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Abstract. The massive scale and variability of microarray gene data creates new and challenging problems
of signal extraction, gene clustering, and data mining, especially for temporal gene profiles. Many data mining
methods for finding interesting gene expression patterns are based on thresholding single discriminants, e.g. the
ratio of between-class to within-class variation or correlation to a template. Here a different approach is introduced
for extracting information from gene microarrays. The approach is based on multiple objective optimization and we
call it Pareto front analysis (PFA). This method establishes a ranking of genes according to estimated probabilities
that each gene is Pareto-optimal, i.e., that it lies on the Pareto front of the multiple objective scattergram. Both
a model-driven Bayesian Pareto method and a data-driven non-parametric Pareto method, based on rank-order

statistics, are presented. The methods are illustrated for two gene microarray experiments.
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1. Introduction

Microarray analysis of temporal gene expression pro-
files offers one of the most promising avenues for ex-
ploring genetic factors underlying disease, regulatory
pathways controlling cell function, organogenesis and
development; see [1-3] or [4] for background. Gene
microarrays can potentially identify RNA expression
levels of thousands of genes in a time sequence of tissue
samples, thereby providing valuable information about
complex gene expression patterns over time, called
gene expression profiles. Recent advances in bioinfor-
matics have brought us closer to realizing this potential.
However, the massive scale and variability of microar-
ray gene data creates new and challenging problems of
clustering and data mining. One of these problems is the
so-called gene filtering problem which can be divided
into two tasks: gene screening, aiming to specify a list
genes with uncommon expression at some level of sta-
tistical significance, and gene ranking, aiming to rank

order genes on this list. The most common approaches
to gene screening are significance tests implemented
by thresholding a set of standard test statistics, €.g. one
sided tests of profile correlation to a template, paired
T -tests of mean differences, Fisher tests of variance,
or Mann-Whitney rank tests. These can be found on
most of the commercial and freeware packages used
for statistical gene analysis such as the SAM MS Ex-
cel add-on distributed by [5] or the Microarray Suite
and Data Mining Tool (DMT) distributed by [6]. The
present paper is concerned with applying multiple ob-
jective optimization to gene ranking. A companion pa-
per [7] develops a similar approach for gene screening.

Significance tests can easily be extended to ranking
the list of screened genes, e.g., in decreasing order of
statistical significance according to observed p-values.
For example, to rank gene profiles according to similar-
ity to a given template one can rank genes in decreas-
ing order of measured profile-to-template correlation
coefficient. These types of ranking methods are based
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on optimizing single fitness criterion. A problem with
this single-criterion ranking method is that it is often
difficult for the molecular biologist or experimenter to
articulate what attributes he is seeking in terms of a
single quantitative criterion. It is usually easier for him
to specify qualitative aspects of the profiles of interest
to him, e.g., monotone increasing or decreasing in the
beginning, bumpy in the middle, and flat at the end. In
such a situation, it is more natural to try to capture each
aspect separately with multiple criteria.

This paper proposes a systematic multiple crite-
rion approach to gene ranking, denoted Pareto-optimal
ranking, which is based on the ordinal theory of multi-
ple objective optimization pioneered by the economist
and sociologist Vilfreda Pareto (1848-1923). Pareto-
optimality is a founding principle for social choice
and decision-making in mathematical economics (See
papers by Arrow [8, 9] and the Pareto website of the
New School [10]). As discussed in Steuer [11] this
principle has since been applied to many other fields.
Since V. Pareto’s name has many other associations
in probability and statistics, it is important to empha-
size that the proposed method of Pareto-optimal gene
ranking is completely unrelated to Pareto analysis or
Pareto graphs for statistical process control and qual-
ity assessment, to the Pareto principle of management
science, or to the Pareto probability density, e.g., as in
the Pareto model of income distribution.

To apply Pareto-optimal gene ranking the experi-
menter computes a number of fitness criteria for each
gene, generating a point cloud of criterion vectors
which we call the multicriterion scattergram. For ex-
ample, to select the most monotonic profiles over time
the fitness criteria might be chosen as the differences in
gene expression level over successive time points. The
objective of Pareto-optimal ranking is to isolate genes
that achieve a compromise between maximizing (or
minimizing) the competing gene-fitness criteria, i.e., to
find the “winning” profiles. Such genes lie on the so-
called Pareto front of the multicriterion scattergram and
are the non-dominated genes, see Section 3 for defini-
tions. Stripping off genes from successive Pareto fronts
in the multicriterion scattergram yields a sequence of
Pareto fronts at increasing depths in the data, called
the first, second, third, ..., Pareto fronts, respectively.
This sequence of fronts reveals a hierarchy, i.e., a partial
ordering, of the highest scoring gene profiles. In two
recent conference papers [12, 13] we applied Pareto-
optimal ranking to discover young- and old- dominant
mouse retina genes in Affymetrix GeneChip experi-

ments and the discovered genes were validated us-
ing RT-PCR techniques. The purpose of the present
paper is to present the general Pareto-optimal rank-
ing methodology, introduce a Bayesian formulation of
Pareto-optimal ranking, and to illustrate this approach
on a widely available data set created expressly for test-
ing algorithms for gene screening, classification, and
quantification of differential expression [14].

As the microarrays are obtained from a random sam-
ple of the population there can exist substantial statisti-
cal sampling errors that complicate the Pareto-optimal
analysis. These sampling errors can be handled by
cross-validation producing what is called a resistant
Fareto front (RPF) of genes, defined as those genes that
land on the Pareto front with high relative frequency un-
der re-sampling of the microarrays. The RPF method is
completely data-driven and as such it does not rely on
any distributional assumptions on the data. Thus it is
very flexible, allowing treatment of arbitrary fitness cri-
teria such as dependent and non-linear functions of the
data. As an example we present a non-parametric RPF
method which is computed on rank-order statistics of
the probe responses of the microarrays. Of course when
the data distribution can be characterized, even approx-
imately, data-driven methods have obvious drawbacks.
Principal among these drawbacks is the high computa-
tional load of cross-validation which can make RPF
methods impractical to implement for large sample
sizes. To address these drawbacks a Bayesian approach
is presented for Pareto-optimal gene ranking: the pos-
terior Pareto front (PPF) method.

As contrasted to the RPF method, the PPF method
ranks each gene according to its posterior probabil-
ity that it belongs to the Pareto front. This probability
is computed using prior densities on various unknown
parameters in the sampling error distribution. In partic-
ular, one can assume conditionally independent Gaus-
sian gene indices and assign non-informative priors on
the mean and variance for each time sampled gene. Us-
ing asymptotic approximations to extreme-value distri-
butions we obtain an expression for the posterior prob-
ability whose complexity increases in the number of
fitness criteria and not in the number of samples. The
Bayesian model that we use for the expression indices
and their means and variances is similar to the con-
ditionally Gaussian with conjugate prior model used
recently by Lonnstedt and Speed in [15].

We apply our Bayesian PPF analysis to a set of fit-
ness criteria defined as linear functions, a matrix of
profile contrasts, of the prior mean expression levels of



each gene profile. For illustration, PPF and RPF anal-
yses are applied and compared on Fred Wright’s data
set, described in [14], for detection of the most aber-
rant genes violating linearity in the Affymetrix human
fibroblast mixture experiment. The specification of the
set of most aberrant non-linear genes could be use-
ful for an experimenter who wants to choose a few
egregious genes on which to perform an expensive fol-
lowup study, e.g., RT-PCR analysis. Our results show
concordance between the genes selected by RPF and
PPF analysis which suggests that the PPF is insensitive
to the fairly restrictive model assumptions made.

It is worthwhile mentioning that, despite some su-
perficial similarities, the concept of Pareto fronts is fun-
damentally different from John Tukey’s notion of data
depths and contours of depth in a multivariate sam-
ple [16, 17]. Data depths are induced by a sequence of
nested convex hulls which contain smaller and smaller
proportions of the sample as the depth increases. Sim-
ilarly to Pareto fronts, the contours of these successive
convex hulls induce a (partial) ordering or fitness on
points in the sample. However, the data depths and their
contours differ from the Pareto fronts in several impor-
tant respects. The Pareto front defines a partial ordering
relative to the non-dominated points, as measured by
user-specified fitness criteria, while the data depth de-
fines a partial ordering relative to a single point at the
center of the sample, the “multivariate median.” For ex-
ample, while the 1-st data depth defines the entire shape
of the sample the 1-st Pareto front only describes the
shape of a side of the sample, namely the side having
points with higher fitness scores. Furthermore, Pareto
fronts are not in general convex while data depth con-
tours are always convex.

The outline of the paper is as follows. In Section 2
a brief review of microarray data analysis is pre-
sented and in Section 3 non-statistical Pareto-optimal
gene ranking approach is introduced. In Section 4 the
data-driven RPF analysis methodology is described. In
Section 5 the general PPF gene ranking method is de-
veloped and in Section 6 different profile contrast func-
tions are considered. Finally in Section 7 PPF analysis
is applied to finding aberrant genes in Fred Wright’s
human fibroblast mixing data.

2. Gene Analysis from Microarray Data

The ability to perform accurate genetic differentia-
tion between two or more biological populations is a
problem of great interest to geneticists and other re-
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searchers. For example, in a temporally sampled popu-
lation of mice one is frequently interested in identifying
genes that have interesting patterns of gene expression
over time, called a gene expression profile. Gene mi-
croarrays have revolutionized the field of experimental
genetics by offering to the experimenter the ability to
simultaneously measure thousands of gene expression
levels. A gene microarray consists of a large number N
of known DNA probe sequences that are put in distinct
locations on a slide. See one of the following references
for more details [18-21]. After hybridization of an un-
known tissue sample to the gene microarrays, the abun-
dance of each probe present in the sample can be esti-
mated from the measured levels of hybridization. Two
main types of gene microarrays are in wide use: photo-
lithographic gene chips and fluorescent spotted cDNA
arrays. An example of the former is the Affymetrix
[22] product line. An example of the later is the cDNA
microarray protocol of the National Human Genome
Research Institute (NHGRI) [23]. A suite of software
tools are available from Affymetrix and elsewhere for
extracting accurate estimates of abundance, called ex-
pression indices. Computation of these indices can
range from simple unweighted sample averaging, as in
the Affymetrix MAS4 software, to more sophisticated
model-based analyses, such as the Li-Wong method
[24, 25]. Many of the more sophisticated packages are
available as freeware, e.g., see Strimmer’s website [26]
for links to relevant software written in the R software
language.

The study of differential gene expression between T'
populations requires hybridizing several microarrays
from each population to reduce response variability.
Define the expression index extracted from the m-th
microarray at time ¢ and at the n-th gene chip probe
location

ylm(n)anzla"'aNa mzla"-aMta
t=1,...,T.

When several microarray experiments are performed
over time they can be combined in order to find
genes with interesting expression profiles. This is a
gene screening problem to which many methods have
been proposed including: multiple paired -tests; lin-
ear discriminant analysis; self organizing (Kohonen)
maps (SOM); principal components analysis (PCA);
K-means clustering; hierarchical clustering (kdb trees,
CART, gene shaving); and support vector machines
(SVM) [27-29]. Validation methods have been widely
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used and include: significance analysis of microarrays
(SAM); bootstrapping cluster analysis; and leave-one-
out cross-validation [30, 31]. Many of these methods
are based on optimizing some single fitness criterion
such as: the ratio of between-population-variation to
within-population-variation; or the temporal correla-
tion between a measured profile and a profile template.

In a well designed gene microarray experiment gene
screening methods, e.g., paired z-tests and Fisher test
of variance, will generally result in a large list of genes
and the biologist must next face the problem of select-
ing a few of the most “promising genes” for further
investigation out of this list. Resolution of this prob-
lem is of great importance since validation of gene
response requires more sensitive techniques, such as
RT-PCR, which have lower throughput than microar-
rays and are thus much more time consuming and ex-
pensive [19, 20]. Some sort of rank ordering of the list
of genes would help guide the biologist to a solution.
Thus gene filtering almost always boils down to a two
stage procedure: (1) gene screening to determine a sta-
tistically significant list of uncommon genes profiles;
and (2) gene ranking to order this list in decreasing or-
der of interest to the molecular biologist. The focus of
this paper is (2). Multiple criterion approaches to (1)
are the focus of other work [7].

3. Multiple-Objective Gene Ranking

As contrasted to maximizing scalar criteria, multiple
objective gene ranking seeks gene profiles that strike
an optimal compromise between maximizing several
criteria. This is closely related to multiple objective
optimization in which the concept of Pareto-optimal
solutions play a crucial role. These solutions are al-
most never unique and are variously called the Pareto-
optimal set, the Pareto front, the Pareto frontier, and
the Edgeworth-Pareto front (See books by Stadler or
[32] or Steuer [11]). Pareto optimality theory has been
applied to a wide range of application areas includ-
ing: economics, sociology, psychology, operations re-
search, evolutionary computing, and subset selection
among multivariate populations (See above referenced
books, and articles by Sobel [33], Zitler and Thiele [34]
and Arrow and Hervé [9]).

Multi-objective gene ranking can be motivated by
the following simple example. Let there be T = 2
time points and define w(i) = [u1(i), n2()]7 the true
unobserved expression levels of the i-th gene at each
of these times. When there is no risk of confusion we

will use the simpler notation &,(i) for &,(u(i)). Let
a group of experimenters agree on P gene selection
criteria which, when applied to a given gene, gives the
vector criterion:

£() = [E1(n()), . ... Ep(uG)]”.

Gene i is said to be better than gene j in the p-th crite-
rion if &,(u(i)) > &,(u(j)). When it is desired to filter
out highly expressed and/or strongly increasing gene
profiles, one set of selection criteria might be (P = 2):

i) = p2 — w1, E2(W) = po + . 1)

If the measured profile of the i-th gene has vector
mean p = (i) for which &; and &, are the largest over
all genes then this gene would be of obvious interest to
the experimenter. However, there may be many other
genes that could interest the experimenter, e.g. those
where &, is large but &, is only moderate or vice-versa.
Furthermore, if the criteria are in conflict then no sin-
gle gene may simultaneously maximize &, and &,. To
capture a set of genes of interest, one might consider
thresholding a compound scalar ranking criterion, e.g.
the weighted arithmetic average of (1)

Jo(p) = (o — p1) + (1 —a)(u2 + p1). — (2)

Of course, if ®; and w, are positive valued and a pro-
portional increase in the profile is more meaningful
to the experimenter then he might prefer the log cri-
teria §(u) = logua/pr, §2(1) = log /uapur, and
Ja(ﬁ) = alog(uz/m1) + (1 —a)log /pamy. In either
case, when o = 0 or 1 maximizing this compound cri-
terion would yield the two most fit genes under criteria
& or &.

An obvious issue that arises in selecting a scalar cri-
terion J, is: what is the most suitable choice of the
weight «? Two experimenters, A and B, may not have
selected the same weight factor « and therefore one of
them would not necessarily be satisfied by the signifi-
cance of the genes reported by the other. One way out
of this dilemma is to find the entire set of genes which
maximize J, for some choice of «. This would give a
set of genes that would be guaranteed to contain the
favorite gene of all experimenters. It turns out that this
set of genes are contained in a set called the Pareto front
which results from multiple objective optimization of
the pair [£,(i), £&(i)]” overi [35].

Multiple objective optimization captures the intrin-
sic compromises among possibly conflicting objectives
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Figure 1. A hypothetical multicriterion scattergram for genes A, B,
C, D, E plotted as vectors in the plane described by a pair of fitness
criteria £ and &. A, B, C are non-dominated genes and form the
(first) Pareto front. A second Pareto front is formed by genes D, E.

in a natural way. Consider the multicriterion scatter-
gram in Fig. 1 and suppose that fitness criteria & and
&, are to be maximized. Gene D is dominated by both
gene A and gene B since gene D has lower fitness in
both criteria &, and &,. Likewise gene E is dominated
by gene B and gene C. On the other hand genes A,
B and C are not dominated by any other gene and are
therefore preferable to genes D and E. Multi-objective
ranking uses this non-dominated property as a way to
establish a preference relation among genes given a set
of criteria {£,},. More formally, gene i is said to be
dominated if there exists some other gene g # i such
that for at least one ¢

£4(i) < &,(g) and §,(i) <§,(8), p#4q.

The set of non-dominated genes are defined as those
genes that are not dominated. All the genes which
are non-dominated constitute a set of points called the
(first) Pareto front. A second Pareto front can be ob-
tained by stripping off the points on the first front and
computing the Pareto front on the remaining points. For
the example in Fig. 1 the first Pareto frontis {A, B, C}
and the second Pareto front is {D, E}.

The above multiple criterion ranking methods are
applicable when the criteria &, through £p are per-
fectly observable. However, as these criteria depend
on the true mean values (i) of the i-th gene profile,
the criteria are only partially observed through a ran-
dom sample from the underlying population. Despite
its obvious potential for improvement over single cri-
teria optimization methods, to our knowledge Pareto

Pareto-Optimal Methods for Gene Ranking 263

front analysis has not been previously applied to gene
ranking or to more general data mining problems. We
speculate that this might be due to the unreliability
of the non-statistical Pareto front technique when ap-
plied to noisy observations and to the lack of system-
atic methods for dealing with statistical uncertainty.
We propose two methods for handling statistical un-
certainty: cross-validation leading to resistant Pareto
front (RPF) analysis, and Bayes smoothing, leading to
posterior Pareto front (PPF) analysis.

4. Resistant Pareto Front Analysis

The idea behind resistant Pareto front (RPF) analy-
sis is a simple case of leave-one-out cross validation
but requires some notation to explain succinctly. Let
é‘(M' """ MT)(n) denote an empirical estimator of the fit-
ness criterion vector &(n) for the n-th gene using the en-
tire sample population. Let & " () denote the
same empirical estimator computed on a reduced pop-
ulation obtained by omission of the m,-th sample from
eachtimepointt =1,...,T,m, € {l,..., M,}. Fora
givenmy, ... my we call this a leave-one-out estimator.
When the sample population consists of independent
sub-populations at different time points there will be
a total of H,T:1 M, different leave-one-out estimates of
£(n). For each leave-one-out estimate £ """ " (n)
find the Pareto front of genes. Define the indicator func-
tion A =M) () = 1, if gene n is on the Pareto
front and = 0, otherwise. Finally, compute the relative
frequency scores

M M _ _
Zmllzl e ZmrTzl A( Ml mr)(n)
T
1_[;=1 M,

RF(n) =

3

n=1,...,N.

These relative frequency scores are then used to rank
the genes in decreasing order of likelihood of belonging
to the Pareto front. This procedure can be repeated for
the second order and higher Pareto fronts to generate
scores for the relative frequency that each gene lies on
the first 2 or more Pareto fronts.

In [13] we applied the RPF procedure described
above to filter a set of N = 12,422 genes obtained
from an Affymetrix GeneChip study of retinal tissues
of a population of 24 mice grouped into 7 = 6 time
points (between postnatal 2 days (Pn2) through month
21 (M21)) each time point having data from M, = 4
microarrays. A representative sample of the data for 4
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Figure 2. Microarray data (MAS4) for 4 randomly selected gene hybridization profiles among the 14,222 genes encoded on the 24 microarrays

in the 6 time-point mouse retinal aging study.

different genes is shown in Fig. 2 which indicates a va-
riety of gene expression profiles over time. The objec-
tive was to extract “aging genes,” i.e. genes that demon-
strated a marked and steady increase in expression level
over time. First a set of MT = 4096 time trajectories
were defined for each gene, corresponding to all pos-
sible time paths through the sets of 4 samples at each
of 6 time points. For illustration three of these possible
trajectories are shown for a specific gene in Fig. 3. For
each trajectory the sign of the slope between each time
point was extracted to capture instantaneous increase
or decrease of each gene trajectory. The set of 1296
sign profiles summarize the monotonic properties of a
gene’s temporal evolution pattern. For each gene three
criteria were then computed including: (1) the propor-
tion £, of the 1296 trajectories that are monotonic; (2)
the overall change £, in expression level as measured
by the difference between the first (f = 1) and last
(t = T) time points; and (3) the negative curvature
£ of the profile computed as the average second or-
der difference between all sets of three adjacent time
points. The monotonicity criterion 1) is closely related
to the well known Jonckheere-Terpstra (JT) test statis-
tic [36, 37] for testing monotonic trends in multivariate
samples. Like the JT test statistic, our monotonicity cri-
terion is distribution free. However, our test is a more
stringent test of monotonicity and does not suffer from
the rank inversion property of the JT test [38].

Three Virtual Profiles
@

98401-at

2 3 4 5 6
Figure 3. Three of the 4096 possible virtual trajectories passing
through the 6 time points of the upper left profile in Fig. 2.

The 3D multicriterion scattergram of the full-sample
criterion vector é( """ )(n) is illustrated in Fig. 4 along
with the (first) Pareto front consisting of over 100
genes. A more stringent gene ranking procedure is to
intersect the Pareto fronts of all 3 possible 2D multi-
criterion scattergrams formed from pairs of fitness cri-
teria, see Fig. 5 for illustration. When using all of the
microarray data only one gene was found to lie on the
intersection of these fronts. This Pareto-optimal gene
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Figure 4. The multicriterion scattergram (population averaged hy-
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Figure 5. 'The multicriterion scattergram (population averaged hy-
bridization levels) and intersection of the 3 possible pairwise Pareto
fronts (respectively denoted by box, circle, and asterisk) for the 24
mouse retinal aging study. Only one gene lies on intersection.

trajectory is shown in Fig. 6. More genes were found
by implementing the RPF cross-validation technique
to determine the number of times each gene appears
in one of the first ten intersecting Pareto fronts via the
relative frequency scoring procedure described earlier.
For more details see [13]. The result of this analysis
yielded several strongly monotonic increasing genes
which have been subsequently validated experimen-
tally using RT-PCR analysis.

5. Posterior Pareto Front Analysis

The posterior Pareto front (PPF) analysis introduced
here is based on a Bayesian perspective and can offer a
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Figure 6. The trajectory of the Pareto-optimal gene lying on the

intersection of the three fronts in Fig. 5 in the 24 mouse retinal aging
study.

lower complexity alternative to the RPF procedure de-
scribed in the previous section. The posterior probabil-
ity p(i | Y) that a particular gene i is on the first Pareto
front is easily expressed using the definition of non-
dominance and the assumption that the criteria vectors
{£(j)}; are statistically independent given the chipset
data Y. In the following expressions the notation £(i) <
&(j) means that £,(i) < &,(j)forp =1,..., P, and
E€ denotes the complement of event E:

pi1Y)=P[ (@ <G 1Y
J#L
= / dPED V) [[PUEGD <E()F 1 Y. £G)
j#i
or when the posterior density fe;) y(u) of &£(i) is
available - B

pli1Y)= f du fey v [0 = P < £G) V1.
J#i
3)

This expression requires evaluating a multidimensional
integral over P-dimensions. For the case of two criteria
(P = 2) the posterior probability reduces to:

pilY)= /fdul duy fe )60 v W1, u2)

x H [Fa(j)\Y(ul) + Fey v (u2)
J#i
— Fr(jhaay v (un, ua)], @)
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where Fy ) &) v(u1, u2) is the bivariate conditional
distribution function of &(i), &G): Fg)6a6) v X
(ur,uz) = ["L dvy [ dus Fey.e0) v (V1. 02).

5.1. Application to Gene Ranking

Start with the additive model for the (log) gene profile
measurement

Yt (@) = (@) + €r (D)

where €,,,(i) are zero mean noise samples and m =
1,...M,t=1,...,Tandi = 1,...,N. Given a
prior f(u,(i), o,(i)*) on the mean u,(i) and the vari-
ance 0,2(1') of y,,;(i) the posterior probabilities (3) can
be computed. This is a similar Bayesian setup as used
in the empirical Bayes approach to microarray analysis
of Lonnstedt and Speed [15]. However, as contrasted
to the conjugate prior adopted in [15], here we will
adopt the simpler non-informative prior as described
in Geisser and Cornfield [39]:

C
- = +
Fuiyor@y.s) = i UE R, seR

where c is a positive normalizing constant and a > 0.

Two special cases are of interest to us: (i) time vary-
ing variances {Utz(i)},; and (ii) non-time varying vari-
ances 02(i) = 02(i),t,t = 1, ..., T. The former case
is easier to treat than the latter case.

5.1.1. Time Varying Variances. Consider the follow-
ing model for 1, (i) and €, (i): (i) {4, (i)}si and {0, (i)}i
are independent sets of i.i.d. random variables; (ii)
given these random variables Y = {y;,,(i)};; are in-
dependent jointly Gaussian random variables with re-
spective means {u,(i)},; and variances {af(i )}sis (iid)
{yim (i)} are conditionally i.i.d.

It is easily shown that under the above assumptions
the means {u,(i)};; are conditionally independent given
Y with marginal posterior density equal to the Student-¢
density

)

®)

(u — m(i»Z)(M“”W

62(i)

Sy y(u) = k(Yn)(l +

where 2,(i) = M™' Y, yin(i), 67G) = M™' Y, x
Gim(@) = @D, Y = {3} and k(Yy,) is the

measurement-dependent normalizing factor given in
[39]:
1 TEWM-a+2)

k) = G(VTT (M —a+ 1)

(6)

The associated distribution function can be approx-
imated using either the large M Gaussian approx-
imation to the Student-r or the L., approximation
(", g/()dv)"/4 ~ sup,_, g(v), where g > 0. The
latter approximation improves as g gets large. The L
approach has computational advantages as it yields a
closed form expression—as contrasted with the Gaus-
sian approximation that gives an expression involving
integrals of the Gaussian density. Applying the L, ap-
proximation to the integral of (5) yields

() — w3 "

Foooivw~=|{14+ —— .

iy v (1) ( 320

where (x) is the function equal to x when x > 0 and
equal to zero otherwise.

5.1.2. Constant Variances. Next consider the follow-
ing model: (i) 07(i) = o(i); (i) {12,(1)},i and {o*(0)};
are independent sets of i.i.d. random variables; (ii)
given these random variables ¥ = {y;,,(i)};; are in-
dependent jointly Gaussian random variables with re-
spective means {x,(i)},; and variances {otz(i)},,-; (i)
{ym ()}, are conditionally i.i.d.

Due to (i) the mean profile {u,(i)}; is no longer a
conditionally independent sequence given Y. The joint
posterior density of w(i) = [1(), ..., ur@i)]” takes
the form of a multivariate Student-¢

Juy 1y, ... ur)
T o\ ~(TM—at2)2
= k(Y (r — [1(0)°
_k(Y,)(H; = ) o
where 6%() = T'M™' Y, 3, (i) — (D)),

Y; = Vim()}im, and k(Y;) is a scale factor similar to
(6).

Analogously to the case of unequal variances, the
associated distribution function can be approximated
by a multivariate L., approximation to (7):

Fuiy v, ..., ur)

A 2 —(TM—a+2)/2
%(HZ(M:) u,>+> C®

62(i)



6. Profile Contrasts

Linear contrasts have been advocated for many differ-
ent problems of multivariate statistical inference and
experimental design [40, 41]. Here we adopt linear
contrasts as multiple criteria for Posterior Pareto rank-
ing. The simplest contrasts are the time sampled means
themselves &,(i) = u,(@@), p =1, ..., T which can be
called the amplitude profile criterion. In the case of
time varying variances using the expressions (5) and
(7) in (4) gives an expression for p(i | Y)) which only
requires numerical evaluation of one-dimensional inte-
grals (as compared with T-dimensional integrals if the
exact non-asymptotic distribution function was used).

A more flexible criterion are various contrasts be-
tween time means. In particular define the vector cri-
terion £(i) = [£,(i), ..., Ep()]T as the linear function
of the mean profile vector:

E(D) = Ap(i),

where A = ((a;;))isa P x T contrast matrix. The vec-
tor £ (i) will be called the profile contrasts for gene i. To
retain the simplicity of the approximations to p(i | ¥),
it is necessary that the component criteria in £(i) be
statistically independent when conditioned on Y. At a
minimum this requires P < T. Assume as above that
the components of u are conditionally independent. A
sufficient condition for independent & p’s is that non-
zero elements of each of the rows of A do not overlap
each other, i.e. gjzaj; = 0,foralli # j and all k. When
the variances are not time varying (var(ymm (7)) = o2(i)
a weaker sufficient condition is that the rows of A be
orthogonal since the joint density f,;yy(®) in (7) is
invariant to orthogonal transformations of u — fu(i).

As examples consider the following P x T contrast
matrices

—1 0 1 -1 1 0
[ |
1 -2 1 -1 -1 2
-1 1 0 o0
A,=|-1 -1 2 0],
-1 -1 -1 3
1.0 0 -1
A,=|0 -1 1 0
|10 01

Applying posterior Pareto front analysis to §(i) =
A;p(i) will extract 3 time-point gene profiles which are
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end-to-end increasing (large &) and have large positive
curvature (large &). If Aj is replaced with A; then the
analysis will find profiles which are monotonic increas-
ing. For 4 time-points A4 will perform similar services
as Az while A;‘ will filter out “mexican hat” profiles.
Note if the noises {€,,;(i)},,, are i.i.d. Gaussian then the
linear contrasts are also independent and Gaussian as
the above contrast matrices are orthogonal.

Of interest are general ways to construct meaning-
ful contrast matrices A which are orthogonal, so as to
maintain multiple criteria independence for computa-
tional simplicity, yet to capture desired shape charac-
teristics of temporal expression profiles. One possible
method is to define a contrast matrix B whose rows
capture some set of desired linearly independent prop-
erties of the profile and then apply the PPF with the
orthogonalized contrast matrix A = [chol(BB”)]™'B,
where chol(BB”) is the Cholesky decomposition of
BB . For example the following (non-orthogonal) ma-
trix might be proposed as more natural for capturing
strongly monotone increasing profiles

-1 1 0
B= .
[o ~1 1]

It turns out that the aforementioned Cholesky orthog-
onalization procedure yields the orthogonal matrix:

A —1/V2 1/V2 0
_[—1/f6 —1//6 z/ﬁ}’

which is equal (up to a left multiplication by a positive
diagonal matrix) to the contrast matrix Aj.

7. Application to Dilution Experiment

To illustrate the application of Bayesian PPF analysis
and data-driven RPF analysis we used these methods
to find and rank the non-linear gene profiles in Fred
Wright’s dataset. This dataset is described in the pa-
per by Lemon et al. [14] and is available at the web
address provided in the citation. Fred Wright’s data
set was obtained from a dilution experiment which the
authors designed for empirically validating and com-
paring various differential gene expression methods
of analysis. As explained in [14] three populations of
genes were hybridized to Affymetrix HuGeneFL chips:
serum starved human fibroblast cells; serum stimulated
human fibroblast cells; and a 50-50 mixture of these
cells. The probe responses (hybridization levels) on a
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total of 18 chips were processed. These 18 chips corre-
spond to 6 replications within each of the 3 populations
mentioned above. Each HuGeneFL chip contains the
same 7129 gene probes. For each gene probe the se-
quence of probe responses from the “stimulated(r =
1),” “50-50(t = 2),” and “starved(r = 3),” populations
was defined, in that order, as a gene expression pro-
file. For this type of dilution experiment the true pro-
files should be linearly increasing or decreasing over
the three “time points.” Any extracted non-monotone
gene profiles must either be due to statistical estima-
tion errors, uncontrolled fluctuations in sample concen-
trations during hybridization, or (most probably [42])
hybridization saturation. A typical set of expression
indices is shown in Fig. 7.

We used the Li-Wong reduced expression indices
derived in [14] for our analysis. Our objective is to de-
termine the most peaked inverted V-shaped (concave)
gene profiles in the dataset. The inverted V-shaped pro-
files are those genes whose expression increases over
t = 1tot = 2 followed by a decrease over t = 2
to t = 3. Genes whose profiles have the highest peak
at + = 2 most severely violate the linearity assump-
tions among the concave profiles. We applied a simple
procedure to screen for non-linear gene profiles before
performing the Pareto front analysis. Specifically, the
probe responses in each gene expression profile were
regressed onto the linear model

Yim (D) = a(Dt + b)) + (@), t=1,2,3,
where {€,,,(i)},» i1s assumed i.i.d. Gaussian additive
noise with variance o2(i) and a, b are undetermined

0.06f

0.051

ao
o@moo O

D87683-at o]
0.04f

0.03f

0.02f

0.01f 8
g

Stm 50-50 ‘Strv

Figure 7. Microarray data for a gene in human fibroblast mixture
study.

coefficients. The regression gives an error residual for
the i-th gene

RG) =1y, 1" — iy, )],

where IT is the 3 x 3 matrix which orthogonally
projects R® onto the affine subspace {y e R’

y = all,2,3] + b1, 1, Waper, and [§_(D]" =
% Zﬂf:l[ylm, Yom, ¥3m]? is the mean vector for the
i-th gene profile. The quantity s(7) is the (pooled) sam-
ple variance estimate of 2. Under the linear profile
hypothesis the statistic F (i) = R(i)/s(7) is distributed
as Fisher-F on 2 and M — 3 degrees of freedom [43].
Based on the observed p-values of the Fisher F statis-
tics we determined that no genes fail the linearity test
F(@i) = R(i)/s(i) < y at any positive false discovery
rate (FDR) [44] according to the FDR procedure of
[45]. Nonetheless, as our purpose is to illustrate PFA,
we first screened for genes that satisfied F (i) > 5.5.
This threshold corresponds to a (single comparison)
significance level of p = 0.1. This screening elimi-
nated all but 98 profiles to which the PFA analysis was
applied.

7.1.  Linear-Contrast Pareto Analysis

First we performed linear-contrast Pareto analysis us-
ing the following orthogonal contrast matrix

-1 1 0
A= ,
1 1 =2
to generate two criteria with which to rank the inverted-
V shaped profiles. Note that when applied to the i-
th gene’s sample-mean probe response vector (i) =

[ (i), f2(), 13(i)]7, this yields the two statistically
independent contrasts

£1(1) = f12(i) — @)
£() = —2(3(1) — (20) + 13())/2).

As desired both contrasts are positive when the profile
[u(i) is concave. Figure 8 displays the associated multi-
criterion scattergram. The crosses in the figure indicate
the 98 non-linear genes.

While we have investigated many different values
for the prior PPF parameter a, we only present results
for a = 2 here. We have observed that increasing
a makes the computed posterior probabilities more
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Figure 8. Multicriterion scattergram corresponding to contrast matrix A = [—1, 1, 0; 1, 1, —2] applied to the mean expression levels over 18
microarrays in human fibroblast study. Crosses indicate the 98 genes selected for analysis. The contrast matrix A is designed to find genes with
inverted-V shaped profiles.
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Figure 9. The first five Pareto fronts (no cross-validation) for the genes with non-linear profiles shown in Fig. 8.

conservative (smaller) as the tails of the posterior of PPF analysis in the multiple criteria plane. The
densities become heavier. Figure 9 shows the first contours around each point denotes the standard error
five Pareto fronts computed on sample mean contrasts (one standard deviation) circle and the annotation at

of all microarray data. Figure 10 show the results the centers of the circles is the computed posterior
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Figure 10. Results of applying PPF analysis of human fibroblast study along with standard error constant contours and posterior probabilities
of a given gene belonging to the first Pareto front. For clarity, only the first 20 top ranked genes are shown.
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Figure 11. Some top ranked gene profiles in human fibroblast study according to computed PPF posterior probabilities shown on Fig. 10.
P(i | Y) denotes the Bayes posterior probability that each profile is on the Pareto-front.

probability that the gene belongs to the first Pareto
front. These plots illustrate how statistical uncertainty
in the multiple criteria plane (standard error contours)
translates to probability that a gene lies on the first

Pareto front. Figure 11 show the eight top scoring
trajectories after PPF analysis. In each sub-panel the
indicated piecewise linear line passes through the
means of the 6 replicates of each of the 3 time samples.



A final remark concerns the relation between our
contrast-based Pareto ranking approach and a simple
template matching approach, which we call matched
filtering (MF), to gene ranking. The MF approach ranks
gene profiles according to their correlation to a tem-
plate; a reasonable selection is the symmetric concave’
profile [—1, 2, —1]. The MF approach is equivalent to
using the single ranking criterion £(i) = 20,(i) —
fu1(i)— fu3. Itis easily verified that§ = a&1(i) + B&2(i)
for positive constants ¢ = 2.1213, 8 = 1.2247, where
&1, & are the contrasts that we used in the Pareto gene
filter. Therefore, Pareto ranking is a generalization of
matched filtering. Indeed, as explained above, Pareto
ranking is a method that ranks profiles according to
the whole family of templates described by the cone

{§ =adi + B&, . >0}

7.2.  Non-Parametric RPF Analysis

For comparison we investigated a fully non-parametric
data-driven Pareto analysis based on rank-order statis-
tics. Rank order methods of microarray analysis are
popular since they are distribution-free and avoid am-
plitude dependent biases and circumvent the need for
microarray amplitude normalization. On the other hand
such methods sometimes incur a loss in sensitivity for
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small sample sizes. The rank-order Pareto front proce-
dure that we used is as follows. For each microarray
we computed the rank-order of each gene according to
its hybridization score, determined by the extracted Li-
Wong indices as above, relative to all other genes on the
microarray. Specifically, we used the Matlab command
[s,yrl=sort(y) where y is the 7129 x 18 matrix
whose columns are gene expression indices for each of
the 18 microarrays (3 treatment groups of 6 samples
each). The resulting 7129 x 18 matrix yr of integers
from 1 to 7129 was then used to perform screening of
non-linear genes, similarly to above, and subsequently
to perform Pareto analysis under the following two cri-
teria. The first criterion él (n) is the difference between
the mid-point and the average of the two other points
in the mean rank-order profile of gene n (Matlab com-
mand [mean(yr(:,1:6)’);mean(yr(:,7:12)’);
mean (yr(:,13:18)"')]"' * A'). The second
criterion is the number of possible rank-order profiles
whose shapes match an inverted-V profile. Specifically,
for each gene we generate all 63 = 216 possible trajec-
tories through the 3 sets of 6 replicated measurements
of hybridization levels. The proportion of these trajec-
tories which have slope of positive sign followed by
slope of negative sign is the second criterion & (n).
InFig. 12 the multicriterion scattergram is displayed.
Figure 13 shows the first five Pareto fronts computed on

Mean criteria
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o o o o
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T T T T
+

o
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o
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Figure 12.

0.2
Criterion 1

0.4 0.6 0.8

Multicriterion mean scattergram for the non-parametric rank-order criteria for human fibroblast study.
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Pareto fronts for non-parametric criteria
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Figure 13. The first five Pareto fronts (no cross-validation) of the non-parametric criteria for the non-linear genes indicated by crosses in
Fig. 12.
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Figure 14. The 8 top ranked cross-validated gene profiles remaining on the first Pareto front among the non-linear genes in Fig. 13. P(i | Y)
denotes the relative frequency that each re-sampled (leave-one-out cross-validation) profile is Pareto-optimal according to the non-parametric
slope-sign criteria. Dashed line is the linear regression on 7.

the full set of 3 x 6 non-linear gene samples indicated as remained on the first Pareto front. Figure 14 shows
crosses on Fig. 12. Leave-one-out cross validation was the top 8 resistant inverted V-shaped profiles ranked in
performed to determine the resistant genes for which a terms of relative frequency of remaining on the first

high proportion of the 216 re-sampled 3 x 5 trajectories front.
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PPF linear contrast P(ilY) RPF linear contrast P(i]Y) RPF non-parametric P(iY)
AFFX-ThrX-5-at 0.999 AFFX-DapX-5-at 1.U14394-at 0.944
HG3342-HT3519-s-at 0.998 AFFX-ThrX-5-at 1.U23435-s-at 0.694
AFFX-DapX-5-at 0.998 AFFX-ThrX-M-at 1 AFFX-PheX-M-at 0.685
HG831-HT831-at 0.996 :HG3342-HT3519-s-at 1 AFFX-LysX-3-at 0.662
AFFX-ThrX-M-at 0.986 HG831-HT831-at 1 AFFX-LysX-M-at 0.648
X69111-at 0.984:U14394-at 1 AFFX-HSAC07/X00351-5-at 0.352
U14394-at 0.974 :V00594-at 1 AFFX-ThrX-5-at 0.301
AFFX-LysX-3-at 0.962:X69111-at 1 AB00O115-at 0.287
V00594-at 0.955:U45285-at 0.944 AFFX-DapX-5-at 0.245
U45285-at 0.932 AFFX-LysX-3-at 0.917 U53003-at 0.176
ABOQ0115-at 0.899 AFFX-HSACOQ7/X00351-5-at 0.806 M92934-at 0.111
AFFX-HSAC07/X00351-5-at 0.866:AB000115-at 0.417 D29992-at 0.083
U73379-at 0.837:U73379-at 0.13 HG831-HT831-at 0.069
AFFX-DapX-M-at 0.678 :V00594-s-at 0.074 S79522-at 0.042
Y09912-rnai-at 0.67 U75362-at 0.037 V00594-s-at 0.042
U75362-at 0.56 AFFX-PheX-5-at 0.028 D43636-at 0.032
AFFX-DapX-3-at 0.555:U03399-at 0.009 U22377-at 0.032
V00594-s-at 0.554 U75362-at 0.028
HG1980-HT2023-at 0.483 $70585-rnai-at 0.014
HG3044-HT3742-s-at 0.441 L02320-at 0.009
D43636-at 0.389 L05515-at 0.009
L27624-s-at 0.387 V00594-at 0.009
U03399-at 0.378 X69111-at 0.009
S69370-s-at 0.321 AFFX-PheX-5-at 0.005
AFFX-PheX-5-at 0.315 HG174-HT174-at 0.005

Figure 15. The top scoring genes (Affymetrix nomenclature) resulting from PPF and RPF analysis of the most non-monotone concave profiles
for Fred Wright’s data (Li-Wong reduced indices). In the case of PPF, P(i | Y) denotes the posterior probability that given gene belongs to first
Pareto front with respect to the non-informative prior. In the case of RPF P(i | Y) denotes the relative frequency that the gene belongs to the

Pareto front with respect to re-sampling.

The top ranked 25 gene profiles under each crite-
rion are shown in Fig. 15 along with their probability
scores. Also included for comparison to the PPF anal-
ysis is a linear-contrast RPF analysis. Only 17 genes
obtained positive scores under the linear contrast RPF
analysis (middle column of figure). The linear-contrast
RPF analysis is a leave-one-out cross-validation pro-
cedure applied to the same linear contrasts (matrix A)
as adopted in PPF analysis. Observe that all of the
17 RPF genes appear in the first 25 of the PPF gene
list: purely data-driven RPF (linear-contrast) analysis is
concordant with the model-based Bayesian PPF anal-
ysis. This indicates that the performance of the PPF
analysis is insensitive to the somewhat dubious as-
sumptions (Gaussianity, independence, large M, and
diffuse prior) under which the PPF posterior prob-
abilities were derived. On the other hand, the non-
parametric RPF analysis reveals 3 highly ranked genes
(U23435-s-at, AFFX-PheX-M-at and AFFX-LysX-M-
at) which are not in the list of top 25 PPF ranking
genes.

8. Conclusion

This paper introduced a new method of gene rank-
ing based on analysis of the Pareto fronts of a spec-
ified multiple criterion objective function applied to
each gene. These techniques also have applicabil-
ity to general data mining problems involving shape
analysis and general selection criteria. The method is
very flexible and involves choosing a set of appro-
priate profile contrasts which display desired char-
acteristics of the expression profiles. Both a data-
driven cross-validation method, called RPF, and a
model-driven Bayesian posterior Pareto method, called
PPF, were presented for gene ranking. In contrast to
the cross validation method the Bayesian method as-
signs positive probability to all genes and has lower
complexity than the non-parametric cross-validation
method for large sample size. On the other hand the
cross-validation method requires fewer assumptions
and may be more robust to dubious model assump-
tions.
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As for possible future work, a full bootstrap im-
plementation of the RPF method would undoubtedly
make it more outlier resistant. However this would
greatly increase computational complexity. Methods
of multiple comparisons [46], which have been previ-
ously applied to differential analysis of gene microar-
rays by Storey et al. [47] and others, also appear ap-
plicable to multicriterion ranking and, in particular,
to validating Pareto-optimal trajectories. Finally, the
multiple objective optimization approach described in
this paper may be applicable to the PIDEX method of
Ge et al. [48] for combining pairs of gene selection
criteria.
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