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ABSTRACT

This paper presents a theoretical investigation of
laminar natural convection from a plane, vertical surface
in non-isothermal surroundings. Conditions are derived
for the existence of similarity solutions. A method is
proposed for generalizing the conditions pertaining to
existing similarity solutions so as to include the effect
of non-isothermal surroundings. Numerical solutions of
the ordinary differential equations resulting from the
similarity transformation are reported for the special
case of an isothermal surface. These results suggest that
some variations of surrounding temperature may lead to
flow reversal in the boundary layer. Experimental evidence

suggests that this may be an unstable condition.,
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NOMENCLATURE

A, B, C, D Constants
Cl, 02, etc. Constants
Cp Specific heat capacity
f dimensionless similarity stream function
=¥/ ¢
g Specific gravitational force
G Dimensionless temperature ( = gPL3(0— a)/y°)
k Thermal conductivity
L Characteristic length
m, n Constant parameters
Nu Nusselt number ( = Q"L/k48 )
P Pressure
Pr ~ Prandtl number ( = ,u Cp/k)
Q" Heat-transfer rate per area
T Absolute temperature
t Time
t# Dimensionless time ( = J/t/L2)
u Velocity in the x direction
\ Velocity in the y direction
X Distance along the plate
X Dimensionless distance along the plate ( = x/L)
v Distance normal to the plate
Y Dimensionless distance normal to the

plate ( = y/L)
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Subscripts

g

Superscript

!
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Coefficient of cubical expansion

Constant parameter

independent similarity variabie ( =YQ)

Temperature

Viscosity

Kinematic viscosity

Density

Unknown functions

Dimensionless similarity temperature function
[ = (G - G )/(G, = Gy )]

Stream function (u = b‘lya‘t/ y V = - )W)x)

Dimensionless stream function ( = q7éb’)

Body force term in boundary layer equation

Conditions on the surface of the heated plate
Conditions outside the boundary layer

An arbitrary reference condition

The prime is used to indicate differentiation

with respect to the independent variable
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NATURAL CONVECTION FROM A PLANE,

VERTICAL SURFACE IN NON-ISOTHERMAL SURROUNDINGS

Introduction

Following the work of Yang [1], it has been suggested
that all the "exact" similarity solutions for the above pro=-
blem have been explored., However, during a recent experimental
investigation (Cheesewright [2]), it became apparent that
existing solutions, which are all concerned with isothermal
surroundings, did not provide a satisfactory description of
the experimental phenomena.

A study of the problem revealed a new class of solutions
for non-isothermal surroundings. The derivation of these
solutions and the numerical results arising from them are
considered in this paper. The form of temperature variation
in the surroundings considered is that in which the temper-
ature far away from the heated plate is a function of x, the
distance from the leading edge.

The procedure adopted by Yang [1] for the determination
of the similarity transformation is followed closely, and
after detailed examination of two cases of special interest,
a way of generalizing the results of Yang [1] to include
cases of non-isothermal surroundings is proposed.

It is believed that the results for the special case of
an isothermal surface in non-isothermal surroundings have

important applications in the experimental study of transition



to turbulence in natural convection on a plane vertical
surface. The results in general make possible the cone
sideration of natural convection from an isolated surface in
a cavity of limited extent, and may also facilitate the
study of the boundary layer regimes in natural convection

in closed cavities. A qualitative study of the effects of

a vertical temperature gradient outslde the boundary layer

in the closed cavity problem has been made by Schwind and

Vliet [3].

Analzsis

With respect to the coordinate system, the equations
of momentum, continuity and energy which govern the flow
and heat-transfer in a laminar boundary layer in the

presence of a body force are respectively

W o udL o -~ P VY
d V2% oy P ds > ¢*

e LMW o0 (2)
pLE DY

A0 4 wd + T = ig, :ré; (3)
¢ dx 4 FC’, DY *

with the appropriate boundary conditions,
If consideration is restricted to a semi-infinite plate,

having a temperature everywhere greater than that of its



surroundings, we can write f) = -9

Outside the boundary layer

w,du, . 1
dx /o

(For pure natural convection ({,= 0 )

0(,’ -+ j = o (4)
Eliminating a“’//x- between equations (1) and (4), we get

R R -9(PR) 1 ¥

d % J

Following Ostrach [4], property variations are assumed to
be important only in so far as they affect the body force

term, and the density variation is represented by

P =/:[:-f(9—6’.?]

Where fz is the density at an arbitrary reference temperature,
, and P = constant (1/7, for a perfect gas).

These conslderations allow us to rewrite equation (5) as

yudl 4 V%ﬁ' = .o +3A(6-%) *”"" (6)
x

U‘U
o |R

provided (@ - @,)<< T,
Equations (2), (3) and (6) govern the flow which we

wish to investigate, subject to the following boundary con-

ditions



0 W= =0 and B =G, (x,t)
© w=U, (x,t) and @ 9 (x,t)

aty
at J

It may be noted that equation (6) is identical with

the corresponding equation for the case éL= constant.
The above derivation has been given because it is not felt
that this identity is obvious.

Introducing the stream function qV, [which satisfies

equation (2)], equations (6) and (3) become

By L dwYe Y udd, M+W<v>
3331:"""5' 3y dx dY* “dx +ﬁ( )

éz‘i-rll’kﬁ-lﬁkﬁ.:_{éﬁ (8)
ot d§ e VWae Y €Cf }3"

It is convenient to make these equations dimensionless

by writing X = x/L, ¥ = y/L,F =W/y , ¢ = Ber’(8 - 6,/0°,
G oo =FgL3(9‘o- é, )/)/‘2 and t* =Jt/L° where L is a charac-

teristic length.

Equations (7) and (8) now become

YT L W IT NENT - Lu,dy, 6-¢ . VF (o

YR Y WYY M Dy VP X dy?
Yo L UG MY - 1 Y& (10)
ke VY dx Y4 P,. dy*

where Pr =/“Cf/1e



In order to determine the necessary conditions for the
existence of similarity solutions, we follow Yang [1l] and

introduce the new variables

7 = Y(ﬂ()()c”)
foq) = ¥/ (x.¢)
8(7) = (¢ ~Gu)/ (6. - )

where G = FgL3(9,, -8, )/y°.

The required conditions are those which enable the
introduction of the new variables to transform equations
(9) and (10) into ordinary differential equations together
with appropriate boundary conditions.

In terms of the new variables the boundary conditions

become

é =lat q =0, g =o0at M=

£=dr/eq =0 av 9 =0, df’/d7=u‘,/$ﬂ1¢3 at 9 =
The last of these is only acceptable 1if
Up = comstant = C, (11)
A
The conditions for equations (9) and (10) to transform into

ordinary differential equations may be seen, by comparison
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with the problem treated in Yang [1], to be given by

LGW;"G'M) = Cz (12)
% Y

M L = C: (13)
A/
B(ﬂ. / = C, (14)

LA
_é_lg _5@._ = Cs (15)

Eﬁ a . C‘ (16)

NGy -Gs) | - G (17)

V6o -6o) A = ¢ (18)

AG;D J = C, (19)

B G‘oo 601 = C ('20)

Jud’ u = C, (21)
ix gL '

Where the C's are all constants




-7 -

At this point it is desirable to consider the relationship
between the present work and that contained in Yang [1] and
other related publicatioﬁs.

The work of Yang [1] and, indeed, all other theoretical
treatments of laminar natural convection from a plane surface
in an infinite medium, known to the author, are concerned
with convection from a surface in isothermal surroundings.

The present investigation deals with convection from a surface
in surroundings in which the temperature is a function of

the distance along the plate and of time., Now 1t might be
supposed that, as for forced convection (e.g. Hansen (51,
only the difference in temperature between the surface and

the surroundings is important. However, thils is not the

case in problems of natural convection, because of the
appearance of GL in the body force term in the momentum
equation.

It should be noted that the present work includes'all
cases treated previously, including those of Yang [1]. This
is demonstrated by putting G, = const and Ug = 0 in

equations (11) to (21), and writing G*w =G =G

W co » When

these equations become identical to equations (16) to (22)
in Yang [1].

Two cases are of particular interest, viz., steady
natural convection, (a) from an isothermal surface in non=-
isothermal surroundings; (b) from a non-isothermal surface
maintained at a constant temperature differential with its

surroundings.



Particular Cases

(i) Steady Natural Convection From An Isothermal Surface

In Non-Isothermal Surroundings

In this case ug = 0, 9‘, = const, Hw= do(x) and
hence Cl = C3 = CM = C7 = 09 = Cll = 0 and 08 = -Clo.
Equations (12), (15), (16) and (18) determine the conditions
which are imposed on ‘/l’ %2 and Ggp « A study of the
general solutions to equations (15) and (16) shows that two

cases must now be considered.

Case (o): C6/C5 # 1.
tere (f) = [C), + (C./C (€ - 1)x1t/ (€ -1

- _ €/(€ -1)
A C3l0yy + (657050 (€ = 1)X]

where € = C6/C5 and C and Clq are constants of integration.

13
It is convenient to rearrange these equations by writing
n= (g + 3)/(g~-1) and C5 =n -1, (This latter step is
possible because of the presence of the arbitrary constants
013 and Clu in the equations.)

The equations now become

J.
.

and we also have

[oyy + 4/, xR/

(n+3)/4
013[014 + (u/cl3)x]

_ n

Under these conditions, equations (9) and (10) reduce to



£r'Y ¢+ (n+3)ff' = (2n + 2)(f')2 + I
I R pr(n+3)fI' + A4nPrf'(l- I)

0 (22)

0 (23)

where the prime indicates differentiation with respect to 7
These equations, together with the appropriate boundary
conditions,'may be solved numerically.

Of particular interest are the heat-transfer rate from the

surface and the component of velocity parallel to the surface,

° -{@3@),,- JPL“[( /e X] i

Y RN R VA (A

=y
[}

Expressing the heat-transfer rate in dimensionless form in

ferms of the Nusselt number, we obtailn

i Y4 ’
Nu = =|9p(0.-6o) | X ¢ .

ﬁ[ -9.0) V*Cp3 Z—[C"’. +(4‘/C,3>)§] V4

If 014 = 0 (which is shown by a study of the corresponding

form of ¢71 to be equivalent to the boundary layer having

zero thickness at x = 0) this reduces to

Nu = (or)t/ é'“;./(z)l/?
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where Gr = gp(av- H,, )X3/J/2

Case (b): C6/C5 =1

- _ . CsX/Cy
Here (fz = C13 (,0' and (/' = Clse 5 3 where 015 is

a constant of integration. It 1s convenient to write

5
and C__ are arbitrary) when we get

15
_ mX/4
gﬂ, C15°

= l%/C13 and C_ = 1 (the lqtter is possible because C13

- </
4& = (MCIB/m)em
- mX
6p =~ C0 ~ ((15)/”‘)8

and equations (9) and (10) become
prov et o 2(en? e @ =0

' +prr g+ bprer(l- §)

i
o .

The corresponding forms for Q'' and u are

smX/#
"o A\ - AVl g’
5%) JPL“ 4\C‘/m v

N Y N AR Je™VEL

<.
]

(24)

(25)

It 1s thus seen that similarity solutions for steady natural

convection from an isothermal surface exist when the
temperature of the surroundings varies either as a power

of a linear function of x as in the first case or as an
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exponential function of x as above. The resulting equations
are, in each case, similar but not identical to those for
the corresponding cases of variable surface temperature and
isothermal surroundings (Yang [1]).

Numerical solutions to equations (22) and (23) have
been obtained for a range of values of n, i.,e, different

distributions of éap .

(11) Steady Natural Convection From a Non-Isothermal Surface
Maintained at a Constant Temperature Differential
With Its Surroundings.

Here u‘p = 0 and gw(") "’9,9(") = constant, so that
C, = C3 =Cy = C7 = Cg = C9 = Cy; = 0 and equations (12),
(15), (16) and (20) provide the conditions which must be
satisfied if similarity solutions are to exist.

Equations (15) and (16) together yield a general

solution €
gpl. = C;% 5‘2

where & = c6/c5 and C,, is a constant of integration.
Substituting back into equations (15) and (16) we obtain,
for the caseg # 1 (the case € = 1 need not be considered as

it does not yield a solution for this particular problem)

1/(¢ =1)
% e, + (Cg/C (€ = 1X] (26)

E/(E-1)

016[017 + (C./C,.)(E - 1)X] (27)

57716

where C is a constant of integration.

17



- 12 -

Equation (12) may be rewritten as

3
Sﬂ, ;/, = (Gw_- Gw')/c2 = c12 (28)

Substituting equations (26) and (27) into equation (28)
gives & = =3 and C, 016 = (Gv-G‘,).

Examination of this result shows that except for the
constant of integration 017, the functions 9? and eéz
are ldentical with the corresponding functions occurring
in the analysis of steady natural convection from an isothermal
surface in 1sothermal surroundings.

We still have to satisfy equation (20) which may be

rewritten as
i__q_-g = G CGw ~ 6'3!;)
X CufCh - (bC/C)X]

Thus
(3;, = - (:lo <2;ar'-6}a0 '63»[1217(a%f"6i¢) '-‘QC;<:£2§I-*CLQ |
4 Cs
where 018 is a constant of integration.

In order that this may be applied to physically
meaningful problems, G, must remain finite. This imposes

the following mathemat®ical restrictions

(1) 017 cannot be zero

(ii) C17(Gw_- G ) cannot be equae. to McchX for any X

A study of the corresponding forms of ¢Zshows that the

restrictions have the common interpretation that the existence
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of a constant temperature differential between a surface
and its surroundings, is incompatible with the existence of
a point of zero boundary layer thickness, except for the
speclal case of an 1sothermal surface in isothermal
surroundings (ClO = 0).

When 017 # 0, the boundary layer has a non-zero
thickness.at X=0 and the magnitudes of the temperature
and velocity profiles are specified by the value of Cl7°

For this case, equations (9) and (10) reduce to the

ordinary differential equations
£+ 3t - 2(en)% + @ = 0 (29)

dn 4 3Prf§' - ClOf' = 0 (30)

Because the appearance of C in equations (30) places

10
a severe restriction on the generality of any solution and
because of the limitations imposed on 017, no numerical

solutions of these equations have been attempted.

(iii) Other Cases of Convection to Non-Isothermal

Surroundings

A careful study of equations (11) to (21) shows that
the conditions imposed by these equations are closely
related to those which must be satisfied in problems with

isothermal surroundings. Equations (11) to (18) and (21)

impose the same conditions on (Gw_- G, ) as are usually
imposed on Qw' Equations (19) and (20) then impose

conditions on Gd, as well.
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As an example, let us consider the case of steady
natural convection from a non-isothermal surface to non=

isothermal surroundings, excluding the case where qw,- Geo

is constant.
Similarity solutions are possible for (Qw.- G )
mX

(v o)
= (A + BX)" and for G_ - G, = Ae

provided G also
satisfies equation (20) which requires that G, = C(A + BX)"
(for n # 0) in one case and Gy = Demx in the other case
(A, B, C and D are constants)., The similarity in the form
of (qw_- Ge )(X) and G (X) results from the similarity
of equations (17) and (19), and (18) and (20). This gives
a means of generalizing existing results to include cases of
non~isothermal-surroundings. Restrictions previously
derived concerning allowable variations in surface teme
perature may be used to describe allowable variations in
temperature difference, surface to surroundings, provided
that the same conditions are imposed on the variations
of surrounding temperature alone., This generalization may be
applied to all know similarity solutions for natural convec=-
tion (see for example Yang [1], Pau=Chang Lu [6], Sparrow
and Gregg [7], Eichhorn [8], etc.) and also to similarity
solutions for combined forced and free convection (see
Sparrow, Eichhorn and Gregg [9] and Brindley [10]).

It should be noted that the resulting ordinary differ-
ential equations in all these cases will not be the same as

those for the corresponding cases of isothermal surroundings,
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but will, in each case, contain an additional term in the
'energy' equation. Numerical solutions have not been
obtained for any of the new equations, because practical
applications have not yet arisen which would justify such

work.

Results and Discussion

Numerical solutions of equations (22) and (23) have
been obtained on the University of London Atlas computer, for
-0.30 LN 0.6 and Pr = 0.708 (air). Both Runge-Kutta
integration and iterated integration techniques were used.

See Cheesewright [2] for details and a comparison of the
methods.

Figures i, 2, and 3 show the influence of M on the
local heat-transfer rate, the temperature profiles and the
velocity profiles respectively., Because of the difficulty
of showing fine detail on the graphs, the full solutions are
tabulated for the cases of M = -0,15 and M = ~0,3, in
tables 1 and 2,

It should be noted that M< 0 corresponds to 9,, increasing
with increasing X while M >0 corresponds to 9,0 decreasing with
increasing X. The former of these is the more likely to
occur in practical situations; in fact, the condition M = 0
( a” = const) is very rarely achieved, although in many cases
depértures from it are small enough to be ignored. Cases
of M >0 may not occur in practical situations because this

would in general represent an unstable situation,
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Figure 1 shows that for M < 0, the local heat-transfer
rate is increased as compared with 2 = 0 while for @ > O
it is reduced. This is 1n keeping with the physical picture
of the phenomenon. For negative ?t one would expect that
at a particular section X', the temperatures at all points
in the boundary layer would be less than would have existed
if @ had been zero and 9.,--9¢ had been everywhere equal
to its local value. This picture is confirmed by the
temperature and velocity profiles in figures 2 and 3.

Table 1 shows that for M = -0.15, the temperature in a
part of the boundary layer is less than that outside the
boundary layer., Table 2 shows that for @ = <0.3 the effect
is more pronouhced and is sufficient to cause flow reversal
in the outer part of the boundary layer as indicated by
the negative values of f',

It must be emphasized that although these effects are
small in numerical magnitude, they are genuine and are not
due to numerical inaccuracy. This was confirmed by calcu=
lating one set of results to eight-figure accuracy.

The physical picture of the phenomena in that the rate
of heat-transfer from the plate to fluid in the outer part
of the boundary layer is not sufficient to keep its temper-
ature in step with the temperature outside the boundary
layer, as it moves upwards.

The possibility that the above described temperature

minimum, and flow reversal, may constitute an unstable
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condition is suggested by experiments in which negative 7N
existed (or was suspected). The evidence is all indirect
and no experiments have yet been carried out to check this
idea directly. In all cases the variation of M was
imposed by conditions not controlled during the experiment
so that the condition 9w-9¢=”X?vas not satisfied.
Nonetheless, it is felt that an estimation of the effects
can be obtained by the representation of(aw-@)d) as Hx'n
in a piecewise manner.

In experiments reported by Cheesewright [2], m was
always negative and may have been as low as =0.1 in some
cases. The 'laminar' boundary layer in these experiments
was almost alwéys unsteady. It is believed that the only
two days during a period of several months on which the
boundary layer was steady were characterized by nzo ,
but definite evidence on this point does not exist. The
introduction of artificial disturbances into the laboratory,
outside the boundary layer, did not appear to affect the
steadiness in either the steady or the unsteady situation.,
Further details on these points are given in [2].

These results are in keeping with those reported by
a number of authors who have studied boundary layer flow
regimes in closed cavity natural convection., (Elder [11],
Carlson [12], Gaster and Murgatroyd[l13], Watson [14] and
Hammitt [159. In all cases 1t has been reported that it is

very difficult, or impossible, to obtain steady laminar
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flow., 1In all cases substantial variations of 6&9 (con-
sidering the boundary layers on the cell walls) with respect
to X occurred, and while 1t is reallzed that the closed
cavity imposes more severe conditions with regard to
stabllity than a free flow, it is felt that the phenomena
are generally the same,

The possibility that unstable flows may occur for M
less than some particular value, could explain the unusual
results of Tritton [16] who reported a change in the
stability of the laminar boundary layer due to a change in
laboratory conditions which he was not able to specify.

His laboratory was generally similar to that used by Cheese=-
wright [2] so that similar values of 7 may have occurred.

Cheesewright [2] has also reported increased local
heat-transfer rates under conditions for which M was
known to be negative, The increase was always greater than
that predicted by the laminar steady state solution. The
difference is believed to be due to the unsteadiness

discussed above.

Conclusions

1. Similarity solutions exist for problems of laminar
natural convection from a plane vertical surface in non-
isothermal surroundings. The conditions for these solutions
may be obtained by the generalization of conditions for

solutions in isothermal surroundings.
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2. For the special case of an isothermal surface in non-
isothermal surroundings ( 9‘, - 6‘”) = AX") with m<0,

a temperature minimum and a region of reversed flow occurring
within the boundary layer. Experimental evidence suggests
that this 1s an unstable situation.

3. For the above special case, the effect of negative 7
is to increase the local heat-transfer rate while positive m

decreases it.
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Fie, 1 - The Variation of the Local Heat-
Transfer Pate With The Temperature Gradient
Qutside the Boundary Layer.

( Op=x" - 6, , O, = const, Pr = 0,708)
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Mim. 2 - The Variation of the Dimensionless
Temperature Profiles Wilth The Temperature
Gradient Outslde the Boundary Layver.,

(g, = " -8, ,

B., = const.

Pr = 0,708)
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Pie,

24

3 = The Variatlon of the Dimensionless
Velocity Proflles With The Temperature
Cradient Qutside the Boundary Layer.

(g, = bBx" - O. = const., Pr = 0,708)
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1.00
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4,00
4,50
5000
5.50
6,00
6.50
7.00
7.50
8,00
8.50
9.00
9.50
10.00
10.50
11.00
11.50
12,00
12.50
13.00
13.50
14,00
14,50
15.00
15.50
16,00
16,50
17.00
17i50
18,00
18.50
19,00
19.50
20,00

TABLE 1

Theoretical Solution

£

0.00000
0.,06312
0.18846
0.31151
0.40539
0.46734
0.50448
0.52530
0.53640
0.54208
0.54488
0.54622
0.54683
0.54711
0.54723
0.54727
0.54729
0.54730
0.,54730
0.54730
0.54730
0.54730
0.54729
0.54729
0.54729
0.54729
0.54729
0.54729
0.54729
0.54730
0.54730
0.54730
0.54730
0.54730
0.54730
0.54730
0.54730
0.54730
0.54730
0.54730
0.54730

f"

0.00000
0.21703
0.26296
0.22080
0.15430
0.09612
0.05537
0.03012
0.01568
0.00786
0.00381
0.00178
0.00081
0.00035
0.0001k
0.00006
0.00002
0.00001
0.00000

-0.00000

~0.00000

-0.00000

~0.00000

-0.00000

-0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.000006
0.00000
0.00000

-0.00000

-0.00000

n = -0015

f"

0.65949
0.23471
-0,02227
-0,12471
-0.13975
-0.09939
-0,06454
-0.03810
-0,02109
-0,01113
-0.00564
-0,00277
-0.00131
-0.00060
-0.00026
-0,00011
-0.00004
-0,00002
-0,00000
~-0,00000
0.00000
0.00000
0,00000
0.,00000
0.00000
0,00000
0.00000
0.,00000
0.00000
0.00000
0.,00000
0,00000
0.00000
-0.00000
-0,00000
-0,00000
-0,00000
-0.00000
-0,00000
-0,00000
-0.00000

Pr

= 0,708

¢

1.00000
0.,72515
0.47457
0,27956
0.15026
0.,07500
0.03525
0.01570
0.,00662
0.00261
0.,00093
0.00027
0.00004
-0,00002
-0,00003
-0,00002
-0.,00002
-0,00001
-0,00001
0.,00000
0,00000
0.,00000
0,00000
0,00000
0,00000
0.00000
0,00000
0.00000
0,00000
0.,00000
0.00000
0.00000
0,00000
0.00000
0,00000
0,00000
0.00000
0.00000
0.,00000
0.00000
0.,00000

é [}
-0.,55423
-0.53705
‘00u5359
-0,32318
-0.,19855
-0,10901
-0.,05515
-0,02623
-0,01184
-0,00508
-0.00205
-0,00076
-0.00024
~0.,00005

0.,00001
0.,00002
0,00002
0.00001
0.00001
0.00000
0.00000
0.00000
0,00000
0.00000
0,00000
0.00000
0.00000
0.00000
0.00000
0,00000
0.,00000
0,00000
0.00000
0,00000
0.00000
0.,00000
0,000600
0.,00000
0,00000
0.,00000
0,00000



0.00
0.50
1.00
1.50
2,00
3.00
3.50
- 4,00
4,50
5,00
550
6.00
6050
7.00
7450
8.00
8.50
9.00
9.50
10,00
10.50
11,00
11,50
12.00
12,50
13.00
13.50
14,00
14,50
15.00
15.50
16,00
16.50
17.00
17.50
18.00
18,50
19,00
19.50
20,00

f

0.00000
0.06090
0.18034
0.29536
0.38072
0.43491
0.46572
0.48176

. 0.48946

0.49286
0.49421
0.49465
0.49474
0.49471
0.49467
0.49463
0.49460
0.49459
0.49458
0.49457
0.49457
0.49457
0.49457
0.49457
0.49457
0.49457
0.49457
0.49457
0.49457
0.49457
0.49457
0.49457
0.49457
0.u49l4s7
0.49457
0.49457
0.49457
0.49457
0.49457
0.49457
0.49457

TABLE 2

f'l
0.00000
0.20845
0.24846
0.20374
0.13771
0.08191
0.04426
0.02204
0.01011
0.00422
0.00153
0.00041
0.00002
-0.,00009
-0.00009
-0.00006
-0.00004
-0.00002
-0.00001
-0.00000
-0.,00000
-0,00000

0.00000

0.00000

0.00000

0.00000

0.00000
-0,00000
~-0.00000
-0.00000
-0.00000
-0.,00000
~0.00000
~-0.00000
~0.00000
~2.00000
-0.,00000
-0.00000

0,00000

0.00000

0.00000

Theoretical Solution n = =0,3 Pr

f"

0.64099
0.21979
-0.03083
-0.12652
-0,12746
-0,09355
-0.05822
-0.03249
-0.,01664
-0,00787
-0.00341
-0,00131
-0.00041
-0.00007
0.00004
0.,00005
0.00004
0.00003
0.00002
0.00001
0.00000
0.,00000
0.00000
0,00000
-0.00000
-0.,00000
-0.00000
-0,00000
-0,00000
-0,00000
-0.,00000
-0.00000
-0.00000
-0.00000
0,00000
0.00000
0.00000
0.,00000
0.,00000
0.00000
0.00000

0.708

$

1.00000
0.70089
0.43271
0.23255
0.,10863
0.04342
0.01371
0.00211
-0.00145
-0,00193
-0,00150
-0,00096
-0.00055
-0,00029
-0,00014
-0.00006
-0,00003
-0,00001
0,00000
0.,00000
0,00000
0,00000
0.00000
0.,00000
0.,00000
0.,00000
0,00000
0.00000
0.,00000
0.,00000
0,00000
0.00000
0.00000
0,00000
0,00000
0.00000
0.,00000
0,00000
0,00000
0.,00000
0.,00000

¢

“006041“
-0.58180
-0.47702
-0,32119
-0,18113
-0.08782
-0,03684
-0,01282
-0.00298
0,00037
0.,00111
0.,00098
0.00066
0,00039
0.00021
0,00011
0,00005
0.00002
0.00001
0.,00000
0.,00000
-0,00000
0.00000
0.00000
0,00000
0.,00000
0.00000
0,00000
0,00000
-0.,00000
-0,00000
-0.,00000
-0,00000
-0,00000
-0,00000
-0,00000
-0,00000
-0,00000
-0,00000
-0,00000
0,00000



T



