THE UNIVERSITY OF MICHIGAN

INDUSTRY PROGRAM OF THE COLLEGE OF ENGINEERING

ON THE THEORY OF SUPER-HYPERFINE INTERACTION
IN TRON GROUP ION COMPLEXES

Inan Chen
S

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy in the
University of Michigan
Department of Nuclear Engineering

196k

. ] ‘-4':

‘ a i
ey, PR

- .
[ R |

o Way, 206k L



©n N1A

AR

UMPHEE



ACKNOWLEDGMENTS

The author wishes to express sincere gratitude to
Professor Chihiro Kikuchi, chairman of the doctoral committee,
for the suggestion of this problem and for providing guidance
and encouragement throughout the course of this investigation.

The assistance and concern extended by each member of
the committee have been deeply appreciated. The author is indebted
to Professor Geza Gyorey, a member of his committee, for introduc-
ing him to the language of electronic computers.

Invaluable instructions and advice from Professor
Hiroshi Watanabe éf Hakkaido University, Japan, during his visit
here are gratefully acknowledged.

Many stimulating discussions with fellow students
G. H. Azarbayejani, R, H. Borcherts, S. H. Chen, and S. Karavelas
have been very helpful.

The following financial supports are recognized with
gratitude:

Research assistantship from National Aeronautics and
Space Administration.

Support of the author's study at Winter Institute in
Quantum Chemistry and Solid State Physics (1962-63), from National
Science Foundation and Institute of Science and Technology of the

University of Michigan.,

ii



Partial support of the preparation of the manuscript by

the Industry Program of the College of Engineering.

iii



TABLE OF CONTENTS

ACKNOWLEDGMENTS .« v« e v e s e v e enesnennennesnsensnsenesnsonsonsines
LIST w‘ TABIES LI I L I O D L I Y B I I I N I B R I I N S TN I A A N I N I I S Y B I I B B B N B B R )
LlsT m‘ FIG[]RES @ 0 0 0 0 0 0 0 00 0 0 0 0 o 0 0 '- @ 8 0 0 0 0 0 0 0 0 0 0 0 0000000000 e

CHAPTER
I INTRODUCTION‘..‘..Ol....l.‘}...l... OOOOO e 0 0. 8600 00 0000 00

A. Theory of Transition Metal Ion CompleX........
B. Survey of Studies on SHF Interaction..........

I MOLECUILAR ORBITAL THEORY OF d-ELECTRONS..u.sveosivosss

A. ICAO-MO Secular EQUAION. .. ...veveserensnsnsn.
Bo SimplifiEd IJCAO"MO Methodoo.ooaoooc'on.ooc.nc.

ITI HAMILTONIAN FOR THE MAGNETIC INTERACTION BETWEEN
ELECTRONS AND NUCLEI. . .vvtveuennonenonnsosnonosnocans

v SHF INTERACTION IN CdTe:Mnt™ . .......eeveveernnnnnnnns
A, Structure and Symmetry Orbitals of the Complex

B. SHF Interaction TensoOr.....coeeceeseovscensons

C. SHF Structure in EPR Spectrum...eeeesveescasss

D. SHF Structure in ENDOR ExperimentsS...veeeecese

v SHF STRUCTURE IN Sn0p:V**...\.vvisernerernsnssnennnns
A, Structure of the CompleX..veeeeeersrrvennasons

Bo Groundstate OfVlH- inSn02.................-.

C. Mechanism of SHF Interactiof...eeeseeeeepsoces

- D. Anisotropic Component of SHF Tensors.seseessss

VI SUMMARY AND CONCLUSION. .......... e .

APPENDIX
A OVERLAP INTEGRALS. .t uvuvtvrnrnoenononososnssssosnnsos

B SOLUTION OF IMPROPER EIGENVALUE PROBLEM BY DIGITAL
COWUERDQCUU;"OIOQ'..0.....ll-l.!.l.l.....'...'....

C SIMPLIFIED MO CALCULATIONS OF TETRAHEDRAL COMPLEXES
INCLUDING NEXT NEAREST LIGANDS.::¢eeeeevesocrsnsaansas

REFERENCES...o.oooo....-..............o..-...-.-o-.o....-.....-

iv

Page
ii

v

vi

'_.l

FWO 3 W

14
22

22
26
k2

50
58
58

62
ol

72
™

19

100

107

117



Table

L-1
L-2

Ll
5-1
5-2

5-4

A-1

A-3
A=l

C-1

LIST OF TABLES

Symmetry Orbitals of Nearest Ligands in cdTe:Mn™t....

Symmetry Orbitals of Next Nearest Ligands in
CAdTe:MntF o vveiisiiiini i e Ceneen e

Irreducible Representations of Impurity Orbitals...

Relative Intensities of SHF Lines in CdTe:Mn™t.......
Symmetry Characters of Orbitals in Sn02:V4+... .......
Results of EPR Experiment on SnOp:V'™ .. ..iiivviieenn
V-Sn Overlap Integrals.iveeeiiriessesassasosssonnnnnns
V-0 Overlap Integrals.......cveeveeeanen conernne PP .
Transformation of Mn'T Coordinates............ peeenan
Transformation of Cd and Te Coordinates.......... cee
Transformation of V, Sn and O Coordinates...... ceesee
Formulae for STO Overlap IntegralsS...eissvreessensoen
Molecular Orbitals and Orbital Energies of CdTe:Mn®™.

Molecular Orbitals and Orbital Energies of ZnS:Mn*t. .

Page

27

29
31
49
61
63
71
!
83
8l
85
86
110

114



Figure

L-1

Lo

LIST OF FIGURES

Nearest and Next Nearest Ligands in Zincblende
S v otV LG 1V PPt

SHF Levels and ENDOR TransitionsS....eeeeeeeveeenns A
Unit Cell of SnO0p(Ti05)eevervrvrnenerinirnenenenennns

Nearest and Next Nearest Ligands of V*' in

T 1 0
Splitting of d Levels in Crystalline Field of SnOE.
Schematic Energy Level Diagram for SnOE:Vu+ ..........
Coordinates for Overlap Integral Calculations........
MO Energy Level Diagram for CdTe:Mntt. . oot

MO Energy Level Diagram for znS:Mntt.

vi

Page

2k
L6
51
59

60
62
65
9
111

115



CHAPTER I

INTRODUCTION

The physics and chemistry of the transition metal ion com-
plexes have been of considerable academic interest since the end of
the last century. Along with the development of quantum theory,
effort has been made to explain the electronic structure of these
complexes with the new theory. The problem turns out to be one of
the most difficult tasks common in many branches of physics - the
many-body problem. The solution can only be obtained by successive
approximations, and even with the high speed computational facilities
available today, a first principle calculation is still difficult and
the result unreliable. Consequently, the development of a semi-
empirical theory to exaplain observed phenomena is both necessary
and appropriate.

On the other hand, since the development of solid state
maser, laser and other solid state electronic magnetic devices,
interest has been stimulated in the physics of crystals containing
transition metal ions. A better understanding of the electronic
structure of such crystals would be useful in developing better

devices.

A. Theory of Transition Metal Ion Complex

Transition metal ions are characterized by the partially

filled shells of d-electrons. When a transition metal ion forms

-1-



a complex with a number of surrounding anions or molecules or sub-
stitutes the host cation in a crystal as an impurity, the d-electrons
are no longer localized at the metal ion but move in orbits which
extend to the whole complex,* The most direct evidence of this
d-electron delocalization is the observed supe rhyperfine structure
(SHFS),** stemming from the interaction of the electron spin with
the magnetic moments of the ligand nuclei. Furthermore, the ligand
nuclear moments act as a number of electron detectors embedded in
the crystal and hence supply information about the motion of the
electrons., Thus the study of SHF interaction is one of the most
powerful tools for the understanding of the electronic structure

of such complexes.

Crystal field theory(l) has been very successful in predict-
ing the splitting of d-electron levels(Q) in a complex and also fairly
successful in interpreting experimental results(a) quantitatively. In
this theory, the ligand ions are considered to be fixed point charges

\
producing an electrostatic field having the symmetry of the complex.
The d-electrons are affected by this non-spherical field but are
assumed not to overlap the ligand ions and hence give no SHF inter-
action. Furthermore, in covalent complexes, the large discrepancies
between experimental results and theoretical calculations served to
emphasize the need of modifying the model,

The second approximation is usually called "ligand field

theory"(a)n In this model, the electronic structure of the ligand

*¥Hereafter, we shall use the term "complex" in a wide sense, i.e.,
it includes the cluster consisting of an impurity ion and its
ligands in a crystal.

*¥Also called "Transferred Hyperfine Structure" by Marshall and
Stuartel(l2



ions and the delocalization of the d-electrons are taken into
account. Experimental evidences, other than the SHF interaction,
which point to the need of modifying the crystal field theory are
the reductions of parameters in crystal field theory such as g

factors, Coulomb and exchange integral parameters,(S)

B, Survey of Studies on SHF Interaction

The first observation of SHF interaction was made by
Griffiths, et al.'®) in iridiun complexes, IrClg and IrBrg. In
the electron paramagnetic resonance (EPR) spectra of these complexes
they observed an anomalous hyperfine structure which can only be
explained as arising from the interaction of d electrons with the
surrounding halogen nuclei. ILater, Tinkham(T) observed similar
phenomena in the EPR spectra of ZnFo (rutile structure, see Chapter V)
containing iron group ion impurities. Assuming that d-electron
orbitals are augmented by small amounts of ligand orbitals of the
proper symmetry, he estimated that the magnetic electrons have a
probability of about 6% each of being in fluorine n = 2 and n = 3
orbits.

SHF interaction was also observed in nuclear magnetic
resonance (NMR) experiments. Shulman and Jaccarino(8) observed

the frequency shift of the NMR line of the fluorine in MnF This

20
shift was explained as due to the mixing of the fluorine orbitals
with the manganese orbitals.

Later this problem of fluorine hyperfine interaction was

re-examined by many investigators. Mukherji and Das(9) calculated
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the interaction by orthogonalizing d wave function to the ligand
wave functions. The calculated value of the hyperfine interaction
is about half the experimental value. Keffer, et Ei.(lo) considered
both the orthogonalization of the d wave functions and the charge
transfer from ligand to the cation. The results are in reasonable
agreement with the NMR measurement of Shulman and Jaccarino.

(11)

Clogston, et al. related Keffer's approach to the idea of covalent
bonding, and introduced molecular orbital treatment of the problem.
They noticed that for other than perfect octahedral symmetry, there
will not exist a coordinate system in which the SHF interaction tensors
for all of the ligand nuclei are simuitaneously diagonal, and observed
the effect of the off-diagonal components in EPR spectrum of ZnF2:Mn.
From the neutron diffraction form factor measurements,
Marshall and Stuart(lg) assert that in complexes the d wave functions
are expanded over the free ion values and the SHF interaction in MnF,
can be explained by the Heitler-London model using this expanded A
wave function. However, Alperin(lB) reported that the neutron
diffraction form factor measurement indicates a decrease in the Ni++d
wave function in nickel oxide. Also, Marshall and Stuart obtained
their result by neglecting the x bonding. However, NMR measurement

(14)

on KNiFz and KMnF3 by Shulman and Knox and Hartree-Fock calcula-
tion by Sugano and Shulman(1®) have shown that the x admixture is
quite large.

All the above mentioned observations are the SHF interaction

with nearest ligands. The SHF interaction with next nearest ligands

has been observed in cubic crystals of group II-VI compounds containing



S state ions of transition metals. The interaction constants are

almost isotropic and have the following values:

In CAS:Mn and CdTe:Mn(10), Ayg = 2.6 x 107% em™l;
In case:Mn'1T), Aog = 2.7 % 1074 enL;
In znS:Mat2T), Ay = 0.75 x 107 en”L,

It was pointed out by Schneider, et E&.(l7) that the ratio
of ACd to AZn is roughly the same as the ratio of the nuclear magnetic
moment of cadmium to that of zinc. This means that the magnetic
electron has almost the same probability of being in the next nearest
ligand site in spite of the increase in the lattice constants of the
above cited crystals from sulfide to telluride. This also indicates
that the covalency increases in these crystals from sulfide to
telluride. They also pointed out that no SHF interaction of nearest
ligand has been observed although the nearest ligands 855(0074%),

125(7005%) have small but finite abundances.

(18)

; and Kasai

Se77(7°5%), and Te
(18a)

Most recently, From, Kikuchi and Dorain
observed two sets of SHF structure in SnOQ:Vu+ (which has rutile
structure) associated with tin nuclei at non-equivalent sites. The
interaction is anisotropic and ha: much larger value compared to
those of Group II-VI compounds.

SHF structures 1n TiO2 containing transition metal impurities

(19) and Chang(20>°

are also observed by Yamaka
Observation of SHF interaction by electron-nuclear double
resonance (ENDOR) has just been started. ILudwig and Lorenz(el) reported

on the observation of cadmium hyperfine structure in CdTe containing crt

ion. The interaction 1is anisotropic.
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No ligand field theoretical (molecular orbital) treatment of
next nearest ligand SHF interaction has been published.

The purpose of this thesis is to present a theoretical in-
vestigation of SHF interaction due to next nearest ligands in two

types of complexes.



CHAPTER II

MOLECUIAR ORBITAL THECRY OF d-ELECTRONS

As mentioned in Chapter I, Section A, ever since the
experimental observation of d-electron delocalization in transition
metal ion complex, it has been generally accepted that the point
charge model "crystalline field theory" should be replaced by the
"ligand field theory."

In ligand field theory, the wave functions of the delocalized
d-electrons are approximated by the (anti-bonding) molecular orbitals
}, constructed from the linear combinations of atomic orbitals (LCAO)
of the impurity and éhe ligands, |

Yy= cd + 2 Cut (-1)
where d represents an atomic d orbital of the impurity, ¢M‘S
represent atomic orbitals of ligands, and Co, CHIS are numerical
coefficients usually known as "mixing coefficients",

The valence electrons of the complex are described by (bond-
ing) molecular orbitals. These are also LCAO's of impurity and
ligands where the ligand orbitals are the major constituents.

The wave function of the many-electron system is represented

by the antisymmetrized products (Slater determinant) of all occupied

molecular orbitals,

= (n )" é e Pl #LIQXD “EZW REE k{);“(mj (2-2)
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where n 1is the number of electrons in the system; X, X5, ... are
the space and spin coordinates of electron 1, 2, ...; and P represents
the permutation operator.

By applying the variational principle, i.e., minimizing the
energy of the system, constraining the MO's to the orthonormality, we

obtain the Hartree-Fock equation for the molecular orbital, wi:

Hd oy = B, W x) (2-3)

with the effective Hamiltonian (for electron 1)

B s By (g, 0e¥)- PO (2-k)
= — - C{ 7 Y |12.
Heg) = 7 6%2_],2'8 efdx, -

where

Y‘ 2 .
©(x1, Xa) = z\j b b0 (2-5)

is the Fock-Dirac density matrix, and Py, is the "interchange operator"
with respect to the coordinates x; and x2,(22)

Physically, this is an independent-particle model, according
to which each electron in a many-electron system moves under the
influence of the external field (nuclear charges) and an average field
of all other electrons.

Details of the Hartree-Fock process for LCAO-MO have been
worked out by Roothaan,<25) This method leads to a secular equation
with the self-consistent field (SCF) scheme for the determination of

MO energies and the mixing coefficients. We shall discuss this scheme

by a simpler but equivalent way in the following.



A, ILCAO-MO Secular Equation

Let us represent the MO ¥; by LCAO as

N

-
= D -
L()U ))'Z‘f) Cf (2-6)

where Civ is the mixing coefficient of v-th A0 in i-th MO, and ¢b's are
normalized but not necessarily orthogonal atomic orbitals.

If we substitute this expression of ¥, in Equation (2-3),
multiply by ¢: from left on both sides of the equation, and integrate

over all space, we get

where

oo =S C?/** Heee Py 9T (2-8)

and

S %
bw - g CP/A Py dr (2-9)

Equation (2-7) is the secular equation for the determination
of MO energy E; and the mixing coefficients Cj, 's.
This is an "improper" eigenvalue problem. It is "improper"

because the AQ's ¢, are not orthogonal in general, i.e., Spv % ’

o)
oY
and the unknown eigenvalue Ei appears not only on the diagonal of the
secular determinant as in the usual eigenvalue problem, but also in
the off-diagonal positions. This kind of eigenvalue problem can be

solved by a combination of two successive diagonalizations as shown

in Appendix B.
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Further complication in the solution of Equation (2-7)
arises from the fact that the matrix element I%w itself contains
the unknown coefficients Civ‘s through the term p 1in the operator

H Therefore, the solution of this problem must be done by an

eff”®

iterative procedure, starting with a set of first estimation on

Civ’s, repeating until self consistent results are obtained. This

is illustrated by the following cycle:

$Ct _w P s Hypp —s iV
0 |

In principle, the secular equation (2-7) must be solved for
all electrons in the complex. However, the inner shell electrons of
the constituent ions are quite localized and have little to do with
the bonding. Therefore, the secular determinant breaks into blocks,
one for each inner shell of each ion, and one for the valence electrons
of all the ions, ©Since we are interested in the valence electrons only,
we consider only the block corresponding'to the AO's of these electrons.

Further reduction of the secular equation can be attained by
taking into consideration the symmetry of the complex. Since the
Hamiltonian of the system is invariant under the symmetry operations
of the point group of the complex, the wave functions of the system can
be classified according to their properties under symmetry operations
giving one of the irreducible representations of the point group. The
basis functions of the MO, ¢, can also be classified in this way. If
we use such "symmetry orbitals" as basis functions, then since the matrix

element of the Hamiltonian between two basis functions belonging



=]1]=

to different irreducible representations vanishes and since two such
functions are orthogonal, the secular determinant breaks up into blocks
one for each irreducible representation. In this way the secular
determinant can be reduced in its order.

However, even with these reductions, SCF=-LCAO-MO calculation
requires a tremendous amount of work for symmetry lower than spherical,
and the results become less reliable as the number of ions iﬁcreases.
No such calculation has been done for a system more complicated than

(24)
NH.

B. Simplified ICAO-MO Method

The closest approach to the SCF-LCAO-MO calculation which has
been done for transitign metal complex is the calculation of crystalline
field splitting by Sugano and Shulmano(15> Using the results of |
Hartree-Fock calculations for atoms(25), neglecting overlap and covalency
effect in the Hamiltonian, they calculated the matrix elements of the
Hamiltonian and overlap integrals. This is equivalent to the first step
in the SCF calculation. They did not carry out the iterative procedure,
but obtained good agreement with experimental results for the crystalline
field splitting of KNiF5°

Another simplified approach is the "semiempirical"” MO calcula-
tion of Wolfsberg and Helmholz°(26) In this method, the diagonal
elements of the matrix H are approximated by somevempirical energy .

values, and off-diagonal elements are calculated from an empirical

formula



-12-

H, =1 Sw D *

I 2 (2-10)
or

H.,

I

—%\ S/W\}‘HNA ' HVV (2-11)

where f 1is a constant usually assigned a value of about 2. The
second formula is proposed by Ballhausen and Gray.(27)
The overlap integrals spv can be computed by using either
Slater radial functions or, if available, Hartree-Fock functions. The
method of evaluation is given in Appendix A.
Valence state ionization energies (VSIE) are used for the
empirical values of the diagonal elements of H by Wolfsberg and

Helmholz(26)

, and in an earlier paper by Ballhausen and Gray.(27) The
method of evaluating VSIE is given by Moffitt(28) for the first short
period elements. The applicability of this method to other (heavier)
ions has not been justified.

Another approximation to the matrix elements Hpu's is the
atomic one electron orbital energy obtained from Hartree-Fock calcu-

(25>>’

lations of atoms (e.g., Watson and Freeman This energy differs
from the exact pr by the interaction with the electrons centered at
other ions. Sugano and Shulman's calculation shows that this difference
is not always negligible.

J¢rgensen(29) has pointed out that this semiempirical method

may lead to a wrong ordering of MO levels with respect to experimental

results.



(30)

In a recent paper Gray and Ballhsusen proposed & general
rule for qualitative determination of the MO energies. They are:

(1) The order of AO energies is teken to be o(ligand),
7°(1igand), nd(metsl), (n+l)s (metal), " (ligend),
(n+l)p (metal).

(2) The amount of mixing of AO in MO is roughly proportional
to overlap integral and inversely proportional to their
AQ energy difference.

(3) Other things being approximately equal, o bonding MO is
more stable than n bonding MO, and ¢ antibonding MO
correspondingly less stable than n antibonding MO.

(4) The relative MO ordering is considered final only if
it is fﬁlly consistent with the available experimental
results, exact differences in the MO levels can only
be obtained from experiment.

Two simplified MO calculations for tetrahedral complexes

including next nearest ligands are given in Appendix C., In one of

them, spectroscopic data(3l) are used for the matrix elements pr,

and in the other, Hartree-Fock orbital energies are used.



CHAPTER III

HAMILTONIAN FOR THE MAGNETIC INTERACTION BETWEEN ELECTRONS AND NUCLEI

The Hemiltonian for the interaction of an electron with a
nuclear magnetic moment at the origin has been derived by Fermi and

(32)

others as:

N-= 2@_1“@“1% I(L-8)+30 (T eNs O+ = i1 _s_} (3-1)

where Be and BN are Bohr and nuclear magnetons respectively, and g,
is the nuclear g factor.* I, L, and S are, respectively, nuclear
spin, electronic orbital, and electronic spin angular momentum
operators in units of A, This Hemiltonian can be derived from Dirac's
relativistic wave equation for one electron as the non-relativistic limit.,
A simplified alternate derivation is given by Blinder(35) recently.,

In our problem, the electrons interact with a system of nuclei.
The Hamiltonian for the interaction of one electron with a system of
nuclei can be derived by generalization of the derivation of Equation
(3-1). This is given in the following.

Dirac's wave equation for an electron (with charge -e) in
eléctromagnetic field (characterized by vector potential A and scalar

potential @) can be written as

i‘cﬁ'(f*%ﬁy‘@me‘eﬂ!’%é =ERCP (3-2)

*Nuclear g factor is defined such that nuclear magnetic moment

gnﬁNEn

=14~
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with

la

S O PR A G

where ¢ is the Peull spin metrices
0 -1 (l 0
y T, =
(1 0 ® 0 -1

0 1
U;=( ): \\N
The sources of the electromagnetic field are a system of point

1 0 3

nuclel of infinite masses with charges Zne and magnetic dipole moments
gnBNIn, n=1,2,3 ... .« Accordingly the scaler and vector potentials

are, respectively,

55 = Z bne (3-3)

Q - ; @nPN L\Xrn//l,,? (3-4)

where En is the radial vector from nucleus n to the electron.
The wave function ¥ is a four-component spinor, and we

represent it as

2
= (3-5)
VY i, 3-5

where yl and yé are two-component spinors.

Since we shall be only interested in the non-relativistic
limit of the equation, the relativistic energy ER differ very little
from the rest mass energy mc2. It is convenient to introduce

E - B - me (5-6)

Note that E << mc2.
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Thus, Equation (3-2) reduces to the following set of two spinor

equations:
(E+eprem) ¥y +ca-(p+ E24)E, =0 (3-7)

(e +ted) ¥, rer(prep)l =0 (3-8)

From these equations, we see that §; (positron component) is smaller
than ¥, (electron component) by & factor of order v/c. We can

eliminate ¥, between the two equations, yielding:

{ Ered —QJ;][CI-KP_*r SalCle)[@(p+ %ﬂ)ﬁ I,=0 (39)
where we defined

: -1
0E) = (0L ny paena )= (14 XL T o)

2mc

Equation (3-9) can be rewritten in the form

‘N ¥, = EY, (3-11)

where the effective Hamiltonianf%gff can be separated into three parts:

Hee = WO+ 1Y 4 @ (3-12)
with

= —ep+ (TP (1T p) (3.13)

HY = @R T8+ (T AT )] (5.34)
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(2) _ e2
7= S iene oay (3-15)

The first term'Fﬂo) corresponds to the kinetic and potential
energles with relativistic corrections plus the spin-orbit interaction.
The third term 1s the self-energy of the nuclear magnet and is of
second order in nuclear magnetic moment. The second term’Hﬁl) contains
terms linear in nuclear moment and.gives the interaction Hamiltonian
between electron and nuclei, We shall consider further reduction of
this term only.

Recalling the relations

pPYL(D) = K(L)p -+h Y KL) (3-16)

and (g + 2)(g * b) =&+ Db+io-(axb) (3-17)
where a and b are two arbitrary vectors commuting with g but not each
other, Equation (3-14) can be rewritten as

/Hci) = b o+ d, (3-18)

where

fo= Ry i) R+ AT YW XA

l?mc — -—

f (3-20)

Using the expression (3-4) for é_and the Lorentz condition

div A = O, we have
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B+ HEPE=20F = 209807 ToxG P

250 B e Lo I (5-21)
where 7, £n =r, Xp is the orbital angular momentum of electron with
respect to nucleus n. Similarly,

Px A+ AXPpP S -hvxhA

but
’ (vxAl,

= (¥ X Zgpuni® Tox 0]
_ J r.-3 D .-
= Z. gv\%q{a_a"[“n (Ir Yy = Ina)(n)]‘ 787 [’ln3( TngXn= Iny }n”}

2] 2007 Tng # BT L Lala+ 3) # Tt Yo+ T K301

sCJ

“S K3 )
3“ PN% h.n IYW( (BXH.’ 'L%\) + ?)/7.,\ ( IhLéXh %v\ -+ Inbxnén)}

s~

= Z{x @-\GN il_ /2;,3]:).\76 + 3}7‘;\5,‘/\% (-—Lm Ant In& %,‘ + lnz( 'gn)}

- Zf 90 (5,4[‘ N> Ty + BQ'Y":’— [ -T;QL_
Thus

XA+ X =~ g L3 ) (-2

Introducing the electron spin angular momentum S (in units of 4) by

g = 28 (3-23)
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Then from Equations (3-19, 3-21, 3-22, and 5-23), we have

= 2800 T 4A [0 -5) T 31l SNE1)) (3-24)

Before reducing the second part hg, let us investigate the
properties of K(_r:) as a function of th, n=115,2, «os +» From Equations

(3-3, end 3-10) we have

%(!)=[1 (2mc) (E+ZJZ“€ ]_‘

Zne”
~ +
' 1/< L ;*‘ z,mc'.‘/z,,,)

~ 1 (3-25)

in the region where h, >> Zne2/2mc2 ~ 1.40892, x 10717 cm.
Furthermore,
K(r) — (const.) x hy, as L, —»0

hence, the expectation values of h; will have zero contribution from
the points ty=0 n=12 ... i.e. only non-s orbitals contribute
to the expectation values of h;, and for such orbitals the condition
for the validity of Equation (3-25) is always satisfied. Thus we have,

1= 2Pl Z '»M/L (o= $)- T+ 30 LrS) & I.,)J/z . (5-26)

Now let us consider the second part h2. Since

vy [+ B 5. Lot o
CIN

h
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we have

d
R‘ :—LPZ (T‘)Q;{[:f A»/ -\-A.T fn’(A J (5_28)

But since
DI _ wky -2 Be€N A
T i), (m> ~ O for 2y x0
and

S ar\' dﬁ\\ = VUZ»\ 00) - I/L(Q‘l'o) =1

therefore Bl\, is essentially a delta function:
Olin

oft _ -
S = 3k (3-29)

Thus Equation (3-28) reduces to
Ly == B BBy B S Lo Tax Ly #4028 Lax T x L]

= 2(‘52 ;%n?” g(ﬂ-n)[ﬂzzg,'&)_ Qn4(&§)(£n&>] (3-30)

Noting that  O(h.)= hw n¥ §CLn)

and the average over cll angl.s

RN SOV )

wir
ln
i+
3

we have

Soap ST _
&Zz Z@Q,Z\lﬂ"(su_?)‘g(g) S In (3-31)
Summing Equations (3-26) and (3-31) we have for the hyperfine

interaction Hamiltonian in the field of a system of nuclei,

(3-32)

=28 Lip{ it L e 1)),

+ 5% Sen) s 1:"}
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Our next task is to obtain a Hamiltonian for many-electron-
many-nucleus interaction. Since an exact relativistic wave equation
for meny-electron system cannot be written in closed form, the many-
electron Hemiltonlen cannot be derived in the same way as was done
in Equation (3-1) or (3-32)., However, it is reasonable to assume
that to first order in fine structure consteant, the many-electron
Hemiltonian can be represented by a sum of one-electron operators,
Equation (3-32), one for each electron. Thus we obtain the
Hamiltonian which will be used for later discussion:

3 -5
L Zy:f; 2fn u i@‘hn(g\“\‘ Su) I t 3y (L ‘Qih)(gknl“ﬂ/z.po

o (3-33)
+ 3“' S(rkn) §k In

where Ekn

is the orbital angular momentum of electron k with respect to center

is the radial vector from nucleus n to electron k, ﬁkn

n (position of nucleus n).



CHAPTER IV

SUPERHYPERFINE INTERACTION IN CdTe:Mn™t

The superhyperfine structure due to next nearest ligands has
been observed by Lambe and Kikuchi(l6), Dorain(l6a), and Schneider,
et 2;.(17) in cubic crystels of Group II-VI compounds containing
S state transition metel ion impurities (Chaspter I,B). In this chapter
we shall derive the expressions of the superhyperfine (SHF) interaction
tensor A" (for the next nearest ligand n) from molecular orbital theory,
and then discuss the SHF structures observed in electron paramagnetic
resonence (EPR) and electron-nuclear double resonance (ENDOR) spectra.
We shall take cadmium telluride containing manganese ion, CdTe :Mn**,
as an example. However, the discussion applies also to other iron

group S state ions in any cubic crystals of II-VI group compounds.

A. Structure and Symmetry Orbitals of the Complex

The transition metal ion impurity in cubic crystal of Group
II-VI compound (zincblende structure) is surrounded by four anions
tetrahedrally arranged at alternate corners of a cube, the edge length
of which is one half of the lattice constant, a. This means that
impurity-anion distance is JB a/h. The next nearest neighbors are
twelve cations situated at the centers of the edges of a cube with
edge length equal to the lattice constant. Thus impurity-cation
distance is a/J2. (See Figure 4-1).

Each nearest ligand is bonded to three next nearest ligands

and the central impurity ion tetrahedrally. We shall number the nearest

-00.
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ligends from 1 to 4, as shown in Figure k-1, and denote the three
cations which are bonded to anion 1 by ie, ib, and ic, i = 1,2,3,k,
The coordinates at the ligands are chosen in the following
way with resﬁect to the coordinates (xo, Yo Zo) of the central ion.
(% ) N6 -N2/3 1,41'6W /xJ'
L 142 o -1N2 Y (k-1)
7, SRV R VLN R Y

'x} ! 0 ol [x]
la x 0

]
1l

Y 0 N2 1A Y (4-2)
la = 0
\ z,, L 0 ANz N2 / \zo/
v N 2N
X, 0 1 0 X,
.loo= 182 0 W) |y | (k-3)
L Zyy \ 182 0 -1A: 2| |2,
X o 0 ] x |
lc | °
|
EN M2 N2 0 Yo | o (k-b)
’L zch L-l,(/_ 2 a2 o J |z,

The coordinates of ligands i, ia, ib, and ic (i = 2,3,L4) are
obtained from the above set (i=1) by twofold rotations around X, Y, and
Z0 axes respectively. For the ligands, left-handed systems are chosen for
the convenience of evaluating overlap integrals (see Appendix A).

We shall consider the molecular orbitals formed from linear

combinations of (i) impurity (manganese) bs, 3d orbitals, (ii) nearest



=2k~

Figure 4-1. Nearest and Next Nearest Ligands
in Zincblende Structure.

I : Impurity Ion.

1, 2, 3, 4: Nearest Ligands

is, ib, ic (i = 1,2,3,4): Next Nearest
Ligands.
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ligands (tellurium) c(5s,5pz) and (p,, py) orbitals, and (iii) next
nearest ligands (cadmium) c(5s,5pz) orbitals.

The symmetry of the four nearest ligands is that of the point
group Td' Making use of the character table, we can construct the
linear combinations of nearest ligand ¢ and n orbitals, which transform
according to the irreducible representations of the Td group. The
results are given in Table L-1.

The twelve next nearest ligands have octahedral symmetry.

In Table 4-2, we present the linear combinations of next nearest ligand
o orbitals, which transform according to the irreducible representations
of octahedral group Oh'

Finally, the ‘classification of the manganese orbitals according
to the irreducible representations of Td and Oh groups are given in
Table 4-3.

The wave functions‘of the five unpaired electrons are the

manganese 3d orbitals augmented by ligand orbitals of the same symmetry.

Thus they can be written as:

T)\Z (XQ,OL\ + @Qf?[n s ,X\QS >[\S t /Y‘GZ >[I’Z. (h-5)
D= oot Pely e Ty + Vo Tao (4-6)
Dy = o da B Qv B, Gt B0 Pa * i Tos +Vea laa =1

Do“ - %cu‘ t Ets(ﬂs * %NAQMJ“ E’m%m t ﬁ}fs 7{,-';»5‘ *3}3 T4z : (4-8)
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Ds = (\/%"‘{“5 +%k$ ‘955 i %Z‘Y'sz * Gtﬂ»d)}m + iﬁcs )[Ss v Gta {';a (4-9)

These molecular orbitals are the antibonding MO's and hence the co-

efficients B, y's are small quantities.

B. Superhyperfine Interaction Tensor

The Hamiltonian for the interaction between the ligand nuclear
spins and the unpaired electrons has been derived in Chapter ITI,

Equation (3-33). It is in the form of a sum of one-electron operators,

W= T HWM (4-10)

| T e A R O
H(L)‘ZV‘&%NKA’NK N + +§~ 5(

g b /L\QY\ Cen

Sen) Sk I.nJ (4-11)

The wave function of the ground state 3d5 68, can be represented,
to first approximation, by a Slater determinant of the five antibonding

MO's,
S S N
Vo= { D) D, (1) Do (Ls) 1y (ke L.,SU.;,)S (h-12)
The first order perturbation to this state due to the Hemiltonian
ﬁuSHF can be evaluated as

»,

N [ Hage |y = 25 K Delbl Huo| Dtk (1-13)

This perturbation is usually expressed as a spin Hemiltonian in the form
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TABLE 4-1

SYMMETRY ORBITALS COF NEAREST LIGANDS

;Z;ii?gjl:iiion Symmetry Orbital
Al % (sl * 8p + 53+ 5), )
% (zl tzp + gt Zh)
E(e) Q) = % [x + xp + X3 + X -3 (y1 + yp ¢t V3 + )]
E(e) Do, = % [yt vt v5 3 (%, + %, + Xz 4 %), )]
T, % [y, +yp - ¥3 - -3 (%) + %5 = %3 = x)]
%(yl-ygﬂg - v,)
—i—[yl-yg—y5+yh+\/—5 () = %5 = %5 + )]
T (x) Psg = 5 (51 % 55 = 85 - 5)
0, = 2 (214 25 - 25 - 1)
<P5ﬂ=%[xl+x2-x5 -3, +V3 (v + ¥, - ¥y - W)
To(v) Oye =3 (51 = 55+ 55 - 3)
%, =3 (21 = 2 * 25 - 21)

X2+X5 - Xh_)

-
=
a
1l
nof -
—
B
|__|
1
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TABLE 4-1 CONT'D

Irreducible
Representation Symmetry Orbital
1
T2(Z) CPBS = -2— (Sl - 32 - 35 + S)_}’)
o = 1 (z. -2, -2, +2)
5z 2 1 2 3 L

[xl-xg—x3+xu-\[3 (yl-yz-y3+yu)]

RS

\J1
!

Sl Lo
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TABIE 4-2

SYMMETRY ORBITALS OF NEXT NEAREST LIGANDS

Irreducible
Representation " Symmetry Orbitals
1
A = X (sy, + sip + 5:.)
ia ib ic
e Jiz i<l
1 L
— X (z gt 2y T E )
Jiz i1 *© i ic
1 L
E,(6) Xs = == L (s34 + 533, - 255.)
& Jek i=1
1 L
X, = =— 2 (2, + 2, -2z, )
1z @ 11 ia ib ic
1 L
Eg(e) ng =\/—:8— igl (Sla - slb>
L
1
Xop = =— L (25, = 249)
2z \/—8 jop - la ib
Tpg(£) Xgg = = (53, * 855 = S5, = 8)
2g 3s 5 la 2a, 33, ba
= 1 - -
XBZ Y (Zla T Zog T %3a Zha)
T,.(n) X = = (8,, =S4 + S50 = 81 )
2g bs = 5 V10 T T2p T U3b T Thb
Xy, = 1 (z -z FZ - 7 )
hz = 5 VIb 2T %3 b
T, (¢) X =J‘-(s - S5, = Szt 8, )
2g 5s 5 ‘le 2c 3c he

>
1]
n =
—
N
H
1
N
1
N
+
N
=
Q
~—



Irreducible
Representation

T

1lu

2u
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TABLE 4-2 CONT'D

and three

- (21,
J8

J8
E— (sla
J8

and three

Symmetry Orbitals

- 8 + S

3b

S + S - S

1c ¥ Sop 7 Soc 3¢ " Syp t S )

S1c " Spa t Spc T S35 7 S3c 7 Sig * Shc)

S1p ™ 508 T Sop T S3g t Szp T Sha T S )
similar combinations of PZ orbitals.

S + S + S - S - S

1c VS T Soc T S3p T S3c T Shp T S0

S1c ~ Spg T Spe t S35t 830 7 Sig Siye)

T S)p " Spg T Sop T S35 7 S3p t Sya t Shp)

similar combinations of PZ orbitals.



TABLE 4-3

TRREDUCIBLE REPRESENTATIONS OF IMPURITY ORBITALS

Orbital Irred. Rep. in T, Irred. Rep. in Oy
Ls Ay Alg

dl =342 E(Q) Eg(@)

d, = dez_ye E(e) Eg(e)

ay = 30, T,(x) Tpg(8)

4, =34 T,(¥) Tog(n)

a5 = 34, Tp(2) Tog(t)
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V) - o ——

-;¥(l1;\kil£u\> = ) SR T, (h-1k)

where S is the total electron spin operator.

The program of this section is to obtain the expression of the
SHF interaction tensor gé in terms of MO and geometric parameters.

The Hemiltonian (4-11) consists of two kinds of interactions:
(i) Contact interaction, and (ii) Dipole interaction. The former
gives isotropic contribution to é?, and the latter is responsible for
the anisotropic part.

(i) Contact Interaction

The one-electron Hamiltonian for this interaction is

k' L“ <)‘L'l5)

15

_ R 8T <Ly
\_‘SKE) - %_\QEQ”AH (‘%f\) %b éti-lf\x‘.i\.)

According to Wigner-Echart theorem, we can relate the one-electron

spin operator s

, to the total spin operator S as, (within the manifold

of fixedjg )

5 < ygﬁ\; (4-16)

where J (=5/2) is the eigenvalue of S. Thus Equation (4-15) reads,
by — | ST o o i OR O QT
(&) =57 L 2bb, 3y SH I (4-17)
and from

SUA o, (b-18)

(1
it

o

e

\
- s o

P HD Y = TS

L



we have, for the isotropic SHF interaction,
v e BTSN
A “‘g;rzﬁﬁ%rw'zr %J&whlkabulLA/ (4-19)

The last factor 2.<EU\8(£“” Di> is the density of unpaired
v
electron spin at the nucleus n. The contributions from the various AO's
in Di to this density are estimated as follows:

Using the Slater radial functions for Mn 3d and Te 5s,5p,*

2(z NG
RBd(Mn) =a€(l.86’l> Lo x\(— | 567 h) (4'2())
2 iz 3 . . o~/ hH
RSSP(TQ) = ‘gm (l\Sé) LT exy (- |56 /z,) (k-21)

and Hydrogenlike wave, function for Cd 5s,
/2

4.35) ]
(120~ 240(\T40) +120 (1740 20 (1 740)° (4-22)

RSs(Cd) = 2005

T AT T exp (= 0870)

we obtain
2 , ) -9
[RBd(Mn)I at Mn-Cd distance (8.58 at. units) = 1.09 x 10 ~ a.u.

1.08 x lO'LL a.u.

IRSSP(Te)IE at Te-Cd distance (5.25 at. units)

1.63 a.u.

’RSS(Cd)]2 at Cd nucleus
From this result we see that even if the probability of an electron being
found in cadmium 5s orbital is as small as O.l%,** practically the con-
tributions from tellurium and manganese orbitals are negligible. Thus

finally we have the expression

¥Slater radial functions are used because they are more extended than
Hartree-Fock functions and hence give the upper limit of the estimation.

*¥This percentage is estimated from Lambe and Kikuchi's experimental value
AT = 2.6 x 1074 cm-1 by comparing to Jones' Apg = 0.11 cm~L.
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A: ::_EA B4R Eizlf{(y”2§—¥-%”z %‘l-ﬁﬁ-zi (4-23)
{ el [ fes T4 s )

where RS(O) represents the value of cadmium 5s orbital at its nucleus,
ami’gs, 'X;s are the mixing coefficients introduced in Equations (4-5)
through (4-9).

We have not taken into account the effect of spin polarization
in deriving the above formula. This effect can be included simply‘by
replacing ]RS (O)|2 by pS(O), the density of unpaired spin at the

nucleus when there is one electron in the orbit Rs‘ Thus

(4-2k)

e Z " %"&( Ay 61 ‘_;;’z_ 1 (\Al- )
As = =B 101 s Y7 s

p (0) can be-estimated from the hyperfine structure constant
S

(isotropic part) Ayq of cadmium,

— . T . -
Acd_ = 2 3, \l\%\l %— 95Q0> ()‘l' 25)
Jones<3u) has reported the value ACd = 0.11 cm-l obtained from optical
measurement.

(ii) Dipole Interaction

The one-electron Hamiltonian for the dipole interaction is the

first two terms in Equation (4-11)

(%3]

, ] \‘Qh"?“—.’}:’ L, L, o S
HD\M:“ZQ\%&‘\@EK—\ 32” = +3(*k ;\\_k)"
n ~ n h«hn

l‘< n

) J (4-26)

n
The SHF interaction tensor due to this interaction, A p can be

obtained from the equation
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A = ;V‘< (k” F{(mgi . >

I}
i~
P
)
-
o
I
0]
7~
1.

]
SR
>
N\
A
A
—
<
~ =
3
—
~
r:,:_
<
~

]

77 = §'<Z/

1
where i:lk is a tensor operator

g ;D,¢<@<>>)~;.] (-2

2 L. 1:1,] W (4-28)
Thus,

Ao =3 2ol 1m) (5-29)

Since Di is a linear combination of manganese, tellurium and

cadmium orbitals, we can expand the matrix element as

Ag OZW@W’IO{ +§<49\£7_1<5>\+>[\>(m|7>§ (4-30)

‘(5

where c(f s %;’ , and j}z stand for the total fractions of electron
in manganese 3d orbitals, tellurium orbitals, and cadmium orbitals
respectively. We have neglected‘the cross product terms in the expansion.
The first two terms in Equation (4-30) are the contributions
from the electron densities centéred at manganese and tellurium atoms.
We can consider these densities as concentrated at the nuclei and
calculate their interaction with cadmium nucleus as point dipole-dipole
interaction. Further, in the second term we consider only the inter-
action with the electron density centered at the tellurium which is

nearest to cadmium n.
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Thus from the first term we have
g(ifka’ R332 (2co0 ) T 0™ )
S Pe by Ryg, 3 L (k-31)

for the diagonal component AY

34

£ = x,y,2; and
2 5= 3 < 1
s e B §\Mc, (3 cos O Cos 9#’0 A, (4-32)

for the off-diagonal component A £, 1= x,¥,2; where RMC is the dis-

E J
tance from the manganese ion to cadmium n, and Qg is the angle between
BMC and & axis,

Similarly from the second term, we have,

i

-5‘(3 (&“(")N r<TC (%mb 1; l\)%l x“ﬁ ": + @tu (J’-kv( } (h-55)
for the diagonal component Azé’ and

2 3 L\t =L 3 ot -

5 GQ%"@M [aTC (5 Ces #)) Cos LtJ'LVL 2 @éw T }l— @ts’ + 4 @: T TF (5-“, % (4 BA)

for the off-diagonal component An

En

tellurium ion to cadmium ion n, and ¢§ is the angle between BTC and &

; where RTC is the distance from

axis, £ = %,¥,Z.
In the third term of Equation (4-30), only the p orbital of the
cadmium n has to be considered. By operator equivalence technique HD(k)

can be rewritten as

where ¢( = 2/(2ﬁn - 1)(2¢, + 3), end 4~ 1is the orbital angular momentum

of electron with respect to the nucleus n. Thus the P, orbital of the



ion n contributes

S0, ST (RN -30G By {115+t (1-36)

to diagonal component_Azp, and

2530 S</[3>5F< AR IS L [+ R % (4-37)

to off-diagonal component Azn,

In applying these general formulae to cadmium ions at different
sites, we note that if the components of é? tensor are referred to the
coordinate system (X, Y., Z,) of the central (manganese) ion, the
expressions will be different for different sites of cadmium. However,

Y Zn) at the ion n

1f we refer the components to the coordinates (x

n’ “n’

as defined in Equations (4-2), (4-3), and (k-4), then the expressions
will be the same for all the cadmium sites. Therefore we shall first
derive the expressions for the components with respect to this set of
coordinates and then transform the results into the coordinates of the
central ion. Thé latter coordinates is the one which experimental
results are referred to.

For the simplicity of notation, we use (w, p, o) for (Xn,Yn,Zn)
and reserve (X, Y, Z) for (X Yo, ZO).

The angles 6, ¢ in the general formulae,Equations (4-31) through

(4-34) are

g.= 97 (4-38)



-38-

cos?f, = 1/3
cosf, = 0
cosg¢0 = 2/3
cosf_ cosp_ = J2/3 (4-39)

for all of the twelve sites.

Introducing the following abbreviations:

2 < . pe 2 . .
Am= Ehed bR f 2ul v 2 (4-40)
A = .g (5"(‘{‘ [ E_S gL ‘? + \ 61 N ™ + 3 4 (4-41)
T 5N ISTC 4 \“ kS Imti\ 4 7 7+~ &:\{’ﬂ"‘)
AC T T %C_A‘{N § U %}%t]{;é 1 7& Y u Zf (k-42)

We have, for the components of A" tensor, including the isotropic part,

‘Aﬂﬂ = As— Au-Ac (k43 )
= L-hh

A/m;u\ - AS —_ AM — AC — /\T ( )
Aoe = Ast2hnt7Act A (4=45)
(bh6)

va = Awﬂ, *VE‘AT
Other components are zero.

The components of A" tensor in the coordinate system of the
central ion, (X,Y,Z) can be obtained by the transformation

N o b
A?)'L - Z.J C\z*i L/LYH, AL&/ ( 14‘7)

ot
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with the transformation matrix (a?i) given in Equations (4-2), (4-3) and
(4-4). The results are the following:

For a-type cadmium sites
Ayx= Avn

AYT - 'lz' (A o Anrcr)
Ayz = l'g (At Ag)
Ave = DO G (F Age) (k-48)
AYZ=(H(+Mﬁ(ﬂ-§(-AWW5fAm)

Ay = DD BO (F Arr)

For b-type cadmium sites

A = 7 (AL+ Ay

AYT ) ATETL

Ay =% (A/*/"‘ ¥ Aw)

Ayy = HEEI) v% Ave) | (k-ho)

Ay = OO (2 a,)

Agx = 1ODE) A+ 4,)
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For c-type cadmium sites

Ay

1l
—
—
:?I>
T
+
T
2
-

Fyg =

|
T
=]
a

Byy = ORI LA+ AL (-50)

Ayz = OO (F Age)

2.
- ! -
Apx = OO (F Are)

The four * signs preceding the off-diagonal elements are for la, 2a, 3a,
ba, etc. respectively.

Introducing the abbreviations

\ .
Ap = 3t AL) = Ay = 5 (Aur Ag) (+-51)
- Ly P
A= g UAce=Ay) = 2 (At At Ag (4-52)

we can express the components in more compact form as:

For a-type cadmium,

A = As-2A,

Avy = Ao+ Ay

Ay = As t A+ (4-53)
Ay = (DO (3A,-A)

Ayg = (1)) A

Ay = (1) OO (3A,—A)
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For b-type cadmium,

AXX= As t A+

AYY - A5 -2 A+

Ay = Ast Ay

AXY =MW (3A,-A) (k-5

Ag = O IO (3A4- A

Ay = DY) A

For c-type cadmium,

AYK - AS + AJ'.
AYY= As + A+
Ay = As —2A, (4-55)

Ay = DO A
A = (DO ) (3 A=A
Ay = (DM O B A-A)
In total we have three independent parameters AS, A+ and A_.

We shall discuss the relations between these parameters and the experi-

mental quantities in the following sections.
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C. SHF Structure in EPR Spectrum

In natural cadmium only about 25% of nuclei (Cdlll, CdllB)

have non-zero spin I = 1/2. The magnetic moments of Cdlll(

115(

-0.5922 By
and Cd -0.6195 BN) are nearly equal. We shall treat them as identi-
cal in the following discussion.

The spin-Hamiltonian describing the interaction of cadmium

nuclear spins In‘s with the unpaired electrons and external magnetic

field H is

W= L] A T - Qg Lo | (1-56)

where the summation is over the cadmium nuclei with non-zero spins.

By introducing an effective magnetic field

H' = H, - an (1-57)

B B Wy = 7

where h is the unit vector in the direction of Eo’ and MS is the projec-

tion of S along h, the Hamiltonian (4-56) can be rewritten as
No==2 Qe I HY (k58
In EPR experiments we observe the transitions with AMS =+ 1,

AMy = 0. Therefore, the direction of Esz changes after the transition.

Thus it is convenient to describe the nuclear spin states of the ligands

with the direction of crystal Z axis as quantization axis.

Consider the case Eo//Z axis, [001]: The effective magnetic

field can be written as



0 AR AR AR 0
XX Xy XZ
Hn = 0 - Ms AR AR AR 0
et % e yX vy ¥z
"IN n n n
. Hy Azx Azy Az 1
N

"(Ms/%n Br) Axz
~ (MY/gnn) Atz
L Ho = (Ms/8nB) Ay

Thus the Hemiltonian (4-58) reads

oY

7 {Ms A2 T +Ms gz Ty + (=Gpfuto+ MsAzz) T

{M%AXZ SR Tyt S (A +LAY )T 3n€NH+MSAZZIS(1+ -60)

The electronic states specified by a set of quantum numbers
(Mg, Mp, Myg, My, oo My, my ) with the seme M, and M; (z component
of impurity ion nuclear spin) but different m,'s (z components of
ligand nuclear spins) are degenerate before this perturbation is taken
into consideration. Splitting due to this perturbation can be calcu-
lated by degenerate perturbation theory. However, for natural cadmium,
even for the most probable case of three non-zero spin nuclei out of
twelve, the perturbation theory leads to 8 x 8 secular determinant.
Moreover, the probabilities of having four and five non-zero spin
ligands are 5/4 and 2/5, respectively, of the most probable case and
hence cannot be ignored., These cases will lead to secular determinants
of 16 x 16 and 32 x 32 respectively. It is quite complicated to
analyize such a spectrum. However, we can make use of the fact that

each ligand nuclear spin is quite independent and first treat the
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splitting due to each ligand spin separately, and then sum up the

results.

For a and b type cadmium, the 2 x 2 secular determinant has

the form:

sERBM AR - 0B, SRlxAAY LA

=0
' (4-61)
FEGA-A) 1A PN Ms(Ast A <A,
Solving this equation, we have
A B o= 5 13 fHo T Ms(As +A I ME(BA A A2 1 2
(4-62)
= é l"(;jv\»[\.-')‘NHc + MG&AS 1 A+) I
For c-type cadmium, the secular determinant is
‘é[‘gn%ﬂ-\o*‘("\s(ﬁ\ "2”.A' )] -AE M_S - ¥
s2R0]-aE. USGp-AL) (£ F0) y (5-63)
TOAANEI2L)  -SgaH N 2R 4R
hence,
/ “on " G V.
AE, = H{EH s AR A AT
(4-61)
~ Jé l“‘ﬁn&,Ho + MSKAS— 2A+) \

Let us introduce a set of new quantum numbers for the ligand
nuclear spins, Higy M1p Hper €bCe, py =+ 1/2 for the state whose
energy is shifted by +AE of Equation (4-62) or (4-64) by the perturba-
tion, and p = - 1/2 for the state whose energy is shifted by - AE.

The eight a and b type cadmium ions are equivalent with

magnetic field in [001] direction, and contribute equal amount of
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energy shift f.AEab' We can introduce the "total p quantum number of

a, b type ligands" “ab by

Depending on the number of odd cadmium nuclei and the values of individual
ab , ab _

Hpy BEP can have the seventeen values p™" = 0, + 1/2, Tl eeeey, £ 3

+ 7/2, T L, Similarly the four c type cadmium ions are equivalent and all

shift the energy level by + AE,. We define the "total p quantum number

of ¢ type ligands" pc by
e 1
No= ZJ Mon
n=¢C

which can have the nine values u® = 0, + 1/2, ..., + 2.

ab, Hc) is

Thus the energy of the state specified by (Mg, My, p
b — ab
E(Me, Mz, 0™ W)=E(Ms,Mz,0,0,)+2 ) 4, + 2 WAE, (4-65)

and the frequency of transition AMS =+ 1, AM; = 0, is given by

W = W, 200 B2 L) +2 S (8B~ 4EL)
”hvo+M®(A5+A+>+%§(As“zA+> (1-66)
where AE

', AE' are the values of AE ., AE for M' =M + 1. A schematic
—ab’ T c ab ¢ ] s —
diagram of energy levels and transitions is given in Figure 4-2.
The above result shows that the HF structure line hvo is split
into 17 x 9 = 153 lines. However, because of the high abundance of

spinless nuclei, the higher values of pab, u® are less probable and

the intensities of these lines are not strong enough to be observable.
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ab ¢
g
(172,1)
(t,0)
(0,1)
(1/72,0)
A?E " [ T (0,172)
M M ab 8E¢

s I s (0, 0)
(0,-1/2)
(-1/2,0)
(0,-1)
(-1,0)
(-1/2,1)

& -]

S ¥ 3

L £ -y
l (172,0)
S (0,1/2)

M= M_F1, M ABgp AEc

s s ' 1 P (0,0)

-ab ¢

E(Mg,M;, 0,0) E(MS,MI,,U.,,LL)

Figure 4-2. SHF Levels and EPR Transitions.
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The relative intensity of the line (u®P, ,¢) can be expressed

as
|2
b o T T WmPHhk k! (m_@\
Iﬁw‘)ue)'L o YT TR
n:gupﬂ k C§+M~)(Z“A'”( M)( ‘M)‘ (4-67)
244
where
2_
win = £ro- 12 (4-68)

ntQz-n)!
is the probability of having n non-zero spin nuclei out of twelve, f

is the natural abundance of non-zero spin cadmium, and

1k
Pl k) = (_-;_)‘%H) n (4-69)

3 k! (n-k)
is the probability of having k nuclei of ab type and n-k nuclei of c

type out of n non-zero spin nuclei in total. The summation over k is

to be taken from k = 2|u®P| to the lesser of 8 and n-2|p°|, in steps

of 2. The numerical values of I(pab, u®) are given in Table 4-6.

If the anisotropic part of An tensor, A+ and A_ are too small

to be observable, as in Lambe and Kikuchi's experiment, then AE_ , = AE,

and we can describe the SHF lines by "total p quantum number of ligands"

uL, In this case the intensity ratio can be calculated by a simpler

(16),

formula

Worl2

‘ |
T(ut W) (4-70)
}L hZ;%L\ 2 D-+p ‘ (_._ )

where W(n) is given by Equation (4-68), and the summation over n is to

be taken from n = QIpL[ to 11 or 12 in step of 2. The same result can
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be obtained from Table 4-6 by adding the intensities of possible combi-

nations, for example:

oL uP u® (18, u°) 1(ub)
0 0 0 .202
+1/2 +1/2 2 x .070
+1 ¥ 1 2 x .0066 3557
+ 3/2 + 3/2 2 x 0002
+2 + 2 2 x .000002
1/2 0 1/2 .097
1/2 0 .150
1 - 1/2 . 030
3/2 -1 .00172 .2961
2 - 3/2 .00003
5/2 -2 . 000000
- 1/2 1 .016
-1 3/2 .00088
- 3/2 2 .0000156

This result agrees with that calculated by Equation (4-70), and
also with Lambe and Kikuchi's experiment. This shows that Lambe and
Kikuchi's experiment is one special case of the general formulation given

above,
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It will be shown in the next section that A+ is much smaller
than A_, so that [00l] is not a good direction to observe the
anisotropy of éé, since only A+, but not A_, appears in the energy
shift AE. Observation with external magnetic field in other directions

(e.g. [110]) may show the anisotropy.

D. SHF Interaction in ENDOR Experiment

In electron-nuclear double resonance experiment (ENDOR) we
observe the transition AMg = O, AMy = 1, where I may be either the
impurity ion nuclear spin or ligand nuclear spin. For the latter
case, the transitions between SHF levels (Figure 4-3) are observed.

Since Mg dqgs not change in such transitions, the direction
of effective magnetic field Eﬁff’ Equation (4-57), unlike the case of
EPR, does not change after the transition. Therefore, we can describe
the ligand nuclear spin states by taking the direction of the effective
magnetic field as the direction of quantization axis Z'. Then the

Hemiltonian (4-58) reduces into the form:
W= — )%, oot | HE == 7. m, | H el (4-71)
= = O %b Inz!l Dege LGbama Hese

Case I: go//[oou
The effective field has the components (4-59) and the magni-
tude:

n _ M wo\% Mg w9 aZ . Ve
'ljeﬁ:,= {(Ho g;%NAZZ) +<3:‘€'N) (Aygg + AY\é )LS (4-72)
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Line A: Central Ion ENDOR
Line B: Ligand ENDOR
Line C: Microwave Pumping Frequency

Mp=+1/2

\ mn=-|/2

Mp= +1/2

Mp=-1/2

—

et — — — —— ——— — —

Mq = ~1/2

Mp = +1/2

mn s "'l/2

MI= +1/2

Mp = +1/72

Figure 4-3. SHF Levels and ENDOR Transitionms.
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The frequency of transition between the states (M, M., ... m
s’ D n
o0s) and (Mg, My, o.. mj, ...) where m! = m_ + 1, is given by the

following formula

l/”)n = @»« F}N \ t{;\c‘ (4-73)

Using the expressions for the components Arilj, Equations (4-53%),

(L-54), and (4-55) we obtain two frequencies:

W = Lt ) AT AT

~ l%nGNHo“ Mg CAg + /;\+)‘ (4-7h)

2 2/

hv() ) i[%"ﬁ“% —Ms(A-2 A+) 12-\- 2 Ms (3&}‘/-\_) K ‘
~ \%“ﬁqu"‘MsQAS‘ZfMJ\ (4-75)

The first one corresponds to the transition Am = + 1, where
n is one of the eight a and b type cadmium. The second frequency
corresponds to the change in the nuclear spin state of one of the four

¢ type cadmium. The intensity ratio of the two lines is 2:1.

Case II: go//[llo]

The effective magnetic field is given by

/
| i £ AT I 2 (A A e
Tlepf | \IZ{ j IR (c\i{» T)( (_l 2 ( 7 )

4

In this case, there are four non-equivalent sets of ligands, and hence,

four different frequencies. Tor the trensition of the set(la, 1b, La, 4b)



(At A, - A)+(AS+M A )+1A J- 4B MM 2R SA ~2A )}

= [ffut = Me(Ae+ 2 A A ) | (4-17)

for the set (2a, 2b, 3%a, 3b)

Wz = 190608 MS[{A ~Shyt AT HAC 2R, A H3A-24 )]
|
- Bt (2 Rg=Th, + z/\_,)j/z

. (4-78)
= i %h(su HD\ Mg(/‘\s‘ %A_*_ + A_)l

for the set (lc, kc)

h

HTCHT 2 2
hl)S - % %)V\Z@,\] HD +M§S[(A5+A++A) ‘{‘Z(A_F‘A_) J—zg“FNHOMS(AS"' A++ A,,)§

Ms(As + Ay + AL) | (4-19)

and for the set (2c¢, 3c)

L-8
b = [ oot = s (A + Ay - L) | (1-80)

The relative intensity is 2:2:1:1.

Case III: Eb//[lll]

In this case the effective magnetic field has the magnitude

7
.Ijeﬁ.

\ YA
"5, G(AMAXY )4 [Hom o (T AN AR)]
25 /2
t [ Hy - @(Azx'* F\ZY + RZZU { (4-81)
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There are three sets of non-equivalent ligands, and the frequencies

are, for the set (la, 1b, lc)

\ g oo ,A}\wz ( . 77%_ .
h))\ :VT:_%‘[/&\\\”!";)‘- MS(\AS“‘Q-/-M‘& “ f’\‘_JJ ‘\— ZL%‘\E’N H - r“g{As _\_ 4/_\\) J S (J-l' 82 )
for the set (2b, 2c, 3a, 3c, 4a, 4b)

v

Mt A2 T4 2[ g8 Hm Mslhsmz A ES (83

‘,_-

hy, =

P4 I

L)J!

for the set (2a, 3b, kc)

—L’lﬂmn M (As XA 2R ] +a@ P,Hb-MS(AS—zmzAN)Tjyz (4-84)

The intensity ratio is 1l:2:1.

(21> have observed the SHF interaction between

Ludwig and "Lorenz
the unpaired electrons and cadmium nuclear spins in CdTe containing Cr+
ion impurity by ENDOR. With magnetic field in [110] direction (which
is equivalent to Case II above) they observed, for Mg = —3/2, four lines
with relative intensities 2:2:1:1 as expected in the discussion under
Case II.

From the frequencies they obtained the three principal values

of the Arl tensor and found that the interaction is anisotropic. The

three principal values are (using their notation)

T, = (5.82 % 0.05) x 0% emt
T, = (5.63 + 0.05) x T
Ty = (5.61 + 0.05) x 10'4 em™

n
Isotropic part (contact term) of the SHF tensor Ay is given



n
A = (T.+T
S

- T
Lt Tt T3)/3 = (5.69 + 0.05) x 10" em™™ .,

This value is of the same order of, but twice larger than, the value
2.6 x 10'” cm'l, obtained by Leme and Kikuchi for CdTe:Mn . This means
chromium d electrons are more delocalized then mangesnese d electrons.
This is in the right direction as nuclear charges are compared. From
the relations (4-24) and (4-25) we have, for the average probability

of an electron being found at the 5s orbital of cadmium ion

_'5 (_\?{e: ! Y; ) = 0.51x 1072 (4-85)

which is compareble to whet & simplified MO calculation gives (see
Appendix C).
Equating the observed transition frequencies to the expressions

(4-77), (4-78), (k-79), end (4-80), with M, = -3/2,
WD) = GupuHet 2 (Ac+ S AL-A) = 2051 Me/sec
hy, = Gt 5 (A= T A +AL) =21.12
hVy= nByui, t %(As FAL AL =204

) = g Byt 3(As+ A, —A_)= 2002

From the higher intensity lines (hv; and hv,), we have

A =3 A

_ + = Ap=0.2 MC/sec

and from the two lines (h.v3 and hv) ) of lower intensity,

A = 0.21 MC/sec
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The observed values of frequencies are very close to each other,
hence the above calculations are subject to large errors. We can
only say that the above results show that A_ = 1/2(Ay + Ag) is
very small compared to A_ = 5/2(AM + Ac) + AT which essentially
equals to Ap, the contribution from tellurium orbitals. From

Equation (4-41) and %m'—% 1.2, Rpg = 5.25 a.u., we have
_ 2 =3 2 * 3.2
AT - ‘5’(‘%%0&“@1 R*'rc: ijz‘ P:m*’ Z&@»@" i’ @tz ¥ 4 @m}

_ { 2 2z 2
S0 S R bt E Bt Bt R B § MO/ee

which gives for the probability of an electron being found at

tellurium orbitals

l¢| 2 - 2 3.2 .
5 2(%75*’#(%*11;%2+2;@mz—0.25‘ (k-86)

From the fact that no SHF structure of nearest ligand is
observed, we can conclude that most part of this probability is due
to the p orbitals and not the s orbital of tellurium. This probability
is much larger than that obtained by simplified MO calculations as shown
in Appendix C.

The fact that AT is the largest component among the three
(AM, AT, and AC) components of dipole-dipole interaction has an
important meaning., It can be seen from Equation (L-46) that this
component makes the ¢ axis (Mn-Cd direction) not one of the
principal axes of An tensor, and also it makes x axis not equivalent

to p axis. The latter is one of the principal axes.



The fact that A+ is very small explains why the anisotropy
of én is not observed in Lambe and Kikuchi's EPR experiment. Equation
(4-66) shows that A, appears in the expression of transition energy,

but not A_.



CHAPTER V

SUPERHYPERFINE STRUCTURE IN SnOp:v'*

A. Structure of the "Complex"

The crystal structure of tin oxide (SnO,) belongs to
tetragonal th group. In this structure atoms are located at the
following positions: (Figure 5-1)

sn :  (0,0,0), (1/2, 1/2, 1/2)

0 : +(wuoO), +(u+1l/2, 1/2 -y, 1/2)

The lattice parameters a, c, and u are given in Figure 5-1.

The symmetry of the substitutional site in this crystal
is, however, orthorhombic Doy (Figure 5-2). Using the coordinate
system of Figures 5-1 and 5-2, (following From, Kikuchi, and
Dorain(lB)) the six nearest ligands, oxygen ions, are located in
x-y plane (1,2,3,4) and on z axis (5,6). Ten next nearest ligands,
tin, are classified into three types: (i) two "a" tins, (15,16)
which are closest to the impurity ion and lie on the y-axis; (ii)
four "b" tins (7,8,9,10) which lie in the x-y plane; and (iii)
four "c¢" tins (11,12,13,14) which lie in the y-z plane and at the
same distance as "b" tins from the impurity ion. The distances
and bond angles are given in Figure 5-2.

Symmetry characters of vanadium orbitals and linear

combinations of ligand orbitals in Dy, group are given in Table 5-1.

~58=



a o TIN
QO OXYGEN
Lattice
Parsmeter a(n) c(p) u c/a
Sn0s L.737 3.185 | 0.307 | .672k
Ti05 b, 594 2.959 | 0.306 | .6kk1

Figure 5-1. Unit Cell of SnOp (TiOs).
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Distance and Angles Sn0p Ti0o
— |
dyy = dg,15 = C 3.185 A° 2.959 A°
a - J2(1-2u)a 2.586 2,521
d7’8 = dll,lu =Jea 6.699 6.497
do,5 = V2 ve 2.057 1.988
do, 1 = [2(% -u)2a2 + c2/u]l/2 2.051 1.944
_ _1/.2 2y1/2
d0,7 = do’ll =3 (c= + 2a7) / 3.709 3.569
CosQ L7763 L7612
Sina .6303 . 6485
CosB .L2gh J41bs5
SinB .9031 . 9102

Figure 5-2. Nﬁarest and Next Nearest Ligands of
~ V™ in 8n0, (TiOp).
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L
B. Ground State of V " in Sn0s

According to point charge model crystal field theory, and
using the coordinate system of Figure 5-2, the splitting of 4
electron levels in rhombic crystal field of SnO2 is as shown

in the following figure (Figure 5-3).

dZZ (NO
&72 ) d.xY /
dxy WNs)
dya { N4)
_ dyz, dxy - |
y N dxz (N2)
die-y?, dyz
dyz
N\ dyey> (N)
Cubic Tetragonal Rhombic
field field field
splitting splitting splitting

Figure 5-3. ©Splitting of d Levels in Crystalline Field
of SnOp.

The relative positions of Ay s dyz and dXE_y2 cannot be

determined intuitively based on point charge model. In the EPR

Ly (18)

experiment on SnO,:V'™", From, et al. observed (see Table 5-2):

(i) large Agy; (i1) large MM, = A, - A, AA, and MM, have opposite
signs to Ad,; (iii) large superhyperfine interaction with "a" tins.
These results suggest that dXE_yQ lies lowest. Thus the ground state
consists of mainly dXE_y2and small amount of dy, admixed through spin-

orbit interaction.



TABIE 5-2

RESULTS OF EPR EXPERIMENT ON snoezvh+(l8)

X . y Z
g 1.9%9 1.903 1.943
HFS A (gauss) 23.3% 47.03 1544
SHFS a (gauss) ~166. 172.6 165.2

SHFS b (gauss) ~ 28 28 28
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(35)

C, Mechanism of SHF Interaction

In this section we shall discuss the mechanism of SHF inter-
action as inferred from the large and small SHF structure observed by

From, et al. in the EPR spectrum of SnOE:Vu+. (

Table 5-2)

SHF interaction is proportional to the density of unpaired
electron at the ligand nucleus. We shall apply molecular orbital
theory to obtain an expression for this density and compare the result
with experimental observation.

Consider three orbitals: (i) venadium d orbital U, (ii)
nearest ligand oxygen orbital, U,, and (iii) next nearest ligand tin

orbitals Ug. We can construct three orthogonal molecular orbitals

from the linear combihations of these three orbitals. They are:

’\P& - Uv + @Z_LJO + j@_LJS (5_1>
Vo= ol + Uy o+ )L UL (5-2)
Vo= o Uy, + BU, + U (5-5)

where the coefficients (assumed to be real) X, e , {‘, and the overlap

integrals
‘Xf
Sy = ) Uy U, dr (5-4)

etc., are small quantities of the same order and if small quantities of
higher order than this are neglected the MO's are normalized.
A schematic diagram of the energy levels of MO's and AO's is

shown in Figure 5-lL.
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Lt
Figure 5-4. Schematic Energy Level Diagram for SnOo:V .
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From the orthogonality relations
(b g dr=o, ¥}, Lj=abe (59
v d,

we have,
- "y \ 5—6

To == ( Sy + o) o

(5-8)

Ny o= = ( Spe + B)
The coefficients X, , «, and %E can be obtained from the
secular equation (2-7),
- /U\))“:\/ O S
2(Hy —ELSu)Cyy =0 ¥ EN S (5-9)
7 ( oy VE}MV ) s Lo b
where Hpv is the matrix element of the effective one-electron

Hamiltonian between two AO's Up and U,; Civ is the coefficient of AO Uv

in MO Wi’ Let E; = Ey, the energy of MO V{y, and p =V, we have

( Hy ~£) X, + (Hyo=EuSyo)t (Hys- EL Sy, =0 (5-10)
(26)

In Wolfsberg and Helmholz's semi-empirical MO method, the off=-

diagonal elements Huv‘s are approximated by, (Equation 2-10),
H[Mr = PC/M) S/LAV‘ (5‘11)

where va is a factor depending on the energies of AO's UH and Uv only.
Hence the last term in Equation (5-10) is one order of magnitude smaller

than the other two terms. By neglecting this term, we have,
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r;\/)!(;) = QSVO LL: H\/() )/( H\/\/ o } L> (5=12)

Similarly, for E; =E, n=1V, we get

c’

e = [ BB Hys) /L Hiy =) (5-13)

and for E; = E,, u = 0, we have

- . 5 A - )+
Bo= (BE = Hys)/  Hom E. ) o)

The lowest and next lowest energy configurations of this three-

electron system are, respectively

A \

TN o

and i

xf‘z = % “l’j) q.rj) \\}Zf (5-16)

where { } represents Slater determinant and + signs superscript the MO
represeﬁt the spin functions. In the second configuration an electron
is transferred from the filled MO {3, to unpaired MO V,. The ground state
wave function of this system can be written as the linear combination of

these two configurations:

dif = /Skq *"Iha#}tq

L ‘l)zx ) b, , Ut /\,'\Pm ) i (5-17)

1l
L)
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The unpaired spin density pg can be obtained by
ORI .
e = 1 Gk el (5-16)

where o, (k) is the third component of Pauli spin matrices for electron

k, and

&—C/Kzz dT,dT, cl'Ua/d‘.Ckﬂ k=1 2, 3. (5-19)

Carrying out the integration, we have

Z‘ AUS
DA T R RTE IR ACT (5-20)

At the nucleus of the next nearest ligand Iy

s =V Ugo) , is) = Y Ugle) (5-21)

hence,

;Z’ 2 o boNR ]
?S(fs)= I US(O)E i Y‘O\, + Yb - (Yb 4+ A Ko..) 5
== ' USLO) I"‘( \['0..“ )\, Y"\.’, >¢l (5"22)
Substituting the relations (5-7), (5-8), (5-13), (5-14%), we have

) 2 S = Hys - SosE. = Hye . 12
%KLS) i UéO)‘ i SVU t HVV {:C. h’( bOS + HOO : = os)
(5-23)

H = e -~ H i/ 2
U0 { sz~ s, (2]

This result shows that there are two electron transfer processes

which cause the SHF interaction. The first, which is represented by the
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term 7  in Equation (5-22), comes from the transfer of impurity d
electron to the ligand orbital, or in other words, formation of anti-
bonding MO Wa‘ The second process, which is represented by the term
xyb in Equation (5-22), comes from the transfer of ligand electron
into impurity ion orbital, or in other wordé, the mixture of higher
energy configuration ¥,.

The quantity A can be obtained by perturbation theory:
AR l@f2>
<~H3‘QM@1> “<@213M“—J£2>

where }Q‘ is the system Hamiltonian. If we assume that it can be

(5-24)

approximated by a sum of effective one-electron Hamiltonian H, then
we have
b ‘
SALIES o L+ Hy
CALESERUARIIN SN
_ (Syo = Hvo)( By~ Hoy)

(Pw—EL ) CE, ~ Ea)
= Hyy —Kvo — Hpo (5-25)
VO%\ Hvl*‘t{) ( EL~'" ,>}

to first order in small quantities @, B, etc. We have used the rela-
tions (5-6), (5-11) and (5-12) in obtaining Equation (5-25). This
equation shows that A is a quantity of the order of overlap integral Svo
Thus the second process of electron transfer is less important than the
first one. Also we see from Equation (5-23) that the first process is

proportional to the square of the overlap integral Svs



-70=-

In order to compare this result with the experimental observa-
tion, calculations of overlap intergrals are made by using the following

Slater radial functions and Hartree-Fock radial function obtained by

Watson(25):
Vanadium 3d

b (vEd) = A /43 (5-26)

d,o (v3d) = 5243 B (18DTA959 4 (3.61) (5-27)

+.1/31 $,(6,80) +.0055 @ (12.43)
Vh+ 34
/

b = B D) (5-28)
Tin 5s

gé W(Sﬁii)‘ 73(/-4/2) (5-29)
where

_— n-1 —"/f/i,/]/ ‘

A% Mo 27 & (5-30)

and

L \2NhH Y
=[] 551

‘.

The overlap-.integrals between BdXE_yE orbital and the 5s orbitals
of "a" tinc and "b" tins are given in Table 5-3. We have used the
radial functions of neutral atoms based on the electroneutrality principle

36) b

of Paulingn( However, we have also considered the 3d orbital of V
)

ion. For all cases, the square of the ratio of overlap integrals is in
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TABLE 5-3

VANADIUM-TIN OVERLAP INTEGRALS

Sys (Slater 3d Orbital) | 8,4 (HF 3d
VO (Neutral) |  v** orbital)
|
a Sn | -0.131% -0.0910 -0.04212
b Sn 0.0583 0.0379 0.01640
2
S,¢(a)
A 5,08 5,76 6.60
S_.(b)
Vs
TABLE 5-4

VANADIUM-OXYGEN OVERIAP INTEGRALS™

<342 2 | 25 > - 0.01932
< 34,2 2 | 2p, > 0.06652
<342 2 ] 2P, > - 0.02805

* Vanadium 3d orbital is the Hartree-Fock function
given in Equation (5-27). Oxygen functions are

R(2S)

R(2P)

0.5459 @, (1.80) + 0.4839 ¢, (2.80)
0.6804 ¢, (1.55) + 0.4038 B (3.43)

obtained by fitting the numerical Hartree-Fock

functions. (2



-T2=

good agreement with the ratiovof the experimentally observed SHF
structure constants, which is 6.

The overlap integrals between vanadium orbital and nearest
ligand oxygen orbitals are given in Table 5-4. The results show that
for this complex, the assumption that all overlap integrals are of

the same order is Justified.

D. Anisotropic Component of SHF Tensor

The dipole-dipole interaction which contributes to the
anisotropic part of SHF tensor can be treated in the same way as we

did in Chapter IV, Section B. The result is

>
I
=
I
I
%
[
d;l
{}

2 By | Kun (30057 6,—1)

~3 2 e -3 5 2 _
DR, (2ot = V) ?_DF<PMQ.+‘>-3QXH>> he § - 5752)
where R_, R _ are the distances from vanadium and oxygen m to tin n
=vn’ =mn
respectively: @X, @mx’ are the angles between an, an and x axis
respectively. Bﬁ , 7ip are respectively the probabilities that the
unpaired electron being found in orbitals of oxygen m, and 5p orbital
of tin n. ¢ is given by Equation (4-35)., With the subscript x
replaced by y and z respectively, we can obtain AA; and AAE. Off-

diagonal elements Agy etc. vanishes in this structure.

In SnOQ:Vu+, the explicit expressions for the SHF tensor

components are,

for "a" tins:

(5-33)

o
T

o
AN;:—ACJ + 192 A0 = A



BAS = 2Ay BBA, F7AY o
LAY = A — Ay = A (5-35)
where
AC\\/ = EQHEQFN(BJSS‘X\O%D_S) (5-36)
AL = 4G eu(zosixist g (5-57)
A?. =2 40 BeBu (X ) )f.SF (5-38)
and for "b" tins:
A Ai = [ A8 At +2 A}g 2 Aix - AEiY (5-39)
A /‘\EY == 4T AS — Ai - Aierz/\?Y (5-k0)
AL = — A - b= A Al (5-4)
where
A\’V = 29uRBy (2T0Ax (07°) (5-k2)
Abb = 290 B By (R0 xm‘?)"?’(gf (5-43)
Af-x =290Be By T AN Yoy (5-bk)
A.?Y = 29,y TN s 1(‘;} (5-45)
with y?x, 7$y ;c‘espectively the fraction of 5py, 5py orbitals of b tin

(e.g., tin-7) in the ground antibonding MO.
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Anisotropy is not observed in the SHF structure due to b

tins. This can be expected as the parameters AE , Ag

and AE are
smaller than the corresponding parameters for a tins. Also from
Equations (5-33), (5-34), and (5-35) we see that AA; is positive

and the largest; AA? is negative and the smallest. This agrees with

the experimental results of From, et al. (Table 5-2).



CHAPTER VI

SUMMARY AND CONCLUSION

The purpose of this thesis has been to study the delocalization
of d electrons from their interaction with next nearest ligand spins,
the so-called superhyperfine (SHF) interaction.

The electrons are described by molecular orbitals (MO) formed
from linear combinations of atomic orbitals of the central and ligand
(nearest and next nearest) ionms.

The Hamiltonian for the interaction between electrons and
nuclear spins are derived from the non-relativistic limit of the Dirac
relativistic wave eq&ation. This Hamiltonian is used to obtain the SHF
interaction tensor A" in terms of MO paremeters (mixing coefficients)
and geometry factors (interionic distances and bond angles). The details
of derivation are given for the next nearest ligands in cubic AIIBVI
compounds containing S state iron group ions. However, the formulation
is quite general and can be easily applied to complexes of other
structures.

Electron spin resonance (ESR) and electrbn-nuclear double
resonance (ENDOR) spectra are related to the components of SHF inter-
action tensor. An attempt is made to deduce the amount of d electron
delocalization from these relations., Unfortunately, existing experi-
mental results are not precise enough to give more than "of the order

of magnitude" values.
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The delocalization at next nearest ligand s orbital is

found to be 0.2 and 0.5%, respectively, for MA " and Cr' in CdTe.

The values are obtained by comparing the measured isotropic SHF
structures with the isotropic hyperfine structure constant of atomic
cadmium. Rigorously, we should use the value for cadmium in crystal.
However, this has not been obtained either experimentally or theoretically.
Watson and Freeman(BY) have reported 20% increase in isotropic hyperfine
structure constant for Nit™ in cubic crystalline field by unrestricted
Hartree~-Fock calculation. If this trend is also true for cadmium in
crystal, it will lead to smaller value for the delocalization and in
better agreement with the results of simplified MO calculations
(Appendix C), which will be discussed in the following.

Simplified MO calculation of CdTe:Mn'™  using Slater radial
functions and atomic spectroscopic data gives a value O.l% for the
amount of delocalization at cadmium 5s orbital. Similar calculation
for ZnS:Mn++, using Hartree-Fock radial functions and one electron
orbital energies gives 0,01% for the amount of delocalization at zinc
bs orbital. Experimentally, SHF structures for zinc and cadmium are
proportional to their nuclear magnetic moments. Hence if the above
mentioned amounts of delocalization (differ by one order of magnitude)
are true, then the unpaired spin density at the nucleus of zinc (when
there is one electron in 4s orbit) should be one order of magnitude
larger than that of cadmium (when there is one electron in 55).
Although this is in the correct direction a factor of ten is by no

means obvious. Unrestricted Hartree-Fock calculation can be suggested



for further investigation of this point. The use of two different
systems of radial functions is a defect in this analysis. A systematic
Hartree-Fock calculations of Groups II and VI elements (for neutral,
univalent, and divalent ions) are necessary for further studies of
Group II-VI compounds.

Anisotropic SHF structure data are needed to deduce the amount
of delocalization at the nearest and next nearest ligand p orbitals.
Experimentally observed anisotropies are, in all cases, small and
subject to large experimental error. The development of ENDOR technique
has already shown the possibility of refined measurement. The molecular
orbital formulation of SHF structure as developed in this work, combined
with existing experimental data, can be used to guide experimentalists
to the best observation as has been pointed out in Chapter IV, Section C.

In spite of the existence of small but finite abundance of odd
isotope, no SHF structure due to nearest ligands has been observed.

The overlap integral between Mot 3d orbital and Te 5s is comparable
to that between Mn' ' 3d and Te 5p, and even larger than that between 3d
and Cd 5s (see Appendix C). Yet no observation of SHF structure means
that the Te 5s level lies far below Mn*t 3d, and essentially can be
removed from bonding orbitals., From MOssbauer experiment on MnTe
crystal, Shikazono(58> also found that no internal magnetic field
exists at the Te nucleus in MnTe. Further confirmation may be obtained
by investigating the ESR of odd isotope enriched samples.

The unpaired spin density at next nearest ligand nucleus

derived in Chapter V has also included the mechanism of charge transfer
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from ligand to central ion, although this mechanism has Teen showvn to be less

important for SnOE:Vh+D

The more important mechanism: - direct inter-
action between central and next nearest ligand ions has Leen shown to be
proportional to the square of overlep integral. This is a generalization
of the Heitler-London model used by Marshall and Stuarto(lg) Further
investigation of this proportionality can be attained by pressure experi-
ments in which overlap integrals are largely affected while the second
factor - energy difference - varies rather slowly, Equation (5-23),

As we have seen, the deduction of d electron delocalization
from SHF structure data necessitates further information, both experi-
mental and theoretical. The development of ENDOR technique and

electronic computational facility casts delightful future on this

approach,



APPENDIX A

OVERLAP INTEGRALS

In this appendix we describe the method of computing the
overlap integrals appeared in the discussions of Chapter II, IV and
V. Some formulae of the diatomic overlap integrals and IBM 7090
computer programs for the evaluation of the numerical values of
overlap integrals are also given.

The first step in the evaluation of the overlap integral
between two atomic orbitals in a complex is to transform the coordi-
natés of the two centers (ions) such that they are related to each
other in the same wé& as the "a" and "b" coordinates of Mulliken,

et gi.(39) in their calculations of diatomic overlap integrals (see

Figure A-1)

-~
¢

Figure A-1. Coordinates for Overlap Integral
Calculations.,
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In this set of coordinates, the z axes (za and zb) are
pointing toward each other, and the two x axes and two y axes are
parallel, Thus if the "a" coordinates is a right handed system,
then "b" coordinates is a left handed system, and vice versa. We
use the former choice. Examples of transformation matrices are given
in Table A-1, A-2, and A-3.

The next step is to introduce the ellipsoidal coordinates

(&, M, @) defined by

(A-1)
é = (Lo + 0,)/R , 188 (%
(A-2)
h={Y% - 0)/g RN
‘ 2
: (A-3)
$ = D= T , 0 ¢ ? 2T
(A-k)

N3,
- —B ——Pj’ -
dp = (7) (=11 dgd a9
where R is the interionic distance. Some other useful relations between

a, b coordinates and (&, mn, @) are:

GeosBa = RO+ )/2 (A-5)
Fooss, = RUI-E0) /2 (4-6)
M_\o\sme&:- rbsmeb: \%L%'L__w'f?'(\vql)'li (A-7)

The two orbitals for which the overlap integral is to be

evaluated are written as Slater type orbitals (STO) (in atomic unit),

for example:

- .
l n&d¢> ) NQ. ro\ ' eXP<“ ZI fﬂ/ﬂ?ﬁ) Y2O ( 9&,, Q())o..) (4-8)
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ko =
[nupey =Ny £,° exp(-% E/n) Yio (8, B1) (A-9)

where Z¥ and n* are effective nuclear charge and effective principal
quantum number respectively of the orbital. The normalization factor

N is given by

x Nt s
N = (”/n*) VA/_(Qn*)t | (A-10)

Using the relations (A-1, ...T), the integral <n&da‘\m,p(r>
can be written in terms of (&, m, ©) as follows:

e

<n \cr'ﬂqu-> _ No\NbSeXP( gX - beb) fn& IJ_S_(BCO.SG —\)

nt b0

X Ly J%& cos @, AT

2am

=NaNs M{‘E)WW\JO\Z M o\&g{[ex}vkps =5 ) Z+Vl)

X [3(\+§VD =G i (|~gq)({‘. q?)}
=Nmt\hﬂ_§g.@)"“n”' Z Cij AR Bi() (A-11)
vk

Sk)

l‘.
where
*
p= %i B+ s (a-12)
A 2.
t - Ei /u - ./”b*i (A-13)
K.
AD(PVS‘ Phe g (A1)

(A-15)
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and Cij is the coefficient of the term gan in the polynomial in the

integrand.

The integrals Ai and Bj can be evaluated by the recursion

formulae:
Ap) = ‘%: exp (= P (A-16)
Al (p) = AOCF)'\'—%AH(F) (a-17)
% _ (A-18)
B°CC{') = J&l}[e - e‘ir]

H - A-19)
B;Q“‘LJ = —ﬁl—r (_C—!\)&eor—e r—{— ¥ B;\:‘I(Tf)j (

In case Iql is very small (~ < 0.25), the above recursion
formulae (A-18), (A-19) break down because of the error introduced by
the subtraction of two numbers of almost the same size., Hence in this

case we use the following formulae:

' - L ens (g0’
S =Lty =)t S5 - Sl

2! 3!
2
= _ 2 + i J = even (A-20)
§ ?f'H Pt
2%, ~%° j=odd . (A-20")

P2 3l
In Table A-4 we summarize formulae corresponding to Equations
(A-11) for two Slater type orbitals. Some of them have been given
elsewhere(5 9,40) , but the formulae given here have the form directly

connected with the computer programs which will be given later.
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TABLE A-1

TRANSFORMATION OF Mn** COORDINATES INTO "a" COORDINATES WITH
RESPECT TO Tel AND Cd la, 1lb, lc COORDINATES

XOW ( 146 N2 143 x )
y = Ve 0 14 A
Lz Y Y 1A | z_ | With zespect to Te-1
OJ L ) \ a’/
:Xo 1 0 0 X,
g 0 1Nz N2 v,
2, | 0 N2 M2 z_ | With zespect to Cd-la
o] N / N /
(xO] 0 SV N2 (xa)%
H | ’
éyO | 1 0 0 ya |
i !
z_ | 0 N2 1/\f2J zg | With respect to Cd-1b
S i \N Z \ /
\
%) 0 N2 N2 {(xa\
v 0 1N N2 Ly
° ]
LZO/ L 1 0 0 /j L za/g With respect to Cd-lc.
-1 oo |
dZZ _>§T§"C\x‘—y“ “g‘dxv ‘f\/—gdm “u‘% C\\/2» w.r.t. Tel
_— 'Zl‘j dzl — ‘g—dxﬁ.‘.\/L - i_;:‘ CLyZ W.or, t‘ Q:A 4&;
__é.td#_%dxl_y,_*g dyz wor t Catb
— ‘:Bl: dg + E: C\X““YL worr bt Cd e

—_—

| | l \ \
\:‘yz —_— \[3 z)_ — —g-dxl_'y?_ —gﬁ- dxz #V"g- A.)(y"’\r‘fclyz W, t Te L

— _‘{)f’_d,zz N -12 d,xx__y?.. . w.rt  Cd |‘L
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TABLE A-2

TRANSFORMATION OF CA COORDINATES INTO "a" COORDINATES AND Te
COORDINATES INTO "b" COORDINATES WITH RESPECT TO EACH OTHER IN CUBIC CdTe

s AN . P \
x, -2/3 143 lef3 ) [ x,
y, |= 1A 0 N2/3 || vy
x kif 2/3 273 -1/3 2, ] With respect to Cd-la
Xy 1/% 0 242/37 (%
|
vyl T 0 -1 0 5 Ty
2, 2\J2/3 0 -1/3 J 2, With respect to Cd-1b
(x) [ -2/3 143 \[2/5'; %)
vy |= | -1N3 .0 J2/3 | |
zq Afé/B N2/3 -1/3 J Zy, With respect to Cd-lc
N -
x,Y) (1N6 N2 1Nz o x, )
vq |= |V3/2 -1/2 A
yia | /A3 12 Ne/3 /} z, With respect to Te-1
~ Ve
- \' ~ /
x,) [-V2/3 0 N3 [ %
Yip|= | © . 0 Vg
20y Ll/\fB 0 Je/j/g 2 With respect to Te-1
x ] | N6 SV R VE %
¥y |=|3/2 -1/2 O Va |
2. ) |-1/2V3 1/2 J2/3 | 2y With respect to Te-1



SR
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TABLE A-3

TRANSFORMATION COF COORDINATES INTO "a'", "b" COORDINATES
IN SnOE:V_AND T10,:V

cos®  -sine 0 X 7
— h 0 0 -1 ¥ § n
sin® cose 0 Z j
for V-aSn overlap © = O
for V - 0y overlap © = tan™t (l-2u)~féa/c =
for V - b Sn overlap | 8 = an‘l\féa/c =B
a(z?)— - 2 a(z?) +V3/2 a(x® - )
2

a(x2 - y2)—> -V3/2 cos 20 a(z°) + 1/2 cos 26 d(x2-y2) + sin 26 d(xz)

{)cos¢ -sing 0 ( X 1
|
\s1n¢ cosf 0 J {2 j

for 0, - aSn overlap g = —tan™T (1-2u) V2 a/c

for 0 - b Sn overlap g =x/2



< 3do|2s >

=5

= NaNb

< 34038 >

= NaN

< 3dg|4s >

= NaNb

< 3d0[2pc >

5 (B8
b
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TABLE A-4

FORMULAE FOR STO OVERIAP INTEGRALS

13

J5 (R\5
(E) {AO(‘5B2 +B,) - baB, + A(3B, - 3B, )

+ LA B

5By + &y, (-B, + 5B, )

A5(5Bo - 4B, - 3B,) + £,(5B; - 535) + A5(-Bo + 532)}
(B)7 -
5 {a (- 6) + Al(6B3 - 6B5) + A2(9BlL 536)

AB(-6B1 + 635) + Ay (3B, - 932) + A5(6Bl - 633)

+ A6(-BO + 332)}

{AO(5B5 - 37) + A, (=98, + TBg) + A2(6B5 - 158 + 337)
+ A3(6By + 9B, - 9Bg) + Ay(-9By + 9Bs + GBs)

+ A5(5BO - 15B, + 6By) + Ag(TBy - 9Bs) + A7(-BO + 3By)}

R 6
5) {a (-3, + B,) + Ay (-B5 - 35) + Ay(3B, + By)

+ Ag(By + 3Bg) + A(-B, - Bp) + As(By - 3Bs)}
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TABLE A-4 CONT'D

< 5dc|5pc >

Cony Y
a L

R
b (2) {8,(3B5 - B;) + A (-3B, + 2B, + Bg) + Ay(-3B - By - 2B

2 5 5>

+ AB(BBO - By + By - 3Bg) + AA(QBl + By + 535)
+ A5(-Bo - 2B, + 3B),) + Ag(B, - 533)}

< 3do|bpo >
8
= NNy ‘[%2 (g) {Ao(-5B4 + Bg) + Al(6B5 - 3Bg - 37) + Ax(3B, + 3Bg)

+ AB(-6B1 - 3Bg + 537) + A, (3B, - 3B, - 6Bg)
+ A5(3§l + 535) + A6(-Bo - 3B, + 6Bu) + AY(Bl - BBB)}

< 5dﬂ‘2pﬂ >

= NN §£§ (g)6 {A.(B; - B,) + A)(By - Bg) + A(-B, + By)

+ Ag(-B) + 35) + 8 (B, - By) + A5(Bl - B5)}

< 5dﬂ|5pﬁ'>

) s R\T
= NN -+ (E) {AO(-B

5 + B5) + A

B, - 2B, + 36) + AE(Bl + B, - 2B

5 1! 5 5)

+ As(-B, + By + By - Bg) + A (-2B; + By + Bs)
+ As(By - 2By + By) + Ag(By - Bs)}

< 3ds |4bpr >
= NN A5 (R)8 {a (By - Bg) + A, (-2B; + 3B= - B) + A,(-3B), + 3Bc)
T e T o\Fh = Pg 11753 5757 2\ =25, 6

+ A5(2Bl - 3Bg + 37) + Ay (-B, + 3B, - 236)

+ Ag(-3By + 3B5) + Ag(B, - 3B, + 2B)) + Ag(B) - Bs)}
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TABLE A-4 CONT'D

< 1s|es >

= NN % Ry {agBs - A8y - ABy + AsB )
< 2s|es >

= NN, % 2) {ABu—ZAB + 4B}
< 35|es >

= mX, i (52{-)6 {aBg + By - 248, - 24,3, + B, + A
< ks|os >

- n % (1;-)7 {aBg + 2a1B - ARy - BBy - MBy + 2AsB) + AgB,)
< 38)38 >

= NN % (g)7 {-A B¢ + 38,8, - 34,B, + AGB.}
< Lks|3s >

= W, % (-1;5)8 {88, = AyBg + 34,8, + 3458, - 3A,B5 - SAcB;

+ AB) + AYBO}
< Lks|hs >
NN, % g {8 Bg - bA B, + 6AB, - bAB, + AgB |
< 18 |2po >
aNb\/—Z SA{AB + A)By + AB - AzB)}

< 28|2po >

_ NaNb% (g)5 {-a oBs * A 1(-By + By ) + A(B) + 135)

+ A5(By - B,) - ALLBl}
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TABIE A-4 CONT'D

< 3S|2po >
J3 R\6
+ A (B, - 2By) - ABi}
< ks|epo >

R\
= NN YC?.(E) {-AOB5 + Ay(-3B, + Bg) + Ag(-235 + 535)

+ A3(2B, + 2B)) + A (3B) - 2B3) + A5(B, - 3Bp) - AcB. }

< 25|3po >
nw Y3 (B {aB CAB. - 208, - OALB, + MB_ - AB }
ab 5 '35/ otk 1°5 272 3°3 4"0 5°1
< 38|3po >
= NN 2 {A B, + A (B - B) + Ay(- -2B; - 35) + A5(-232 + 2B) )
+ 4y (B) + 2By) + A (B, - By) - A6Bl}
< L4s|3ps >

= NN Y[_ 5 {A oBg + Al(2B5 - 37) + As(-By - 2Bg) + AB(-AB5 + 35)
2

\Y)

+ Ah(-BZ + hBM) + A5(2Bl + 33) + A6(BO - 232) - A7Bl
< 28 |hpo >
= NN E Y {-A B- + Ay (B, + Bg) + As(2Bz - Bs) + Az(-2B, - 2B))
= Yam LG obs + A1(By + Bg 2\ebz = 55 3\ e T eh)
+ y(-B) + 2B,) + As(B, + By) - A}
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TABLE A-4 CONT'D

< 33 |4po >

J3 (R\8
= NN, _% <E) {-agBg + A)By + 3ABy - 3AsBs - 3M,B, + 3ABs

+ AgB, - A7Bl}

< 4s|bpo >
J3
= NN > (2

R
_)9 {-AoB7 + A, (-Bg + Bg) + Ay(3Bg + Bo) + A3(3B, - 3Bg)

+ A (-3B5 - 3Bg) + A5(-3B, + 3B, )
+ Ag(B) + 3B;) + A (B, - By) - AgB. }

< 2po\2po >

RyD
= NN % (5) {-a8, + A,(B, + B,) - 4B}

< BpoIEpo >
= NN % (2)6 {-agB5 - A1By + A5(B) + B5)-+ A3(B, + By)
- A,B; - AB, }
< Upo|2po >

= NN % (-};i)7 {-A.B), - 2A1B5 + AjBg + A5(2B) + 2B;)

< 3po|3po >

NaNb 'Z (g‘)'? {AOBLI- + AQ(-gBQ - B6) + All-(BO + 2314_) - A6B2}
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TABLE A-4 CONT'D

< kpo |3po >

= NN, % (g)8 {AOB5 + A1By + Ap(-2B3 - By)+ As(-2B, - Bg)

+ A (B) + 2B;) + As(B, + 2B)) - AgBs - A7B2}
< bpo [bpo >
= NN % (lg)9 {-AOB6 + Ay(3B, + Bg) + A, (-3B, - 3B)
+ Ag(B, + 3B,) - AgB,}
< 2px|epn >

i} 3 (B )
= NN : (E) {AogB2 - B ) + Ay(-B_ + B,) + A (B BE)}

< 3pr |2pn >
= NN Z R 6 {A - 35) + Al(B2 - B,) + Ag(-Bl + 35)
As(-B, + By) + (B - B;) + As(B, - B, )}
< hpx|2pr > .
NN, h {A - B) + Al(zB5 - 235) + A (B, + B,)
A5(-2B) + 235) + 3, (-B, + By) + As(2B; - 2B5) + Ag(B, - B, )}
< hpr|bpr >

- NN % (2)9 {ao(Bg - Bg) + A,(-3B, + 2B, + By) + 4 (3B, - 3B;)

A6(—BO - 2B, + BBA) + A8(Bo - 32)}
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MAD Programs for Computing Overlap Integrals

Program I: This program computes the integrals Ai(p) and
Bj(q) of Equations (A-14) and (A-15) by the recursion formulae, Equations
(A-16) through (A-20), and evaluates the overlap integral between two
Slater type orbitals by summing the products of A and'Bj according to
the formula Equation (A-11) (see also Table A-L). The effective
nuclear charges (ZEFFA and ZEFFB), effective quantum numbers (NEFFA and
NEFFB), interionic distance R and the coefficients C;;'s are needed as

J

input data. It is noted that the coefficients C;;'s are either

J
symmetric or antisymmetric with respect to the interchange of i and J,
hence only "lower triangle" of the matrix (Cij) is read in, and the
upper triangle is developed by the machine according to the value of
the variable "CSYM". CSYM = 1. if Cij's are antisymmetric, and CSYM = 2.
if Cij's are symmetric. In case the succeeding calculation uses the
same set of ZEFF, NEFF, and R as the previous one, we set the variable
RPC (relation to the previous calculation) equals to 2, and RPC = 3
if we use the same set of Cij as the previous calculation. If none of
the previous data are used RPC = 1, A numerical constant coming from
the angular function (e.g. Jﬁ5/h in Equation (A-11)) is called NC in
the program, and also needed as input data.

The values of the integrals Ai(p) and Bj(q) computed by this
program have been checked with the table compiled by Kotani, et gl.(ul)
They agree with each other up to five figures or more.

The following is the MAD program. The data are for the

examples of computing the following overlap integrals:



-9%-

< 3dg|2s > for R = 3.877 a.u. ,

< 3do|2po > for R = 3.877 a.u. ,

1l

1l

and < 5dc]2pcr > for R = 3.887 a.u. .
$COMPILE MAD, EXECUTE
PRINT COMMENT $1 OVERLAP INTEGRALS FOR SIATER TYPE ORBITALS$
DIMENSION A(20),B(20),C(400, V),FACTRL(20)
VECTOR VALUES V=2,0,0
INTEGER I,J, IMAX, JMAX, RPC
IMAX=15
FACTRL (0. )=1.
THROUGH LOOP1,FOR I=1.,1.,L.G.IMAX
LOOP1l  FACTRL(L)= L*¥FACTRL(L-1.)
PRINT RESULTS FACTRL(O. )...FACTRL(IMAX)
START  READ DATA
PRINT RESULTS RPC, ZEFFA,ZEFFB, NEFFA,NEFFB, R
WHENEVER RPC.E.2, TRANSFER TO CMTRIX
V(1)=JMAx+2
V(2)=JMAX+1

MUA = ZEFFA/NEFFA

MUB = ZEFFB/NEFFB

NA=(2.*MUA).P. (NEFFA+0.5)/SQRT. (FACTRL( 2. *NEFFA ) )
NB=(2.*¥MUB).P. (NEFFB+0.5)/SQRT. (FACTRL( 2. *NEFFB) )
P=R*(MUA+MUB)/2.
Q=R¥(MUA-MUB)/2,
A(0)=EXP.(-P)/P

THROUGH LOCP2, FOR I=1,1,I.G.IMAX



LOoP2

LOCP3

LOOP2A

LOOP3B

CMTRIX

LOOPk

CHECK

LOOP5S

o)W

A(T)=A(0)+I*A(I-1)/P

WHENEVER.ABS.Q.GE.0.25

B(0)=(ExP.(Q) - EXP.(-Q))/Q

THROUGH LOOP3, FOR J=1,1,J.G.JMAX
B(J)=((-1.).P.J*EXP. (Q)-EXP. (-Q)+J*B(J-1))/Q
OTHERWISE

THROUGH LOCP3A, FOR J=0,2,J.G.JMAX
B(J)=2./(J+1. )+Q.P.2./(J+3. )

THROUGH LOOP3B, FOR J=1,2,J.G.JMAX
B(J)=-Q/(J+2.)-Q.P.3. /(3. ¥J+12. )

END OF CONDITIONAL

PRINT RESULTS P,A(O)...A(IMAX),Q,B(0)...B(JMAX)
WHENEVER RPC.E.3, TRANSFER TO CHECK

EXECUTE ZERO.(C(0,0)..,C(IMAX, JMAX))

READ DATA

THROUGH LOOP4,FOR I=1,1, I,G.IMAX

THROUGH LOOPL,FOR J=0,1,J.E.I
c(J,1)=(-1.).P.COYM*C(I,J)

PRINT RESULTS C(0,0)...C(IMAX, JMAX)

SUM=0,

THROUGH LOOP5,FOR I=0, 1, I.G.IMAX

THROUGH LOOP5,FOR J=0, 1,J.G.JMAX
SUM=SUM+A(I)*B(J)*C(I,J)
OVINT=NAXNB*NC*(R/2. ).P, (NEFFA+NEFFB+1. )*SUM

PRINT RESULTS OVINT



PRINT COMMENT $13$

TRANSFER TO START
END OF PROGRAM
$DATA
RPC=1, ZEFFA=l .3, ZEFFB=} .55, NEFFA=3. , NEFFB=2.,R=3.8777, IMAX=5, JMAX=5 *
CSYM=2.,NC=0.5590, C(2,1)=-3.,C(3,0)=3., 0., -4.,C(4, 1)=5.,0.,-3.,C(5,0)=-1.,3. *
RPC=2 *
CSYM=1.,NC=0.96825,C(2,0)=3.,C(3,1)=1.,C(4,0)=-1.,0.,-1.,C(5,1)=1.,0.,-3. *

RPC= 3, R=3.8877 *
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Program II: Watson(ES) and others have used linear combinations
of Slater type orbitals for the Hartree-Fock atomic wave function. The
overlap integral between two orbitals of this kind can be evaluated by
simply introducing an iterative procedure in Program I, provided the
effective quantum numbers of the orbitals in the combination are all
the same. (If this is not the case, we can divide the combination into
several parts each has the same effective quantum number ). Instead of
NEFF and ZEFF, we use their ratio MU(K) for k-th orbital, and FA(K),
the fraction of k-th orbital in the combination A as input data. The
following is the progream with data which compute the overlap integral

between vanadium >do orbital

v = {0.52455233(1.83) + 0.4989¢5(5.61) + o.1151¢5(6.8o)

+0.0055¢,(12.43)} 154(6,0)

3do

given by Watson(25) and oxygen 2s orbital obtained by Ballhausen(27)

)

by fitting the numerical functions given by Hartree.

¥y, = {0.54598,(1.80) + 0.4839¢,(2.80} Y50 (6,9)

where

B = W 2 exp(ur)

is the normalized Slater type orbital.

$COMPILE MAD, EXECUTE
PRINT COMMENT $1 OVERLAP INTEGRALS FOR WATSON TYPE ORBITALS $

DIMENSION A(20),B(20),C(400,V),MUA(20),MUB(20),FA(20),FB(20),
IT(400,W), FACTRL(20)



VECTOR VALUES V=2, 0,0

VECTOR VALUES W=2,1,0

INTEGER RPC, I, IMAX,J,JMAX, K, KMAX, NV, NMAX

IMAX=15.

FACTRL(0. )=1.

THROUGH LOOP1,FOR I=1l.,1.,L.G.IMAX
LOOP1  FACTRL(L)=L¥FACTRL(L-1. )

PRINT RESULTS FACTRL(O. )...FACTRL(IMAX)
START  READ DATA

PRINT RESULTS RPC, NEFFA,NEFFB,R,MUA(1)...MUA(KMAX),MUB(1)...
MUB(NMAX )

V(l)=JMAX+2q
V(2)=JMAX+1
W(2)=NMAX
WHENEVER RPC.E,3, TRANSFER TO CHECK
CMIRIX EXECUTE ZERO.(C(0,0)...C(IMAX,JMAX))
READ DATA
THROUGH LOOP2, FOR I=1,1, I.G.IMAX
THROUGH LOOP2, FOR J=0,1,J.E.I
LOOP2 C(J, I)=(-1.).P.CSYM*C(I,J)
CHECK  PRINT RESULTS C(0,0)...C(IMAX, JMAX )
OVINT=O0,
THROUGH INTGRL, FOR K=1,1,K.G.KMAX
NA=(2.*MUA(K) ).P. (NEFFA+0.5)/SQRT. (FACTRL(2. *NEFFA ) )
THROUGH INTGRL, FOR N=1, 1, N.G.NMAX

NB=(2.*MUB(N)).P. (NEFFB+0.5 ) /SQRT. (FACTRL(2. *NEFFB ) )
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P=R*(MUA (K )+MUB(N))/2.

A(0)=EXp.(-P)/P

THROUGH LOOP3, FOR I=1, 1, I.G.IMAX
LOOP3  A(I)=A(O)+I*A(I-1)/P

Q=R¥(MUA(K N))/2.

WHENEVER .ABS.Q.GE.0.25

B(0)=(ExP. (q)-EXP.(-Q))/Q

THROUGH LOOP4, FOR J=1,1,J.G.JMAX
LOOP4 B(J)=((-1.).P.J*EXP. (Q)-EXP. (- )+J*B(J-1))/q

OTHERWISE

THROUGH LOOP4A, FOR J=0,2,J.G.JMAX
LOCPHA  B(J)=2./(J+1. )}+Q.P.2./(J+3.)

THROUGH LOOP4B, FOR J=1,2,J.G.JMAX
IOOP4B  B(J)=-2.%Q/(J+2 )-Q.P.3./(3.%J+12.)

END OF CONDITIONAL

SUM=0.

THROUGH LOOP5,FOR I=0, 1, I.G.IMAX

THROUGH LOOP5,FOR J=0,1,J.G.JMAX
LOOP5 SUM=SUM+A (I )*B(J)*C(I,J)

IT(K, NV )=FA (K )*FB(I ) *NA*NB*NC*(R/2, ).P. (NEFFA+NEFFB+1. )*SUM

PRINT RESULTS IT(K,N)
INTGRL  OVINT=OVINT+IT(K,N)

PRINT RESULTS OVINT

PRINT COMMENT $1$

TRANSFER TO START

END OF PROGRAM



$DATA

RPC=1, NEFFA=3., NEFFB=2., R=3.8777, KMAX=l, NMAX=2, IMAX=5, IMAX=5,
MUA(1)=1.83,3.61,6.80,12.43,FA(1)=.5243, ,4089, .1131, . 0055
MUB(1)=1.80, 2.80, FB(1)=.5459, .4839 *

CSYM=2.,,NC=,5590, C(2, 1)=-3.,C(3,0)=3., 0., 4., C(4, 1)=5.,0., -3,,C(5,0)=
-1.,0.,3., *

RPC = 3, R = 3.8877 *



APPENDIX B
SOLUTION OF IMPROPER EIGENVALUE PROBLEM
BY DIGITAL COMPUTER

The improper eigenvalue problem we met in Chapter IT
Equation (2.7) can be reduced into a proper eigenvalue problem by
successive diagonalization and unitary transformation. This will
be shown in this appendix.

The problem, stated in general, is to solve for the eigen-
values X; and eigenvectors Xj of the equation:

AX = BXA “ (B-1)
where A and B are symmetric matrices and B is also positive definite.
A is a diagonal matrix with the eigenvalues A; as diagonal elements.
X 1s the matrix with the eigenvectors X; as i-th column.

Since B is symmetric, we can find a ﬁnitary matrix U to
diagonalize 1it,

UtBU = D (B-2)

Since B is also positive definite, the diagonal elements of
D are all positive. Take the -1/2 power of the diagonal elements and
construct another diagonal matrix R, symbolically:
R - pl/2 (B-3)
then,
R'(UTBU)R = R'DR = p L/ L/2 g (Tdentity) (B-k)
Let UR = S, multiply st from left on both sides of Equation (B-1)

stax = sTexa (B-5)

~100=



~101-

or, stass™x = stess~lxa (B-6)
Let stas = a4, (B-7)
slx = v (B-8)

then using Equation (B-4), we have
A'Y = YA (B-9)

This is in the form of a proper eigenvalue problem. Since
the matrix A' is symmetric, there is a subroutine (EIGN.) available in
"Michigan Executive System Subroutines" for the solution of this prob-
lem.

The eigenvalues of the original equation are the same as those
ofvKuation (B-9), and the eigenvectors of the original equation can be
obtained by a matrix multiplication:

X = SY (B-10)
Since the eigenvectors are given in row form in subroutine EIGN., we
actually do thg multiplication

xt = yfst (B-11)

For the convenience of later use we normalize the eigenvectors
such that

2 X

1]

ikakBij =1 (B-12)

In order to check the calculation, we calculate the error

matrix E, having the elements:

By = ? (Ajj - ABy Ky

which must be zero if the solutions are perfect. In our calculations
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all elements of error matrix are six orders or more smaller than
Aij or kkBij‘

The following is the MAD program which solve improper eigen-

value problems of order less than 20.

$COMPILE MAD, EXECUTE, PUNCH OBJECT

PRINT COMMENT $1 SOLUTION OF THE CHARACTERISTIC VALUE PROBLEM
(A-LB)X=0 $

PRINT COMMENT $0O WHERE A AND B ARE SYMMETRIC MATRICES, AND B
IS POSITIVE DEFINITE $

DIMENSION A(400,V), B(400,V),X(%00,V), APRIME(L00,V),E(400,V)
D(400,7),R(400,V), ST(400,V), UT(400,V), S(400, V), YT(400,V),
LAMBDA(400,V)
EQUIVALENCE (D,R,ST,E), (UT, S, YT, X ), (APRIME, LAMBDA), (V(2 ), N)
VECTOR VALUES V=2,1,0
INTEGER N, I,J,K
START  READ DATA N
PRINT COMMENT $1$
EXECUTE ZERO.(A(1,1)...A(N,N),B(1,1)...B(N,N))
READ DATA A(L,1)...A(N,N),B(1,1)...B(N,N)
THROUGH LOOP1l, FOR I= 2,1, I.G.N
THROUGH LOOPl, FOR J= 1,1,J.E.I
A(J,I) = A(L,J)
Loorl  B(J,I) = B(ILJ)
PRINT RESULTS N,A(1,1)...A(N,N),B(1,1)...B(N,N)
INDL = 5.

IND2

1]
Ul

IND3

I
Il
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IND4 = 5,
IND5 = 5.
IND6 = 5.

THROUGH LOOP1A, FOR I=1,1, I.G.N*N
LOOP1A D(I) = B(I)

SCFACT = 1.

IND1=EIGN.(D(1), N, 1,UT(1), SCFACT)

WHENEVER IND1.E.3.

CONTINUE

OR WHENEVER IND1.E.Ll.

PRINT COMMENT $0 B MATRIX NOT ACCEPTED BY SUBROUTINE $

TRANSFER TO- END

OR WHENEVER IND1.E.2.

PRINT COMMENT $0 CHARACTERISTIC VALUES OF B MATRIX SCALED BY$

PRINT RESULTS SCFACT

TRANSFER TO END

END OF CONDITIONAL

THROUGH LOOP2, FOR I=1,1,I.G.N

WHENEVER D(I, I).LE.O.

PRINT COMMENT $0 B MATRIX IS NOT POSITIVE DEFINITE $

TRANSFER TO END

OTHERWISE

R(I,1)=D(I,I).P.-.5

Loop2 END OF CONDITIONAL



LOGP3

LOCP5

LOOP6

~10k4-

THROUGH LOOP3, FOR I=1,1,I.G.N
THROUGH LOOP3, FOR J=1,1,J.G.N
WHENEVER I.E.J

CONTINUE

OTHERWISE

R(I,J)=0.

END OF CONDITIONAL

IND2=DPMAT. (N, ST(1),UT(1))

WHENEVER IND2.E.O., TRANSFER TO END
THROUGH LOOP 5, FOR I=1,1,I.G.N
THROUGH LOOP 5, FOR J=1,1,J.G.N
S(1,J)=ST(J, 1)

APRIME(I,J)=ST(I,J)
IND3=DPMAT. (N, APRIME(1),A(1))
WHENEVER IND3.E.O., TRANSFER TO END
IND4=DPMAT. (N, APRIME(1),S(1))
WHENEVER IND4.E.OQ., TRANSFER TO END
THROUGH LOOP6, FOR I=2,1, I.G.N
THROUGH LOOP6, FOR J=1,1, J.E.I
APRIME(I,J) = APRIME (J,I)

SCFACT = 1.

IND5=EIGN. (LAMBDA(1),N, 1,YT(1), SCFACT)
WHENEVER IND5.E.3.

CONTINUE

OR WHENEVER IND5.E.1l.
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PRINT COMMENT $0O APRIME MATRIX NOT ACCEPTED BY SUBROUTINE $
TRANSFER TO END
OR WHENEVER IND5.E.2.
PRINT COMMENT $1 CHARACTERISTIC VALUES SCALED BY $
PRINT RESULTS SCFACT
END OF CONDITIONAL
IND6=DPMAT. (N, YT(1), ST(1))
THROUGH LOOP7, FOR I=1,1,I.G.N
XSUMSQ = O.
THROUGH LOOP8, FOR J=1,1, J.G.N
THROUGH LOOP8, FOR K=1,1, K.G.N
LOOP8 XSUMSQ=XSUMS@+X (I, J )*X (I, K)*B(J,K)
ROOT = XSUMSQ.P..5
THROUGH LOOP7, FOR J = 1,1, J.G.N
LOOPT  X(I,J)=X(I,J)/ROOT
PRINT COMMENT $0 CHARACTERISTIC VALUES $
THROUGH LOOP8A, FOR I=1,1, I.G.N
LOOPSA  PRINT FORMAT F3, LAMBDA(I, I)
VECTOR VALUES F3=$ S20, E20.8 *$
WHENEVER SCFACT.E.1.
CONTINUE
OTHERWISE
PRINT COMMENT $0 ERROR MATRIX NOT COMPUTED $
TRANSFER TO END

END OF CONDITIONAL



-106-

THROUGH LOOP9, FOR I=1,1,I.G.N
THROUGH LOOP9, FOR J=1,1,J.G.N
E(I,J)=0.
THROUGH LOOP9, FOR K=1,1,K.G.N
LOOP9  E(I,J)=E(I,J)+(A(J,K)-LAMBDA(I, I)*¥B(J,K))*X(I,K)
PRINT RESULTS X(1,1)...X(N,N),E(1,1)...E(N,N)
END PRINT COMMENT $O INDICATOR VAIUES $
PRINT RESULTS IND1, IND2, IND3, IND4, IND5, IND6
TRANSFER TO START

END OF PROGRAM



APPENDIX C
SIMPLIFIED MO CALCULATIONS OF TETRAHEDRAL COMPLEXES

INCLUDING NEXT NEAREST LIGANDS

As examples of simplified MO calculations discussed in
Chapter II, Section B, cadmium telluride (CdTe) and zinc sulfide (ZnS)
containing Mot impurities are treated in this appendix. In the
first example (CdTe:Mn++), Slater radial functions and spectroscopic
energy levels are used for the AO's. In the second example (ZnS:Mh++),
Hartree-Fock radial functions and one electron orbital energies
calculated by Watson and Freeman(25) are used.

(i) care:Mn™*

Radial functions used are

R3d(Mn) = N rgexp(-l.87 r)
_ )

R5Sp(Cd) N'r’exp(-1.09 r)

R (Te) = N'rlexp(-1.7h r)

5sp

For T2 symmetry, the six basis functions are the AO's in D5

of Equation (4-7), and the matrices {Hij} and {Sij} are,

-107-
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H.. in units of K cm :
fr), )

-108-

2
d(yz) ¢55 ¢3z ¢5ﬁ X3¢ Xz
-126. 23,25 ~17.9% 12,37 -8.82 211,15
1k, 0 0 -76.%3 -65.39
-T3. 0 13.02 -3.15
-73 -36.8k4 -32,70
-T2. 0
-ho,
{sij}Tg:
1. . 08633 09355 . 06LL7 .0k632 .07661
« 1. 0 0 3748 RN
1. 0 -.0898 .0285
1. 2541 .2953
1. 0
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For E symmetry the four bases are the AO's in Dy of Equation (4-5),

and the matrices are:

. . -1
{Hij}E (in units of K cm™™)

4, P1y X1s X1z
106, -21.h25 6,238 -7.881
-73 -22.56 -12.95
-T2. 0
-h2,
R
1. « L1117 .03275 L05417
1. .1556 .1169
1. 0
1.

Solution of secular equation gives the following eigen-

values and eigenvectors. (Table C-1 and Figure C-1)



MOLECULAR ORBITALS AND ORBITAL ENERGIES OF CdTe:Mn't
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TABLE C-1

T2 Symmetry:
EnergK Mixing Coefficients
K cm” d5 ¢53 ¢32 ¢5K X}s XBZ
-152.7 3252 .8197 .0166 .0043 .2011 . 0066
* -122,2 .9231 -.3237 .1279 .0709 -.1355 -.0395
- 80.3 -.00%3 -.2512 -.3006 .7872 .3678 -.0299
- 70.4 -.2489 L0131 .8955 .3588 -.0h3h L1531
- 52.6 -.0018 -.0950 .3243 -.2019 L6615 -.6640
81.5 . 0394 -.8687 L0727 -.70%5 8749 1.015
E Symmetry:
EnergX Mixing Coefficients
K cm” dl ¢lﬂ Xls Xlz
* -127.1 9727 .1320 L0433 . 008k
- 79.9 -.224)h 6178 L6864 L0377
- 59.1 .1338 -. 7431 . 7258 -.2255
- 39.2 -.0124 -.3148 .1600 .9816

*Molecular Orbitals of Unpaired Electrons.



Kem
-40r1 E (-39.2) 5P(-42)
_50 L
T, (-52.6)
-60 E (-59.1)
T,(-70.4)
-70 L 2 -72
5P (-73) 58{-72)
E(-79.9)
-80 |
T,(-80.3)
-90 |-
-100 |
-0+
-120 T, (-122.2)
L
3d (-126 )4,/”'
e 4 A
E(-127.1)
-130 |
-140 |
55 (-144)
~1%0 - T, (-152.7)
Mn LEVEL MO LEVEL Te LEVEL Cd LEVEL

Figure C-1. MO Energy Level Diagram for CdTe:Mn't,
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(ii) ZnS:Mn™*
Radial functions are
Ryq(MV) = .M675¢5(2.0235) + .534665(3.975k) + .1375¢5(7.4822)
+ .0055¢5(13.u62)

Rusp(Zn) .0208¢l(51.u55) - .0113p,(28.027) +.ou615¢2(14.673)
+ .07A7¢5(15.652) - .0285¢5(8.5257) - .5718¢5(h.786o)
+ 16490 (5.1559) + 36530, (2.3916) + .5895¢), (1.4066)

+ .16775¢u(o.9150)

RBS(S) = 0.0552¢l(17.867) + .oh49¢1(15.92h) + .ou91¢2(15.753)
- .06khg,(8.9598) - .1957f,(6.246k) - .1910¢5(5.78u2)
+ .3005¢5(5.0451) + .7ou6¢3(2.05u9) + .153h¢5(1.2872)
RBP(S) = -.01305¢5(12.798) - .038605(8.1734) - .2406p,(5.0103)

+

.087150,(3.8107) + .37950,(2.1976) + .5724,(1.5528)
3 3 3

+

.09h55¢5<0-7790)-

Watson does not give 4p function for Zn. 1In this calcula-
tion it is assumed to have the same radial dependence as 4s, and its
energy 1s estimated from spectroscopic data.

The basis functions are (as the case of CdTe:Mn'™) given

by Equations (4-5) and (4-7). The matrices are:
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T, Symmetry:

{Hij}T2 (in atomic units, 1 a.u. = 2 ryd)

%3 Bs P s, %35 52
-.633k -.0850 -. 090k -.0389 . 0149 0173
-.8785 0 0 . 286k 2337
-.4363 0 L0637 0171
-.Lh363 .1803% 1128
.2855 0
1382
{Sij}Tg
1. 057 .086 037 L0175 0293
1 0 0 .286 335
1. 0 .090 035
1. .255 .230
1. 0
.
E Symmetry:
{Hij}E (in atomic units, 1 a.u. = 2 ryd)
4 D1y 1s X1z
633k -.067h  -.0105  -.0122
-.4363 -.110k4 -.0409
-.2855 0
-.1382
18305 i
1. L06k1 .012k .0207
1. 1564 0834
1. 0
1.




-11k-

TABLE C-2

MOLECUIAR ORBITALS AND ORBITAL ENERGIES OF ZnS:Mn*™

T2 Symmetry
Energy Mixing Coefficients

s P3s P3 P30 X3 X3z

-.8907 -195.k4 1360 .9931 .0087 L0145 .0510 -.0893
-.632h -138.7  -.9557 A712 - 177k -, 07hk .0k10 016k
-.4563 -100.1  -.0020 L0977 2048  -,8482 -,2662 . 0046
-.4197 - 92,1 .2800 -.0271  -.930% -,3162 -.0110 -.03%06
-. 1977 - b3k .00k6 -.1180 1739 -.257h L7798 -.5927

. 0679 k.9 .OM36  -.k95T L0573 -.5304 L7349 -9379

E Symmetry
Energy Mixing Coefficients
-1
° . d.
a.u K cm 1 ¢lﬁ Xls Xlz

6370 -139.7 .0827 .1310 L0114 -.0050
L4392 - 96.4 -,1934 .o24k 2445 L0113

.2580 - 56.6 L0345 -,3882 .9800  -.0610

-.1346 - 29,5 -,0063 -.1184 L0705 1.0018

*Molecular Orbitals of Unpaired Electrons.
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Kem' T, (14.9)
- 0r
- 20 »
4P (-30.3)
E(-29.5)
- 40 F
T2(-43.4)
- 60 E (-56.6) 4S(-62.6)
-80F
Tz ("92.')
E-96.4) 3P(-95.7)
-loor T, (-100.1)
-120}
3d (-139.0) T,(-138.7) ,,
-140F i
E(-139.7)
- 160}
- 180
3S(-192.7)
T,(-195.4)
-200t
Mn LEVEL MO LEVEL S LEVEL Zn LEVEL

Figure C-2, MO Energy Level Diagram for ZnS:Mh*+.
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Solutions of secular equations are given in Table C-2 and

Figure C-2.
The average probabilities that one electron being found in

the next nearest ligand S orbital, Equation (4-85) are for CdTe:Mn*+
LrL vz, Lye _ . _ o
5 A LS + _‘} \{;S 1 = Q‘OL,l — o»\ A
for ZnS:Mn++

£[% Ye;*?% ’CGISI

The result i1s discussed in Chapter VI.

000009 =~ 0.0| Y
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