
Journal of VLSI Signal Processing Systems 24, 43–57 (2000)
c© 2000 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Design and Implementation of a Low Complexity VLSI Turbo-Code
Decoder Architecture for Low Energy Mobile Wireless Communications

SANGJIN HONG AND WAYNE E. STARK
Wireless Communications Research Laboratory, Department of Electrical Engineering and Computer Science,

1301 Beal Avenue, University of Michigan, Ann Arbor MI 48109-2122

Received April 14, 1999; Revised July 15, 1999

Abstract. Channel coding is commonly incorporated to obtain sufficient reception quality in wireless mobile
communications transceiver to counter channel degradation due to intersymbol interference, multipath dispersion,
and thermal noise induced by electronic circuit devices. For low energy mobile wireless communications, it is
highly desirable to incorporate a decoder which has a very low power consumption while achieving a high coding
gain. In this paper, a sub-optimal low-complexity multi-stage pipeline decoder architecture for a powerful channel
coding technique known as “turbo-code” is presented. The presented architecture avoids complex operations such
as exponent and logarithmic computations. The turbo-code decoding algorithm is reformulated for an efficient
VLSI implementation. Furthermore, the communication channel statistic estimation process has been completely
eliminated. The architecture has been designed and implemented with the 0.6µm CMOS standard cell technology
using Epoch computer aided design tool. The performance and the circuit complexity of the turbo-code decoder
are evaluated and compared with the other types of well-known decoders. The power consumption of the low-
complexity turbo-code decoder is comparable to that of the conventional convolutional-code decoder. However, the
low-complexity turbo-code decoder has a significant coding gain over the conventional convolutional-code decoders
and it is well suited for very low power applications.

1. Introduction

In mobile wireless communications, high performance
and low power operation of the portable terminals are
desirable. With emergence of personal communica-
tion services, portable terminals such as mobile tele-
phones and notebook computers are expected to be used
more frequently and for longer times, and hence power
consumption will become an important consideration.
Thus, the fact of having a battery with limited lifetime
is relevant at many levels, and achieving a better power
efficiency is a challenge for the designers of mobile
wireless communication systems.

In typical wireless communication systems, the
power amplifier at the transmitter RF front-end dissi-
pates a significant portion of overall transceiver power.
The amount of dissipated power by the power ampli-
fier is greatly influenced by communicating channel

environment such as multipath fading, intersymbol in-
terference, thermal noise induced by the electronic
RF circuit devices, and other time varying channel
degradation. In addition, a distance between transmitter
and receiver greatly influences the transmission power.
Thus, reduction in the transmission power is the pri-
mary concern for low-energy communication system
design with maintaining sufficient reception quality
for reliable data communication. One way to reduce
the transmission power is to incorporate powerful for-
ward error correction (FEC) codes to increase cod-
ing gain at the receiver which translates in less trans-
mission power [1–3]. However, Shannon showed that
the development of error correction techniques with
increasing coding gain has a limit, arising from the
channel capacity [4]. Since that work, many different
types of codes have been designed and their decod-
ing algorithms are physically realized. They mainly



44 Hong and Stark

differ in decoding performance and their hardware
complexity.

Traditionally, the Viterbi algorithm has been widely
accepted as a choice for decoder for wireless com-
munications because it is an optimum decoding algo-
rithm for the convolutional-code. It performs a maxi-
mum likelihood (ML) detection of the state sequence
of a finite-state discrete-time Markov process observed
in memoryless noise [5]. It can also be interpreted as
searching for the minimum-distance path in a trellis by
dynamic programming [6], where the measure of dis-
tance is the log-likelihood of the corresponding state-
transition based on the symbols received over noisy
channel. Moreover, many power efficient implemen-
tations have been proposed [7–9]. Thus, it is of great
interest for a low power communication system which
has a low hardware complexity, possibly comparable
to the convolutional decoder but has higher coding
gain.

Recently, a novel class of binary parallel concate-
nated recursive systematic convolutional-codes termed
Turbo-Codes was introduced [10, 11]. These codes
have an amazing error correcting capability and are
very attractive for applications to digital mobile radio
to combat channel fading. The main draw back is that
the decoding operation is very complex for practical
VLSI realization [12]. The decoding is based on MAP
(maximum a posteriori probability) decoders and re-
quires many complex operations such as exponent and
logarithmic calculus as well as extensive channel statis-
tic estimation process. Furthermore, a very long dura-
tion of data interleaving and deinterleaving processes
is needed for achieving the performance as advertised.

As the demand for battery powered portable wireless
communication applications increases, a minimization
of power consumption becomes an increasingly critical
concern for integrated circuit design. One of the pri-
mary objectives in the design of low-energy communi-
cation system is power reduction. Power consumption
is the guiding principle for both algorithm develop-
ment and system trade-off evaluation. The tremendous
savings in power consumption can be attained through
both algorithm reformulation and architectural innova-
tion specifically targeted for energy conservation.

The architecture presented in this paper incorpo-
rates a low-complexity design for the low-energy mo-
bile wireless communication applications. Although
some VLSI implementations have already been ob-
tained for particular turbo-code decoders [13–15], most
of these decoders require MAP decoding algorithm

which has a significant complexity over the conven-
tional convolutional-code decoders. This work is aimed
to reduce a considerable amount of algorithmic and
circuit complexity for a low power architectural so-
lution that is comparable to the complexity of the
convolutional-code decoders. Design efforts are made
at the algorithmic level for reducing power dissipation.
The proper reformulation of algorithm results in an ar-
chitecture that is efficiently realizable. And the decod-
ing iteration process is implemented as a multi-stage
pipeline. The resulting decoder architecture consumes
the power that is comparable to the conventional con-
volutional decoder but with a significant coding gain.
The decoder can be incorporated into the very low
power applications, and possibly replacing the convo-
lutional decoder without losing any considerable power
efficiency.

We first review turbo-codes. The encoding scheme
and the decoding algorithm are briefly described.
Then, the low-complexity sub-optimal decoding al-
gorithm is reformulated where many complex oper-
ations have been eliminated. A simple mechanism
for channel estimation is discussed. Based on the re-
duced complexity decoding algorithm, the VLSI multi-
stage pipeline turbo-code decoder architecture design
is presented [16]. A further circuit complexity is mini-
mized by appropriately choosing the finite quantization
wordlength. Finally, the performance and the circuit
complexity of the decoder are evaluated. The low-
complexity turbo-code decoder is compared with vari-
ous well-known decoders in terms of their relative com-
plexity.

2. Turbo-Code Reviewed

In this section, a turbo-code encoding scheme and its
decoder structure are briefly described. The nature of
the turbo-code decoding algorithm is iterative and the
decoder structure that corresponds to a single iteration
is considered in the discussion. Throughout the dis-
cussion, additive white Gaussian channel is assumed.

2.1. Turbo-Code Encoding

Turbo-codes are the parallel concatenation of at least
two recursive systematic convolutional (RSC) encoders
with interleaving [10–17] as shown in Fig. 1. The
code rate of the turbo-code encoder is 1/3, mapping
N data bits to 3N code bits. The recursive encoders



Low-Complexity VLSI Turbo-Code Decoder Architecture 45

Figure 1. A RSC turbo-code encoding scheme.

are necessary to attain the exceptional performance
provided by the turbo-codes. We assume that the con-
stituent codes are identical.

The input to each RSC encoder is the same infor-
mation bit sequencedk but in different order due to
the presence of an interleaver. The interleaver takes bit
sequencedk and rearrange them in a pseudo-random
fashion prior to encoding by the second RSC encoder.
For an input bit sequence{dk}, the RSC turbo-code en-
coder output is{Dk} = {dk}, {C1,k}, and{C2,k}. This
allows that low-weight codewords produced by a sin-
gle RSC encoder are transformed in high-weight code-
words for the turbo-code encoder, so achieving high
coding gains [11]. The encoding is frame oriented us-
ing a finite number ofN bits per frame and the trellis of
the first RSC encoder is terminated to maintain bound-
ary condition of the trellis path.

2.2. Turbo-Code Decoder Structure

A complete turbo-code decoder structure correspond-
ing to one iteration of the algorithm includes two
component decoders, implementing a-posteriori prob-
ability, and interleavers/deinterleavers, which scramble
the processed data according to the interleaving laws
used in the encoder. Other blocks are required such as
RAM memories for storing data through the iterations.
These block can be interconnected in the decoder in
many topologies [18], depending on the encoder struc-
ture. In Fig. 2 shows a turbo-code decoder structure
for the RSC turbo-code encoder shown in Fig. 1.

At each time instantk, there are three different types
of soft inputs to the component decoder: the disturbed
systematic informationx = (x1, . . . , xN), the redun-
dant informationy

1
= (y1,1, . . . , y1,N), and the a-

priori information (extrinsic information) about the
information bitL2 = (L2,1, . . . , L2,N). The soft output
generated by the component decoder at time instantk
contains a weighted version ofxk, a weighted version
of L2,k, and a newly generated extrinsic information

Figure 2. RSC turbo-code decoder structure.

L1,k. L1,k is a combination of the influences of all
soft inputs except for the weighted versions ofxk and
L2,k. The newly generated extrinsic informationL1,k

is used as the a-priori information of the second com-
ponent decoder which operates in a similar way to
the first component decoder. The transmitted sym-
bolsDk,C1,k,C2,k correspond to the received symbols
xk, y1,k, y2,k, respectively. The bi-phase shift keying
(BPSK) modulation scheme is assumed in this paper.

The log-likelihood ratios (LLRs) are perfect soft in-
formation in the case of binary codes [19]. With the
abbreviationRk = (xk, y1,k, L2,k),theLLR3k of bit dk

is given by [10]

3k

= ln

(
Pr{dk = 0 | Rk}
Pr{dk = 1 | Rk}

)

= ln

(∑M
m=1 Pr{dk = 0, Sk = m, Rk}∑M
m=1 Pr{dk = 1, Sk = m, Rk}

)

= ln

(∑M
m=1

∑M
m′=1

∑1
j=0 γ

0
k (Rk,m′,m)α

j
k−1(m

′)βk(m)∑M
m=1

∑M
m′=1

∑1
j=0 γ

1
k (Rk,m′,m)α

j
k−1(m

′)βk(m)

)
(1)

whereSk, which can assume valuesm between 1 and
M (the size of trellis), is the state of the first RSC en-
coder at timek. The forward recursion can be expressed
as

αi
k(m) =

M∑
m′=1

1∑
j=0

γ i
k (Rk,m

′,m)α j
k−1(m

′) (2)

and the backward recursion is given by

βk(m) =
M∑

m′=1

1∑
j=0

γ
j

k+1(Rk+1,m
′,m)βk+1(m

′). (3)



46 Hong and Stark

The branch transition metric is given by

γ i
k (Rk,m

′,m)= exp(1/σ 2 · xk · (1− 2 · i ))
· exp(1/σ 2 · y1,k · (1− 2c1,k))

· exp
(
1/σ 2

L · L2,k · (1− 2 · i )) (4)

whereσ 2 is the variance of the white Gaussian noise,
σ 2

L is the variance ofL2,k, andi takes either 0 or 1.

3. Low-Complexity RSC Turbo-Code
Decoder Integration

A potential difficulty in physically realizing the turbo-
code decoding algorithm, which overshadows the ben-
efit of large coding gain, is that it requires many com-
plex arithmetic operations. In addition, in order to
achieve high coding gain, the decoding process requires
a large number of iterations. These two factor greatly
influence the feasibility of low-power physical realiza-
tion of the decoding algorithm.

One solution is to derive a sub-optimal decoder ar-
chitecture that eliminates high speed processing and re-
duces the number of complex arithmetic operators (i.e.,
multiplications and logarithmic operations). However,
the decoding performance degradation due to these
transformations should minimal.

3.1. Component Decoder Complexity Reduction

For a practical low complexity VLSI implementation,
it is highly desirable that the decoder should avoid
complex arithmetic operations and variance estimation
procedure. To compute the extrinsic information, the
original formulas must be simplified considerably. The
LLRcan be approximated as follows

3k = ln
M∑

m=1

M∑
m′=1

1∑
j=0

γ 0
k (Rk,m

′,m)α j
k−1(m

′)βk(m)

− ln
M∑

m=1

M∑
m′=1

1∑
j=0

γ 1
k (Rk,m

′,m)

×α j
k−1(m

′)βk(m) (5)

= ln
M∑

m=1

M∑
m′=1

γ 0
k (Rk,m

′,m)βk(m)

× [α0
k−1(m

′)+ α1
k−1(m

′)
]

− ln
M∑

m=1

M∑
m′=1

γ 1
k (Rk,m

′,m)βk(m)

× [α0
k−1(m

′)+ α1
k−1(m

′)
]

(6)

= ln
M∑

m=1

βk(m)
M∑

m′=1

γ 0
k (Rk,m

′,m)

× [α0
k−1(m

′)+ α1
k−1(m

′)
]

× ln
M∑

m=1

βk(m)
M∑

m′=1

γ 1
k (Rk,m

′,m)

× [α0
k−1(m

′)+ α1
k−1(m

′)
]

(7)

= ln
M∑

m=1

βk(m)α
0
k(m)− ln

M∑
m=1

βk(m)α
1
k(m) (8)

Sinceβk(m) andαi
k(m) are exponential functions, lets

defineα̃i
k(m) = lnαk(m) andβ̃ i

k(m) = lnβk(m). Then

3k = ln
M∑

m=1

exp
(
β̃k(m)+ α̃0

k(m)
)

− ln
M∑

m=1

exp
(
β̃k(m)+ α̃1

k(m)
)

(9)

By using the inequalities

max
m
{ζ1, ζ2, . . . , ζM} ≤ ln

M∑
m=1

exp{ζm}

≤ ln M +max{ζ1, ζ2, . . . , ζM}. (10)

the approximatedLLR 3̃k can be expressed as

3̃k ≈ max
m

{
α̃0

k(m)+ β̃k(m)
}

− max
m

{
α̃1

k(m)+ β̃k(m)
}

(11)

The new forward recursion formulãαi
k(m) is

α̃i
k(m)

= ln
1∑

j=0

M∑
m′=1

γ i
k (Rk,m

′,m)α j
k−1(m

′) (12)

= ln
M∑

m′=1

γ i
k (Rk,m

′,m)
(
α0

k−1(m
′)+ α1

k−1(m
′)
)

(13)



Low-Complexity VLSI Turbo-Code Decoder Architecture 47

≈ ln
M∑

m′=1

γ i
k (Rk,m

′,m)α0
k−1(m

′)

+ ln
M∑

m′=1

γ i
k

(
Rk,m

′,m)α1
k−1(m

′)
)

(14)

≈ ln
M∑

m′=1

exp
(
γ̃ i

k (Rk,m
′,m)+ α̃0

k−1(m)
)

+ ln
M∑

m′=1

exp
(
γ̃ i

k (Rk,m
′,m)+ α̃1

k−1(m)
)

(15)

≈ γ̃ i
k (Rk,m

′,m)+max
m′

{
α̃0

k−1(m
′), α̃1

k−1(m
′)
}

(16)

whereγ̃ i
k (m) = ln γk(m).

Throughout this paper, the approximate equality will
be removed and the new forward recursion formula can
be rewritten as

α̃i
k(m) = γ̃ i

k (Rk,m
′,m)+max

{
α̃0

k−1(m
′), α̃1

k−1(m
′)
}

(17)

Similarly, the new backward recursion formula can be
written as

β̃k(m) = max

{
γ̃ 1

k+1(Rk+1,m,m′)+ β̃k+1(m′)

γ̃ 0
k+1(Rk+1,m,m′)+ β̃k+1(m′)

}
(18)

wherem′ is a possible source state tom in the trellis.
The branch metrics are defined as

γ̃ i
k (Rk,m

′,m) = xk · (1− 2 · i )+ y1,k · (1− 2 · c1,k)

+ L2,k · (1− 2 · i )/Qp (19)

assuming that the channel condition remains constant
during the duration of the data block (so thatσ 2 is fixed
assuming the additive white Gaussian channel with no
fading within the duration of a data block).

The weighting factorQ is defined as

Qp = σ 2
L ,p/σ

2 for p = 0, 1, 2, . . . , P − 1 (20)

where p represents iteration index andP represents
the maximum number of iterations allowed. Thusσ 2

L ,p

indicates the value ofσ 2
L at thepth iteration.

3.2. Choice of Weighting Factor Q

Assuming a constantσ 2, the weighting factorQp is
proportional to the value ofσ 2

L ,p. The value ofσ 2
L ,p

serves as reliability of the extrinsic informationL at pth
iteration. The smaller value ofσ 2

L ,p indicates that the

computed extrinsic informationL is reliable so that the
weight ofL increases in Eq. (19). TheEb/N0 which is
required to obtain a certain error performance decreases
with each iteration of the decoder. However, it must be
said that with each iteration the extrinsic information
L and the disturbed systematic informationx become
more and more correlated leading to decreasing con-
tributions to theEb/N0 improvements as compared to
previous iteration steps. Thus, the value ofQ should
be closely modeled within a scale factor with actualσ 2

L
during each iteration.

The choice of weighting factorQp = σ 2
L ,p/σ

2 deter-
mines decoding performance and the number of itera-
tions required to achieve a certain level of performance
as well as the circuit complexity. It also serves as a
scaling factor for reducing the word width of the met-
ric which influence the size of storage memory required
by the decoder. Moreover, a computational task of es-
timating the channel informationσ 2

L ,p can be avoided
by incorporating a simple scaling method. It is impor-
tant to note that by incorporatingσ 2

L estimating logic
will improve the decoding performance at the expense
of added circuit complexity and latency. The latency
penalty by the estimating logic may be serious when
the data lock size is large sinceσ 2

L must be computed
before each decoding iteration. For the purpose of low-
complexity design, the estimating logic is eliminated.

3.2.1. Powers of Two. A multiplication or a division
by Qp shown in Eq. (19) can be very costly in terms of
circuit complexity. By confining a possible value ofQp

to a set of numbers that are powers of two (i.e., 2l for l ∈
integer) transforms a multiplication or a division into
a simple shifting operation in digital implementation
hence reducing overall decoder complexity.

3.2.2. Number of Iterations. Initially, the value of
Qp=0 is set to a large value in order to reduce the ef-
fect of L2,k at the beginning of the iteration and be-
comes smaller as the number of iterations increases.
The initial value ofQ and its rate of decrease are the
main design parameters that affect the decoding per-
formance and complexity. For simple hardware im-
plementation, the value ofQp can be made to be
2−(p−init) whereinit determines the initial value ofQp

and p = 0, 1, 2, . . . , P − 1.
As shown in the Figs. 3 and 4, initial decoding per-

formance differs significantly depending on the initial
value ofQ (init = 3 andinit = 0 are used for Figs. 3
and 4, respectively). The choice of the initial valueQ



48 Hong and Stark

Figure 3. Turbo-code decoder performance for initialQ= 8 (Block
length= 256).

Figure 4. Turbo-code decoder performance for initialQ= 1 (Block
length= 256).

and together with the powers of two scaling affect the
rate of improvement of the decoding performance as
shown in the figures. The same numbers of iterations
are illustrated for different initial values ofQ.

For a smaller initial valueQ, the rate of performance
improvement is faster than that of a larger initial value
Q. However, the main problem with the small initial
Q is that the decoding performance may get worse by
over-emphasizing the reliability. Hence the choosing a
proper valueQ is an important design problem for the
particular decoder architecture and application. It must
be carefully chosen through extensive simulations.

The limit on the number of maximum iterations that
are performed by the particular decoder implementa-

tion influences the decoder architecture complexity and
its implementation. For example, consider two differ-
ent implementations of decoders for 4 iterations and 10
iterations. If a single general DSP processor is used,
the maximum processing speed of 10-iteration decoder
needs to be 5/2 times higher than the 4-iteration de-
coder hence more complex processing elements may
be required increasing the overall decoder complex-
ity. Similarly, if a parallel (and/or pipeline) design ap-
proach is used, 10-iteration decoder requires roughly
5/2 times more silicon area than 4-iteration decoder.
For these two cases in the benign channel condition, the
number of iterations is relatively low and a lot of re-
sources are wasted for 10-iteration decoder case. Thus,
when the number of iteration is limited to some fixed
value, the many low power digital circuit design tech-
niques may be applied to reduce the overall decoder
complexity and power consumption. Therefore, given
the maximum number of iterations required, the values
of Q are properly chosen and any necessary architec-
tural optimization is performed. Throughout this pa-
per, the maximum number of iterations required by the
decoder is limited to four.

3.3. Decoding Performance

The performance of turbo-code decoder with the RSC
code with the octal generator (35, 23) for block length
of N = 256, N = 512, andN = 1024 are evaluated.
Uniform quantization at the input for all decoders con-
sidered is assumed.

Figures 5 to 7 illustrate the simulated decoding
performance of the rate 1/3 Turbo-code decoder for

Figure 5. Turbo-code decoder performance (Block length= 256).



Low-Complexity VLSI Turbo-Code Decoder Architecture 49

Figure 6. Turbo-code decoder performance (Block length= 512).

Figure 7. Turbo-code decoder performance (Block length= 1024).

different data block sizes. As shown in the figures, the
performance improves as the size of data block gets
larger (i.e., close to 1dB improvement at the bit error
rate of 10−5 by increasing the data block size from
N = 256 to N = 1024). The predetermined weight-
ing Q factors, obtained from the simulations, are{4, 4,
4, 4}, {4, 4, 4, 2}, and{4, 4, 4, 4} for data block size
N of 256, 512, and 1024, respectively. The values in
the sets represent eachQ at different iterations. It is
evident from the figures that the performances does not
improve beyond 4 iterations for a particular design.

The performance of decoder architecture presented
in this paper is inferior to the original decoding algo-
rithm by 1dB coding gain loss. However, the original
decoding algorithm often requires more than 10 iter-
ations and a complexσ 2

L estimator to achieve adver-

tised performance. The input wordlength of 4-bits is
chosen for the simulations since there is no significant
improvement beyond 3-4 bit input wordlength.

4. VLSI Implementation

At the architectural and circuit levels, the main contri-
bution to power consumption in complementary metal
oxide (CMOS) circuits is attributed to the charging and
discharging of parasitic capacitors that occur during
logical transitions. The average switching energy of a
CMOS gate (or the power-delay product) is given by
the following equation:

Energy/Operation= Caverage· V2
supply (21)

where Caverage is the average capacitance being
switched per clock, andV2

supply is the supply voltage.
The quadratic dependence of energy on voltage makes
it clear that operating at the lowest possible voltage is
most desirable for minimizing the energy per consump-
tion; unfortunately, reducing the supply voltage comes
at the cost of a reduction in computational throughput.

One way to compensate for these increased delays is
to use architectures that reduce the speed requirements
of operations while keeping throughput constant. One
architectural approach for maintaining throughput with
slower circuitry is to use parallelism through hardware
duplication. By using identical units in parallel, the
speed requirements on each unit are reduced, allowing
for a reduction in voltage. This approach is particu-
larly useful for iterative decoding algorithm where the
final decision in taken after the multiple iteration of the
process. However, duplicating units has limit due to
the available silicon area. When the duplication fac-
tor becomes large so that multiple chips need to be
employed, the power dissipated by the inter-chip com-
munication becomes serious due to large interconnect
capacitance. Hence, reduction in the decoder architec-
ture complexity is also beneficial for low power system
design.

In this section, VLSI implementation of turbo-code
encoder and decoder is presented. The turbo-code en-
coder and decoder are structurally modeled using Ver-
ilog hardware description language and the chips are
synthesized with the Epoch CAD design environment
based on 0.6-µm CMOS standard cell technology. The
supply voltage of the chips is set to be 3.3 V.

The turbo-code decoder for the data block sizeN of
256 bits and memory size of 4 are designed. The RSC



50 Hong and Stark

Figure 8. (a) Encoder functional block diagram, (b) Recursive sys-
tematic convolutional coder with Trellis termination, (c) Recursive
systematic convolutional coder without Trellis termination.

code at the turbo-code encoder is generated by the octal
generator function (35, 23). The data rate of 1Mbps
is assumed in the discussion. Thus, the Turbo-code
decoder acceptsRk = (xk, yk, Lk) everyT = 1µsec.

4.1. Encoder Design

Overall functional block diagram of a turbo-code en-
coder is shown in Fig. 8(a). The encoder consists of
two recursive systematic convolutional encoders and
a block of memory for data interleaving operation.
Since it takes finite amount of time for interleaving,
delay lines are introduced. These sub-components of
the turbo-code encoder are controlled by a sequencer.
Two delay-line blocks are introduced at the output of
bothDk andC1,k for synchronizing withC2,k. The rea-
son that two delay lines are introduced at the output
instead of one delay line at the data input is due to

trellis termination required by the first RSC encoder.
In this way, the encoder eliminates further latency that
exists with one delay line implementation.

N−K of N (N = 256 andK = 5 in the implemen-
tation) information data bits go into the RSC1/TT (TT
stands for Trellis Termination) everyT seconds where
T represent a data bit interval. AmongN bits of a data
frame block, onlyN−K bits are the actual information
bits while K bits are for trellis termination.

The functional block diagram of the recursive sys-
tematic convolutional-code (35, 23) encoders with con-
straint length ofK = 5 is shown in Fig. 8(b) and (c).
Additions are accomplished by the modulo-2 sum op-
erations. The convolutional-code encoder for RSC1
(Fig. 8(b)) and RSC2 (Fig. 8(c)) are structurally dif-
ferent in that RSC1 has a integrated trellis termination
logic where RSC2 has its trellis left open.

16-states trellis structure corresponding to the code
(35, 23) is shown in Fig. 9. The encoded bit is indicated
on the transition arcs where solid arcs correspond to
input data bit1 and dashed arcs correspond to input
data bit0.

The data interleaver/deinterleaver consists of a syn-
chronous up-counter, a pseudo-random noise (PN) se-
quence generator, and a static memory block for read
write operation. For data interleaving, data memory
is written to the block of memory sequentially by the
address generated by the synchronous up-counter and
read from the block of memory pseudo randomly by
the address generated by the PN sequence generator.
The PN sequence is generated by shift feedback reg-
isters [2]. For data deinterleaver, the order of writing
and reading operations is reversed.

Figure 9. Trellis structure.



Low-Complexity VLSI Turbo-Code Decoder Architecture 51

4.2. Pipelined Multi-Stage Decoder Design

A single iteration of turbo-code decoding process
which corresponds to one stage of the pipelined de-
coder requires two component decoders,Decoder1 and
Decoder2, connected in a serial configuration as shown
in Fig. 2. The first component decoder,Decoder1, ac-
cepts uncoded inputxk, coded inputy1,k, and extrinsic
informationL2,k. The first component decoder gener-
ates new extrinsic informationL1,k. The second com-
ponent decoder,Decoder2, accepts interleaved version
of xk, coded inputy2,k, andL1,k which was generated
by the first component decoder. The major functions
of each component decoder are to compute the branch
metric, forward path metrics, backward path metrics,
and the extrinsic information. The computation of the
metrics is performed by four independent processing
units and these units exchange data through the storage
memory.

4.3. Component Decoder Design

The functional block diagram of the component de-
coder is shown in Fig. 10. Branch metric unit (BMU)
takes three kinds of input and generates branch met-
rics. The metric generated by the BMU is stored in the
branch metric memory and routed to forward path met-
ric unit (FPMU) simultaneously. Backward path metric
unit (BPMU) reads metric stored in the branch metric
memory. After processing, its metric is stored in the
backward path memory. After both forward and back-
ward path metrics are calculated, LLR calculation unit
generates weighted data.

For each symbol vectorRk received, 2M branch met-
rics and 2M forward path metrics are generated where
M = 2K−1 represents the number of states which de-
pend on the constraint lengthK of the code. After all
the branch and forward metrics are generated forN
received symbol vectorsR, the backward path metrics
and extrinsic information are generated corresponding
to the completion of one component decoding cycle.

Figure 10. Block diagram of the component decoder.

Figure 11. Branch metric calculation unit.

The metric generation can be accomplished with sim-
ple adders and comparators. The latency is 2N (N for
branch and forward path metrics andN for backward
path metrics and extrinsic information). The maximum
throughput obtainable with given circuit implementa-
tion is limited by the size of trellis statesM because the
number of operations in a symbol duration is propor-
tional to the size of trellis state [16].

4.3.1. Branch Metric Calculation Unit. At each bit
timek the Branch Metric Calculation Unit (BMU) takes
Rk and generates branch metricγ̃ 0

k (m) andγ̃ 1
k (m) for

statesm= 1, . . . ,32 according to Eq. (19). The func-
tional block diagram of the BMU is shown in Fig. 11.
As soon asRk is received,−Rk is generated. BothRk

and−Rk are applied to four three-input adders. These
adders simultaneously generates four possible branch
metrics values{a, b, c, d}. Four possible metric values
are produced since there are only four combinations
in generating the branch metrics (i.e.,i ∈ {0, 1} and
cm ∈ {0, 1}). Since the total number of branch met-
rics equals to the number of states in the Trellis, the
BMU generates 32 branch metrics (16γ̃ 0

k and 16γ̃ 1
k )

by shuffling and reusing four metric values. The first
shift register which generatesγ̃ 0

k (m) for m= 1, . . . ,16
loads four possible values in parallel in following order

[b,a,a, b,a, b, b,a, b,a,a, b,a, b, b,a]. (22)

Similarly, the second register which generatesγ̃ 1
k (m)

loads in parallel in following order

[c, d, d, c, d, c, c, d, c, d, d, c, d, c, c, d]. (23)

The ordering of the metrics corresponds to the state
transitions determined by the encoding scheme. These
four metric values are loaded at a rate of 1 MHz and
shifted out at a rate of 16 MHz. The metric being
shifted out is stored in the branch metric memory and



52 Hong and Stark

simultaneously routed to input register of the forward
path metric calculation unit.

Invert operation is performed by 1’s complement op-
eration eliminating an adder for each invert operation.
XOR gates are used for the operation. Four parallel
adders are used to lower the speed requirement so that
the voltage can be reduced in order to minimize the
processing power.

The operating speed of the adders depends on the bit
rate and the speed of shifting operation depends on the
number of states in the Trellis. In this implementation,
16 MHz clock is used to control this shift operation.

4.3.2. Forward Path Metric Calculation Unit. At
each state transition timem with in bit time k, the
Forward Path Metric Calculation Unit (FPMU) takes
branch metricsγ̃ 0

k (m) and γ̃ 1
k (m) generated by the

BMU and the forward path metrics̃α0
k−1(m

′) and
α̃1

k−1(m
′) stored in the Forward Path Metric Memory

and generates new branch metricα̃0
k(m) and α̃1

k(m).
Newly generated metrics are stored back to Forward
Path Metric Memory. The functional block diagram of
the FPMU is shown in Fig. 12.

The previous time metrics̃α0
k−1(m

′) and α̃1
k−1(m

′)
are compared and the maximum of two is selected. The
maximum value is input to both adders. The outputs
of adders are the new metrics.

The FPMU starts to compute as soon as the first
branch metrics (one out ofM) are calculated and routed
by the BMU. Hence the operation speed of the FPMU
is proportional to the total number of statesM (i.e.,
16 MHz). The clock controlling the FPMU is a half
cycle delayed version of the clock controlling the shift
register in BMU.

The forward path metric memory is dual ported so
that both read and write operations are possible.

Figure 12. Forward path metric calculation unit.

Figure 13. Backward path metric calculation unit.

The forward path metric is calculated Eq. (17) where
initial conditions are set tõα0 = 1 andα̃0(m 6= 0) = 0.

4.3.3. Backward Path Metric Calculation Unit. The
Backward Path Metric Calculation Unit (BPMU) takes
branch metricsγ̃ 0

k and γ̃ 1
k stored in the Branch Met-

ric Memory and the backward path metricsβ̃k andβ̃k

stored in the Backward Path Metric Memory and gen-
erates new backward path metricβ̃k−1 andβ̃k−1. These
newly generated metrics are stored back to Backward
Path Metric Memory. The functional block diagram of
the BPMU is shown in Fig. 13.

The operation of BPMU starts as soon as branch
metrics for last bit of the data block are calculated
by FPMU. The operating speed of the BPMU is also
16 MHz. The forward path metric memory is dual
ported so that both read and write operations are
possible.

The backward path metric is calculated using
Eq. (18) where initial conditions arẽβN(0) = 1,
β̃N(6=0) = 0 for the first component decoder and ini-
tial conditions for the second component decoder are
β̃N(m) = α̃N(m).

4.3.4. LLR Metric Calculation Unit. For each state
m, the LLR Metric Calculation Unit (LLRU) takes the
forward path metric̃α0

k and α̃1
k stored in the forward

path metric memory and the backward path metricβ̃k−1

andβ̃k−1 stored in the backward path metric memory
and generates two outputs̃3k and L. The functional
block diagram is shown in Fig. 14. The adders and
compare/select units operate at 16 MHz for adding and
comparing allM metrics but the subtractors operates
at 1 MHz where the output is selected only at the end.
The compare/select takes 16 input in serial fashion at a
rate of 16 MHz and generates the largest input at a rate



Low-Complexity VLSI Turbo-Code Decoder Architecture 53

Figure 14. LLR metric calculation unit.

of 1 MHz. The second subtractor generatingL is not
active in the last stage of the decoder since the extrinsic
informationL is no longer needed.

The values ofLLRare calculated using Eq. (11) and
the values ofL are calculated using equation

31= 2L2

Q
+ 2x+ L1, 32= 2L1

Q
+ 2x+ L2 (24)

4.3.5. Memory Units and Addressing.The compo-
nent decoder accesses various metric memory units ex-
tensively throughout the decoding process. Their ac-
cess patterns depend on the state transitions of the trel-
lis, which is determined by the generator functions of
encoding scheme.

Figure 15 illustrates the address generation mecha-
nism and the data storage organization respectively.
One synchronous counter is used to generate addresses
for the BMU and the FPMU, and one additional counter
for the BPMU and the LLRU. The address generated
by the counter is appropriately latched to handle met-
ric memory access timing. As shown in the figure, an
addressA, which addresses the statem, is organized as
concatenation of two segment,AM andAN, whereAN
represents the time sequence,AM represents state po-
sition, andASrepresents the time sequence. Since the
destination state position differs from the source state,

Figure 15. Memory units addressing and organization.

a shuffle block is incorporated to generateA′, which
addresses the statem′. Separate memory units are used
to store metrics̃γ 0 andγ̃ 1. Also α̃0 andα̃0 use sepa-
rate memory units. This separation reduces the speed
of the address counter by a factor of 2. With this speed
reduction, slower memory can be utilized. All the
memory units in the decoder are dual-ported for metric
read/write operations.

Interleaving and deinterleaving operations are the
integral part of the overall decoding process. The
data interleaver/deinterleaver consists of a synchronous
up-counter, a pseudo-random noise (PN) sequence
generator, and a static memory block for read write
operation. For data interleaving, data memory is writ-
ten to the block of memory sequentially by the address
generated by the synchronous up-counter and read from
the block of memory pseudo randomly by the address
generated by the PN sequence generator. For data dein-
terleaver, the order of writing and reading is reversed.

4.3.6. Timing. There are three main synchronization
clock signals in the architecture. One clock signal con-
trols the time sequence of the decoder that is equal to
the data bit time. Each bit time interval is divided into
16 state sequence and each of the state time interval
is divided into two for accommodating reading and
writing memory units. Thus, the highest clock signal
generated by the architecture is equal to 32 times the
data bit interval. The timing relationship is shown in
Fig. 16.

5. Evaluations

A low-complexity turbo-code decoder architecture pre-
sented in this paper is designed and implemented using
standard cell CMOS processing technology. Its decod-
ing performance and hardware complexity for different
numbers of iterations and block sizes are evaluated.
In addition, various well known decoders for Ham-
ming(7, 4), BCH(31, 16), BCH(31, 21), Golay(23, 12),
Hadamard(16, 4), Hadamard(64, 6), convolutional-
code(1/2, 7) are also designed and implemented with
the same processing technology and compared with

Figure 16. Control clock signal for the decoder.



54 Hong and Stark

Figure 17. Turbo-code decoder chip layout (Block length
N= 256).

the turbo-code decoder. For Hamming, BCH, and
Golay codes, a hard decision decoding algorithm uti-
lizing a simple syndrome decoding is incorporated. For
Hadamard and convolutional-codes, hard decision de-
coding, as well as soft decision decoding, is designed
and implemented. All of the decoders evaluated in this
section are designed and implemented using the same
processing technology.

5.1. Decoder Complexity

Figure 17 illustrates the chip layout of the turbo-code
decoder implemented using the Epoch CAD design
environment based 3.3 V 0.6-µm standard cell tech-
nology.

The chip size of the turbo-code decoders is domi-
nated by the size of the storage memory used. Even
though the power consumed by the memory is not crit-
ical, the size of memory may be so large that multiple
chips may be required in the implementation. In case
of multiple chip decoder, the power consumption will
increase dramatically due to the power dissipated to
drive large capacitance I/O interconnects connecting
the chips.

We analyze the required storage memory for the de-
coders discussed in the paper. Due to interleaving and
recursive nature of the turbo-code decoding algorithm,
many storage memory modules are required. The size
of each memory module depends on the wordlength of
various inputs, metrics, trellis size, and the data frame
size. For single iteration of the decoder, the required
memory consists of the branch metric memory, forward

Figure 18. Decoder chip size of various decoders.

and backward path metric memory, extrinsic informa-
tion memory, interleaver, deinterleaver, and input delay
buffer. Thus, total memory size can be expressed as

MEM = 3N + 4N WL + 2N Win + 4N MWγ̃

+ 4N MWα̃ + 2N MWβ̃ (25)

whereN represents the size of data block,M repre-
sents the number of states in the trellis,Winput represents
wordlength of the inputs,Wγ̃ represents wordlength of
the branch metric,Wα̃ represents wordlength of the for-
ward path metric,Wβ̃ represents wordlength of the
backward path metric, andWL is the wordlength of
the extrinsic information.

Figure 18 illustrates the chip sizes of the turbo-
code decoders as well as the well-known decoders
considered in this paper. The block decoders such as
Golay(23, 12) and BCH(31, 16) require considerable
amount silicon area due to codewords storage. In con-
trast, Hadamard decoders require relatively smaller
silicon area. Among all of the decoders considered,
turbo-code decoders require large amount of silicon
area due to the multiple copies of decoder processing
units and storage. When the chip size is excessive,
time sharing architecture may be needed to reduce the
overall chip size.

5.2. Decoder Performance-Power Relationships

The relationship between the estimated power con-
sumption and the performance is an important measure
of the decoders when the power is the main concern in
the design.



Low-Complexity VLSI Turbo-Code Decoder Architecture 55

Figure 19. Decoding performance vs. power consumption at
BER= 10−3.

Figure 20. Decoding performance vs. power consumption at
BER= 10−5.

Figures 19 and 20 illustrate the power and perfor-
mance relationship of decoders including the turbo-
code decoder at different bit error rate (BER) require-
ments. The power consumptions for the decoders are
obtained from the implementation based on the stan-
dard cell library with the supply voltage fixed at 3.3 V.
The reference information data rate of 1Mbps is as-
sumed for all decoders. Thus, the power consumption
of the decoders can be further reduced by optimizing
at the circuit level and by scaling the supply voltage for
the given information data rate.

Figures 19 and 20 also illustrate that the performance
of the turbo-code decoder is generally better than that
of the other type of decoders while the power con-
sumption of the low-complexity turbo-code decoders

is comparable to the power consumption of the conven-
tional convolutional-code decoders. For example, the
performance of the turbo-code decoder was better than
that of the Viterbi decoder for convolutional-code by
more than 1dB at the BER of 10−3 and 2 dB at the BER
of 10−5. Even with 2 iterations, the performance im-
provement is significant while the power consumption
is only doubled.

Also shown in the figures, one can draw an imagi-
nary line connecting the points that signifies the power
consumption and performance bound. Most decoders
not indicated in the Figs. 19 or 20 fall within the up-
per region of the bounds indicating that such decoders
are not power efficient choice for low energy commu-
nications system. The relationship curve between the
performance and the power consumption is seamlessly
extended by the low-complexity turbo-code decoders.

However, one important information missing from
this plot is that the plot does not illustrate the amount of
power incurred in modulator/demodulator due to dif-
ferent code rates among decoders. For low code rate,
it is certain that the more power is dissipated in the
other parts of communication systems rather than the
decoder itself.

6. Conclusion

Channel coding is commonly incorporated to obtain
sufficient reception quality in wireless mobile com-
munications transceiver to counter channel degrada-
tion due to intersymbol interference, multipath disper-
sion, and thermal noise induced by electronic circuit
devices. For low energy mobile wireless communica-
tions, it is highly desirable to incorporate a decoder
which has a very low power consumption while achiev-
ing a high coding gain. In this paper, a sub-optimal
low-complexity multi-stage pipeline decoder architec-
ture for a powerful channel coding technique known
as “turbo-code” is presented. The presented architec-
ture avoids complex operations such as exponent and
logarithmic computations. The turbo-code decoding
algorithm is reformulated for an efficient VLSI imple-
mentation. Furthermore, the communication channel
statistic estimation process has been completely elimi-
nated. The architecture has been designed and imple-
mented with the 0.6µm CMOS standard cell techno-
logy using Epoch computer aided design tool. The
performance and the circuit complexity of the turbo-
code decoder are evaluated and compared with the
other types of well-known decoders. The power



56 Hong and Stark

consumption of the low-complexity turbo-code de-
coder is comparable to that of the conventional con-
volutional-code decoder. However, the low-complexity
turbo-code decoder has a significant coding gain over
the conventional convolutional-code decoders and it is
well suited for very low power applications.

Acknowledgments

This research was supported by the Department of
Defense Research & Engineering (DDR&E) Multi-
displinary University Research Initiative (MURI) on
“Low Energy Electronics Design for Mobile Plat-
forms” and managed by the Army Research Office
(ARO) under grant DAAH04-96-1-0377.

References

1. J.G. Proakis,Digital Communications, McGraw-Hill, 1995.
2. R.C. Dixon,Spread Spectrum Systems with Commercial Appli-

cations, Wiley Interscience, 1994.
3. A.J. Viterbi,CDMA: Principles of Spread Spectrum Communi-

cation, Addison-Wesley, 1995.
4. C.E. Shannon, “A mathematical theory of communications,”

Bell System Technical Journal, Vol. 27, pt. I, pp. 379–423; pt. II,
pp. 623–656, 1948.

5. A.J. Viterbi, “Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm,”IEEE Transac-
tions on Information Theory, Vol. IT-13, pp. 260–269, 1967.

6. J.K. Omura, “On the Viterbi decoding algorithm,”IEEE Trans-
actions on Information Theory, Vol. IT-15, pp. 177–179, 1969.

7. G. Fettweis and H. Meyr, “High-speed parallel Viterbi decod-
ing: Algorithm and VLSI-architecture,”IEEE Communication
Magazine, Vol. 29, pp. 46–55, 1991.

8. P.J. Black and T.H. Meng, “A 140-Mb/s 32-state, radix-4
Viterbi decoder,”IEEE Journal of Solid-State Circuits, Vol. 27,
pp. 1877–1885, 1992.

9. B.K. Min and N. Demassieux, “A versatile architecture for VLSI
implementation of the Viterbi algorithm,”Proc. ICASSP, 1991,
pp. 1101–1104.

10. C. Berrou, A. Glavieux, and P. Thitimajsima, “Near Shannon
limit error-correcting coding and decoding: Turbo-codes (1),”
Proc. ICC, Geneva, 1993, Vol. 2, pp. 1064–1070.

11. P. Robertson, “Illuminating the structure of code and decoder
of parallel concatenated recursive systematic (Turbo) codes,” in
IEEE Global Telecommunications Conference, Vol. 3, 1994.

12. L.R. Bahl, J. Cocke, F. Jeinek, and J. Raviv, “Optimal decod-
ing of linear codes for minimizing symbol error rate,”IEEE
Transactions on Information Theory, Vol. IT–20, pp. 248–287,
1974.

13. Comatlas, Chateaubourg, France, “CAS 5093 Turbo-Code
Codec, Data sheet,” August 1994.

14. Efficient Channel Coding, Inc., Eastlake OH, USA, “ECC
Turbo product code technology,” March 1998.

15. Small World Communications, Adelaide, Australia, “MAP04
and MAP04A 16 State MAP Decoders,” April 1998.

16. Sangjin Hong and Wayne E. Stark, “VLSI design and imple-
mentation of low-complexity adaptive turbo-code encoder and
decoder for wireless mobile communication applications,”Proc.
SiPS98, 1998.

17. S. Benedetto and G. Montorsi, “Design of parallel concatenated
codes,”IEEE Transactions on Communications, pp. 591–600,
1996.

18. S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Soft-
input soft-output modules for the construction and distributed
iterative decoding of code networks,”European Transactions
on Telecommunications, Vol. ETT9, 1998.

19. Joachim Hagenauer, Elke Offer, and Lutz Papke, “Iterative de-
coding of binary block and convolutional codes,”IEEE Trans-
actions on Information Theory, pp. 429–445, 1996.

Sangjin Hongreceived the B.S. and M.S. degrees in EECS from the
University of California, Berkeley in 1985 and 1992 respectively.
He is currently a Ph.D. candidate in the Department of Electrical
Engineering and Computer Science at the University of Michigan,
Ann Arbor. He has worked at the Ford Aerospace and Communica-
tions Corporation in Sunnyvale California from 1985–1989 where he
was involved in developing computer systems for the satellite com-
munications system. He has also worked at Samsung Electronics
Corporation in Korea as a technical consultant where he developed
DSP hardware systems for the military tank target acquisition system.
He also provided weekly seminar to the engineers in the company.
His current research interests are in the areas of low power DSP and
wireless communication system design and performance evaluation.
He worked on various VLSI decoder architecture optimizations for
low-power applications.
snjhong@eecs.umich.edu

Wayne E. Stark received the B.S. (with highest honors), M.S., and
Ph.D. degrees in electrical engineering from the University of Illinois,
Urbana in 1978, 1979, and 1982 respectively. Since September 1982



Low-Complexity VLSI Turbo-Code Decoder Architecture 57

he has been a faculty member in the Department of Electrical Engi-
neering and Computer Science at the University of Michigan, Ann
Arbor where he is currently Professor. From 1984–1989 he was Edi-
tor for Communication Theory of the IEEE Transactions on Commu-
nication in the area of Spread-Spectrum Communications. He was
involved in the planning and organization of the 1986 International
Symposium on Information Theory which was held in Ann Arbor,
Michigan. He was selected by the National Science Foundation as a

1985 Presidential Young Investigator. He is principal investigator of
a Army Research Office Multidisciplinary University Research Ini-
tiative project on Low Energy Mobile Communications. His research
interests are in the areas of coding and communication theory, es-
pecially for spread-spectrum and wireless communication networks.
Dr. Stark is a member of Eta Kappa Nu, Phi Kappa Phi and Tau Beta
Pi and a Fellow of the IEEE.
stark@eecs.umich.edu


