THE UNIVERSITY OF MICHIGAN

COLLEGE OF ENGINEERING
Department of Nuclear Engineering

Technical Report

ON THE THEORY OF SUPERHYPERFINE INTERACTION

IN IRON GROUP ION COMPLEXES

Inan Chen
e
Chihiro Kikuchi

ORA Project 04381

under contract with:
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

GRANT NO. NSG-115-61
WASHINGTON, D.C.

administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

April 196k



< C
e

D

UmP I



ABSTRACT

The super-hyperfine (SHF) interaction -- interaction between
the delocalized d electrons and the ligand nuclear spins in transi-
tion metal ion complexes -- has been treated by molecular orbital
(MO) theory. The wave functions of the delocalized d electrons
are approximated by linear combinations of atomic orbitals (ICAO)
of transition metal ion and ligend ions, nearest and next nearest.

In Chapter I, the existing theory of transition metal ion
complexes and studies on SHF interactions are reviewed.

In Chapter II, the formulation of molecular orbital theory
and various simplified approaches to the exact theory are discussed.

The Hamiltonian for the interaction between electrons and
nuclear spins are derived, in Chapter III, from the non-relativistic
limit of the Dirac relativistic wave equation. This Hamiltonian is
used, in the following chapter, to obtain the expressions of the SHF
interaction tensor A" in terms of the MO parameters (mixing coeffi-
cients) and crystal structure factors (interionic distances and bond
angles). The details of the derivation are given, in Chapter IV,
for the next nearest ligands in cubic AIIBVI compounds containing S
state iron group ions. However, the formulation is quite general
and can be easily applied to complexes of other structure.

The rest of Chapter IV is devoted to the analysis of SHF

structures observed in electron paramagnetic resonance (EPR) and



electron-nuclear double resonance (ENDOR) spectra. Experimental
observables are related to the components of SHF interaction tensor.
An attempt is made to deduce the amount of d electron delocaliza-
tion from these relations. Unfortunately, existing experimental
results are not precise enough to give more than an "order of
magnitude" values.

In Chapter V, the SHF structures observed in the EPR
spectrum of vanadium doped tin oxide (which has rutile structure),
SnOQ:Vu+, are discussed. From MO theory, two mechanisms for the
next nearest ligand SHF interaction are derived. By taking the
ratio of the observed SHF structures associated with two sets of
non-equivalent ligands, it is possible to determine the relative
importance of the two mechanisms in this complex.

The attempt to deduce, from SHF structure data, the amount
of 4 electron delocalization, which is very difficult to obtain
from first principle calculation, necessitates further information,
both experimental and theoretical. The development of ENDOR technique
and electronic computing facility casts delightful future on this

approach.
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CHAPTER I

INTRODUCTION

The physics and chemistry of the transition metal ion com-
plexes have been of considerable academic interest since the end of
the last century. Along with the development of gquantum theory,
effort has been made to explain the electronic structure of these
complexes with the new theory. The problem turns out to be one of
the most difficult tasks common in many branches of physics - the
many-body problem. The solution can only be obtained by successive
approximations, and even with the high speed computational facilities
available today, a first principle calculation is still difficult and
the result unreliable, Consequently, the development of a semi-
empirical theory to exaplain observed phenomena is both necessary
and appropriate.

On the other hand, since the development of solid state
maser, laser and other solid state electronic magnetic devices,
interest has been stimulated in the physics of crystals containing
transition metal ions. A better understanding of the electronic
structure of such crystals would be useful in developing better

devices.

A. Theory of Transition Metal Ion Complex

Transition metal ions are characterized by the partially

filled shells of d-electrons. When a transition metal ion forms

-] -
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a complex with a number of surrounding anions or molecules or sub-
stitutes the host cation in a crystal as an impurity, the d-electrons
are no longer localized at the metal ion but move in orbits which
extend to the whole complex.* The most direct evidence of this
d-electron delocalization is the observed superhyperfine structure
(SHFS),** stemming from the interaction of the electron spin with
the magnetic moments of the ligand nuclei. Furthermore, the ligand
nuclear moments act as a number of electron detectors embedded in
the crystal and hence supply information about the motion of the
electrons. Thus the study of SHF interaction is one of the most
powerful tools for the understanding of the electronic structure

of such complexes,

Crystal field theory(l) has been very successful in predict-
ing the splitting of d-electron levels(g) in a complex and also fairly
successful in interpreting experimental results(5) quantitatively. 1In
this theory, the ligand ions are considered to be fixed point charges
producing an electrostatic field having the symmetry of the complex.
The d-electrons are affected by this non-spherical field but are
assumed not to overlap the ligand ions and hence give no SHF inter-
action. Furthermore, in covalent complexes, the large discrepancies
between experimental results and theoretical calculations served to
emphasize the need of modifying the model.

The second approximation is usually called "ligand field

(+)

theory" . In this model, the electronic structure of the ligand

*Hereafter, we shall use the term "complex" in a wide sense, i.e.,
it includes the cluster consisting of an impurity ion and its
ligands in a crystal.

*¥Also called "Transferred Hyperfine Structure" by Marshall and
Stuart,%lz%



ions and the delocalization of the d-electrons are taken into
account. Experimental evidences, other than the SHF interaction,
which point to the need of modifying the crystal field theory are
the reductions of parameters in crystal field theory such as g

factors, Coulomb and exchange integral parameters.(5>

B. Survey of Studies on SHF Interaction

The first observation of SHF interaction was made by
Griffiths, et E;.(6) in iridium complexes, IrClé_ and IrBré: In
the electron paramagnetic resonance (EPR) spectra of these complexes
they observed an anomalous hyperfine structure which can only be
explained as arising from the interaction of d electrons with the
surrounding halogen nuclei. Later, Tinkham(7) observed similar
phenomena in the EPR spectra of ZnFp (rutile structure, see Chapter V)
containing iron group ion impurities. Assuming that d-electron
orbitals are augmented by small amounts of ligand orbitals of the
proper symmetry, he estimated that the magnetic electrons have a
probability of about 6% each of being in fluorine n = 2 and n = 3
orbits.

SHF interaction was also observed in nuclear magnetic
resonance (NMR) experiments. Shulman and Jaccarino(8) observed

the frequency shift of the NMR line of the fluorine in MnF This

o
shift was explained as due to the mixing of the fluorine orbitals
with the manganese orbitals.

Later this problem of fluorine hyperfine interaction was

re-examined by many investigators. Mukherji and Das(9) calculated
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the interaction by orthogonalizing d wave function to the ligand
wave functions. The calculated value of the hyperfine interaction
is about half the experimental value. Keffer, et Ei.(lo) considered
both the orthogonalization of the d wave functions and the charge
transfer from ligand to the cation. The results are in reasonable
agreement with the NMR measurement of Shulman and Jaccarino.

Clogston, et al. (1)

related Keffer's approach to the idea of covalent
bonding, and introduced molecular orbital treatment of the problem.
They noticed that for other than perfect octahedral symmetry, there
will not exist a coordinate system in which the SHF interaction tensors
for all of the ligand nuclei are simultaneously diagonal, and observed
the effect of the off-diagonal components in EPR spectrum of ZnF2:Mn.
From the neutron diffraction form factor measurements,
Marshall and Stuart(le) assert that in complexes the d wave functions
are expanded over the free ion values and the SHF interaction in MnF,
can be explained by the Heitler-London model using this expanded d
wave function. However, Alperin(l5) reported that the neutron
diffraction form factor measurement indicates a decrease in the Ni++d
wave function in nickel oxide. Also, Marshall and Stuart obtained
their result by neglecting the n bonding. However, NMR measurement

(1%)

on KNiFz and KMnF 3 by Shulman and Knox and Hartree-Fock calcula-
tion by Sugano and Shulman(lS) have shown that the n admixture is
quite large.

All the above mentioned observations are the SHF interaction

with nearest ligands. The SHF interaction with next nearest ligands

has been observed in cubic crystals of group II-VI compounds containing



S state ions of transition metals. The interaction constants are

almost isotropic and have the following values:

In CAS:Mn and CATe:Mn‘1®), Aoq = 2.6 x 107% em™L;
In case:mn(17), Aoy = 27 x 1074 w1,
In Zns:Mn(l7), Ay, = 0.75 x 107% em-1,

It was pointed out by Schneider, et gi.(l7) that the ratio
of ACd to AZn is roughly the same as the ratio of the nuclear magnetic
moment of cadmium to that of zinc. This means that the maegnetic
electron has almost the same probability of being in the next nearest
ligand site in spite of the increase in the lattice constants of the
above cited crystals from sulfide to telluride. This also indicates
that the covalency increases in these crystals from sulfide to
telluride. They also pointed out that no SHF interaction of nearest
ligand has been observed although the nearest ligands 853(0.7h%),
Se77(7.5%), and Te125(7.03%) have small but finite abundances.

Most recently, From, Kikuchi and Dorain(l82 and Kasai(lSa)
observed two sets of SHF structure in SnOE:Vh'+ (which has rutile
structure) associated with tin nuclei at non-equivalent sites. The
interaction is anisotropic and ha:: much larger value compared to
those of Group II-VI compounds.

SHF structures in ’I'iO2 containing transition metal impurities
are also observed by Yamaka(l9) and Chang(go).

Observation of SHF interaction by electron-nuclear double
resonanée (ENDOR) has Just been started. Ludwig and Lorenz(2l) reported
on the observation of cadmium hyperfine structure in CdTe containing crt

ion. The interaction is anisotropic.
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No ligand field theoretical (molecular orbital) treatment of
next nearest ligand SHF interaction has been published.

The purpose of this thesis is to present a theoretical in-
vestigation of SHF interaction due to next nearest ligands in two

types of complexes.



CHAPTER II

MOLECUILAR ORBITAL THEORY OF d-ELECTRONS

As mentioned in Chapter I, Section A, ever since the
experimental observation of d-electron delocalization in transition
metal ion complex, it has been generally accepted that the point
charge model "crystalline field theory" should be replaced by the
"ligand field theory."

In ligand field theory, the wave functions of the delocalized
d-electrons are approximated by the (anti-bonding) molecular orbitals
¥, constructed from the linear combinations of atomic orbitals (LCAO)
of the impurity and the ligands, |

N}'d‘ = Cod + 2| Cu ‘/3,« (2-1)

/A.

where d represents an atomic d orbital of the impurity, ¢H'S
represent atomic orbitals of ligands, and Co’ C“‘s are numerical
coefficients usually known as "mixing coefficients".

The valence electrons of the complex are described by (bond-
ing) molecular orbitals. These are also LCAO's of impurity and
ligands where the ligand orbitals are the major constituents.

The wave function of the many-electron system is represented
by the antisymmetrized products (Slater determinant) of all occupied

molecular orbitals,

A= (M!)-yzé - Pl %(x‘) \‘gz&xg R &Pih(mj (2-2)
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where n 1s the number of electrons in the system; xq, Xp, ... are
the space and spin coordinates of electron 1, 2, ...; and P represents
the permutation operator.

By applying the variational principle, i.e., minimizing the
energy of the system, constraining the MO's to the orthonormality, we

obtain the Hartree-Fock equation for the molecular orbital, wi:

H e (X0 k{).ucm = B, LPb(xl) (2-3)

with the effective Hamiltonian (for electron 1)

P 9By, e~ PR, (2-4)
HQFFCXI) 2m e%} '/Z|a +ejdxl 21z

where

— ¥ | 2-
(X, x2) = bt $oo) B (2-5)

is the Fock-Dirac density matrix, and Py, is the "interchange operator"
with respect to the coordinates xp and x2.(22)

Physically, this is an independent-particle model, according
to which each electron in a many-electron system moves under the
influence of the external field (nuclear charges) and. an average field
of all other electrons.

Details of the Hartree-Fock process for LCAO-MO have been
worked out by Roothaan.(25) This method leads to a secular equation
with the self-consistent field (SCF) scheme for the determination of

MO energies and the mixing coefficients. We shall discuss this scheme

by a simpler but equivalent way in the following.



A, LCAO-MO Secular Equation

Let us represent the MO ¥; by LCAO as
N
ad
L‘)b = ))%é Cov s (2-6)

where Civ is the mixing coefficient of v-th AO in i-th MO, and @V's are
normalized but not necessarily orthogonal atomic orbitals.

If we substitute this expression of Wi in Equation (2-3),
multiply by @z from left on both sides of the equation, and integrate

over all space, we get

Z:J( \_{/Au - E/; S/MV.)CXV =0 (2'7)

where

l‘l}lﬂ) = S c?/n* H eff CPV dv (2-8)

and

<
S 098P, dr (2
Equation (2-7) is the secular equation for the determination
of MO energy E; and the mixing coefficients Civ‘s.
This is an "improper" eigenvalue problem. It is "improper"

because the AO's ¢, are not orthogonal in general, i.e., Spv # B

o)
pv
and the unknown eigenvalue Ei appears not only on the diagonal of the
secular determinant as in the usual eigenvalue problem, but also in
the off-diagonal positions. This kind of eigenvalue problem can be

solved by a combination of two successive diagonalizations as shown

in Appendix B,
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Further complication in the solution of Equation (2-7)
arises from the fact that the matrix element Huv itself contains
the unknown coefficients Civ's through the term p in the operator

H Therefore, the solution of this problem must be done by an

eff”’

iterative procedure, starting with a set of first estimation on

C.,'s, repeating until self consistent results are obtained. This

iv

is illustrated by the following cycle:

$Ciys P 5 Hepp ———>“’i}
1 |

In principle, the secular equation (2-7) must be solved for
all electrons in the complex. However, the inner shell electrons of
the constituent ions are quite localized and have little to do with
the bonding. Therefore, the secular determinant breaks into blocks,
one for each inner shell of each ion, and one for the valence electrons
of all the ions. Since we are interested in the valence electrons only,
we consider only the block corresponding to the AO's of these electrons.

Further reduction of the secular equation can be attained by
taking into consideration the symmetry of the complex. Since the
Hamiltonian of the system is invariant under the symmetry operations
of the point group of the complex, the wave functions of the system can
be classified according to their properties under symmetry operations
giving one of the irreducible representations of the point group. The
basis functions of the MO, ¢, can also be classified in this way. If
we use such "symmetry orbitals" as basis functions, then since the matrix

element of the Hamiltonian between two basis functions belonging
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to different irreducible representations vanishes and since two such
functions are orthogonal, the secular determinant breaks up into blocks
one for each irreducible representation. In this way the secular
determinant can be reduced in its order,

However, even with these reductions, SCF-LCAO-MO calculation
requires a tremendous amount of work for symmetry lower than spherical,
and the results become less reliable as the number of ions iﬁcreases.
No such calculation has been done for o system more complicated than

(2k)

NH5

B, Simplified LCAO-MO Method

The closest approach to the SCF-LCAO-MO calculation which has
been done for transition metal complex is the calculation of crystalline
field splitting by Sugano and Shulman,(ls) Using the results of
Hartree-Fock calculations for atoms(25), neglecting overlap and covalency
effect in the Hamiltonian, they calculated the matrix elements of the
Hamiltonian and overlap integrals. This is equivalent to the first step
in the SCF calculation. They did not carry out the iterative procedure,
but obtained good agreement with experimental results for the crystalline
field splitting of KN_iF5°

Another simplified approach is the "semiempirical" MO calcula-
tion of Wolfsberg and Helmholz,(26) In this method, the diagonal
elements of the matrix H are approximated by some empirical energy .

values, and off-diagonal elements are calculated from an empirical

formula
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H ““F‘ S , H’/M:,u + Hw
v P

s 2 (2-10)

or

]

l{ﬂu "‘g\s;u\lk4rp' H,. (2-11)

where f 1s a constant usually assigned a value of about 2., The
second formula is proposed by Ballhausen and Gray,(27)

The overlap integrals S“v can be computed by using either
Slater radial functions or, if available, Hartree-Fock functions. The
method of evaluation is given in Appendix A.

Valence state ionization energies (VSIE) are used for the
empirical values of the diagonal elements of H by Wolfsberg and
Helmholz(26), and in an earlier paper by Ballhausen and Gray.(27) The
method of evaluating VSIE is given by Moffitt(28) for the first short
period elements., The applicability of this method to other (heavier)
ions has not been Jjustified.

Another approximation to the matrix elements HMM'S is the
atomic one electron orbital energy obtained from Hartree-Fock calcu-

(25)).

lations of atoms (e.g., Watson and Freeman This energy differs

from the exact HH by the interaction with the electrons centered at

)

other ions. Sugano and Shulman's calculation shows that this difference
is not always negligible.

J¢rgensen(29) has pointed out that this semiempirical method
may lead to a wrong ordering of MO levels with respect to experimental

results.



In a recent paper Gray and Ballhausen
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(30)

proposed & general

rule for qualitative determination of the MO energies. They are:

(1)

(2)

(3)

(%)

The order of AO energies is taken to be o¢(ligand),
7P(ligand), nd(metal), (n+l)s (metal), =" (ligend),
(n+l)p (metal).

The amount of mixing of AO in MO is roughly proportional
to overlap integral and inversely proportional to their
AO energy difference.

Other things being approximately equal, o bonding MO is
more stable than x bonding MO, and ¢ antibonding MO
correspondingly less stable than x antibonding MO.

The relative MO ordering is considered final only if

it is fully consistent with the available experimental
results, exact differences in the MO levels can only

be obtained from experiment.

Two simplified MO calculations for tetrahedral complexes

including next nearest ligands are given in Appendix C, In one of

them, spectroscopic data

(31)

are used for the matrix elements Hpu,

and in the other, Hartree-Fock orbital energies are used.



CHAPTER III

HAMILTONIAN FOR THE MAGNETIC INTERACTION BETWEEN ELECTRONS AND NUCLEI

The Hamiltonian for the interaction of an electron with a

nuclear magnetic moment at the origin has been derived by Fermi and

others(52) as:

N=2pqupu i rL-9e3ronsn+ Toors)  G-2)

0|3

where Be and BN are Bohr and nuclear magnetons respectively, and gn
is the nuclear g factor.* I, L, and S are, respectively, nuclear
spin, electronic orbital, and electronic spin angular momentum
operators in units of A, This Hamiltonian can be derived from Dirac's
relativistic wave equation for one electron as the non-relativistic limit.
A simplified alternate derivation is given by Blinder(33) recently.

In our problem, the electrons interact with a system of nuclei.
The Hamiltonian for the interaction of one electron with a system of
nuclei can be derived by generalization of the derivation of Equation
(3-1). This is given in the following.

Dirac's wave equation for an electron (with charge -e) in
electromagnetic field (characterized by vector potential A and scalar

potential @) can be written as

5‘Cﬁ-<f+%ﬂ>~@m5‘—e%§§ =B ¢ (53-2)

*Nuclear g factor is defined such that nuclear magnetic moment

“n = gnBNE-n

=1h4-
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with

%

]
~—
la (@)
o |Ja
\_/
-
o
]
/\
(@] b=t
]
= O
~——

where g is the Paull spin matrices

0 1
%, ] =

0 -1 1 0
1 0 p ( 1 0 ) » % T ( 0 -1 )
The sources of the electromagnetic field are a system of point
nuclei of infinite masses with charges Zne and magnetic dipole moments
gnBNIn, n=12,3 ... . Accordingly the scaler and vector potentials
are, respectively,

¢ =5 Bt

(3-3)

A - ; Gn By Inxfn//?,,? (3-4)

where En is the radial vector from nucleus n to the electron.
The wave function ¥ 1is a four-component spinor, and we

represent it as

I,
- (3-5)
1% ‘. 5

where yl and yz are two-component spinors.

Since we shall be only interested in the non-relativistic
limit of the equation, the relativistic energy ER differ very little
from the rest mass energy mc2. It is convenient to introduce

E = Bg - mc® (3-6)

Note that E << mc2.
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Thus, Equation (3-2) reduces to the following set of two spinor

equations:
(E +ep+ame’) T, teT(p+EA)E, =0 (3-7)

(E +ed) ¥, tec(p+en)l, =0 (3-8)

From these equations, we see that ¥, (positron component) is smaller
than ﬁg (electron component) by a factor of order v/c. We can

eliminate Ql between the two equations, ylelding:

(& reb-Lller sl e+ L0} G o0 (59)
where we defined

. , -1
A8 = 1y oo, = (14 EX2 T )

2mc

Equation (3-9) can be rewritten in the form

/He# vV, = E ¥, (3-11)

where the effective Hamiltonianf%gff can be separated into three parts:

/He#_ - 74(0) + #(1) ; N(Z) (3-12)

HY = _ept L (cp)(r)(T p) (3.13)

(
K = e LT RIWENT 8)+ (T A E)(T p)] (3.24)
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T I (THIE(E) (2 8)] (3-15)

The first term'H(o) corresponds to the kinetic and potential
energies with relativistic corrections plus the spin-orbit interaction.
The third term 1s the self-energy of the nuclear megnet and is of
second order in nuclear magnetic moment. The second term ’H-(l) contains
terms linear in nuclear moment and gives the interaction Hamiltonian
between electron and nuclei. We shall consider further reduction of
this term only.

Recalling the relations

PO = K(DP —ih Y (3-16)

2
—_

"

S~

end (g » a)(g - 2)=2-b+ig-(axD) (3-17)
where a and b are two arbitrary vectors commuting with ¢ but not each
other, Equation (3-14) can be rewritten as

HY =k, « 4, (5-28)

where

WDM =2%K:K§){EB+B_P +LS’-(EX5+BXE)} (3-19)

w’%z=-;—3§3y_m;).ﬂ+ Lg-ymg)x_ﬁ_\f (3-20)

Using the expression (3-4) for A and the Lorentz condition

div A = 0, we have
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PR+ HEE=2A8R = 2049807 Inxtop

= -3
20 gnB e Lo I (3-21)
where 7 £n =r, xp is the orbitel angular momentum of electron with
respect to nucleus n. Similarly,

Exﬂ-r/—\__xf_’_:-—-&thﬂ

but
- Lvxal,

= [Y X Z\:%.\anag _L\X ‘K:“.]x

= Z\, gv\%q{‘aa—z‘[ﬂ:\a( Thx Y - InHXn)J- %.[[L‘r?( In}xﬂ - Ihx}nu}

I
s

%nEN{Z n;slnx + sn;‘sl—: Inz( Lé:.Q. 3,\2) + Inéxh']én‘\' Inzxnbn]}

I
s

GoBed A7 Toe (323 03)+ 307 Tng X Yoot Ty 203}

I

Z\; »\GN ﬁ_ /l_n}" Tha + 3/1::5/\,/“ (In’x Xn Ina %n + In? ?n) }

Z:T‘ gn F,JL— /7.:\3 £n + BQ:‘S- £n K _E"‘ ';n)]l
Thus

PxA+AXP ==tk 2 q8-07 1, 30 e 1) (5-22)

i)
Introducing the electron spin angular momentum S (in units of 4A) by

o = 28 (3-23)
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Then from Equaetions (3-19, 3-21, 3-22, and 3-23), we have

e = 2B (0 T 68,8280 5) Tt 3 U XL 1Y) (5-24)

Before reducing the second part h2, let us investigate the
properties of K(r) as a function of h, n=12 ... . From Equations

(3-3, and 3-10) we have

L) =[ 1 +imeT (B + T Z“e ]-l

Zne™
1’/( 1+ % T )

~ 1 (3-25)

in the region where h, >> Zne2/2mc2 ~ 1.4089z, x 10713 e,
Furthermore,
K(r) — (const.) x n, as L, —»0
hence, the expectation values of h; will have zero contribution from
the points by =0, n=12 ... i.e. only non-s orbitals contribute
to the expectation values of hj;, and for such orbitals the condition
for the validity of Equation (3-25) is always satisfied. Thus we have,
oy = 20 LGB [ ) Tor 3250 L)L), (3-26)
n

Now let us consider the second part h2. Since

n M (3-27)

AN,

< iis

Trin= g+ Eid e ]

Y\
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we have
P - 2 ’bl’u - .
2 -LE,‘ (?Q,n>/ln [-Z-.“ Aw +4 T E“‘An’] (3-28)
But since
21 _ & 2, Bn€
ah, T P (7o) =0 e Ax0
and

25 any = (0= ) — [Cln=0) = 1

therefore OYU is essentially a delta function:
O

M -
L= D (hw) (3-29)

Thus Equation (3-28) reduces to

h,

-1(22 @N n A’S(/Z)[L.\ InxLy +42S LaxT.x L,

zee Z\J %»\@N S(A“)[RT\Z §,, El - Q:}(_\fl\s_)(gy,&ﬂ (5_50)

Noting thet  O(h.)= 4w A §CLa)

and the average over cll angl.s

-

S o . . = Z .
LS Lo A (fws)( L ‘-En)]cw s S L.
we have
b, = 20, 348, 2 F(L) 5 T (3-31)

Summing Equations (3-26) and (3-31) we have for the hyperfine

interaction Hamiltonian in the field of a system of nuclei,

(3-32)

7

=28 Lyl L v insien)],

+ &Sy s
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Our next tesk is to obtain & Hemiltonian for many-electron-
many-nucleus interaction. Since an exact relativistic wave equation
for many-electron system cannot be written in closed form, the many-
electron Hemiltonian cannot be derived in the same way as was done
in Equation (3-1) or (3-32). However, it is reasonsble to assume
that to first order in fine structure constant, the many-electron
Hemiltonian can be represented by a sum of one-electron operators,
Equation (3-32), one for each electron. Thus we obtain the
Hamiltonian which will be used for later discussion:

-3 -5
’H = 2% ; 2(39_%.. Bu i[’lkn(Q_kn- Eh.) :E“ T 3 Ry Lo §h)(£u.v1_n)]ﬂ,,,o

(3-33)
+ B S(gen) 3y In

where Tyn is the radial vector from nucleus n to electron k, Lyn
is the orbital angular momentum of electron k with respect to center

n (position of nucleus n).



CHAPTER IV

SUPERHYPERFINE INTERACTION IN CdTe:Mn**

The superhyperfine structure due to next nearest ligands has
been observed by Lembe and Kikuchi(l6), Dorain(l6a), and Schneider,
et g&.(l7) in cubic crystals of Group II-VI compounds containing
S state trensition metal ion impurities (Chapter I,B). In this chapter
we shall derive the expressions of the superhyperfine (SHF) interaction
tensor A" (for the next nearest ligand n) from molecular orbital theory,
and then discuss the SHF structures observed in electron paramagnetic
resonance (EPR) and electron-nuclear double resonance (ENDOR) spectra.
We shall teke cadmium telluride containing manganese ion, CdTe:Mn'*¥,
as an example. However, the discussion applies also to other iron

group S state ions in any cubic crystals of II-VI group compounds.

A, BStructure and Symmetry Orbitals of the Complex

The transition metal ion impurity in cubic crystal of Group
II-VI compound (zincblende structure) is surrounded by four anions
tetrahedrally arranged at alternate corners of a cube, the edge length
of which is one half of the lattice constant, a. This means that
impurity-anion distance is JB a/h. The next nearest neighbors are
twelve cations situated at the centers of the edges of a cube with
edge length equal to the lattice constant. Thus impurity-cation
distance is a/VJ2. (See Figure 4-1).

Each nearest ligand is bonded to three next nearest ligands

and the central impurity ion tetrahedrally. We shall number the nearest

-20.
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ligands from 1 to 4, as shown in Figure 4-1, and denote the three

cations which are bonded to anion 1 by ia, ib, and ic,

i= l,2,3,’+.

The coordinates at the ligands are chosen in the following

way with respect to the coordinates (xo, Y, Zo) of the central ion.

X )

Yl'b

| Zle
X

lec
ch

5
A
L lc)

The coordinates

W6 -N2/5 16 |

1N2
1N

i-l/fé

of ligands

0]

1N

0
1A
N2

142
1Nz

i, 1is,

N2
SVE

N

0

-1N2

142
/

N2
142

/

N

ib, and ic

7/ N

Y (4-1)

Y (4-2)

Y (4-3)

Y (b )

(i = 2,3U4) are

obtained from the above set (i=1) by twofold rotations around X,, Y, and

Zo axes respectively.

For the ligands, left-handed systems are chosen for

the convenience of evaluating overlap integrals (see Appendix A).

We shall consider the molecular orbitals formed from linear

combinations of (i) impurity (manganese) 4s, 3d orbitals, (ii) nearest
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Figure 4-1. Nearest and Next Nearest Ligands
in Zincblende Structure.

I : Impurity Ion.

1, 2, 3, 4: Nearest Ligands

ia, ib, ic (i = 1,2,3,4): Next Nearest
Ligands.
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ligands (tellurium) 0(55,5pz) and 7(p,, py) orbitals, and (iii) next
nearest ligands (cadmium) o(5s,5pz) orbitals.

The symmetry of the four nearest ligands is that of the point
group Ty. Making use of the character table, we can construct the
linear combinations of nearest ligand ¢ and n orbitals, which transform
according to the irreducible representations of the Td group. The
results are given in Table L4-1.

The twelve next nearest ligands have octahedral symmetry.

In Table 4-2, we present the linear combinations of next nearest ligand
o orbitals, which transform according to the irreducible representations
of octahedral group Oh'

Finally, the classification of the manganese orbitals according
to the irreducible representations of Td and Oh groups are given in
Table 4-3,

The wave functions of the five unpaired electrons are the
manganese 3d orbitals augmented by ligand orbitals of the same symmetry.

Thus they can be written as:

D= o d,) + @rj)m t Yes Tis t Tea i (4-5)
Da= oedy+ pe) + 1o Tas + Vea Jan (1-6)
Dy= oedyt @ts Quet @tz‘%z PR Pan T Tis Tos T Yer a2 (4-7)

Dq' b o%a'“L §t5%5+ %t’éleJ'%\w(glrn: t 5)155 7{53 +3:r:/, T4z (4-8)
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Ds =Nl +8sSos tRiaboa T hinden + s os * Ly Lo (4-9)

These molecular orbitals are the antibonding MO's and hence the co-

efficients B, y's are small quantities.

B. Superhyperfine Interaction Tensor

The Hamiltonian for the interaction between the ligand nuclear
spins and the unpaired electrons has been derived in Chapter III,

Equation (3-33). It is in the form of a sum of one-electron operators,

—

H o= 7 HW® (4-10)

SHE ko=
where
g s s S D) s
HI&M:ZJLEA%“%JVM - R) + \ ;5 W )+ 8 é(Lk,DSK _LJ (lk-ll)
" ~ ’L\qn " kn

The wave function of the ground state 5d5 6S, can be represented,
to first approximation, by a Slater determinant of the five antibonding

MO's,

/\E* = { Dk(lfl) _D: f\fz> D3\£’5> 1)4\L4) Lg;(r )K (4_]_2)

The first order perturbation to this state due to the Hamiltonian

CMSHF can be evaluated as

3"

o | 1) = CACIIEIHG) (4-13)

This perturbation is usually expressed as a spin Hamiltonian in the form
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TABLE 4-1

SYMMETRY ORBITALS OF NEAREST LIGANDS

N

Y T = TS N T g [ S [ [

= e

= NV N

|-

Symmetry Orbital

Sy + Sz + sy, )

X2+

*3

ZM)

X), -\[_5 (3’1

w, +¥3 (x
5),)
2,)
x, +N3 (g
5,)
z), )

Xy, )

+

+

+

+

¥y )]
Xh)]

Xh)]

x), )]

yh)]



-28-

TABLE 4-1 CONT'D

Irreducible
Representation Symmetry Orbital
T2(z) Psg = % (s - sp - 53 + s) )
o = L (2. -2, - 2, +2))
5z 2 -1 2 3 b
1
@5ﬂ=Z[X1-X2—X5+X)+-‘[—5 (yl’y2'y5+}’)+)]
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TABIE L4-2

SYMMETRY ORBITALS OF NEXT NEAREST LIGANDS

Irreducible
Representation

Alg

E _(0)

N+ N |-

ON Fo

N |+

NS I Al |

Symmetry Orbitals
(sla t Sip * Sic)
(20 * 249, *+ 25,)
(siq *+ s5p - 2s5,)
(235 * 23y - 225)
(sig = Sip)

(255 - 243)

Soa T Szg " Sha)
Zog T Z3g ~ Zha)
Sop * S3p = Sip)
Zop toZm - Zkb)
Spc T Szc t shc)
%00 ZBc * th)



Irreducible
Representation

T
1lu

2u

1

= (Slb + 8y, F S,y * S

J8

l (s, +s8, -5, -5

— la le 2a 2c
J8

L (

— (s. + s - s - s -
JB la 1b 2a 2b
and three

-30-

TABLE 4-2 CONT'D

Symmetry Orbitals

- S1c * Spp T Spe < Sz * Sz - Sy tosy.)

2c - -8

T P Shc)

+ 531, + Sy, - Shb>

similar combinations of PZ orbitals.

3e T Shp T Syc)

52c 7 Sha ~ Shc)

S +S)+a+5)+

3b b)

similar combinations of PZ orbitals.
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TABLE L4-3

IRREDUCIBLE REPRESENTATIONS OF IMPURITY ORBITALS

Orbital Irred. Rep. in T, Irred. Rep. in O
hs Ay Ay

dl = 34 2 E(e) Eg(@)

d, = 5dx2_y2 E(e) Eg(e)

a5 = 34, T, (x) ng(é)

a, = 3d__ T, (v) Tpg(n)

a5 = 34, T5(2) Tog(C)
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(h-14)

where S is the total electron spin operator.
The program of this section is to obtain the expression of the

n
SHF interaction tensor A 1in terms of MO and geometric parameters.

The Hamiltonian (4-11) consists of two kinds of interactions:
The former

Contact interaction, and (ii) Dipole interaction.

(1)
gives isotropic contribution to éé, and the latter is responsible for

the anisotropic part.

(i) Contact Interaction
The one-electron Hamiltonian for this interaction is

L (4-15)

v é(k\i) Sk

o= Langp, &

According to Wigner-Echart theorem, we can relate the one-electron

spin operator s, to the total spin operator S as, (within the manifold

of fixed § )
s, = 8/2d (4-16)
where_é (=5/2) is the eigenvalue of S. Thus Equation (4-15) reads,
. - \ 5 T . ~N
H0 =% Tapo gy B ol 50 L (5-17)
and from
w B N R
.= 2 A, E-1y (k-18)

—_ 5 = £ T
= ), S Hg L, -
- = - W

IREATNI



we have, for the isotropic SHF interaction,

") ‘ SV N E—F N FARRS \ \\. N
A. = Z—g( 2E cu <U Zil TR / (4-19)

~ v

The last factor Zi<]li\5(5“ﬂ Di> is the density of unpaired
v
electron spin at the nucleus n. The contributions from the various AO's
in Di to this density are estimated as follows:

Using the Slater radial functions for Mn 3d and Te 55,5p,*

2z RZA
Rzq(Mn) =.3EE.(\.86%) L (= 1L EET R (4-20)
2 '..//.7 . ‘f; B ) - ‘ R
RSSP(Te) = §;T§EF(J‘5é) v %,X},v_|u)é/b) (4-21)

and Hydrogenlike wave function for Cd 5s,

_ 3
@G35)" = } 3
RSS(Cd) = ?ﬁéﬁf'[l~( 240 (\VT4) +120 (174 ) - zo (17140 (4-22)

+ QAT Texp (=0 870)

we obtain

9&.

IR (Mn)]2 at Mn-Cd distance (8.58 at. units) = 1.09 x 10 u.

2

IRSSp
2
|R5S(Cd)| at Cd nucleus

2 -
(Te)|” at Te-Cd distance (5.25 at. units) = 1.08 x 10 b e

i

1.63 a.u.

From this result we see that even if the probability of an electron being
found in cadmium 5s orbital is as small as O.l%,** practically the con-
tributions from tellurium and manganese orbitals are negligible. Thus

finally we have the expression

¥slater radial functions are used because they are more extended than
Hartree-Fock functions and hence give the upper limit of the estimation.

*¥¥This percentage is estimated from Lambe and Kikuchi's experimental value
AL = 2.6 x 10~* cmt by comparing to Jones' Apg = 0.11 cm~L.
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" L . 2 ,,._'_)"
A =2 %lfn%?“%“”{i5%5+jﬁﬁ;§ (+-23)

S0y
where R_(0O) represents the value of cadmium 5s orbital at its nucleus,

ami’gﬂ, {% are the mixing coefficients introduced in Equations (4-5)
o ~

through (4-9).
We have not taken into account the effect of spin polarization

in deriving the above formula. This effect can be included simply by

replacing |R (O)|2 by p (0), the density of unpaired spin at the
s s

nucleus when there is one electron in the orbit Rs‘ Thus

. A S TR S e (4-24)
As == (ﬂ_g\rﬁ - 1<lO) 1 e 4. Les §

+
|

o) (O) can be estimated from the hyperfine structure constant

(isotropic part) Amq of cadmium,
ACCL = 2 3\ ‘j\ﬁ\&N % QSLO) ()'L'ES)

= 0.11 cm_l obtained from optical

Jones(Bu) has reported the value ACd =

measurement.

(ii) Dipole Interaction

The one-electron Hamiltonian for the dipole interaction is the

first two terms in Equation (4-11)

E 22| .\(z“ [ (e /‘L»r) L

}< n

3 (L T e Se) ] (4-26)
Afen

The SHF interaction tensor due to this interaction, A p °an be

obtained from the equation
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Dl | H, & L c)>

P
|
7»! 1

= L ADR[ T S T | il

%D T 8L L | )

y\\

“ty (2<D<'>1 ) [ Dty )T, B2

Il.
where l:lk is a tensor operator

_n p R _.I = -Vk D0 (4—28)
() = . q R oLy
S AT el — |

)Lkl] /Lhﬂ

Thus,

' S ' —~
= — N (> L2
Ap =53 ZADalLe | (4-29)
Since Di is a linear combination of manganese, tellurium and
cadmium orbitals, we can expand the matrix element as

éé 1 Z{o( (d, 15 |ol>+%<9\ﬂ"[\?\+y' <a '){>} (4-30)

25 71
where 3(5 s %5‘ , and j}z stand for the total fractions of electron
in manganese 3d orbitals, tellurium orbitals, and cadmium orbitals
respectively. We have neglected~the cross product terms in the expansion.
The first two terms in Equation (4-30) are the contributions
from the electron densities centéred at manganese and tellurium atoms.
We can consider these densities as concentrated at the nuclei and
calculate their interaction with cadmium nucleus as point dipole-dipole
interaction. Further, in the second term we consider only the inter-

action with the electron density centered at the tellurium which is

nearest to cadmium n.
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Thus from the first term we have

2 - -3 - -
Tl Ry (Beesie, 1) T« (4-31)
for the diagonal component A?E’ E = X,¥,2; and
(k-32)

é ,)-?> ) - 2
= %Q%“ %,\) ‘\_Mc‘ L?) Cos @E Cos Q,L) ‘\'i\ J(;/

n
€, 1= X,¥,2; Where RMC is the dis-

for the off-diagonal component AEU’
tance from the manganese ion to cadmium n, and Qg is the angle between

BMC and & axis.
Similarly from the second term, we have,
(4-33)

2 -3 - ) Z * x 3 %
= @o.%v\@u QTC (Beos +§‘O>?.J?: (SMT +ﬁ«&:s * er_ \3{/3 Ty @*W }

n
for the diagonal component Aég, and
(4-34)

ERBE Rrc(Besh s ) {200+ £ 8L+ 1B, + 26 ]

for the off-diagonal component Azn; where RTC is the distance from
and &
—TC

tellurium ion to cadmium ion n, and is the angle between R
) E, g

axis, £ = X,y,2.
In the third term of Equation (4-30), only the p orbital of the

cadmium n has to be considered. By operator equivalence technique HD(k)

can be rewritten as
Heo=2 S0 =2 ke 1) 2 e §)]
b B4 Ts L L= 5 (8 L )Y 2) | (4-35)
n
where ¢ = 2/(22n - 1)(2¢, + 3), and £ is the orbital angular momentum
Thus the P, orbital of the

of electron with respect to the nucleus n.
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ion n contributes

SR S (RN 2 IRy { s v i} (4-36)

to diagonal component»An and

ge’
Shd-ba 5(/[325?( Pl 20 Gt k) B § Vep + 7 Yz f (4-37)

to off-diagonal component Azn.
In applying these general formulae to cadmium ions at different
sites, we note that if the components of é?D tensor are referred to the
coordinate system (X, Y, Z,) of the central (manganese) ion, the
expressions will be different for different sites of cadmium. However,

if we refer the components to the coordinates (Xn’ Y Zn) at the ion n

n’
as defined in Equations (4-2), (4-3), and (4-4), then the expressions
will be the same for all the cadmium sites. Therefore we shall first
derive the expressions for the components with respect to this set of
coordinates and then transform the results into the coordinates of the
central ion. Thé latter coordinates is the one which experimental
results are referred to.

For the simplicity of notation, we use (%, p, o) for (Xn,Yn,Zn)
and reserve (X, Y, Z) for (XO, Y, 2,).

The angles 6, § in the general formulae,Equations (4-31) through

(b-34) are

>
s
I
Y
&

(4-28)

Q@
E]
I
~
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cosg¢JT = 1/3

cos2¢H = 0

cosg¢O = 2/3

cos¢JT cos¢0 = J2/3 (4-39)

for all of the twelve sites.

Introducing the following abbreviations:

? S P
- 2 G =3 :‘?_ 2 QZ' s -
hoe 2o S b F e F el O
- 3 P ~ 2.
he BRSO, T 40T wa2)

We have, for the components of AP tensor, including the isotropic part,

A = Ac— A - Ac (443)

- L-kh
A/uvu\ - AS - AM — AC_ - AT ( )
Ao = At 2 Ay t7Act Ar (h43)
ATC = Awm ::JZ AT (h-46)

Other components are zero.
The components of A" tensor in the coordinate system of the
central ion, (X,Y,Z) can be obtained by the transformation

AL L 0.3: A A (4-47)

&

T,,g=/7t/,r-t,0‘ 5 ;'XL;‘X/\I/,Z_\
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with the transformation matrix (agi) given in Equations (4-2), (4-3) and
(4-4). The results are the following:

For a-type cadmium sites
Axﬁ Arr,
Ay 7 (At A
Apw = 5 (Accs AL
Aey = OO ® L F Ar) (1-48)
AWE(HHHﬁVJé(—AWfANJ

Ay = OO (Z Ang)

For b-type cadmium sites

Axxzzé_(A%u+ Amﬁ
AYY = A
Ay = 5 (Ape +Am-)

Ay = OO W) (3 Are) k)

Ay = B ( = /_\ﬁ>

Aoy = WO L0 A 1A
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For c-type cadmium sites

A = T (Auat AL

Ay = 2 (ALY AL

Poz = Amb

Agy = DO L (CAL+ A (4-50)
Ay = OWOE (3 A

Arx = OO (T Aro)

The four * signs preceding the off-diagonal elements are for la, 2a, 3a,
ba, etc. respectively.

Introducing the abbreviations

Ay
A

At ALY = Ag = F (At Ad) (5-51)

1y < -
2 5 (A= A/“(M) - 2 (AT A+ At (k-52)

we can express the components in more compact form as:

For a-type cadmium,

AYX = As -2 A*.

Avy = Acr Ay
Ay = A+ A, (4-53)
Ay = (DO (3A,-A)

= (1)) Al
Agy = () YO (3A4— A)

P
=
o~

|
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For b-type cadmium,

A= As+ A,

Ay= As-2 Ay

Ay = As + Ay

AXY =MW (3A,-A) (4-51)

Apg = DO IO (RA4- AL

Apy = (EYHEY A

For c-type cadmium,

- A+ A,

A
AYY= As + A.‘_

==
S
=3
]

As - 2A, (4-55)

= (NG AL

=
><
=<
1

(DO O (3A,-A)

r
(54
>

|

= (DWW (BA-A)

In total we have three independent parameters As, A and A .
+ —
We shall discuss the relations between these parameters and the experi-

mental quantities in the following sections.
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C. ©SHF Structure in EPR Spectrum

11
In natural cadmium only about 25% of nuclei (Cdlll, cd 3)

have non-zero spin I = 1/2. The magnetic moments of Cdlll(

-0.5922 By)
11 :
and Cd 5(-0.6195 BN) are nearly equal. We shall treat them as identi-
cal in the following discussion.
The spin-Hamiltonian describing the interaction of cadmium

nuclear spins In's with the unpaired electrons and external magnetic

field H_ is

H= 23S A" L~ g Lot | (456

where the summation is over the cadmium nuclei with non-zero spins.

By introducing an effective magnetic field

tﬂn _ L4 MS f§n~tl (u_57)

where h is the unit vector in the direction of Eo’ and Mg is the projec-
tion of S along h, the Hamiltonian (4-56) can be rewritten as

Al 7 n

H - %J %\\GJN En‘ Heﬂl (4-58)

In EPR experiments we observe the transitions with AMS =+ 1,
AMp = O. Therefore, the direction of anf changes after the transition.

—e

Thus it is convenient to describe the nuclear spin states of the ligands
with the direction of crystal Z axis as quantization axis.

Consider the case EO//Z axis, [001l]: The effective magnetic

field can be written as



N

0 A" AR AR 0
n XX Xy XZ
Hem o] ae [ % &) |

(o] ZX zy 22
- (Ms/%n @ﬁ) A)?E
— (My/gn0) Al
He = (Ms/4nBx) Agz

(k-59)

N

Thus the Hemiltonian (4-58) reads

oY

) iMs Axe Tnx +Ms A\;‘z Inyt = QnBuHy+ MsA2z) In'z.%

B3 T rugmbAT,) Loyt B (R +1AL,) To H-GHAMAL i-60)

The electronic states specified by a set of quantum numbers
(MS, My, My, My, «e» My, m, ) with the same Mg and Mg (z component
of impurity ion nuclear spin) but different m,'s (z components of
ligand nuclear spins) are degenerate before this perturbation is taken
into consideration. Splitting due to this perturbation can be calcu-
lated by degenerate perturbation theory. However, for natural cadmium,
even for the most probable case of three non-zero spin nuclei out of
twelve, the perturbation theory leads to 8 x 8 secular determinant.
Moreover, the probabilities of having four and five non-zero spin
ligands are 3/4 and 2/5, respectively, of the most probable case and
hence cannot be ignored. These cases will lead to secular determinants
of 16 x 16 and 32 x 32 respectively. It is quite complicated to
analyize such a spectrum. However, we can make use of the fact that

each ligand nuclear spin is quite independent and first treat the



o

splitting due to each ligand spin separately, and then sum up the

results.
For a and b type cadmium, the 2 x 2 secular determinant has
the form:
ZEOBH MR A Y- 08, DR A] |,
y (4-61)
sT 4 - N -1
7 LCAAIELAL JEgup e MdactA)] g,
Solving this equation, we have
- - - |
ABa=1 1 9Bt Ms(As +A) 1% ME3A-AY S A2 ]} &
(4-62)
= % l‘(—j“@”Hﬂ * Ms(As+ Ay) l
For c-type cadmium, the secular determinant is
SEQBRANS(AS2A)] —aE.  Ms(zp . .
B s2h)]-aE FA-A (] FL) e
MES (BA-A) (21 £1) -5 g Mg(As2A) -4 B
hence,
- \ LN V
AEC = éi[‘%h(ﬁl“o + MSKAC\'AM + M;[(-%A.‘,-A_f“*' A_ J% 2
(b-g4 )

= 5= H + M(A-2AL) |

Let us introduce a set of new quantum numbers for the ligand
nuclear spins, H1gs Hips Hier €tCe, py =+ 1/2 for the state whose
energy is shifted by +AE of Equation (4-62) or (4-64) by the perturba-
tion, and My = = 1/2 for the state whose energy is shifted by - AE.

The eight a and b type cadmium ions are equivalent with

magnetic field in [00l] direction, and contribute equal amount of
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energy shift + AE_ ;. We can introduce the "total p quantum number of

a, b type ligands" %0 vy

ob
K= 2, pa

n=a,b

Depending on the number of odd cadmium huclei and the values of individual
My pab can have the seventeen values pab =0, + 1/2, + 1, ceee, 3

+ 7/2, + 4, Similarly the four c type cadmium ions are equivalent and all
shift the energy level by + AE,. We define the "total p quantum number

of ¢ type ligands" HC by

[ 1
M= ZJ Mon
= C
which can have the nine values p€ = 0, + 1/2, ey T 20
Thus the energy of the state specified by (Mg, Mg, Hab, u®) is
b ab c
E(MS,MI) W AC)=E(MS,MI) 0,0)+2 W AE, + 2 WAE (4-65)

and the frequency of transition AM_ = + 1, AM; = 0, is given by
s = I
hy = hy ob =/ ¢ /
ebue T Vo F 2 (AE-aB,,) +2 (AR~ AE,)

= h, fMaE(As+A+> v AR =2A4) (1-66)

where AE' , AE' are the values of AE ., AE for M' = M + 1. A schematic
a c ab c S s =
diagram of energy levels and transitions is given in Figure 4-2,
The above result shows that the HF structure line hvo is split
into 17 x 9 = 153 lines. However, because of the high abundance of
spinless nuclei, the higher values of u®P, _C are less probable and

the intensities of these lines are not strong enough to be observable.
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ab ¢
Ko B
(12,1)
(1 ,0)
(0 ,1)

(172,0)
Ms MI . ab A c

? (0 ,0)
(0,-172)
(-172,0)
(0,-1)
(-1,0)

(-1/2,1)

h v,
h Vo.uz2
h Viz,0

le—|

(172,0)
(0,1/72)

4 [} ’l
Mg= Mg%1, M AFab AEc
2 - L i (0,0)

E(Mg, M;, 0,0) E (Mg, Mg, 10 1£)

Figure 4-2. SHF Levels and EPR Transitionms.
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The relative intensity of the line (u®P, .¢) can be expressed

as
2
n, k! n—k)y!
I u‘db) ILQ - W(n) ?:( k)
K )n;\m% 2 (-‘%wf")!(%%“)'( NS -G (k-67)
2]
where
Winy = £1o=gy 1z (4-68)

ny(1z-n)!
is the probability of having n non-zero spin nuclei out of twelve, f

is the natural abundance of non-zero spin cadmium, and

ak
Pl k) = (£)°(1) 0! (4-69)

3 Rl (n-k)!
is the probability of having k nuclei of ab type and n-k nuclei of c

type out of n non-zero spin nuclei in total. The summation over k is

to be taken from k = 2|pab| to the lesser of 8 and n—2|pcl, in steps

of 2. The numerical values of I(pab, u®) are given in Table 4-6.

If the anisotropic part of An tensor, A+ and A_ are too small
to be observable, as in Lambe and Kikuchi's experiment, then AE_, = AE,,

and we can describe the SHF lines by "total p quantum number of ligands"

pL. In this case the intensity ratio can be calculated by a simpler

(16),

Worl2

| _
I(}L 2, \NL,]M a n (4-70)
n= 2l +p~\ (iZ'"»'y

where W(n) is given by Equation (4-68), and the summation over n is to

formula

be taken from n = 2pr’ to 11 or 12 in step of 2. The same result can
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be obtained from Table 4-6 by adding the intensities of possible combi-

nations, for example:

ut u®P ue (1, u°) 1(uk)
0 0 0 .202
+1/2 +1/2 2 x .070
+ 1 + 1 2 x .0066 <3557
+ 3/2 ¥ 3/2 2 x .0002
+ 2 + 2 2 x .000002
1/2 0 1/2 .097
1/2 0 .150
1 -1/2 .030
3/2 -1 .00172 -2961
2 - 3/2 . 00003
5/2 -2 . 000000
-1/2 1 .016
-1 3/2 .00088
- 3/2 2 .0000156

This result agrees with that calculated by Equation (4-70), and
also with Lambe and Kikuchi's experiment. This shows that Lambe and
Kikuchi's experiment is one special case of the general formulation given

above.
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It will be shown in the next section that A+ is much smaller
than A_, so that [001] is not a good direction to observe the
anisotropy of éé, since only A+, but not A_, appears in the energy
shift AE. Observation with external magnetic field in other directions

(e.g. [110]) may show the anisotropy.

D. ©SHF Interaction in ENDOR Experiment

In electron-nuclear double resonance experiment (ENDOR) we
Observe the transition AM, = O, AMy = 1, where I may be either the
impurity ion nuclear spin or ligand nuclear spin. For the latter
case, the transitions between SHF levels (Figure L-3) are observed.

Since Mg does not change in such transitions, the direction
of effective magnetic field Esz, Equation (4-57), unlike the case of
EPR, does not change after the transition. Therefore, we can describe
the ligand nuclear spin states by taking the direction of the effective
magnetic field as the direction of quantization axis Z'. Then the

Hamiltonian (4-58) reduces into the form:

N ='*'2;% X “2'\Hew\

r‘!
y'\'

= LG, | H | (4=71)

Case I: H_//[001]
The effective field has the components (4-59) and the magni-
tude:

5 Ve
| Hi|= § (Ho “j‘-f;NA Y +(D )(A /»\"“)§ (4-72)
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Line A: Centrsal Ion ENDOR
Line B: Ligand ENDOR
Line C: Microwave Pumping Frequency

Mp=+1/2 Mn=+ 172
mn s -1/2
M
2 A
‘ Mp= +1/2
B

’ mn= "‘l/2

|

|

|

|

1C

[

]

|

|
| Mp = -1/2
Mp=+1/72

+
Ms,—l
Mp = ~1/2
MI=+I/2

Mp = +1/2

Figure 4-3. SHF Levels and ENDOR Transitions.
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The frequency of transition between the states (MS, MI’ cee M
eoo) and (Mg, My, o.. mj, ...) where m! = m + 1, is given by the

following formula

Wy = Guel Heg (4-73)

Using the expressions for the components Arilj, Equations (4-53),

(4-54), and (4-55) we obtain two frequencies:

~

IS

b 2. 2 V
Wy, = § Q= sChs+ ALY+ MELAS + (3A-AIL

2 | G puHo = Mg (Ag + AL (b-Th)

2 2,
hv(} - i[%w E’MHG - MS(A3~2 A-\-) ]2-\- 2 Ms (3A*‘f\_) g :
= ‘ %»\ (3\1 My — Mg &A\g -2 /5(+) \ (4-75)

The first one corresponds to the transition Amn = + 1, where
n is one of the eight a and b type cadmium. The second frequency
corresponds to the change in the nuclear spin state of one of the four

c type cadmium. The intensity ratio of the two lines is 2:1.

Case II: g_o//[llo]

The effective magnetic field is given by

' \A Mg i oo [\AS f . - Ns " ]
,:ﬁ[HO— ﬁg{q(Aﬁﬁ'A*z 4 [H - i:‘fAYX*l A ‘Lﬁu\fx* A, )] | (4-76)

.
| Be?? !-\J;g {

J

In this case, there are four non-equivalent sets of ligands, and hence,

four different frequencies. Rr the transition of the set(la, 1b, L4a, 4b)



2
W, =14 R S A A - AT A7) B AMZASA, 28 Sk
= | Gopaty = Ms(As+ 2 A - AL) | (4=T77)

for the set (2a, 2b, 3a, 3b)

‘Wz _ 5\%»12(5,; : MS[(A 5A++H)‘\‘U\5 2A +/\)+(3A -2A )J
- %V\GNH’oMSKZAS—rIA++2A')}/Z

i 4-78
=~ | Gufu ty— Me(Rs— T Ay +A)]| (-18)

for the set (lc, kc)

i é 2 2 y
hyy - % Go B Hy HMGTCA+ A+A) +2(A+“A_)zj‘ZanFNHbMS(AS-\— Ay + A_)E -

= [4uputy = Ms(As+ Ay + AL)| (4-19)

and for the set (2c, 3c)

4-8
h))q‘-: ’gn(&NHO-‘MskAs‘{" A+‘ A“)' ( °)

The relative intensity is 2:2:1:1.

Case III: go//[lll]

In this case the effective magnetic field has the magnitude

"\
.l:-_-le{‘-f.

\
:\—r_g%[H '—_(A "’A;\Y‘\' A‘;\:E)]Z"’ D"*o 8 (AYX* AYY t A\\r\%)]z

& B

“ 25 /2
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There are three sets of non-equivalent ligands, and the frequencies

are, for the set (la, 1lb, 1lc)

: V1 12272 -
) = WAt T 2t At 480 T (+-82)
for the set (2b, 2c, 3a, 3c, La, Lb)

| s - . 23/ -
W, = =0t s 1A 2T+ 2 [ g8 M Mslhe2 AT (-82)
for the set (2a, 3b, kc)

-

‘—\‘i[‘lf"* N (As= XA +2h ] + Lz\\%nHo‘F\S(A.;‘2Pf4+2f\_)jzjyz (4-8k)

IS

The intensity ratio is 1:2:1.

21) have observed the SHF interaction between

Ludwig and Lorenz(
the unpaired electrons and cadmium nuclear spins in CdTe containing Cr+
ion impurity by ENDOR. With magnetic field in [110] direction (which
is equivalent to Case II above) they observed, for Mg = -5/2, four lines
with relative intensities 2:2:1:1 as expected in the discussion under
Case II,

From the frequencies they obtained the three principal values

of the A" tensor and found that the interaction is anisotropic. The

three principal values are (using their notation)

T, = (5.82 ¢ 0.05) x 107 eml
T, = (5.63 + 0.05) x 107 cm™t
Ty = (5.61 + 0.05) x 10'l+ em T

n
Isotropic part (contact term) of the SHF tensor AS is given

by



n _ _ =l =1
A = (Tl + T, + TB)/B = (5.69 + 0.05) x 10™F em™™ .

This velue is of the same order of, but twice larger than, the value
2.6 x 1o“h cm-l, obtained by Leme and Kikuchi for CdTe:Mn . This means
chromium 4 electrons are more delocalized than mengenese d electrons.
This is in the right direction as nuclear charges are compared. From

the relations (4-24) and (4-25) we have, for the average probability

of an electron being found at the 5s orbital of cadmium ion

| 2 3 -
E(be‘& n-{\(ﬁ) = 0.51 x 1072 (4-85)

which is comparable to what a simplified MO calculation gives (see
Appendix C).
Equating the observed transition frequencies to the expressions

(&-77), (4-78), (4-79), end (4-80), with M, = -3/2,
hy, = gnFNHo+-E-(As+‘EA+‘A_) = 20.51  M¢/sec
hy, = nBHot 3 (A= T A +AL) =21.12
hy = guByh, t %(As AL+ AL =210k

M= qn B Mt A+ A, —A_)= 2002

From the higher intensity lines (hvl and hye), we have
A_ -3 A, =Ap= 0.2 MC/sec
and from the two lines (hv5 and hv), ) of lower intensity,

A = 0.21 MC/sec
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The observed values of frequencies are very close to each other,
hence the above calculations are subject to large errors. We can
only say that the above results show that A, = 1/2(Ay + Ag) is
very small compared to A_ = 5/2(AM + Ag) + Ap which essentially
equals to Ap, the contribution from tellurium orbitals. From

Equation (4-41) and %c&z 1.2, Ry = 5.25 a.u., we have
_ 2 -3 2 3 2 é_ 2
AT - ?EQ%“?N R'TC‘. 5\,-12_ Ferc+ i\-@ts*- i @tz T 4 %‘hﬂ)}

_ | 2 z 2
=) = 7Rt F st t@iz*'% Ptmvs MC/sec

which gives for the probebility of an electron being found at

tellurium orbitals

| ¢ p2 2 2 3.2 ) _ i
—'5%2@%*‘#@*5"'1&@12+Z$tm%'o’25- (1-86)

From the fact that no SHF structure of nearest ligand is
observed, we can conclude that most part of this probability is due
to the p orbitals and not the s orbital of tellurium. This probability
is much larger than that obtained by simplified MO calculations as shown
in Appendix C.

The fact that AT is the largest component among the three
(AM, Ap, and AC) components of dipole-dipole interaction has an
important meaning. It can be seen from Equation (4-46) that this
component makes the ¢ axis (Mn-Cd direction) not one of the
principal axes of An tensor, and also it makes x5 axis not equivalent

to p axis. The latter is one of the principal axes.



The fact that A+ is very small explains why the anisotropy
of 1_\n is not observed in Lambe and Kikuchi's EPR experiment. Equation
(4-66) shows that A_ appears in the expression of transition energy,

but not A_.



CHAPTER V

SUPERHYPERFINE STRUCTURE IN SnOg:V4+

A. Structure of the "Complex"

The crystal structure of tin oxide (Snog) belongs to
tetragonal th group. In this structure atoms are located at the
following positions: (Figure 5-1)

sn :  (0,0,0), (1/2, 1/2, 1/2)

0 : +(wuo0), +(u+1/2, 1/2 -, 1/2)

The lattice parameters a, c, and u are given in Figure 5-1.

The symmetry of the substitutional site in this crystal
is, however, orthorhombic D2h? (Figure 5-2). Using the coordinate
system of Figures 5-1 and 5-2, (following From, Kikuchi, and
(18),

Dorain the six nearest ligands, oxygen ions, are located in

x-y plane (1,2,3,4) and on z axis (5,6). Ten next nearest ligands,
tin, are classified into three types: (i) two "a" tins, (15,16)
which are closest to the impurity ion and lie on the y-axis; (ii)
four "b" tins (7,8,9,10) which lie in the x-y plane; and (iii)
four "¢" tins (11,12,13,14) which lie in the y-z plane and at the
same distance as "b" tins from the impurity ion. The distances
and bond angles are given in Figure 5-2.

Symmetry characters of vanadium orbitals and linear

combinations of ligand orbitals in Dy group are given in Table 5-1.

=58~



=50~

a
Lettice
Parsmeter a(p) c(p) u c/a
Sn0y 4,737 3.185 0.307 L6724
Ti0p .59k 2.959 | 0.306 .64k

Figure 5-1.

Unit Cell of SnOp (Ti05).

o TIN

O OXYGEN
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Z
l%ﬁ ? [
a
9 /
/,o 8
5¢ /
3 -~
- I W >
7 ///, B
* - L -Y
16 ! ! 15
I
4 |
l *s
|
10 ‘//” 7
X
13 14
Distance and Angles Snoo Ti0o
dy )y = dg,15 = C 3.185 A° 2.959 A°
a, = J2(1-2u)a 2.586 2.521
a8 = %, 11 =Jea 6.699 6.497
do, 5 = J2 ua 2.057 1.988
do,1 = [2(% -u)?e? + c2/u]l/2 2.051 1.9kk
1
G,7= 9,11 =3 (c2 + 2a2)1/2 | 3. 709 3.569
Cos L7763 L7612
SinQ .6303 .6485
CosB .hook L41hs
Sinp .9031 .9102
Figure 5-2.

Nﬁarest and Next Nearest Ligands of
vV in Sn0O, (Ti05).
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by
B. Ground State of V in SnO,

According to point charge model crystal field theory, and
using the coordinate system of Figure 5-2, the splitting of d
electron levels in rhombic crystal field of SnO2 is as shown

in the following figure (Figure 5-3).

le (NJ
&22) d._x\{ /
\\\, dxy dugNé)
3d dve L Na)
dyz, dxy '
. Axz ( NZ)
dy-y?, d vz ;
dxz,
\\ C\XZ—YL o (N;)
Cubic Tetragonal Rhombic
field field field
splitting splitting splitting

Figure 5-3. ©Splitting of d Levels in Crystalline Field
of SnOs.

The relative positions of d,,, dyz and dx2_y2 cannot be

determined intuitively based on point charge model. In the EPR

by (18)

experiment on SnO,:V'", From, et al. observed (see Table 5-2):

(i) large Dgy; (ii) large MM, = A, - Ag, AAy, and AA . have opposite

Y
signs to AA,; (iii) large superhyperfine interaction with "a" tins.
These results suggest that dX2_y2 lies lowest. Thus the ground state

consists of mainly dX2_y2and small amount of dy, admixed through spin-

orbit interaction.
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TABLE 5-2

RESULTS OF EPR EXPERIMENT ON SnOQ:Vu+(l8)

x v z
g 1.939 1.903% 1.943
HFS A (gauss) 23,3 47,03 154 .4
SHFS a (gauss) ~166. 172.6 165.2

SHFS b (gauss) ~ 28 28 28




=6l

(35)

C., Mechanism of SHF Interaction

In this section we shall discuss the mechanism of SHF inter-
action as inferred from the large and small SHF structure observed by
From, et al. in the EPR spectrum oOf SnOQ:VLH-. (Table 5-2)

SHF interaction is proportional to the density of unpaired
electron at the ligand nucleus. We shall apply molecular orbital
theory to obtain an expression for this density and compare the result
with experimental observation.

Consider three orbitals: (i) vanadium d orbital U, (ii)
nearest ligand éxygen orbital, U, and (iii) next nearest ligand tin

orbitals Ug. We can construct three orthogonal molecular orbitals

from the linear combinations of these three orbitals. They are:

/\Jf}a - Uv + (30, UO t+ X& L's (5-1)
wb = o, + Uo + VU (>-2)
,\‘\fc, = O(C Uv T @c u0 + LJS (5-5)

where the coefficients (assumed to be real) X, % s X’, and the overlap

integrals

SVO - J UV* Ly dw (5-k)

etc., are small quantities of the same order and if small quantities of
higher order than this are neglected the MO's are normalized.

A schematic diagram of the energy levels of MO's and AO's is

shown in Figure 5-k.
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AQO LEVEL AO LEVEL

+
Figure 5-4. Schematic Energy Level Diagram for SnO,:V .
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From the orthogonality relations

S %;%-%} dt =0 ) LX 8, v, } = &, b, C (5-5)
we have,
B,o= (S, ) (5-6)
Yo = = ( Sv;s + ) o0
(5-8)

?ﬂ = = (S + B)

/

¥, and %C can be obtained from the

The coefficients X, ,
secular equation (2-7),
YN OS (509)
c

)Z,J(HMV“ELSMV)C\))):O 5 N |
g ’ voE A

is the matrix element of the effective one-electron
is the coefficient of AO U?

where H“v
iv

Hamiltonian between two AO's Up and {,; C

in MO Wi“ Let E; = Ey, the energy of MO {3, and pu =V, we have

(HW*Eb)(xg"" (vaEb Svo)‘L(Hvs' FVESVS)Yﬁ 0 (5-10)
. L (26)

In Wolfsberg and Helmholz's semi-empirical MO method, the off-

diagonal elements H,,'s are approximated by, (Equation 2-10),
(5-11)

H{w = K/w S,uv

where va is a factor depending on the energies of AO's UI_l and Uv only.

Hence the last term in Equation (5-10) is one order of magnitude smaller

than the other two terms. By neglecting this term, we have,
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= (SwE~ Hw)/( How — Eb) (5-12)

Similarly, for E; = E,, p =V, we get

c?

e = [ SysEc = Hys) /( H—Ec) (5-13)

and for Ey = E,, p = O, we have

R, = (SesE. = Hys)/ (HoomE.) (5-14)

The lowest and next lowest energy configurations of this three-

electron system are, respectively

TR R AR (5-15)

and

AR AR (7726

where { } represents Slater determinant and + signs superscript the MO
represeﬁt the spin functions. In the second configuration an electron
is transferred from the filled MO Yy, to unpaired MO Vg. The ground state
wave function of this system can be written as the linear combination of

these two configurations:

o= oAb, o+
A ARE AN E S RISY (11
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The unpaired spin density pg can be obtained by
g < /
f, (0) 5 S 0700 - dy, (5-18)

where cz(k) is the third component of Pauli spin matrices for electron
k, and
/ ' k=1, 2 . -1
&—Ck = dT, aT, dt3/d"5h » 2 3 (5-19)

Carrying out the integration, we have

_2 4":6 % b

AR RACTIN AT (5-20)

P

At the nucleus of the next nearest ligand Ig o

) = Ul , des) = Y Ugl) (5-21)

hence,

Pur)= | L] W PV = (A f)]
~ | U | (= A ) (5-22)

Substituting the relations (5-7), (5-8), (5-13), (5-14), we have

_ e SyeEe™ His SesEe = H 2
-Juol {se e -as e

2 Hoo = K, 2
-luw |y Svsﬁ_“‘:{;f) ASos(———sz_éj )

This result shows that there are two electron transfer processes

which cause the SHF interaction. The first, which is represented by the
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term y_  in Equation (5-22), comes from the transfer of impurity 4
electron to the ligand orbital, or in other words, formation of anti-
bonding MO Wa‘ The second process, which is represented by the term
)yb in Equation (5-22), comes from the transfer of ligand electron
into impurity ion orbital, or in other wordé, the mixture of higher
energy configuration ¥o.

The quantity A can be obtained by perturbation theory:

iR
<-£1\Q‘Q\’\:lfl> ‘<¢2|H"\-‘ka>

where }Q. is the system Hamiltonian. If we assume that it can be

(5-24)

approximated by a sum of effective one-electron Hamiltonian H, then

we have

= <¢°“\ Hl \h> = °(‘=va+go~Hoo + HVO ‘
CALISESCARTION Ey — Ba_

( SVO H‘\/V - HVO)(\E;{” Hoo)
(Fw=EL) (E,~ Ea)

SR 5( ( Hvv — Kvo )( E, — tloo >} (5-25)
Hy — Es EL ~ Ea

to first order in small quantities @, B, etc. We have used the rela-

tions (5-6), (5-11) and (5-12) in obtaining Equation (5-25). This

equation shows that )\ is a quantity of the order of overlap integral Svo'

Thus the second process of electron transfer is less important than the

first one. Also we see from Equation (5-23) that the first process is

proportional to the square of the overlap integral Svs'



-70=

In order to compare this result with the experimental observa-
tion, calculations of overlap intergrals are made by using the following
Slater radial functions and Hartree-Fock radial function obtained by
Watson(25):

Vanadium 3d

b (vadd = B (14 (5-26)
%HF (v3d) = 5243 ;zg(/‘%)ﬂ#%’? ?53(3\613 (5-27)
+.1/31 £(6.80) 1 .0055 @, (12.43)

Vh+ 33

c/gmo/“édﬁ 2, (167 (5-28)
Tin 5s

%%ﬂﬂf—% 53) = & (1412) (5-29)
where

n=I —u

B =Ny 2" e (5-30)

and

- 2n+| Vo
N, o :[(M%”‘)‘- ] (5-31)

The overlap-integrals between BdX2_ 2 orbital and the 5s orbitals

y

of "a" tins and "b" tins are given in Table 5-3. We have used the

radial functions of neutral atoms based on the electroneutrality principle

(36) bt

of Pauling. However, we have also considered the 3d orbital of V

ion. For all cases, the square of the ratio of overlap integrals is in
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TABLE 5-3%

VANADIUM-TIN OVERLAP INTEGRALS

1 Sys (Slater 3d Orbital) | S,4 (HF 3d

| VO (Neutral) v+ orbital)
a Sn . -0.1313 -0.0910 -0.04212
b  Sn i 0.0583 0.0379 0.01640

, |
Sy5(a) 1
( ik 5.08 5.76 6.60
Sys(®)
vS |
|
TABIE 5-4

VANADIUM-OXYGEN OVERIAP INTEGRAIS*

<342 2 | 25 > - 0.01932
< 34,2 2 | 2p, > 0.06652
< 34,2 .2 | 2py > - 0.02805

¥ Vanadium 3d orbital is the Hartree-Fock function
given in Equation (5-27). Oxygen functions are

R(2S)

I

0.5459 @, (1.80) + 0.4839 ¢, (2.80)
0.680k @, (1.55) + 0.4038 gy (3.43)

obtained b{ fitting the numerical Hartree-Fock
functions. (2

R(2P)
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good agreement with the ratio of the experimentally observed SHF
structure constants, which is 6.

The overlap integrals between vanadium orbital and nearest
ligand oxygen orbitals are given in Table 5-4. The results show that
for this complex, the assumption that all overlap integrals are of

the same order is justified.

D. Anisotropic Component of SHF Tensor

The dipole-dipole interaction which contributes to the
anisotropic part of SHF tensor can be treated in the same way as we

did in Chapter IV, Section B. The result is

n n

AR = A= Ao = 2R, | R (Rest e, -

+ @ Ein(Bwslemx‘ \3§:+ 3<;f3>5r<PIR(Q+\)‘3Q3\F> Yn; } (5-32)

where an, an are the distances from vanadium and oxygen m to tin n
respectively: Qx’ gmx’ are the angles between an, an and x axis
respectively. Bi , 7ip are respectively the probabilities that the
unpaired electron being found in orbitals of oxygen m, and S5p orbital
of tin n. { is given by Equation (4-35). With the subscript x
replaced by y and z respectively, we can obtain AA; and AA?. Off-
diagonal elements Agy etc. vanishes in this structure.

In SnOE:Vu+, the explicit expressions for the SHF tensor

components are,

for "a" tins:

o
T

o
ARy = = AY + .02 A5 = A (5-33)



AA; = 2A, b8 A, FZAY (5-3%)
AR = —A) = AD - A (5-35)
where
/\% = Zgn(ae&sh‘(algsxm-%)% (5-36)
AY = LG g zosxicTY T (5-37)
A?\. =2 90 BBy ) </>;3>5P X:;F (5-38)
and for "b" tins:
A Ai = | b4 At + 2 A§ + 2A‘-'}x - AEY (5-39)
A AR ==k AR — AT - A“;xﬂ/%i{ (5-40)
A RS = — A= A = A, - Al (5-41)
where
Abv = 200B.Ry (2ToAX (07 (5-42)
A\z = 290 & By (2037 xno‘*)’g@\z (5-43)
Are =295 B, A, (5-44)
I PHY N T i (5-45)

with 72 B 72 respectively the fraction of 5px, 5p,, orbitals of b tin
x Ty Y

(e.g., tin-7) in the ground antibonding MO.
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Anisotropy is not observed in the SHF structure due to b

tins. This can be expected as the parameters AS B Ag and Ab are

T
smaller than the corresponding parameters for a tins. Also from
Equations (5-33), (5-34), and (5-35) we see that AA; is positive

and the largest; AA? is negative and the smallest. This agrees with

the experimental results of From, et al. (Table 5-2).



CHAPTER VI

SUMMARY AND CONCLUSION

The purpose of this thesis has been to study the delocalization
of d electrons from their interaction with next nearest ligand spins,
the so-called superhyperfine (SHF) interaction.

The electrons are described by molecular orbitals (MO) formed
from linear combinations of atomic orbitals of the central and ligand
(nearest and next nearest) ionms.

The Hamiltonian for the interaction between electrons and
nuclear spins are derived from the non-relativistic limit of the Dirac
relativistic wave equation. This Hamiltonian is used to obtain the SHF
interaction tensor A" in terms of MO parameters (mixing coefficients)
and geometry factors (interionic distances and bond angles). The details
of derivation are given for the next nearest ligands in cubic AIIBVI
compounds containing S state iron group ions. However, the formulation
is quite general and can be easily applied to complexes of other
structures.

Electron spin resonance (ESR) and electrbn-nuclear double
resonance (ENDOR) spectra are related to the components of SHF inter-
action tensor. An attempt is made to deduce the amount of d electron
delocalization from these relations. Unfortunately, existing experi-
mental results are not precise enough to give more than "of the order

of magnitude" values.

=15=
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The delocalization at next nearest ligand s orbital is

found to be 0.2 and 0.5%, respectively, for Ma ' and Cr' in CdTe.

The values are obtained by comparing fhe measured isotropic SHF
structures with the isotropic hyperfine structure constant of atomic
cadmium., Rigorously, we should use the value for cadmium in crystal.
However, this has not been obtained either experimentally or theoretically.
Watson and Freeman(BY) have reported 20% increase in isotropic hyperfine
structure constant for Nitt in cubic crystalline field by unrestricted
Hartree-Fock calculation. If this trend is also true for cadmium in
crystal, it will lead to smaller value for the delocalization and in
better agreement with the results of simplified MO calculations
(Appendix C), which will be discussed in the following.

Simplified MO calculation of CdTe:Mn't using Slater radial
functions and atomic spectroscopic data gives a value O.l% for the
amount of delocalization at cadmium 5s orbital. Similar calculation
for ZnS:Mn++, using Hartree-Fock radial functions and one electron
orbital energies gives 0,0l% for the amount of delocalization at zinc
bs orbital. Experimentally, SHF structures for zinc and cadmium are
proportional to their nuclear magnetic moments. Hence if the above
mentioned amounts of delocalization (differ by one order of magnitude)
are true, then the unpaired spin density at the nucleus of zinc (when
there is one electron in Lks orbit) should be one order of magnitude
larger than that of cadmium (when there is one electron in 5s).
Although this is in the correct direction a factor of ten is by no

means obvious., Unrestricted Hartree-Fock calculation can be suggested
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for further investigation of this point. The use of two different
systems of radial functions is a defect in this analysis. A systematic
Hartree-Fock calculations of Groups II and VI elements (for neutral,
univalent, and divalent ions) are necessary for further studies of
Group II-VI compounds.

Anisotropic SHF structure data are needed to deduce the amount
of delocalization at the nearest and next nearest ligand p orbitals.
Experimentally observed anisotropies are, in all cases, small and
subject to large experimental error. The development of ENDOR technique
has already shown the possibility of refined measurement. The molecular
orbital formulation of SHF structure as developed in this work, combined
with existing experimental data, can be used to guide experimentalists
to the best observation as has been pointed out in Chapter IV, Section C.

In spite of the existence of small but finite abundance of odd
isotope, no SHF structure due to nearest ligands has been observed.

The overlap integral between Mn*t 3d orbital and Te 5s is comparable
to that between Mn'' 3d and Te 5p, and even larger than that between 3d
and Cd 5s (see Appendix C). Yet no observation of SHF structure means
that the Te 5s level lies far below Mn'™ 3d, and essentially can be
removed from bonding orbitals. From Mossbauer experiment on MnTe
crystal, Shikazono(BB) also found that no internal magnetic field
exists at the Te nucleus in MnTe. Further confirmation may be obtained
by investigating the ESR of odd isotope enriched samples.

The unpaired spin density at next nearest ligand nucleus

derived in Chapter V has also included the mechanism of charge transfer
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from ligand to central ion, although this mechanism has lecen shown to be less

important for SnOQ:Vh+.

The more important mechanism: - direct inter-
action between central and next nearest ligand ions has keen shown to be
proportional to the square of overlap integral. This is a generalization

(12) Further

of the Heitler-London model used by Marshall and Stuart.
investigation of this proportionality can be attained by pressure experi-
ments in which overlap integrals are largely affected while the second
factor - energy difference - varies rather slowly, Equation (5-23).

As we have seen, the deduction of d electron delocalization
from SHF structure data necessitates further information, both experi-
mental and theoretical. The development of ENDOR technique and

electronic computational facility casts delightful future on this

approach.



APPENDIX A

OVERLAP INTEGRALS

In this appendix we describe the method of computing the
overlap integrals appeared in the discussions of Chapter II, IV and
V. Some formulae of the diatomic overlap integrals and IBM 7090
computer programs for the evaluation of the numerical values of
overlap integrals are also given.

The first step in the evaluation of the overlap integral
between two atomic orbitals in a complex is to transform the coordi-
nates of the two centers (ions) such that they are related to each

non

other in the same way as the "a" and "b" coordinates of Mulliken,

et 5;.(59) in their calculations of diatomic overlap integrals (see

Figure A-1)
Yo o
\\\\ \/Q__.

\\& \

\\ \

7 \
. < ‘?b\'\\ b

7y
Ya. 4

Figure A-1l. Coordinates for Overlap Integral
Calculations.
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In this set of coordinates, the z axes (za and zb) are
pointing toward each other, and the two x axes and two y axes are
parallel., Thus if the "a" coordinates is a right handed system,
then "b" coordinates is a left handed system, and vice versa. We
use the former choice. Examples of transformation matrices are given

in Table A-1, A-2, and A-3.

The next step is to introduce the ellipsoidal coordinates

(& 7, @) defined by

E=(fav0)/R . (< (oo h-t)

(A-2)
N 4 VN IR O

(A-3)
§ = D= G ) 0 ¢ ¢n

(A-k)

.'73

i 2

=z — - NE - ;
d Qz)(g l)d—g&’bd?
where R is the interionic distance. Some other useful relations between

a, b coordinates and (&, 7, @) are:

Yo CosBa = QQ\*‘E‘L)/Q (A-5)
Fpase, = R(1-E9)/2 (A-6)
Lo Singy = [,Sin8y = R (F=1DZ (1= 12)2 (8-1)

The two orbitals for which the overlap integral is to be

evaluated are written as Slater type orbitals (STO) (in atomic unit),

for example:

*
tia,—|

Ingday=No Ly expl- sz%éﬁ) Vo0 (8n, ) (4-0)
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n «
[uped =Ny £, " exp (- 0/ix) Yoo (8, ) (a-9)

where Z" and n” are effective nuclear charge and effective principal
quantum number respectively of the orbital

The normalization factor
N is given by

T
N= CZe) iz,

Using the relations (A-1,

(A-10)

..T7), the integral <no~dﬂ_lnb PG’>

can be written in terms of (&, 71, @) as follows

Gy “Nc\NbSGXP( Zx o Do) e

—S'
E 5B o e

ng"'\/% cos eb d_c

— |, b 2r
N B 5%5
\

d?i[eXFw -z;'v](zm

x[z(wzv ) - EH](e- ‘l) “0- T '11)}
where

*
p= %1% « %

(A-12)
_ RozX 2
T2 i Zd /“b*f (A-13)
o) -
AP = S\ 1 e Fe dg (A-14)

\o. (A-15)
B&&%F S—\ *L& e m*drl)
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and C,, is the coefficient of the term t*n? in the polynomial in the
integrand.

The integrals Ai and Bj can be evaluated by the recursion

formulae:
Alp) = "(: =xp (= P (A-16)
A lp) = AOQFH%A;_,LF) (A-17)
% - (A-18)
B.cg) = *{‘_[e - e ¥]
(A-19)

N VN S - = ]
B0 = = (=Dfel-e< _"A’E’F\Qf)
In case |q| is very small (~ < 0.25), the above recursion
formulae (A-18), (A-19) break down because of the error introduced by
the subtraction of two numbers of almost the same size. Hence in this

case we use the following formulae:

- | = 3
B Pstl,, - 3" G0
S - [t g =] pft- g - B2 -
= 2 %L i = ev: A-2O
5 pt T Pt ’ . ( )
—2q - J = odd . (A-20')

r2 3(3+4)
In Table A-4 we summarize formulae corresponding to Equations
(A-11) for two Slater type orbitals. Some of them have been given
elsewhere(59’uo), but the formulae given here have the form directly

connected with the computer programs which will be given later.



-83-

TABLE A-1

TRANSFORMATION OF Mn'* COORDINATES INTO "a" COORDINATES WITH

RESPECT TO Tel AND Cd4d 1la,

] ( wWe Nz B [ A,
yo'z CN2/3 0 l/fs Ya
Zoj L L6 -4 ok / Za/
(0 o) (=
o] = 0 1N2 1AN2 Yo
oJ 1 0 242 ok ) L%
TXO} 0 N2 N2 [ x,
éyo i:: 1 0 0 Ta
| o) 0 lN‘E :]-/(/—2 Za ;
o, § y /
Xo\ (/ 0 l/<f-2 l%fé\n xa\
yo = 0] -l/q_e _']_N—Z g : ya
|
Zg {\ 1 0 0 /j 2,
s /
-1 \ |
dz?_ o ET___;‘ C\.X“:YI - E— dXY + \TE Cl)(/z - \% A—)’Zo
—_— i“: d.z.l — Iﬁ—‘dy\’:\/l' - fg- CL7Z

—tdr - Fdpye v B dp

-1
—> E dZL + ‘I_—; c\xw__\/z.

With

With

With

With

1b, lc COORDINATES

respect to Te-1

respect to Cd-la

respect to Cd-1b

respect to Cd-lc.

.t Tel
s A
vt Qb
- t. C4dlc

4 L ! l L \
\:iyz —_— \{3 dzl - 'é_dxl~yl -—gré‘ dXZ "'VS d.xy"\('féyz W. ¥, t Te 1

B o L doae
——»\—i-dz + de_y |

-85-

W,

rt Cd|a
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TABLE A-2

TRANSFORMATION OF Cd COORDINATES INTO "a'" COORDINATES AND Te

COORDINATES INTO "b" COORDINATES WITH RESPECT TO EACH OTHER IN CUBIC CdTe

Xl\ —2/5
¥y = l/f3
Xy ; k}fé/B
Xy 1/3
A 0
2, 2\2/3
(%) [ -2/3
vy | = |-1A3
2, N2/3

WK

-1 N2
-1/2

1/2

J2/3
NEYE}
_1/5

2V2/3"
0

|
1
l
-1/5 )

\2/3 ]
|

Je/3 |
s |

143 ]

|
|

0

25 |

Wk
0

5

1N3 1

0

2/3

4

%)
b

Zb,
X'b\

Ty

Zp

With respect to Cd-la

With respect to Cd-1b

With respect to Cd-lc

With respect to Te-1

With respect to Te-1

With respect to Te-1
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TABLE A-3

TRANSFORMATION OF COORDINATES INTO "a'", "b" COORDINATES
IN SnOQ:VbAND Ti0,:V

cose -sine 0
P 0 0 -1

sin® cose 0
for V - a Sn overlap
for V - Ol overlap
for V - b Sn overlap
a(z%) —

a(x2 - y2)—> -3/2 cos 20 a(z°) + 1/2 cos 20 d(x

for

for

e

C]

- % a(z2) +V3/2

S 4

0
tan™t (l-2u)~féa/c

tan-1 V2a/c

a(x® - y?)

cosp -sinf 0 x
0 0 -1 | Yy

|
sing cos® 0 ) [z

0

0

1

1

J

- a Sn overlap ¢ = ~tan™t (l—2p)~fé a/c

- b Sn overlap § = n/2

I
Q

]
™

2.y2

) + sin 20 d(xz)
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TABLE A-4

FORMULAE FOR STO OVERIAP INTEGRALS

< 3do|1s >

+ A2(5Bo - 5Bu)

- NN, 'ié (2)5 {a (-38, + B,) - ba;B;

+ 4azB) + A (-B, + 3B,)}

< 3d0|28 >
J5 [Ry\6
+ AB(BBO - 4B, - 3B,) + A, (5B; - 535) + A5(—BO + 532)}
< 3do |38 >

_ J5 (Ry7
= Mol -Z-(E) {a,(-3B, + B.) + A (6B, - €B.) + A,(9B, - 3B;)
+ A5("6Bl + 635) + A)_l_(BBo - 9]32) + A5(6Bl - 635)

+ A6(-Bo + 532)}

< 3do |4S >

J5 ,R\8
= NN —f (;) {8 (385 - B,) + A (9B, + TBg) + A(€B; - 15Bg + 3B,)
+ A5(6B2 + 9By, - 9Bg) + Ay (-9B; + 9B5 + 6B5)

+ A5(3B, - 15B + 6B,) + Ag(TBy - 9Bz) + A(-B, + 3B,)}

< 5do|2pc >
= NN {lé-(5)6 {a_(-3B, + B,) + A (-B
= NNy, 5= (07 1A(-3By + By) + Ay (B3 - By) + A,(3B, + B,)

+ A5(By + 3Bs) + A, (-B, - Bp) + As(By - 3B3)}
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TABLE A-4 CONT'D

< 5do|5pc >
= NN Yggi (g)7 {AO(BB5 - B;) + A (-3B, + 2B, + Bg) + Ay(-3B, - B; - 2B,)
+ A3(5BO - B, + B - 536) + Au(QBl + By + 535)
+ A5(-BO - 2B, + 3B,) + Ag(B] - 335)}
< 3do |4po >

8
= NNy '£%2 (g) {AO(-BBA + Bg) + Al(6B5 - 3By - B7) + As(3B), + 3Bg)
+ Az(-6B) - 3Bs + 3Bq) + A, (5B, - 3B, - 6Bg)

+ A5(331 + 3Bg) + Ac(-B, - 3B, + 6B,) + A7(Bl - 535)}

< 3dx|2pn >
= NN Eéi (g-)6 {ao(By = By) + A(By - Bg) + Ap(-B, + By)
+ A5(-B) + Bg) + 4 (B, - By) + A5(B) - 35)}
< 3dﬂl5pﬂ >
- NN é[2(-13)7 {a (-, + B.) + A, (B, - 2B, + B.) + A, (B, + B, - 2B,_)
ab L ' o773 5 1\72 L 6 2\l 3 5
+ AB(-BO + By + By - Bg) + A),(-2B; + By + 35)
+ A5(B, - 2By + By) + Ag(By - 35)}
< 5dﬂ|npﬂ‘>

= NNy 2§§ (.523)8 {8,(By - Bg) + Al(-eB3 + 3Bg - 37) + As(-3B, + 3Bg)
+ A5(2B) - 3B5 + By) + My (-B, + 3B, - 2Bg)

+ Ag(-3B) + 3Bs) + Ag(B, - 3By + 2B,) + Ag(By - Bs)}



< 15|25 >

= NaNb

< 25|28 >

- NaNb

< 38|25 >

= NaNb

< ks|2s >

= NaNb

< 38]38 >
= NN

< ks|3s >

= N Ny

< ks ks >

= NNy

< 15 |2po >

n - n - N n |+

=

N -

[\oN I

J3

a’b _5

= N_N

< 25|2po >

V3

= N_N

ab —E

-88-

TABLE A-4 CONT'D
(B)* {a B - AjB, - ALB, + AsB}
E o°3 T FlF2 T Sl 370

Ry\D
(E) {aB, - 2A.B, + AB_}

R.\O
) {aBg + Ay - 2aB, - 24,B) + AB) + ASB }

;
(g) {acBg + 201B5 - AB) - basBs - mB, + 24.B) + AGB}

R,7
(3)7 1-AgBg + 3AB, - SMB; + AgB.}

R\S
S {-2,B; - AjBg + 3A5B + M5B, - 3A,B; - 34,8

+ AgB) + A7Bo}
R\9
(5) {AOB8 - bA B, + 6B, - WAB, + A8Bo}
(B)LL {-A B, + A,B, + A,B_ - A;B.}
2/ 1\ ™hRgPp + A8zt AxB, - AzB)

R\D
(E) {-AOB5 + A (-B, + B,) + A (B + B)

+ Ax(B, - B,) - AuBl}
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TABIE A-4 CONT'D

< 38|2po >
= NN '£§ (R)6 {-AgBy + A1(-2Bz + Bg) + 2AgB) + 2AzB;
+ Ay (B, - 2By) - A5Bl}
< 4s|2po >

7
= NN ’ié.(g) {-AOB5 + Ay(-3By, + Bg) + Ap(-2Bz + 5B5)
+ Ag(2B, + 2B),) + A, (3B - 2B5) + As(B, - 5B,) - agB }

< 28|3po >

J3 (R\O
= NN, _% (E) {8By - A Bg - 2AgB, - 2A5B5 + AB - A5Bl}

< 38|3po >

V3 RyT -
= NN S (3) {AOB5 + 8 (B) - Bg) + Ay(-2B - 35) + A5(-2B2 + 2B))
+ 8,(By + 2B5) + Ac(B, - B,) - A6Bl}

< 4s|3po >

8
= NN ‘f% (g) {aBg + A1(2B5 - By) + Ax(-By - 2Bg) + Az(-4Bz + Bs)
+ Au(—Be + hBu) + A5(2Bl + 33) + A6(Bo - 232) - A7Bl

< 25 |4po >

= NN 'iz (g)7 {-AOB5 + Ay(By, + Bg) + A2(2133 - 35) + A5(—2B2 - 2By)

+ A, (-B) + 2B;) * Ag(B, + B,) - A6Bl}



< 2po |2po >

NaNb

N\

< 5pc|2pc >

NaNb

N W

< bpo|opo >

ab

N [\N

< 3po|3po >

= NaNb

W

=)
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TABLE A-4 CONT'D

+ 3A5B), - 5A3B5 - 5Ah32 + §A5B5

R\8
(E) {-a.Bg + AiB,

+ A6BO - A7Bl}

{-8By + A (-Bg + Bg) + Ay(3Bg + B,) + A5(3B, - 3Bg)
+ A),(-3B5 - 3B5) + A5(-3B, + 3B )

+ Ag(By + 3B5) + Ao(B, - By) - A8Bl}

RyD
(E) {_AOBQ + AQ(BO * Bh) - AuBg}

(2)6 {-agBs - AB, + Ay(B) + Bg) + As(B, + By)

- By - AB) |

Ry
(3)" {-ABy - 2885 + ABg + A5(2B, + 2B)

+ AyBy - 2AsBs - AgBof

(g)7 {ABy + Ax(-2B, - Bg) + A, (B, + 2B,) - AcB}



< bpo |3po

= NNy

< Upo|bpo

= NaNb

< 2pﬂl2pﬂ

= N N
a

< 5pﬂ]2pﬁ

= NaNb

< hpmn|2pn

< bps |bpx

N_N
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TABLE A-4 CONT'D

3 (Ry\8
2 (3)° {acBs + 1By + Ap(-2B5 - By)+ As(-2B; - Bg)

N |\W

5
4

4—'|\N

W

+ ), (B + 2B;) + Aj(B, + 2B) - AgBy - A B, }

5) 7

(-g-)9 {-AOB6 + A,(3B, + Bg) + A (-3B, - 3Bg)

+ Ag(B, + 3B),) - AgB,}

(R)5 {a_(8, - B,) + a,(-B, + B,) + A (B_ - B,)}
{A (B - ) + A, (B, - B) + A(-B) + 35)
+ As(-By + By) + Ay (By - Bg) + Ag(B, - B,)}
)7 {a (3, - Bg) + Al(zB5 - 235) + A, (-B, + By)

+ Az(-2B) + 2B;) + A, (-B, + By) + A5(2B) - 2Bs) + Ag(B, - Bp)}

(g)9 {a,(Bg - Bg) + A,(-3B, + 2B, + Bg) + A (3B, - 3Bg)

+ A (-B_ - 2B, + 3B,) + Ag(B_ - 32)}
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MAD Programs for Computing Overlap Integrals

Program I: This progrem computes the integrals A;(p) and
Bj(q) of Equations (A-14) and (A-15) by the recursion formulae, Equations
(A-16) through (A-20), and evaluates the overlap integral between two
Slater type orbitals by summing the products of A; and Bj according to
the formula Equation (A-11) (see also Table A-4). The effective
nuclear charges (ZEFFA and ZEFFB), effective quantum numbers (NEFFA and
NEFFB), interionic distance R and the coefficients Cij's are needed as
input data. It is noted that the coefficients Cij's are either
symmetric or antisymmetric with respect to the interchange of i and j,
hence only "lower triangle" of the matrix (Cij) is read in, and the
upper triangle is developed by the machine according to the value of
the variable "CSYM". CSYM = 1. if Cij's are antisymmetric, and CSYM = 2,
if Cij's are symmetric. In case the succeeding calculation uses the
same set of ZEFF, NEFF, and R as the previous one, we set the variable
RPC (Eglation to the previous galculation) equals to 2, and RPC = 3

if we use the same set of C;s as the previous calculation. If none of

J
the previous data are used RPC = 1. A numerical constant coming from
the angular function (e.g.V15/4 in Equation (A-11)) is called NC in
the program, and also needed as input data.

The values of the integrals A;(p) and Bj(q) computed by this
program have been checked with the table compiled by Kotani, et E;.(ul)
They agree with each other up to five figures or more.

The following is the MAD program. The data are for the

examples of computing the following overlap integrals:
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< 3do|2s > for R = 3.877 a.u. ,
< 3do|2po > for R = 3.877 a.u. ,
and < 3do |2po > for R = 3.887 a.u. .

$COMPILE MAD, EXECUTE
PRINT COMMENT $1 OVERLAP INTEGRALS FOR SIATER TYPE ORBITAIS$
DIMENSION A(20),B(20),C(400, V),FACTRL(20)
VECTOR VALUES V=2,0, 0
INTEGER I,J, IMAX, JMAX, RPC
IMAX=15
FACTRL (0. )=1,
THROUGH LOOP1,FOR I=1.,1.,L.G.IMAX
LOOP1 FACTRL(L)= L*FACTRL(L-1.)
PRINT RESULTS FACTRL(O.)...FACTRL(IMAX)
START READ DATA
PRINT RESULTS RPC, ZEFFA,ZEFFB, NEFFA, NEFFB, R
WHENEVER RPC.E.2, TRANSFER TO CMTRIX
V(l)=JMAX+2
V(2)=IMAX+1

MUA

ZEFFA /NEFFA

MUB

ZEFFB/NEFFB
NA=(2.%MUA).P. (NEFFA+0.5 )/SQRT. (FACTRL(2. *NEFFA ) )
NB=(2.*MUB).P. (NEFFB+0.5 )/SQRT. (FACTRL( 2. *NEFFB ) )
P=R¥(MUA+MUB)/2.

Q=R*(MUA-MUB)/2.

A(O)=EXP.(-P)/P

THROUGH LOOP2, FOR I=1,1, I.G.IMAX



LOCOP2

LOGP3

LOOP2A

LOOP3B

CMTRIX

LOOPL

CHECK

LOGPS

o)

A(I)=A(O)+I*A(I-1)/P

WHENEVER.ABS.Q.GE.0.25

B(0)=(ExP.(Q) - EXP.(-Q))/Q

THROUGH LOOP3, FOR J=1,1,J.G.JMAX
B(J)=((-1.).P.J*EXP. (Q)-EXP.(-Q)+J*B(J-1))/Q
OTHERWISE

THROUGH LOOP3A, FOR J=0,2,J.G.JMAX
B(J)=2./(J+1. }+Q.P.2./(J+3.)

THROUGH LOOP3B, FOR J=1,2,J.G.JMAX
B(J)=-Q/(J+2.)-Q.P.3./(3.%J+12.)

END OF CONDITIONAL

PRINT RESULTS P,A(0)...A(IMAX),Q,B(0)...B(JMAX)
WHENEVER RPC.E.3, TRANSFER TO CHECK

EXECUTE ZERO. (C(0,0)...C(IMAX, JMAX))

READ DATA

THROUGH LOOP4,FOR I=1,1,I.G.IMAX

THROUGH LOOP4,FOR J=0,1,J.E.I
C(J,I)=(-1.).P.CSYM*C(I,J)

PRINT RESULTS C(0,0)...C(IMAX, JMAX)

SUM=0.

THROUGH LOOP5,FOR I=0, 1, I.G.IMAX

THROUGH LOOP5,FOR J=0, 1,J.G.JMAX
SUM=SUM+A (I )*B(J)*C(I,J)

OV INT=NA*NB*NC*(R/2. ).P. (NEFFA+NEFFB+1. )*SUM

PRINT RESULTS OVINT
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PRINT COMMENT $1$

TRANSFER TO START

END OF PROGRAM
$DATA
RPC=1, ZEFFA=L .3, ZEFFB=L .55, NEFFA=3., NEFFB=2.,R=3.8777, IMAX=5, JMAX=5 *
CSYM=2.,NC=0.5590, C(2,1)=-3.,C(3,0)=3.,0., -k.,C(4, 1)=5.,0., -3.,C(5,0)=-1.,3. *
RPC=2 *
CSYM=1.,NC=0,96825,C(2,0)=3.,C(3,1)=1.,C(4,0)=-1.,0.,-1.,C(5,1)=1.,0.,-3. *

RPC= 3, R=3.8877 *
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Program IT: Watson(25) and others have used linear combinations
of Slater type orbitals for the Hartree-Fock atomic wave function. The
overlap integral between two orbitals of this kind can be evaluated by
simply introducing an iterative procedure in Program I, provided the
effective quantum numbers of the orbitals in the combination are all
the same. (If this is not the case, we can divide the combination into
several parts each has the same effective quantum number ). Instead of
NEFF and ZEFF, we use their ratio MU(K) for k-th orbital, and FA(K),
the fraction of k-th orbital in the combination A as input data. The
following is the program with data which compute the overlap integral

between vanadium 3dog orbital

Vs, = {o.5245¢5(1.85) + 0.4989¢5(5.61) + o.1151¢3(6.8o)
+ 0.005505(12.43)} Y,4(6,0)
given by Watson(25), and oxygen 2s orbital obtained by Ballhausen(27)

by fitting the numerical functions given by Hartree.

Vo, = {0.54596,(1.80) + 0.148398,(2.80} Yoo (6,9)

where

g (n) = Non =1 exp(-ur)

is the normalized Slater type orbital.

$COMPILE MAD, EXECUTE
PRINT COMMENT $1 OVERLAP INTEGRALS FOR WATSON TYPE ORBITALS $

DIMENSION A(20),B(20),C(400,V ), MUA(20),MUB(20),FA(20),FB(20),
IT(400,W), FACTRL(20) -
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VECTOR VALUES V=2, 0,0

VECTOR VALUES W=2, 1,0

INTEGER RPC, I, IMAX,J,JMAX, K, KMAX, N, NMAX

IMAX=15.

FACTRL(0. )=1.

THROUGH LOOPl,FOR I=1.,1.,L.G.IMAX
LOOP1 FACTRL(L)=L¥FACTRL(L-1. )

PRINT RESULTS FACTRL(O. )...FACTRL(IMAX)
START READ DATA

PRINT RESULTS RPC, NEFFA,NEFFB,R,MUA(1)...MUA(KMAX),MUB(1)...
MUB(NMAX )

V(1)=JMAX+2
V(2)=JMAX+1
W(2)=NMAX
WHENEVER RPC.E.3, TRANSFER TO CHECK
CMIRIX EXECUTE ZERO.(C(0,0)...C(IMAX,JMAX))
READ DATA
THROUGH LOOP2, FOR I=1,1,I.G.IMAX
THROUGH LOOP2, FOR J=0,1,J.E.I
LOOP2 C(J, I)=(-1.).P.CSYM*C(I,J)
CHECK PRINT RESULTS C(0,0)...C(IMAX, JMAX)
OV INT=0.
THROUGH INTGRL, FOR K=1, 1,K.G.KMAX
NA=(2.*MUA(K) ).P. (NEFFA+0.5)/SQRT. (FACTRL(2. *NEFFA ) )
THROUGH INTGRL, FOR N=1, 1, N.G.NMAX

NB=(2.*MUB(N) ).P. (NEFFB+0.5)/SQRT. (FACTRL(2. *NEFFB) )



P=R¥(MUA(K )+MUB(N))/2.

A(O)=EXP.(-P)/P

THROUGH LOOP3, FOR I=1, 1, I.G.IMAX
LOOP3 A(I)=A(O)+I*A(I-1)/P

Q=R*(MUA(K)-MUB(N))/2.

WHENEVER .ABS.Q.GE.0.25

B(0)=(EXP. (Q)-EXP.(-Q))/Q

THROUGH LOOP4, FOR J=1,1,J.G.JMAX
LOOPL B(J)=((-1.).P.J*EXP. (Q)-EXP. (-Q)+J*B(J-1))/Q

OTHERWISE

THROUGH LOOP4A, FOR J=0,2,J.G.JMAX
LOOPYA  B(J)=2./(J+1.)+Q.P.2./(J+3.)

THROUGH LOOP4B, FOR J=1,2,J.G.JMAX
LOOPYB  B(J)=-2.%Q/(J+2 )-Q.P.3./(3.%J+12.)

END OF CONDITIONAL

SUM=0.

THROUGH LOOP5,FOR I=O, 1, I.G.IMAX

THROUGH LOOP5,FOR J=0, 1,J.G.JMAX
LOOP5 SUM=SUM+A (I )*B(J)*C(I,J)

IT(K, N)=FA(K)*FB(N )*NA*NB*NC*(R/2. ).P. (NEFFA+NEFFB+1. )*SUM

PRINT RESULTS IT(X,N)
INTGRL  OVINT=OVINT+IT(K,N)

PRINT RESULTS OVINT

PRINT COMMENT $1$

TRANSFER TO START

END OF PROGRAM



$DATA

RPC=1, NEFFA=3., NEFFB=2.,R=3.8777, KMAX=}4, NMAX=2, IMAX=5, JMAX=5,
MUA(1)=1.83, 3.61,6.80,12.43,FA(1)=.5243, .4989,.1131, .0055
MUB(1)=1.80,2.80, FB(1)=.5459, .4839 *

CSYM=2,,NC=,5590, C(2,1)=-3.,C(3,0)=3.,0., -4.,C(4, 1)=5.,0., -3,,C(5,0)=
-1.,0.,3., *

RPC = 3: R = 5-8877 *



APPENDIX B
SOLUTION OF IMPROPER EIGENVALUE PROBLEM
BY DIGITAL COMPUTER

The improper eigenvalue problem we met in Chapter II
Equation (2.7) can be reduced into a proper eigenvalue problem by
successive diagonalization and unitary transformation. This will
be shown in this appendix.

The problem, stated in general, is to solve for the eigen-
values X; and eilgenvectors Xi of the equation:

AX = BXA (B-1)
where A and B are symmetric matrices and B is also positive definite.
A i1s a diagonal matrix with the eigenvalues A; as diagonal elements.
X 1s the matrix with the eigenvectors X; as i1-th column.

Since B is symmetric, we can find a ﬁnitary matrix U to
diagonalize it,

utBu = D (B-2)

Since B is also positive definite, the diagonal elements of
D are all positive. Take the —1/2 power of the diagonal elements and
construct another diagonal matrix R, symbolically:
R = pL/2 (B-3)
then,
RT(0tBU)R = RTDR = 072002 C I (Tdenmtity)  (B-b)
Let UR = S, multiply ST from left on both sides of Equation (B-1)

stax = sTexa (B-5)
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or, stass™x = stess™ixa (B-6)
Let stas = ar, (B-7)
sTx = v (B-8)

then using Equation (B-4), we have
A'Y = YA (B-9)

This is in the form of a proper eigenvalue problem. Since
the matrix A' is symmetric, there is a subroutine (EIGN. ) available in
"Michigan Executive System Subroutines" for the solution of this prob-
lem.

The eigenvalues of the original equation are the same as those
of Equation (B-9), and the eigenvectors of the original equation can be
obtained by a matrix multiplication:

X = 8Y (B-10)
Since the eigenvectors are given in row form in subroutine EIGN., we
actually do the multiplication
xt = ytst (B-11)
For the convenience of later use we normalize the eigenvectors

such that

iZS Xy XgByy = 1 (B-12)
J

In order to check the calculation, we calculate the error

matrix E, having the elements:

E, . = cs =
ki % (A1 kkBij)Xjk

which must be zero if the solutions are perfect. In our calculations



-102-

all elements of error matrix are six orders or more smaller than

Aij

kkBij’

The following is the MAD program which solve improper eigen-

value problems of order less than 20.

$COMPILE MAD, EXECUTE, PUNCH OBJECT

START

LOOP1

PRINT COMMENT $1 SOLUTION OF THE CHARACTERISTIC VALUE PROBLEM
(A-LB)X=0 $

PRINT COMMENT $0O WHERE A AND B ARE SYMMETRIC MATRICES, AND B
IS POSITIVE DEFINITE $

DIMENSION A(400,V), B(%00,V),X(400,V), APRIME(400,V),E(400,V)
D(%00,V),R(%00,V), ST(400,V ), UT(400,V), s(400,V), YT(400,V),
LAMBDA (400,V)

EQUIVALENCE (D, R, ST, E), (UT, S, YT, X), (APRIME, LAMBDA ), (V(2 ), N)

VECTOR VAIUES V=2,1,0

INTEGER N, I,J,K

READ DATA N

PRINT COMMENT $1$

EXECUTE ZERO.(A(1,1)...A(N,N),B(1,1)...B(N,N))

READ DATA A(1,1)...A(N,N),B(1,1)...B(N,N)

THROUGH LOOPl, FOR I= 2,1,I.G.N

THROUGH LOOPl, FOR J= 1,1,J.E.I

A(J,I) = A(L,J)

B(J,I) = B(L,J)

PRINT RESULTS N,A(1,1)...A(N,N),B(1,1)...B(N,N)

IND1 = 5.
IND2 = 5.
IND3 = 5.
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INDL = 5,
INDS = 5.
IND6 = 5.

THROUGH LOOP1lA, FOR I=1,1, I.G.N*N
LooPlA  D(I) = B(I)

SCFACT = 1.

IND1=EIGN.(D(1), N, 1,UT(1), SCFACT)

WHENEVER IND1.E.3.

CONTINUE

OR WHENEVER IND1.E.l.

PRINT COMMENT $0 B MATRIX NOT ACCEPTED BY SUBROUTINE $

TRANSFER TO END

OR WHENEVER IND1.E.2.

PRINT COMMENT $0 CHARACTERISTIC VALUES OF B MATRIX SCALED BY$

PRINT RESULTS SCFACT

TRANSFER TO END

END OF CONDITIONAL

THROUGH LOOP2, FOR I=1,1,I.G.N

WHENEVER D(I, I).LE.O.

PRINT COMMENT $0 B MATRIX IS NOT POSITIVE DEFINITE $

TRANSFER TO END

OTHERWISE

R(L, I,=D(I,I).P.-.5

LOoP2 END OF CONDITIONAL



LOOP3

LOOP5

LOOP6
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THROUGH LOOP3, FOR I=1,1,I.G.N
THROUGH LOOP3, FOR J=1,1,J.G.N
WHENEVER I.E.J

CONTINUE

OTHERWISE

R(I,J)=0.

END OF CONDITIONAL
IND2=DPMAT. (N, ST(1),UT(1))

WHENEVER IND2.E.O., TRANSFER TO END
THROUGH LOOP 5, FOR I=1,1,I.G.N
THROUGH LOOP 5, FOR J=1,1,J.G.N
S(1,J)=8T1(J, I)

APRIME(I,J)=ST(IL,J)
IND3=DPMAT. (N, APRIME(1),A(1))
WHENEVER IND3.E.O., TRANSFER TO END
IND4=DPMAT. (N, APRIME(1),S(1))
WHENEVER IND4.E.O., TRANSFER TO END
THROUGH LOOP6, FOR I=2,1, I.G.N
THROUGH LOOP6, FOR J=1,1, J.E.I
APRIME(I,J) = APRIME (J,I)

SCFACT = 1.

IND5=EIGN. (LAMBDA(1), N, 1,YT(1), SCFACT)
WHENEVER IND5.E.3.

CONTINUE

OR WHENEVER IND5.E.l.
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PRINT COMMENT $0 APRIME MATRIX NOT ACCEPTED BY SUBROUTINE $
TRANSFER TO END
OR WHENEVER IND5.E.2.
PRINT COMMENT $1 CHARACTERISTIC VALUES SCALED BY $
PRINT RESULTS SCFACT
END OF CONDITIONAL
IND6=DPMAT. (N, YT(1),ST(1))
THROUGH LOOP7, FOR I=1,1,I.G.N
XSUMSQ = O.
THROUGH LOOP8, FOR J=1,1, J.G.N
THROUGH LOOP8, FOR K=1,1, K.G.N
LOOP8 XSUMSQ=XSUMSQ+X (I, J)*X(I,K)*B(J,K)
ROOT = XSUMSQ.P..5
THROUGH LOOP7, FOR J = 1,1, J.G.N
LOOPT7 X(1,J)=x(1,J)/ROOT
PRINT COMMENT $O CHARACTERISTIC VALUES $
THROUGH LOOP8A, FOR I=1,1, I.G.N
LOOPBA  PRINT FORMAT F3, LAMBDA(I, I)
VECTOR VAILUES F3=$ 520, E20.8 *$
WHENEVER SCFACT.E. 1.,
CONTINUE
OTHERWISE
PRINT COMMENT $O ERROR MATRIX NOT COMPUTED $
TRANSFER TO END

END OF CONDITIONAL
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THROUGH LOOP9, FOR I=1,1,I.G.N
THROUGH LOOP9, FOR J=1,1,J.G.N
E(I,J)=0.
THROUGH LOOP9, FOR K=1,1,K.G.N
LOOP9 E(I,J)=E(I,J)+(A(J,K)-LAMBDA(I, I)*B(J,K))*X(I,K)
PRINT RESULTS X(1,1)...X(N,N),E(1,1)...E(N,N)
END PRINT COMMENT $0 INDICATOR VALUES $
PRINT RESULTS IND1l, IND2, IND3, INDL4, INDS, IND6
TRANSFER TO START

END OF PROGRAM



APPENDIX C
SIMPLIFIED MO CALCULATIONS OF TETRAHEDRAL COMPLEXES

INCLUDING NEXT NEAREST LIGANDS

As examples of simplified MO calculations discussed in
Chapter II, Section B, cadmium telluride (CdTe) and zinc sulfide (ZnS)
containing Mot impurities are treated in this appendix. In the
first example (CdTe:Mn++), Slater radial functions and spectroscopic
energy levels are used for the AO's. In the second example (znsS:Mn*t),
Hartree-Fock radial functions and one electron orbital energies
calculated by Watson and Freeman(25) are used.
(i) cdTe:Mn*t

Radial functions used are

RBd(Mn) = N rgexp(-l.87 r)
_ 1D -
R5sp(Cd) = N'r’exp(-1.09 r)
R (Te) = N'rdexp(-1.74 r)
Dsp

For T2 symmetry, the six basis functions are the AO's in D5

of Equation (4-7), and the matrices {Hij} and {Sij} are,
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{Sij}Tg:
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(in units of K em™1):
a(yz) P P, B, X3g X352
- -126. 23.25  -17.9%  -12.37  -8.82  -11.15 |
~1lk. 0 0 -76.33 -65.39
-73. 0 13.02 -3.15
-T3. -3%6.84 -32.70
-72. 0
-ho,
1. .08633 . 09355 .06kLT .04632 07661
1. 0 0 L3748 L20k
1. 0 -.0898 0285
1. .2541 2953
1. 0




-109-

For E symmetry the four bases are the AO's in D of Equation (4-5),

and the matrices are:

{Hij}E (in units of K cm™1)

2

dg P1x X1s X1z
-126. 21.k25  -6.238 -7.881

=73 -22.56 -12.95

-72. 0
=42,
5,0

1. L1117 .03275 .05417

1. .1556 L1169

1. 0
1.

Solution of secular equation gives the following eigen-

values and eigenvectors. (Table C-1 and Figure C-1)
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TABLE C-1

MOLECUIAR ORBITALS AND ORBITAL ENERGIES OF CdTe:Mn*t

T, Symmetry:

Energ{ Mixing Coeff iC ient S

K em”™ d3 ¢5$ ¢32 ¢5K X5s X}z

-152.7 .3252 8197 .0166 .0043 .2011 . 0066

-122.2 .9231 -.3237 .1279 .0709 -.1355 -.03%95

- 80.3 -.0033 -.2512 -.3006 . 7872 .3678 -.0299

- 70.4 -.2489 .0131 .8955 .3588 -.043h .1531

- 52.6 -.0018 -.0950 L3243 -.2019 L6615 -.6640
81.5 . 0394 -.8687 0727 -.7035 8749 1.015

E Symmetry:

Energ{ Mixing Coefficients

K cm™ 4y P X1s X1z

-127.1 L9727 .1320 L0433 . 0084

- 79.9 -.224)h .6178 . 6864 L0377

- 59.1 .1338 -. 7431 . 7258 -.2255

- 39.2 -.0124 -.3148 .1600 .9816

*Molecular Orbitals of Unpaired Electrons.
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Kcm
-407 E (-39.2) S5P(-42)
- 50 -
T, (-52.6)
-60 E (-59.1)
T,(-70.4)
-70 } 2 5S(-72
5P (-73) st-72)
E(-79.9)
_80 -
Tz(-803)
-90
-100 |
-1ot
-120 T, (-122.2)
LA
3d (-126) /
e —— 4 A
E(-127.)
-130 |
-140 |
5S (-144)
-1%0 - T, (-152.7)
Mn LEVEL MO LEVEL Te LEVEL Cd LEVEL

Figure C-1. MO Energy Level Diagram for CdTe :Mnt,
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(ii) ZnS:Mn*™t

Radial functions are

Rzq(MN) = .h67505(2.0235) + .534685(3.9754) + .1375¢5(7.4822)
+ .oo53¢5(15.u62)
Rusp(Zn) = .0208¢l(51.u55) - .0113¢2(28.027) +.ou615¢2(1u.675)
+ .07u7¢5(15.652) - .0285¢5(8.5257) - .3718¢5(u.786o)
+.16496) (5.1559) + .3653@) (2.3916) + .5893@) (1.4066)
+ 167758, (0.9130)
RBS(S) = o.o552¢l(17.867) + .ouh9¢l(15.92h) + .oh91¢2(13.755)
- .064hg,(8.9398) - .1937¢,(6.246k) - .1910¢5(5.7842)
+ .5005¢5(5.oh51) + .7ou6¢5(2.05u9) + .1334¢5(1.2872)
RBP(S) = -.01305@5(12.798) - .0386@,(8.1734) - .2406¢5(5.0103)

+

-0871505(3.8107) + .57954,(2.1976) + .572hp,(1.5528)

+

- 0945585 (0. 7790).

Watson does not give 4p function for Zn. In this calcula-
tion it is assumed to have the same radial dependence as 4s, and its
energy is estimated from spectroscopic data.

The basis functions are (as the case of CdTe:Mn't) given

by Equations (4-5) and (4-7). The matrices are:
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Ty Symmetry:

{Hij}T2 (in atomic units, 1 a.u. = 2 ryd)

A %S<,mwgﬁ %n %35 *3g N
-.6334 -.0850 -.090k -.0389 .0149 L0173
-.8785 0 0 . 2864 L2337
-.4363 0 L0637 L0171
-.4363 .1803 .1128
.2855 0
.1382
gd,
| 1. 057 .086 .037 L0175 .0293
1 0 0 .286 <335
1 0 .090 .035
1. .255 .230
1. 0
- l‘._
E Symmetry:

{Hij}E (in atomic units, 1 a.u. = 2 ryd)

4 P1x X1g X1z
_.633% -.067h -.0105 _.0122
-.4363 -.110k4 -.0k09

-.2855 0
-.1382

5150y

1. L0641 L0124 . 0207
1. <1564 L0834

1. 0

1.
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TABLE C-2

MOLECUIAR ORBITALS AND ORBITAL ENERGIES OF ZnS:Mn't

T2 Symmetry
Energy Mixing Coefficients
a.u K cm'l d} ¢5S ¢BZ ¢57( XBS XBZ
-.8907 -195.4 .1360 .9931 L0087 L0145 .0510 -.0893
-.6324 -138.7 -.9557 JA712 0 - 177+ -.07hks .04k10 L0164
-.4563 -100.1  -.0020 L0977 .204k8  -.8482 -.2662 L0046
-.h1o7 - 92.1 .2800 -.0271 -.930% -.3162 -.0110 -.0306
-.1977 - 43l . 0046 -.1180 1739 -.257h L7798 -.5927
L0679 1.9 .0436 -.4957 L0573  -.5304 . 7349 L9379
E Symmetry
Energy Mixing Coefficients
-1
a.u K cm dl ¢ln Xls Xlz
-.6370 -139.7 .9827 .1310 L0114  -.0050
-.4392 - 96.4  -,1934 . 924l .24ls .0113
-.2580 - 56.6 . 0345 -.3882 .9800 -.0610
-.1346 - 29.5 -,0063 -.1184 .0705 1.0018

*Molecular Orbitals of Unpaired Electrons.
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Kem' T. (14.9)
- 0r
- 20 -
4P (-30.3)
E(-29.5)
- 40}
T.(-43.4)
- 60} E (-56.6) 4S(-62.6)
-80F}
Tz (‘92.')
E (-96.4) 3P (-95.7)
- loor T,(-100.)
-120}
3d (-139.0) T,(-138.7) ),
-140F i
E(-139.7)
- 160}
- 180}
3S(-192.7)
T,(-195.4)
-200"
Mn LEVEL MO LEVEL S LEVEL Zn LEVEL

Figure C-2. MO Energy Level Diagram for znS:Mntt,
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Solutions of secular equations are given in Table C-2 and
Figure C-2.
The average probabilities that one electron being found in

the next nearest ligand S orbital, Equation (4-85) are for CdTe:Mntt

il

i J-Y2_+_L_\\bp"¢1

o
5 L les 1 Yks 0.0C»‘ = O.| A

for znS:Mntt
=N YQSJ‘?\? Ytl&]

The result is discussed in Chapter VI.

tf

o.cooceq x ool Y%
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