on a tributary, I 

used a National Elevation Data (USGS) map to determine the most likely place where 
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surface flows would intersect the creek.  Once the intersection of surface flows from 

springs were located on the route, I used these route locations and their corresponding 

instream distances to determine which habitat units were likely to have groundwater 

input. 

Statistical Analyses 

 I used SPSS student version 12.0 for all statistical analyses.  I used a chi-squared 

goodness-of-fit test to test the null hypothesis that the proportion of steelhead in habitat 

units that received groundwater was the same as the proportion of habitat units receiving 

groundwater in the creek as a whole.  This method is similar to the one used by Spina 

(2003) to test mesohabitat preferences among steelhead.  I compared the distribution of 

groundwater areas to the distribution of steelhead separately for each month to ensure 

that observations of fish locations were independent of each other.  This is important 

because testing all of the observations as a single group would lead to including the same 

fish multiple times in a single comparison.  Doing this would invalidate the assumptions 

of the χ2 goodness-of-fit test and make its results irrelevant.  By analyzing the distribution 

of fish by month, it is reasonable to assume that the fish were only counted once in each 

snorkel survey because of the way snorkel data were collected. 

 Prior to doing any other tests on habitat data, I used a correlation matrix for all 

habitat parameters to determine which were related.  I also used correlation to determine 

the relationships between water quality values, flow, temperature and numbers of trout 

observed.  Because none of the habitat data were normally distributed, I used a log+1 

transformation on the data before performing any comparisons.  I used a two-sample t-

test (independent samples t-test in SPSS) to determine whether there were physical 
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differences between habitat units with and without groundwater.  For habitat parameters 

where the variance was not the same for the habitat units with and without groundwater 

input, I used a non-parametric version of the same test.  For all statistical tests, alpha was 

set at 0.05. 

Electivity Index 

 After analyzing the differences between habitat units with groundwater and those 

without, I used Jacobs’ electivity index and the methods for interpreting the numbers as 

reported by Baltz (1990) to compare habitat unit use by steelhead based on habitat types:   

rppr
prD

2)( −+
−

=  , 

where r is the proportion of a resource used by a species and p is the proportion of the 

resource available in the system.  The purpose of using this index was to provide a 

method of comparing the types of habitat in which steelhead were observed to the types 

of habitats present in the study reach of Topanga Creek.  Using this index, Baltz 

recommends the following interpretation of the resulting values for D: values between -

1.00 and –0.50 indicate strong avoidance, -0.49 to -0.26 indicate moderate avoidance, -

0.25 to 0.25 indicate neutral selection, 0.26 to 0.49 indicate moderate selection, and 0.50 

to 1.00 indicate strong selection. 
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Results 

Distribution of Groundwater 

 Habitat units with groundwater input made up approximately 16% of the habitat 

units in Topanga creek.  Although there were approximately 70 known springs in the 

study area, many of the springs drained into the same area of the creek because they were 

close together or they ran into the same sub-drainage. Out of the 306 habitat units that 

were identified during stream mapping, 50 habitat units were classified as having 

groundwater input (Figure 4). 

Distribution of Steelhead 

 A total of 500 steelhead sightings in Topanga Creek for 2005 was below the six-

year average of approximately 610 total sightings per year.  The lowest number of 

sightings was in 2001 (379 fish) and the highest number was in 2004 (682 fish) (Dagit 

and Reagan 2006).  More trout were observed from late spring through summer 2005 

than during fall or winter.  The lowest numbers of fish observed were during fall with the 

exception of November, when the second highest number of fish was observed.  

 During 2005 trout of all sizes were observed in Topanga Creek.  Most trout were 

of intermediate size (10-25cm) (Dagit and Reagan 2006).  Juvenile fish (<10cm), which 

make up the smallest proportion of the observed population, were observed most often in 

late summer.  No juvenile fish were observed in the creek during October, which could 

indicate outmigration.  The highest numbers of adult fish (>25cm) were observed in 

October and November.  Length of fish was significantly correlated with both mean 

depth (r=0.24, p<0.05) and maximum depth (r=0.20, p<0.05) of habitat units in which 
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fish were observed.  The maximum number of trout observed at a time was ten and the 

average number seen together was 2.  Fish were observed in an average of 34 separate 

habitat units (11% of all habitat units in the study area). 

 Steelhead in Topanga Creek were found more often in pools than any other 

habitat type.  However, steelhead showed different levels of preference for different types 

of pools.  They showed strong selection of trench pools, neutral to moderate selection of 

mid-channel and step pools, and strong avoidance of plunge pools, corner pools, and 

lateral scour pools (Table 2).  Steelhead showed neutral selection of glides and step-runs 

and moderate avoidance of riffles and cascades. 

 Steelhead were found more frequently near groundwater sites than would be 

expected if the fish were evenly distributed.  If the steelhead in Topanga Creek were 

evenly distributed throughout the habitat units, I would expect to find 16% of the fish in 

groundwater areas.  For six out of the nine months of the study, significantly more trout 

were found in groundwater areas than expected by the frequency of such sites (Table 3). 

Habitat 

 Habitat units with groundwater inputs mostly included types of habitat that 

steelhead selected.   Approximately 40% of habitat units with groundwater were pools 

(Figure 5).  Glides were the next most abundant habitat type at 16%.  Eight percent of 

habitat units with groundwater were classified as riffles.  Habitat units with groundwater 

were rarely classified as bedrock sheets and never as runs. 

 There were many differences in characteristics such as size, complexity, and 

substrate between habitat units with and without groundwater inputs.  Habitat units with 

groundwater were larger overall than habitat units without groundwater (Table 4).  

 18



Habitat units with groundwater input had larger surface areas, as calculated by the 

product of average length and average width of habitat units (t-test, p < 0.05).  This 

appears to be more the product of length than width because mean length was 

significantly higher in groundwater habitat units than in habitat units without 

groundwater.  Groundwater habitat units were also deeper on average than the habitat 

units without groundwater.  The shelter value was higher for areas with groundwater, 

although there was no particular type of cover that was significantly different (Table 5).  

While it did not appear that there was any particular type of substrate that characterized 

groundwater areas over other areas, there were significantly fewer boulders and more 

exposed bedrock in groundwater habitat units (Table 6).  No vegetation measurements 

were significantly different between habitats with and without groundwater (Table 7).  

Temperature  

 There was no significant difference between temperature of springs and 

temperature of the stream as measured by Onset Stowaway temperature loggers (paired-

samples t-test, p = 0.179).  However, instream temperature measured directly upstream of 

each spring was positively correlated to the temperature of the springs (paired-samples 

correlation, r = 0.84, p = 0.000).  Although there was no difference between the water 

temperatures in the stream and springs, there was a significant difference between 

temperatures of a shallow pool (0.75 m) and a deep pool (3 m) (independent-samples t-

test, p = 0.02).  The highest average daily temperature of the creek, as measured using 

Onset Stowaway temperature loggers was during July at almost 22°C (Figure 6).  The 

lowest average daily temperature was in October at around 15°C.  The highest water 

 19



temperature recorded by the Onset Stowaway temperature loggers was during July at 

approximately 35°C in a shallow pool; the lowest was around 12°C.   

 Average temperatures of groundwater for each sampling event during the study 

had a narrower range than instream temperatures.  The highest groundwater temperature 

was in July at around 18°C and the lowest temperature was in December at 

approximately 16°C.  There was a significant difference in mean daily temperature 

between the deepest pool (14.8°C) and the shallowest pool (24.3°C) where Onset 

Stowaway temperature loggers were installed (independent samples t-test, p = 0.019). 

 Minimum daily stream temperature on snorkel survey days, as calculated from 

Onset Stowaway temperature logger data, was positively correlated with the total number 

of fish observed during each snorkel survey (r = 0.95, p = 0.013).  Neither maximum 

daily temperature nor average daily temperature was significantly correlated with the 

total number of fish observed.  

Water Quality 

 Although dissolved oxygen (DO) was significantly higher in the creek than in the 

springs (independent samples t-test, p = 0.000), DO levels were sufficient to sustain trout 

in nearly all sampling locations throughout the study.  A value of 5.0 mg/L is the lowest 

level of DO salmonids can tolerate for prolonged periods of time (Barwick et al. 2004).  

There were very few instances where DO was less than 5.0 mg/L (Figure 7).  Only HG 

18, the Tadpole Pool, averaged less than 5.0 mg/L for the length of time it had water in it.  

That site was below 5.0 mg/L for May, June, and July and only marginally above that 

level in August.  The instream dissolved oxygen at this location was below 5.0 mg/L in 

June and marginally above that in August.  The only other site that had DO levels less 
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than 5 mg/L was HG 21, the Up and Down Tributary, in August and October.  HG 21 

was one of the sites that required moving the sampling location to continue monitoring 

after the original sampling location went dry.  Unfortunately, the only accessible location 

with surface flows was unlike the original site.  The original site was in a cascade and the 

new site was in much less turbulent flow.  This resulted in a marked difference in DO 

levels at this site.  Other than these occurrences, DO levels at instream sites and springs 

were usually well above the generally accepted standards of DO for salmonids. 

 Conductivity was significantly higher in the creek than in springs (independent 

samples t-test, p = 0.000) (Figure 8).  The average conductivity of the creek was 1408 

μS/cm while the average conductivity of the springs was 1221 μS/cm.  There was no 

significant difference between the springs and the stream in terms of pH and salinity.  For 

most sites measured, pH was neutral to slightly basic.  The lowest pH recorded was 6.5 

and the highest was 9.0.  Salinity ranged between 0 and 4 ppt in both the stream and 

springs.  The average salinity for both the stream and springs was approximately 1.4 ppt. 

Nutrients 

 Only two ammonia concentrations measured in either the creek or in the springs 

exceeded 2.2 mg/L (at 15°C and 6.5< pH <7.5), a value that could be a problem for 

salmonids and other sensitive cold-water fish species (EPA 1986).  There was no 

significant difference between ammonia levels measured in the creek and springs.  The 

highest ammonia concentration observed was at HG 10 during October at 3.06 mg/L.  

The lowest ammonia concentration was at HG 16 in June at 0.01 mg/L.  The average 

ammonia concentration was 0.28 mg/L.  Most ammonia concentrations were below 0.50 

mg/L. 
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Discharge 

 Discharge from Topanga Creek was highest in April and lowest in September 

following a sharp decline at the end of August (Figure 2).  Discharge increased slowly 

from September through December and was punctuated by small peaks following storms. 

 Overall, discharge from the springs I monitored appeared to be both highest and 

most variable during spring (Figures 9-10).  Most sites settled into a low, relatively 

stable pattern of flow in September and stayed that way throughout the rest of the study.  

Notable exceptions are the few sites that had spikes in flow during October.  It is likely 

that these sites gained some flow from rainfall because our October sampling days were 

during and after a storm event. 

 While most of the other monitoring sites started out with extremely high flows in 

spring, several of the sites showed low, stable flows throughout the study.  HG 14, HG13, 

and HG 10 all remained relatively consistent in discharge.  A few springs on the East 

bank of the creek showed especially high flows during spring.  In particular, HG 15, HG 

16, and HG 17 were extremely high in discharge during May and June.  HG 06, the 

Culvert Inlet East Side, also showed a similar pattern, but did not decline as dramatically 

in discharge during the summer as the other sites. 
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Discussion 

 While habitat units with groundwater inputs made up only 16% of habitat units in 

the study reach, they constituted an important resource for steelhead in Topanga Creek.  

During six out of the nine months of this study, snorkel surveys indicated that steelhead 

selected habitat units with groundwater inputs more frequently than would be expected 

based on the distribution of habitat units.  However, whether steelhead selected these 

areas because of groundwater inputs or habitat characteristics is not something this study 

can discern.  Temperatures in Topanga Creek were high enough that steelhead would be 

expected to seek cooler water throughout most of the study period.  The overall quality of 

groundwater was similar to the quality of creek water and was never sufficiently bad to 

deter steelhead from occupying habitat units receiving groundwater.  Similarly, 

characteristics of habitat units receiving groundwater were such that steelhead would be 

expected to prefer these habitat units rather than avoid them. 

 Steelhead should select areas with groundwater, especially when creek 

temperatures exceed optimal levels (Baltz et al. 1987, Nielsen et al. 1994, Matthews and 

Berg 1997, Ebersole et al. 2001, Baird and Krueger 2003).  In Topanga Creek, 

temperatures exceed comfortable levels on a daily basis.  Under a fluctuating temperature 

regime similar to that of Topanga Creek, the critical thermal maximum for steelhead may 

be as low as 21°C (Lee and Rinne 1980).  Lee and Rinne (1980) defined critical thermal 

maximum as the temperature at which a fish loses the ability to escape lethal conditions.  

Average daily temperatures in the creek were at or above 21°C regularly during summer 

months.  McCauley et al. (1977) found that the preferred water temperature for steelhead 

was 11.3°C regardless of acclimation temperature.  Water in Topanga Creek rarely 
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reached temperatures as low this during this study and average daily temperatures were 

above 15°C for nearly every day for which continuously recorded temperature data were 

available.   

 Although temperatures exceeded comfortable levels for steelhead in September 

and October, fish were not found significantly more often than expected in areas with 

groundwater.  Low minimum daily creek temperatures in September and October (Figure 

6) are the likely reason for low total numbers of fish observed during these months 

because of the significant correlation between minimum temperatures and number of fish 

observed.  Snorkel surveys are more accurate at temperatures greater than 14°C (Hillman 

et al. 1992).  When creek temperatures drop below that level, snorkelers are likely count 

less than 50% of the fish present (Hillman et al. 1992).  The low numbers of fish 

observed in these months was not likely related to fish migrating out of the stream 

because the mouth of the creek was not open to the ocean during these months (Dagit and 

Reagan 2006). 

 I cannot determine if the lack of significant selection of groundwater areas in 

December was due to cooler temperatures in the creek or low total numbers of fish 

observed during snorkel surveys.  No continuously recorded temperature data were 

available for December; however daytime temperatures recorded in the stream at the time 

of groundwater monitoring were well below critical levels.  The fewest fish were 

observed during the December snorkel survey, so it is possible that the low number of 

observations interfered with the ability of the chi-squared test to determine significant 

differences. 
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 The findings of previous studies conflict over whether habitat or temperature is 

more important in determining the distribution of steelhead in a creek.  One study 

concluded that physical characteristics of habitat units may play a more important role in 

habitat selection than the availability of thermal refugia (Nakamoto 1994).  Other studies 

suggest that thermal refugia may play an important role in thermal regulation and 

survival of steelhead in warm streams (Ebersole et al. 2001, Baird and Krueger 2003).   

 In a warm creek, temperature was an extremely important influence on steelhead 

but cooler areas also appear to have favorable habitat.  Areas with groundwater in 

Topanga Creek contain better habitat for steelhead than areas without groundwater 

because they are likely to have a combination of better physical characteristics and lower 

temperatures than areas without groundwater.  Groundwater habitat units were deeper, 

longer, and had a higher shelter value than habitat units without groundwater.  Although 

no significant difference in temperature was detected between spring water and creek 

water, habitat units with groundwater probably can still act as thermal refugia because 

they are deeper than other habitat units.  Deep pools with cool water have been shown to 

act as refugia from high temperatures (Matthews et al. 1994, Nielsen et al. 1994).  

Significantly lower temperatures in deeper pools than in shallow pools suggest that deep 

habitat units may act as refugia from high temperatures in the stream.  Besides serving as 

refuges from temperature extremes, deeper habitat units provide better shelter from 

predation and high flows (Baltz et al. 1991).  Deeper and longer habitat units probably 

offer more protection from terrestrial predators such as bobcats (Lynx rufus) and raccoons 

(Procyon lotor).  
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 Whether groundwater inputs were the cause or result of the differences in habitat 

characteristics cannot be answered by this study.  Increased groundwater inflow is 

thought to increase survival of trout eggs (Latta 1965) which could be a result of the 

inability of fine sediments to settle on the substrate.  Groundwater entering the creek 

could prevent entrained sediments from settling onto the substrate which would prevent 

these habitat units from filling up with fine grained sediments following periods of high 

stream discharge.  However, it is also possible that the deeper parts of the creek receive 

more surface groundwater input because the bottom of the creek intersects aquifers or 

faults which would allow groundwater to enter the creek. 

 Steelhead are capable of detecting and avoiding pollutants and poor water quality 

(Svečevicius 2005) and would thus would not be expected to select habitat units with 

groundwater if the quality of groundwater was poor.  Water quality in both the springs 

and stream was consistently good throughout the study and did not explain the lack of 

selection of habitat units with groundwater during September, October, and December.  

During the study period, water quality in monitored springs was good enough to sustain 

trout if they were trapped there during low-flow conditions.  Although groundwater 

quality was not better than surrounding creek water, it appeared to be just as good.  DO 

was significantly lower in groundwater than in the creek but few DO measurements were 

below 5.0 mg/L, a level which could be harmful to trout (Barwick et al. 2004).  

Conductivity was also higher in the creek than in the springs.  There was no difference 

between levels of any other chemical variables measured in springs or the creek. 

 It is important for groundwater chemistry to be good enough to sustain the fish 

because they are attracted to these sites by habitat characteristics and temperature 

 26



differences.  The likelihood of fish being trapped in these habitat units is higher than the 

likelihood of them being trapped in other habitats because bigger, deeper sites with 

groundwater inputs are more likely to have remant water during dry periods.   

 Had this study been conducted during drier water years, more fish would have 

likely been observed in groundwater areas.  During the study period, high water levels in 

Topanga Creek allowed steelhead to use habitat units that would have been too shallow 

during drier years.  Steelhead experience lower growth and survival rates as a result of 

higher densities (Spina 2000, Harvey et al. 2005); thus trout would be expected to 

increase density only when lack of water or other resources reduced the number of 

suitable habitat units.  Because shallow areas of the creek tended to be warmer than 

deeper ones, steelhead would be likely to avoid shallower areas and move into habitat 

units with groundwater, especially when lack of water increases the number of shallow 

habitats (Baltz et al. 1987, Matthews et al. 1994, Nielsen et al. 1994).  Habitat units with 

groundwater inputs would be more likely to have water in them when other areas of the 

creek run dry because of the groundwater inflows.  They would also be more likely to 

retain creek water because they are deeper and larger than habitat units without 

groundwater. 

 One source of bias in this study is the method of measuring the temperature of 

surface discharge from springs.  Temperature measurements in the springs were likely to 

be somewhat elevated above the actual temperature of subsurface groundwater entering 

the creek.  I suspect that greater quantities of groundwater entered the creek through the 

substrate than the amount measured as surface flow.  Surface discharge is likely to be 
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warmer than the water coming from the substrate directly into the creek due to the effects 

of running over the warm canyon walls.   

 Another potential bias is due to human error in snorkel surveys.  However, 

observations of the fish more often found near groundwater sites was not likely 

influenced by snorkelers looking for them more carefully near those sites.  Most 

snorkelers who looked for fish were not involved in the groundwater study.  Although 

they were aware of cooler areas of the creek while they snorkeled, for the most part they 

did not know which areas of the creek were being monitored or where other potential 

groundwater sites were.  Some areas that did not have groundwater, such as the Transient 

Pool (HG 3), may have been searched more thoroughly because fish were usually found 

there and snorkelers knew where fish hid in those pools.  If anything, snorkelers searched 

areas without groundwater more thoroughly.   

 Management decisions based on standards of favorable habitat for steelhead in the 

Pacific Northwest or Northern California should only be applied with caution to southern 

streams because southern streams offer a very different range of habitat characteristics.  

One major difference between northern and southern streams is the size of the habitat 

units they contain.  With surface areas around 300 m2, the largest pools in Topanga Creek 

would be considered small to moderate-sized pools by the standards used for steelhead 

habitat at the northern extent of their range (Nakamoto 1994).  Another major difference 

is the role of instream cover.  In northern streams, instream cover does not improve 

survival of steelhead (Harvey et al. 2005).  Spina (2003) found that at the southern extent 

of their range, however, steelhead select habitat units with higher physical complexity.   
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 Management and restoration plans for steelhead should include studies of 

groundwater resources that feed streams, especially in streams near the southern extent of 

the range of steelhead.  Where interfaces between groundwater and streams may be 

altered by restoration practices, particular care should be taken to understand how 

steelhead distribution depends on groundwater resources.  Groundwater resources in 

areas where steelhead are present should also be protected against contamination and 

consumption by human activities.  This is especially important in areas where streams are 

likely to desiccate during dry years or dry seasons because springs are likely to be more 

important for steelhead during dry times.  

 Steelhead in southern streams may choose to inhabit habitat units with 

groundwater input as a way to deal with less than favorable temperatures.  In southern 

streams, localized conditions created by groundwater inflow may play a bigger role in 

determining steelhead distribution and survival than condition of the stream as a whole.  

Temperatures in shallow areas of Topanga Creek are also likely to exceed levels that 

steelhead prefer for most of the year.  Steelhead populations have adapted to these less 

than favorable conditions, however, and the large range of life history patterns exhibited 

by populations near the southern extent of their range is evidence of that (Taylor 1991). 
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Figure 1: Extent of study reach in relation to Topanga Creek, CA, watershed.  Numbered 
points indicate instream landmarks.  (1) Topanga Lagoon at Pacific Coast Highway 
Bridge (0 m), (2) Barrier Falls (4400 m), (3) The Grotto, current absolute limit of 
anadromy (5300 m), (4) Upstream limit of the study reach (5900 m).  Stream and 
coastline shapefiles were taken from the National Hydrography Dataset (USGS 1999).  
Shapefiles were created in geographic coordinate system using North American Datum 
1983 (NAD 83) and were re-projected using coordinate system State Plane California V 
FIPS 04, NAD 83. 

 31



 

 
 
Figure 2: Precipitation (cm) and daily discharge (m /s) in Topanga Canyon and 
discharge from Topanga Creek, 1 October 2004-31 December 2005.

3

  Discharge was 
measured by Los Angeles County Department of Public Works stream gage F54F at 
Topanga Canyon Blvd. mile marker 2.02 near HG 9 (LACDPW unpublished data).  
Rainfall was measured by Los Angeles County Department of Pubic Works precipitation 
gage 6 (LACDPW unpublished data).  
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Figure 3:  Groundwater monitoring sites and known springs of Topanga Canyon, CA.  
Monitoring locations are labeled with study site numbers corresponding to those listed in 
Table 1.  Instream landmarks are enumerated as follows: (1) Topanga Lagoon at Pacific 
Coast Highway Bridge (0 m), (2) Barrier Falls (4400 m), (3) The Grotto, current absolute 
limit of anadromy (5300 m), (4) Upstream limit of the study reach (5900 m). 
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Figure 4: Habitat units with groundwater inputs in Topanga Creek, CA.  Habitat units 
were mapped in October 2005 following the California Salmonid Stream Habitat 
Restoration Manual (Flosi and Reynolds 1994).  Landmarks and GIS methods are as 
indicated in Figure 1.

 34



 

0

2

4

6

8

10

12

14

16

18

Side
 C

ha
nn

el

Lo
w G

rad
ien

t R
iffl

e

High
 G

rad
ien

t R
iffl

e

Cas
ca

de

Bed
roc

k S
he

et
Glid

e
Run

Step
 R

un

Tren
ch

 P
oo

l

Mid-
Cha

nn
el 

Poo
l

Step
 Poo

l

Corn
er 

Poo
l

La
ter

al 
Sco

ur 
Poo

l

Plun
ge

 Poo
l

Dry

Pe
rc

en
t o

f H
ab

ita
t U

ni
ts

 
 
Figure 5:  Percent of each habitat type with groundwater in Topanga Creek, Topanga, 
CA.   
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Figure 6:  Maximum, average, and minimum daily temperatures recorded in Topanga 
Creek by Onset Stowaway recording thermometers (17 June-16 October 2005). 
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Figure 7:  Average dissolved oxygen (mg/L) of surface discharge from springs and 
Topanga Creek immediately upstream of spring monitoring locations (April through 
December 2005). 

 37



 

0

500

1000

1500

2000

2500

HG 01
HG 02

HG 03
HG 04

HG 05
HG 06

HG 07
HG 08

HG 09
HG 10

HG 11
HG 12

HG 13
HG 14

Site

C
on

du
ct

iv
ity

 (μ
S/

cm
)

Instream Springs

 
 
Figure 8:  Average conductivity (μS/cm) by site for measurements in springs and 
Topanga Creek, immediately upstream of spring monitoring locations (April-December 
2005). 
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Figure 9: Discharge (L/min) from groundwater sites on the West bank of Topanga Creek 
(April-December 2005). 
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Figure 10:  Discharge (L/min) from groundwater sites on the East bank of Topanga 
Creek (April-December 2005). 
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Tables 

 



Table 1:  Names, numbers, instream locations, and sampling dates (in 2005) of groundwater monitoring locations. 
 

Apr May Jun Jul Aug Sep Oct Nov Dec

HG1 Topanga Lagoon Lag 301 - - 13 13 15 28 17 21 19

HG2 Mile Marker 0.05 MM 1100m 1 26 - 13 Dry Dry Dry Dry Dry Dry

HG3 Transient Pool Trans 1900m 3 26 - 14 14 15 28 17 21 19

HG4 Ski Pole Pool Ski 2000m - - 14 14 15 28 17 21 19

HG5 Green House Culvert GHC 2430m 4 26 - 14 13 15 28 17 21 19

HG6 Culvert Inlet East Side CIE 8 26 - 14 13 15 Dry Dry Dry Dry

HG7 Ken2 Pool Ken 2600m 6 - 26 14 13 15 28 17 21 19

HG8 Alder Grove AG 3500m 13 26 - 14 13 15 28 17 21 19

HG9 Bridge MM 2.02 Bri 3600m - 27 13 15 28 17 21 19

Noel Pool NP 4000m - - - 13 15 28 17 21 19

HG10 Sycamore Tree Syc 3977m 17 26 - 15 13 19 28 17 21 19

HG11 Maidenhair Fern Seep MHF 4100m 18 26 - 15 13 15 28 17 21 19

HG12 No Parking Alder Seep NPS 4316m 302 - 15 13 15 28 17 21 19

HG13 Narrows Seep Nar 19 26 - 15 13 15 28 17 21 19

Josh Pool JP 4400m - - - 13 15 28 17 - -

HG14 Duck Seep/ Kevin Pool DSK 4550m 20 - 31 15 14 16 7-Oct 18 22 20

HG15 Storm Falls SF 4637m 27 - 31 15 14 16 7-Oct Dry 22 20

HG16 Dead Alder Falls DAF 4718m 31 - 31 15 14 16 7-Oct 18 22 20

HG17 Elderberry Falls EF 5000m 52 - 31 15 14 16 7-Oct 18 22 20

HG18 Tadpole Pool TPP 5150m 53 - 31 15 14 16 Dry Dry Dry Dry

HG19 Pool of Many Drips PMD 5300m 54 - 31 16 14 16 7-Oct 18 22 20

HG20 Bigleaf Maple Pool BMP 5350m 35 - 31 16 14 16 7-Oct 18 22 20

HG21 Up and Down Trib UDT 5700m 56 - 31 16 14 16 - 18 22 20

HG22 Ropeswing Pool RSP 5900m - - 16 14 16 7-Oct 18 22 20

HG23 Time Tunnel TT 5900m 39 - 31 16 Dry Dry Dry Dry Dry Dry

Dates Sampled
Study Site 
Number Site Name Abbreviation Instream 

Distance
HG Static Data 

Reference Number
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Table 2:  Habitat type choice by steelhead as indicated by Jacob’s electivity index.  Bold indicates strong selection and italic indicates 
strong avoidance. 
 

Apr May Jun Jul Aug Sep Oct Nov Dec Average

Low Gradient Riffle -0.32 -0.50 -0.75 -0.36 -0.45 -0.36 -0.55 -0.70 -0.60 -0.51

High Gradient Riffle -1.00 -0.25 -0.30 -0.09 -0.18 -0.09 -1.00 -0.21 -0.03 -0.35

Cascade -0.79 -1.00 -0.09 -0.72 -0.41 -0.50 -0.40 -0.43 -1.00 -0.59

Bedrock Sheet -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00

Glide -0.13 -0.13 -0.34 -0.11 -0.21 -0.32 -0.52 0.04 0.12 -0.18

Run -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00

Step Run 0.25 0.32 0.18 0.04 -0.07 0.17 0.00 -0.26 0.10 0.08

Trench Pool 0.77 0.77 0.68 0.79 0.74 0.72 0.78 0.73 0.63 0.73

Mid-Channel Pool 0.02 0.26 0.31 0.21 0.46 0.10 0.35 0.16 0.17 0.23

Step Pool 0.41 0.19 0.28 0.14 0.03 0.45 0.11 0.46 0.33 0.27

Corner Pool -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00

Lateral Scour Pool -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00

Plunge Pool -0.47 -1.00 -1.00 -1.00 -0.42 -1.00 -0.22 -1.00 -1.00 -0.79

Side Channel -0.30 -0.15 -0.52 0.04 -0.42 -0.34 0.00 -0.10 0.10 -0.19  
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Table 3:  Results of the chi-squared goodness of fit test on the null hypothesis that the proportion of steelhead in habitat units with 
groundwater was the same as the proportion of habitat units that received groundwater (April-December 2005). 
 

April May June July August September October November December

Steelhead Observed 25 25 20 19 37 10 12 26 11

Steelhead Expected 12.12 12.61 12.77 12.61 12.93 10.18 9.21 12.61 7.11

Residual 12.88 12.39 7.23 6.39 24.07 -0.18 2.79 13.39 3.89

Steelhead Observed 50 53 59 59 43 53 45 52 33

Steelhead Expected 62.88 65.39 66.23 65.39 67.07 52.82 47.79 65.39 36.89

Residual -12.88 -12.39 -7.23 -6.39 -24.07 0.18 -2.79 -13.39 -3.89

Total Steelhead 75 78 79 78 80 63 57 78 44

Chi-Square 16.32 14.53 4.89 3.87 53.45 0.00 1.01 16.97 2.54

df 1 1 1 1 1 1 1 1 1

Asymp. Sig. 0.000 0.000 0.027 0.049 0.000 0.950 0.316 0.000 0.111

Groundwater

No 
Groundwater

Total
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Table 4:  Differences in various measurements of the size of habitat units with and without groundwater input as determined by an 
independent samples t-test (October 2005).  Bold values indicate p < 0.05. 
 
 
 Groundwater N Mean t df Sig. (2-tailed)

Mean Length (m) Present 50 27.18 3.66 304 0.00
Absent 256 19.18

Mean Width (m) Present 50 6.42 1.85 304 0.07
Absent 256 4.96

Area (m2) Present 50 181.26 3.11 304 0.00
Absent 256 111.17

Mean Depth (m) Present 50 33.50 2.61 304 0.01
Absent 256 25.69

Maximum Depth (m) Present 50 73.50 3.02 304 0.00
Absent 256 54.11
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Table 5:  Differences in the shelter available in habitat units with and without groundwater input as determined by an independent 
samples t-test (October 2005).  Bold values indicate p < 0.05.   
 

Groundwater N Mean t df Sig. (2-tailed)

Shelter Value (score) Present 50 1.86 3.28 304 0.00
Absent 256 1.34

Undercut Banks (% of bank Present 50 14.36 1.66 64 0.10
Absent 256 9.17

Small Woody Debris (% of Present 50 7.62 -0.93 304 0.35
Absent 256 7.59

Large Woody Debris (% of Present 50 2.06 1.78 54 0.08
Absent 256 0.65

Root Masses (% of habitat Present 50 4.12 1.52 304 0.13
Absent 256 3.76

Terrestrial Vegetation (% o Present 50 3.12 0.49 304 0.63
Absent 256 1.59

Aquatic Vegetation (% of h Present 50 2.10 0.26 304 0.79
Absent 256 2.56

Bubble Curtain (% of habita Present 50 8.92 -0.11 304 0.91
Absent 256 9.57

Boulders (% of habitat unit Present 50 27.10 -0.79 304 0.43
Absent 256 32.12

Bedrock Ledge (% of habit Present 50 7.84 1.74 63 0.09
Absent 256 4.43  

 46



Table 6:  Differences in substrate available in habitat units with and without groundwater input as determined by an independent 
samples t-test (October 2005).  Bold values indicate p < 0.05.  Dry length is a measure of the length (m) of a dry section of substrate 
within a habitat unit.  Other categories are a measured as a percentage of the area of a habitat unit that were covered by that type of 
substrate. 
 

Groundwater N Mean t df Sig. (2-tailed)

Dry Length (m) Present 50 0.00 -0.63 304 0.53
Absent 256 0.41

Silt or Clay (%) Present 50 2.00 -0.64 304 0.52
Absent 256 2.67

Sand (%) Present 50 27.10 1.77 304 0.08
Absent 256 22.01

Gravel (%) Present 50 15.30 1.11 304 0.27
Absent 256 14.55

Cobble (%) Present 50 18.72 -0.45 304 0.65
Absent 256 22.04

Boulder (%) Present 50 19.82 -2.84 304 0.00
Absent 256 31.07

Bedrock (%) Present 50 16.36 2.96 63 0.00
Absent 256 7.18

Exposed Substrate (%) Present 50 17.38 -1.51 304 0.13
Absent 256 24.84  
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Table 7:  Differences in vegetation in habitat units with and without groundwater input as determined by an independent samples t-
test (October 2005). 
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Groundwater N Mean t df Sig. (2-tailed)

Total Canopy (%) Present 50 32.60 -0.46 304 0.64
Absent 256 36.46

Broadleaf Vegetation (%) Present 50 31.08 -0.42 304 0.68
Absent 256 35.05

Non-Native Vegetation (%) Present 50 1.52 1.01 64 0.32
Absent 256 1.30

West Bank Vegetated (%) Present 50 22.96 -1.48 304 0.14
Absent 256 27.28

East Bank Vegetated (%) Present 50 24.84 -1.21 304 0.23
Absent 256 32.79  
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