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Abstract. High-throughput gene expression technologies such as microarrays have been utilized in a variety of
scientific applications. In this article, we develop multivariate techniques for visualizing gene regulatory networks
using independent components analysis (ICA) techniques. A desirable feature of the ICA method is that it approxi-
mates a biological model for the gene expression. The methods are outlined and illustrated with application to yeast
gene expression data.
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1. Introduction

With the emergence of the systems biology approach to
modelling the regulatory networks of organisms [1, 2],
identification of coordinated patterns of gene expres-
sion in whole genomes of model organisms gives in-
sight into the fundamental biological processes that un-
derlie basic functions, such as development and growth.
In this setting, we are not interested in studying the be-
havior of individual genes but rather that of groups of
genes.

One major development that has allowed scientists
to consider systems biology approaches to studying be-
havior of organisms is DNA microarrays. These high-
throughput assays allow for the simultaneous monitor-
ing of mRNA transcript levels for thousands of genes.
Given the availability of gene expression datasets from
microarray experiments, one natural goal in modelling
the data has been to discover genetic networks that de-
lineate regulatory mechanisms. Due to the current state
of experimental variability in microarray data, it does
not currently appear to be possible to construct genetic
networks from the original data themselves unless ex-
ternal biological knowledge, such as information on
upstream promoter elements [3] or functional annota-

tion [4], is available. The aim is instead to identify a
first-stage global topological map of regulation that can
later be analyzed on a more local basis in greater detail.

There has been recent work describing methods for
reverse engineering genetic networks using microarray
data. Examples include [5–7]. These methods can be
broadly grouped into two categories based on whether
or not dimension-reduction methods are used. In this
article, we focus on methods for studying networks
which rely on dimension-reduction strategies.

Most genetic network reconstruction methodologies
that have been developed have relied on principal
components [7–10]. With this technique, the matrix
representing the covariance matrix of gene expression
profiles across the samples is decomposed using the
singular value decomposition into three matrices, one
representing the factor loadings, the second the matrix
of singular values and the third the associated eigen-
vectors. While the method is computationally efficient
and optimally reconstructs the data in an L2 sense [11],
there is no a priori reason biologically to believe that
the Euclidean distance is the relevant metric in analyz-
ing such data.

In this article, we propose a general approach for
the analysis of gene expression datasets that arise in
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time-course studies. The goal is to study the structure
of coordinated gene expression profiles over time and
to infer “network modules” from such data. We define
this term later in the paper. A key assumption found
in bioinformatics studies of network databases regard-
ing the sparsity of networks, will also be utilized. This
observation was used in [5] to develop a method for
genetic network reconstruction using robust regression
techniques. Our incorporation of sparsity into the mod-
elling procedure leads to the development of alternative
methods based on independent components analysis
techniques [12, 13] and hard thresholding procedures.
Independent components analysis was first proposed in
[12] for the analysis of gene expression data; we extend
this technique to a broader framework that yields some
geometric intuition regarding network structure in gene
expression data. We will be using data from a recent
gene expression study in yeast published in [14] to il-
lustrate the ideas. The format of the paper is as follows.
In Section 2, we describe the relevant biological back-
ground and a model for the analysis of gene expression
data from microarray time course experiments. One of
the outputs of the model-based analysis in this sec-
tion are estimated modes of expression, which we also
define later. In Section 3, we then develop a method
for studying the interrelationship between these modes
that incorporates the sparse network topology found in
biological databases. The proposed methods are then
applied to the yeast time-course data in Section 4. We
conclude with some discussion in Section 5.

2. Background and Model

2.1. Biological Motivation

The basis for the development of the methodologies in
the paper is the study of biological regulatory networks.
The focus of biology historically has been to under-
stand observed phenomena on the level of individual
molecules. However, most biological processes and ac-
tivities arise from interactions among many different
types of molecules. In [15], the concept of network
modules was formulated. Network modules are groups
of cells and molecules that interact among each other in
order to perform various biological functions. The in-
teractions can include protein-protein interactions and
protein-DNA interactions, among others. Because ac-
tual cellular activity occurs at the level of the module,
this is the unit that should be examined when studying
biological phenomena [15].

There are several examples of network modules in
the literature; in vitro experimentation has shown that
processes such as DNA replication and glycolysis par-
ticipate in such units. We make two points about these
modules that will be relevant to the modelling ap-
proach taken later. First, they function in a relatively
autonomous manner. This has been shown in the in
vitro experiments referred to earlier in the paragraph.
Another argument for the modules being independent
is evolutionary. If the modules were not independent,
then alterations or disruptions in individual cells and/or
molecules would lead to global disruption of cellular
processes, which is not evolutionary favorable. As ar-
gued in [15], the existence of modular structures leads
to greater evolutionary plasticity. The second point
about modules is that while they function in an au-
tonomous fashion, cells and molecules can be involved
in multiple modules.

Much recent work has focused on identification of
network modules. We focus on two recent studies. In
the first, reported in [16], computational methods based
on microarray and sequence data were used to pre-
dict the existence of transcriptional regulatory modules
that control gene expression in yeast. The second study
[17], also performed on yeast, predicted the existence
of 50 regulatory modules using both microarray and
sequence data. The method we describe is fundamen-
tally different from those in two respects. First, we will
only be using the gene expression data and not rely on
sequence data. These methods would be hindered by
both the availability of sequence in higher eukaryotes
as well as the relatively poor accuracy in predicting
transcription factor binding sites in higher eukaryotes.

In addition to the biological literature described
above, there have been theoretical studies that lead
to the implication of modular structures in gene net-
works. One such work has been put forth by Thieffry
and Romero [18]. They model gene regulatory net-
works using Boolean models. Based on the framework,
they show analytically that regulatory networks should
consist of small and relatively independent feedback
circuits, analogous to the network modules described
above.

2.2. Data and Model

Let aT denote the transpose of the vector a. At the i th
time point (i = 1, . . . , n), we let Xi = [Xi1 . . . Xip]
denote the p×1 gene expression profile vector (i.e. Xi j

is the gene expression measurement of the j th gene,
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j = 1, . . . , p). We suppose that the data have already
been preprocessed and normalized.

Based on the discussion in Section 2.1, we will as-
sume that the same expression profiles are generated
by a combination of independent latent network mod-
ules. Suppose further that the effect of the modules on
gene expression can be approximated by linear func-
tions. We can then formulate the following model for
the gene expression profiles:

X = AS, (1)

where X is the n × p matrix whose i th row is Xi , A
is a n × n matrix of mixing coefficients and S is an
n × p matrix. The components of A and S are assumed
to be unknown. The intuition behind the model is that
the observed gene expression profiles (X ) represent a
mixture based on linear combinations (A) of source sig-
nals (S) that are assumed to be independent. The source
signals correspond to the network modules described
in Section 2.1. The rows of matrix A represents the
expression modes of the network at the separate time
points.

The model in (1) is similar to factor analysis models.
As has been shown elsewhere [13], the model in (1) is
well defined if the components of S are nonnormal. This
is because for the multivariate normal distribution, all
linear transformations are multivariate normal as well.
This makes A in (1) nonidentifiable. Thus, the ICA is a
nonnormal factor analysis model, in contrast to princi-
pal components analysis, which is based on a Gaussian
latent variable model [11]. The emphasis on interest-
ing directions being based on nonnormality also links
ICA with projection pursuit methods [19, 20]. Many
authors have argued that the normality assumption is
not adequate for gene expression data [21, 22].

There are several methods of estimation in the ICA
model, including negentropy maximization, mutual in-
formation minimization, and maximum likelihood es-
timation. A survey of estimation methods available for
(1) can be found in [13]. For numerical implementation
of maximum likelihood estimation in (1), we will be
utilizing the FastICA algorithm. Further details can be
found in [23]. We first start by whitening the covariance
of X such that the transformed data have mean zero
and identity covariance matrix. The method is based
on a fixed point iteration approach to finding a maxi-
mizer of E{G(W T X̃ )}, where W corresponds to S, X̃
represents the whitened data and G is a function mea-
suring independence or equivalently nongaussianness.
The solution is found by a combination of Newton-

Raphson-type search methods and Gram-Schmidt-type
orthogonalization.

Based on the maximum likelihood estimation pro-
cedure, estimates of A and S are obtained. We now
use these estimates to explore the structure of the gene
expression time series. One quantity of interest is the
similarity between the expression profiles of a gene in
the original space (corresponding to the columns of
X) to the structural axes defined by the reduced space
(corresponding to the rows of A). For the gth gene
(g = 1, . . . , p) and i th structural axis of A, this is
done by taking the absolute value of the dot product of
the gth column of X and i th row of A, appropriately nor-
malized. We will refer to this quantity as the response
coefficient and denote it Rgi . We can use the response
coefficient for the gth gene to calculate a measure of its
overall contribution to the expression information over
the time points:

Vg =
n∑

i=1

R2
gi

Based on the values of Vg , we can determine what genes
show the most similarity to the structural axes defined
by model (1).

It is also important to graphically explore the
columns of A as well. This shows the time profiles
of the network modules, the hidden regulatory factors.
Large positive and negative values of the modules sug-
gest that they are in an activating or repressing state.
Because of the multiplicative nature of the model (1),
it is not possible to determine the correct sign on the
estimates of A and S.

We mention in passing that this approach has some
connections to that performed in [24]. However, our ap-
proach is fundamentally different in one major respect.
The model we formulated was based on the biological
considerations described in Section 2.1, and the inde-
pendent components are interpretable as network mod-
ules. In [24], the authors use singular value decompo-
sition to estimate structural axes without consideration
of an underlying model based on biological observa-
tions. On a more statistical level, their method focuses
on analyzing second moments in the data, while our
estimation procedure involves higher order moments.

3. Graph-Theoretic Algorithm
for Mode Analysis

The next stage of analysis involves relating the net-
work mixing coefficients (the rows of A) to each other.
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What has typically been used is a linear model approach
[7, 10]. In particular, the following linear model has
been formulated for the modes:

A(t + �t) = M A(t), (2)

where M is an n × n time-invariant matrix. The ma-
trix M describes the connectivity between modes. Sev-
eral versions of the model in (2) have been suggested
by other authors [7, 10]. Estimation of a solution for
M has been typically done using a numerical method
such as simulated annealing. We take an alternative ap-
proach to that presented in (2). Before describing the
algorithm, we first discuss the biological motivation
behind it.

In a variety of bioinformatics investigations [25, 26],
authors have found that the large-scale organization
of biological networks mirrors systems found in other
disciplines. Namely, the topology consists of a small
percentage of highly connected nodes and a majority
of sparsely connected nodes. Thus, we want to in-
corporate this inherent sparseness into the modelling
procedure.

We first start by utilizing a graph-theoretic algo-
rithm for modelling the dependencies among the ex-
pression modes. The distance between the modes can
be represented by a n × n pairwise dissimilarity ma-
trix D = [di j ] based on a distance metric defined on
Rn ×Rn . We use the Euclidean distance here. The num-
ber di j represents the distance between modes i and j .
From a graph-theoretic point of view, the matrix D is
a representation of an N-complete graph with varying
edge lengths between nodes of the graph.

We then incorporate the a priori biological sparsity
in the network by use of the hard-thresholding method;
we will set dissimilarities above a certain cutoff value
to zero. To determine the critical values, we permute
the rows of A and recompute the distance matrix D. We
do this K times. We then set the di j value equal to zero
if the observed distance is greater than the 90th per-
centile of the permutation distribution. When we zero
out an entry in the dissimilarity matrix, it corresponds
to deletion of the edge connecting the two vertices from
the graph.

While the calculation of pairwise dissimilarity ma-
trix is also important for hierarchical clustering of gene
expression data, our purpose is for quantifying the de-
pendencies among expression modes. Note that this is
an algorithmic approach which does not correspond
to an underlying model. However, our end product is

a connectivity matrix for the expression modes, analo-
gous to M in (2). Furthermore, the numerical algorithm
used is much simpler than that proposed by previous
authors and incorporates the observations of previous
authors [25, 26] in a natural way.

4. Application: Yeast Cell-Cycle Data

The proposed methodologies are applied to data from
a recently published microarray study examining the
gene expression behavior of the yeast genome during
the cell cycle [14]. We provide some brief details of
the study. Three sets of techniques were used synchro-
nizing the yeast culture samples: α-factor arrest, elutri-
ation and arrest of a cdc15 temperature-sensitive mu-
tant. We analyzed the three datasets separately. These
datasets consist of measurements taken on 6113 genes
at 24, 18 and 14 time points, respectively. We took the
following steps for preprocessing the data:

1. We removed genes with MAX/MIN > 5 or with
more than 10% missing data.

2. Missing values were imputed using median impu-
tation across genes.

3. The remaining ratios were transformed using a log-
arithmic transformation (base 2).

For the three experiments, this yielded a total of 4785,
5564 and 5748 genes, respectively.

We first applied the independent components analy-
sis to each dataset and determined the genes that had the
largest response coefficient values for each microarray
experiment. The modes for the three experiments are
shown in Figs. 1–3. The plots show that there are some
common aspects in the structures of the time profiles
for the expression modes. For example, there appears to
be a common activation around t = 120 minutes across
the modes for the α-factor arrest data; this is seen in
Fig. 1. Similar examples can be seen in the elutriation
and cdc15 datasets as well.

We next determined the top 20 genes for each exper-
iment based on the response coefficient value; these are
given in Tables 1–3. The genes that we have found are
different from those reported in [24] for the three exper-
iments. However, their expression modes were based
on principal components, while we use independent
components analysis. This underscores the ability of
the independent components analysis method of find-
ing structures that are nonnormal. While many of the
genes are of unknown function, there are genes listed
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Figure 1. Time profiles of expression modes from independent
components analysis of α-factor arrest yeast cell cycle data. These
were estimated using independent components analysis and corre-
spond to the columns of A.

Figure 2. Time profiles of expression modes from independent
components analysis of elutriation experiment with yeast cell cy-
cle data (see Fig. 1).

that are involved in cell structure, translation (e.g., ri-
bosomal proteins), and other cell functions.

To determine if the modes found were of bio-
logical interest and if they were consistent across

Figure 3. Time profiles of expression modes from independent
components analysis of cdc15 yeast cell cycle data (see Fig. 1).

studies, we took the top 200 genes for each expres-
sion mode based on the response coefficient and then
did a database search in the Stanford yeast microarray
database (http://www.yeastgenome.org/) for the cate-
gory of Gene Ontology [27] function term that ap-
peared most frequently in the list. These results are
summarized in Tables 4–6. Based on these results, we
find that there is some consistency in the terms found
across modes and across studies in terms of distribu-
tions of functions. Two limitations here is that we are
considering the modal function keyword and that the
search is on 200 genes.

We then applied the permutation-based algorithm
to find the graphs connecting the modes; they are
presented in Figs. 4–6. The plots of the adjacency
matrices show how we have incorporated sparsity
in the network using hard thresholding of the dis-
tance matrix. Based on the plots, we find that most
modes have few, if any connections, but that there
are a few modes with multiple connections. Exam-
ples of such modes include mode 3 for the α-factor
dataset, mode 15 in the elutriation dataset, and mode
14 for the cdc15 data. Combining the information pre-
sented here with that in Tables 4–6, we find sugges-
tive evidence that the connections appear to be consis-
tent across studies. In particular, the modes with the
highest connections tend to have transcription-related
function.
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Table 1. Top 20 genes based on Vg for α-factor arrest data.

Yeast ORF Gene name Function

YGL241W KAP114 Karyopherin (collective name for homologous family of nuclear transport receptors)
of approximately 114 kD

YLR071C RGR1 Affects chromatin structure, transcriptional regulation of diverse genes and sporulation

YIL146C Extracellular mutant

YLR050C Unknown

YPL143W RPL33A Ribosomal protein L33A

YDR177W UBC1 Ubiquitin-conjugating enzyme

YGR047C TFC4/PCF1 Transcription factor tau 131 kD subunit

YNL109W Similar to cytochrome-c oxidase

YML029W Unknown

YIL090W Unknown

YCR031C RPS14A 40S ribosomal protein S14e

YBR103W SIF2 Sir4p interacting protein

YNR008W LR01 Phospholipid:diacylglycerol acyltransferase

YDL138W RGT2 Glucose permease

YNR037C 40S ribosomal protein S15e

YIL130W Unknown

YIL043C CBR1 Cytochrome-b5 reductase

YDR121W DPB4 DNA polymerase II (epsilon) 4th subunit

YKL055C OAR1 Putative 3-oxoacyl-(acyl carrier protein) reductase

YMR123W PKR1 Hypothetical protein

Table 2. Top 20 genes based on Vg for elutriation data.

Yeast ORF Gene name Function

YIL045W PIG2 Glycogen synthase 2 interacting protein

YGR171C MSM1 Methionyl-tRNA synthetase, mitochondrial

YJR020W Unknown

YLR170C APS1 AP-1 complex subunit, sigma1 subunit

YPL147W PXA1 ABC family long-chain fatty acid transporter

YPR073C LTP1 Protein-tyrosine-phosphatase/acid phosphatase

YMR178W Unknown

YNL224C Unknown

YOL096C COQ3 3,4-dihydroxy-5-hexaprenylbenzoate methyltransferase

YOL115W TRF4 Topoisomerase 1-related protein

YHR157W REC104 Meiosis-specific protein

YFR032C Unknown

YDR231C COX20 In the maturation and assembly of cytochrome oxidase involved protein

YGR057C LST7 Hypothetical protein

YGR225W SPO70 Unknown protein

YCR019W MAK32 Necessary for structural stability of L-A double-stranded RNA-containing particles

YPR148C Unknown

YGR017W Unknown

YIL013C PDR11 Putative member of the ABC family of membrane transporters

YKL206C Unknown
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Table 3. Top 20 genes based on Vg for cdc15 data.

Yeast ORF Gene name Function

YGR181W TIM13 Translocase of the inner membrane

YIR027C DAL1 Allantoinase

YMR253C Unknown

YPR087W Unknown

YGR028W MSP1 MSP1 protein (tat-binding homolog 4)

YLR080W Unknown

YDR279W Unknown

YPL176C YPL176C Similarity to chinese hamster transferrin receptor protein

YPL173W MRPL40 Mitochondrial ribosomal protein L40

YJL014W CCT3 T-complex protein 1, gamma subunit

YBR078W ECM33 Involved in cell wall biogenesis and architecture

YFL049W Unknown

YEL014C Unknown

YLR380W CSR1 Unknown

YNL074C MLF3 Unknown

YER049W Unknown

YDL124W Similar to aldose reductase

YMR251W Hypothetical protein

YMR144W Unknown

YML130C ERO1 Required for protein disulfide bond formation in the ER

Figure 4. Plot of adjacency matrix for expression modes in α-factor
dataset using permutation-based method; solid cell denotes connec-
tion, while an empty cell indicates no connection. This was found
using the method in Section 3.

Figure 5. Plot of adjacency matrix for expression modes in elu-
triation dataset using permutation-based method; solid cell denotes
connection, while an empty cell indicates no connection (see caption
to Fig. 4).
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Figure 6. Plot of adjacency matrix for expression modes in cdc15
dataset using permutation-based method; solid cell denotes connec-
tion, while an empty cell indicates no connection (see caption for
Fig. 4).

5. Discussion

With the explosion of transcription information avail-
able in microarray experiments, one goal researchers
have taken is to reconstruct genetic networks using
these data. However, because of the limited sample
sizes and the experimental variation, reconstructing en-
tire gene regulatory pathways seems like an overly am-
bitious task. We focus on a more immediate task, iden-
tifying dominant dynamic modes and studying their
interrelationships.

For the first goal, we have utilized independent
components analysis. The utility of this method is
founded on the notion that the interesting linear struc-
tures exist in nonnormal directions. In addition, the
modes have direct biological interpretation as latent
variables that regulate expression. The use of indepen-
dent components-based methods can provide comple-
mentary results to those given by singular value based
techniques.

In order to study the dependencies among modes,
we have utilized a graph-theoretic algorithm. The ad-
vantage of this approach is that it provides a natural
approach to incorporate an a priori biological assump-
tion of network sparsity through hard thresholding of
pairwise dissimilarities. This method offers simpler al-
ternatives to previous methods for addressing issues of

Table 4. Enrichment of Gene Ontology (GO) terms for
expression modes for α-factor arrest data.

Mode Function

1 Transport

2 Biological process unknown

3 Transcription

4 Biological process unknown

5 DNA replication and chromosome cycle

6 Signal transduction

7 Cell growth

8 Cell cycle

9 Biological process unknown

10 Cell cycle

11 Metabolism

12 Amino acid metabolism

13 Transport

14 Transport

15 Transcription

16 Biological process unknown

17 Cell cycle

18 Metabolism

19 DNA replication and chromosome cycle

20 Transcription

21 Metabolism

22 Biological process unknown

23 Transcription

24 Biological process unknown

inferring latent genetic networks and their dependen-
cies from gene expression data [7, 10].

The thresholding method described here is not
model-based. One alternative we are currently devel-
oping for studying the dependencies between expres-
sion modes over time (i.e. the columns of A) involves
a curve registration algorithm [28]. Here, our data con-
sists of the trajectories for the n expression modes,
Ai (t) (i = 1, . . . , n), observed at n time points. We
formulate the following model:

y(t) = Ai {hi (t)} + εi (t), (3)

where y(t) is a template function to which Ai (i =
1, . . . , n) will be aligned to, and εi (t) is a zero-mean
stochastic process. The hi (t) represent time-warping
functions to which the features of Ai (t) will be aligned
to; they represent the objects that are of interest. Modes
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Table 5. Enrichment of Gene Ontology (GO) terms for
expression modes for elutriation data.

Mode Function

1 Cell cycle

2 Amino acid metabolism

3 Biological process unknown

4 Transport

5 Biological process unknown

6 Biological process unknown

7 Cell growth and/or maintenance

8 Transport

9 Cell cycle

10 DNA replication and chromosome cycle

11 Amino acid metabolism

12 Transcription

13 Metabolism

14 Biological process unknown

15 Transcription

16 Biological process unknown

17 Transcription

18 Signal transduction

Table 6. Enrichment of Gene Ontology (GO) terms for
expression modes for cdc15 data.

Mode Function

1 Amino acid metabolism

2 Biological process unknown

3 Transport

4 Signal transduction

5 Cell growth and/or maintenance

6 Cell cycle

7 Amino acid metabolism

8 Metabolism

9 DNA replication and chromosome cycle

10 Transport

11 Biological process unknown

12 Biological process unknown

13 Signal transduction

14 Transcription

with similar time-warping functions are likely to cor-
respond to groups that are coregulated. We will com-
municate these results in a separate report.

While permutation-based approaches have been
used for hypothesis testing here, it would also be desir-
able to develop model-based approaches for inference

using the independent components model (1). This is
also currently an area of ongoing research.
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