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ABSTRACT

The results of an investigation of the interaction of electromagnetic
fields with plasmas, including the development and use of appropriate non-linear
modeling techniques, are presented.

Expressions for density distributions in the sheath and potential induced
on a conducting plate in the presence of a plasma (moving or stationary) are
found. The potential at one temperature in the sheath is non-linearly modeled
to give the potential at another temperature.

Correction terms are found for the standard treatments of the interaction
of electromagnetic fields with collisionless plasmas and weakly ionized gases.
These corrections are functions of field intensity and give significant results
for high intensity fields. The current induced in the plasma with a low intensity
field is non-linearly modeled to the high intensity case.

Expressions for the conductivity (both a.c. and d.c.) are found for vari-

ous plasmas and incident field intensities.
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I
INTRODUCTION

This is the final report on contract number AF 19(604)-7428, ARPA
Order No. 147-60, concerning an investigation of the interaction of electro-
magnetic fields with plasmas. An understanding of this phenomenon is essential
in treating many of the vital problems associated with the coupling of high intensity
electromagnetic energy and plasmas where it is desired to optimize the attenua-
tion of electromagnetic waves by a plasma or to minimize this attenuation without
resorting to brute force techniques. This will allow us to optimize systems for
telemetering through plumes and re-entry plasmas and also to optimize radar
systems for terminal guidance of maneuverable I.C.B.M.'s. In attempting to
study these physical problems in the classical tradition by combining knowledge
gained from both theoretical and experimental investigations to construct a
physical picture, one is confronted with two major obstacles. On the one hand
the theoretical problem, the coupling of the Boltzmann equation with the Maxwell
equations, is extremely difficult in general and despite much activity in this field,
results even in the simplest idealized situations are quite rare. On the other hand
useful experimental results are equally, if not more, difficult to obtain. Full
scale laboratory experiments of physical importance are, because of the large
field strengths, if not impossible, very costly. Furthermore linear modeling,

the usual technique for scaling physical phenomena to dimensions feasible for
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laboratory experiments, is inapplicable since the basic particles of a plasma
cannot be modeled correctly.

If reasonable laboratory experiments are to yield significant full scale
information for high intensity electromagnetic fields this must necessarily be
accomplished by application of suitable non-linear modeling techniques. The
concept of non-linear modeling as developed in (1) through () provides the basis
for theoretical investigations which will enable data obtained in low power labora-
tory experiments to be transformed to give results in cases of physical signifi-
cance. In order to develop the non-linear modeling techniques necessary in this
problem, work in the Radiation Laboratory under this contract has proceeded by
considering a number of special problems involving the interaction of plasmas
with electromagnetic fields. These problems were chosen for a variety of reasons.
In the first place they are of considerable interest in themselves. Secondly they
serve, in a sense, as canonical problems on which the non-linear modeling tech-
niques can be developed and demonstrated. Thirdly the theoretical solutions can
be found and used to guide and check the modeling attempts. These solutions them-
selves represent new results in the field and are presented here for the first time.

In chapter II, the plasma sheath formed by a stationary plasma on the
surface of an infinite plate is considered. With the assumption of a low density
plasma and a Maxwellian distribution of both ions and electrons up to the plate,

exact expressions for the density distributions of electrons and ions in the sheath
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and the potentials induced in the plate and the sheath are found. The potential in
the sheath for one temperature is also non-linearly modeled to yield this data at
other temperatures.

Chapter III treats the same problem when the plasma, instead of being
stationary, moves toward the plate with constant mainstream velocity. Although
the sheath formed is in many respects similar to that formed in the stationary
case, the analysis is more complicated, hence approximate rather than exact
expressions for the potential and density distributions are found. These expres-
sions include a first order correction to results available in the literature.

In chapter IV, the interaction of a_high intensity electromagnetic wave
with a collisionless plasma is investigated. The coupled Boltzmann and Maxwell
equations are solved without small signal approximations. The zeroth-order
analysis yields conventional results; however, the first-order analysis produces
new results for the velocity distribution function and quantities derived from it,
i.e. conductivity, permittivity, current, and energy density of the plasma. These
are evaluated as functions of the intensity of the EM wave. An attempt to use non-
linear modeling in this problem is unsuccessful and the difficulty encountered is
explained.

The interaction of a high intensity EM wave with a weakly ionized gas is
studied in chapter V. A rigorous mathematical treatment is presented with a

simple collision model. The zeroth-order analysis gives the plasma parameters
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as functions of the intensity of the incident wave. The results obtained can be
reduced to the well-known results when the intensity of the EM wave ié assumed
to be very small. A first-order analysis is also presented. Non-linear modeling
of the current induced in the plasma by the electric field is found to be possible

in this case and the modeling function is presented explicitly.

In chapter VI the electrical conductivity of a low density and partially
ionized gas where both electron-neutral particle and Coulomb type collisions play
important roles is discussed. Assuming that the ionized gas is perturbed by a
weak electric field, the velocity distribution function for the electrons is obtained
by solving the Boltzmann equation; the collision between neutral and charged
particles is accounted for by the hard sphere model for the particles while the
collision between the charged particles is taken care of by the Fokker-Planck
equation. Explicit expressions for a.c. and d.c. conductivity are given for vari-
ous cases. To the extent that the assumptions made for the collision models are
valid, the expressions for conductivity are quite general and can be used for any
degree of ionization.

The conductivity of a fully ionized gas for arbitrary electric field intensity
is investigated in chapter VII. In the d.c. case an instability phenomenon, the
runaway effect, limits the intensity of the electric field that may be applied and
under this restriction an expression for the conductivity is obtained. In the a.c.

case, above a certain critical frequency, the problem of finding an expression
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for the conductivity becomes one of solving a non-linear first-order differential
equation. Approximate expressions are presented in this case.

Not included here is the theoretical treatment of propagation of electro-
magnetic waves in a plasma column surrounded by an annular isotropic medium
in a cylindrical wave guide (1 6) . With the source of electromagnetic waves taken
to be a thin ring source, the formal solution has been obtained for arbitrary angu-
lar variation of the current intensity and the case of constant intensity is treated
at length as a special case. In this case the excited fields will also be axially
symmetric and this problem is solved where the anisotropy of the medium is
taken into account by considering both the permittivity and permeability to be
tensors.

The most general problem treated in (16) is too complex to be amenable
to non-linear modeling techniques at present. However, suitable techniques have
been developed to handle some limiting cases where the physical situation is
described by a Bessel function. The details of this analysis appear in Appendix A.

A problem of considerable interest involving the interaction of electro-
magnetic waves with a plasma to alter the density of the atmosphere is discussed
in Appendix B. Calculations of the power needed, both on the ground and at vari-
ous altitudes in the atmosphere, to effect particular temperature (hence density)
variations are presented. Appreciation is extended to R. W. Larson for these

calculations.
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II
PLASMA SHEATH FORMED BY A STATIONARY PLASMA

ON AN INFINITE PLATE

In this chapter the plasma sheath formed by a stationary plasma on the
surface of an infinite plate is considered. This is a problem frequently met in
plasma physics and has been studied by several authors (e.g. (4)), however,
the solutions are mostly approximate. It is the purpose of this study to treat
the problem more rigorously and an exact solution is attempted. The problem
is then examined from the non-linear modeling viewpoint.

Assume a stationary, uniform plasma fills the half space with an
infinite plate located in the x - y plane as the boundary. If the potential of the
plate is allowed to float, the plate gets charged and the electrical neutrality
of the plasma is not preserved in the vicinity of the plate. Due to the fact that
the root mean square velocity of the electrons is much higher than that of the
positive ions (assumed to be singly charged), the plate must be charged nega-
tively in order to adjust the amount of the electrons and the ions which hit the
plate per unit time at equilibrium. This negative potential of the plate results
in a low electron density and a high positive ion density in the vicinity of the
plate. The deviation from the uniform densities of the electrons and the ions,
or the deviation from the electrical neutrality, dies out in the direction away

from the plate. The thickness of the layer where the electrical neutrality
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deviates, or the plasma sheath, and the density distributions of the electrons

and the ions in the plasma sheath are found.

Distribution Functions

The velocity distribution function of the electrons in a plasma is
2
m c

e
m_ 3/2 - 2KTe
fe - ne < 2m KTe € S

the velocity distribution function of the positive ions in the plasma can be

. m.c?
written as

1
m, >3/2 "~ 2KT.
1 1
f=n ————— e

i i 2T KTi

(2)

where n and n. are the number densities and can be expressed as functions
1

of the space. In general, we can write

f =f + £ (3)
e eo e
= + £
fi fio fi (4)
where me02
m_ 3/2 - 2KT_
teo = % \ 27 KT e (5)
e
m c?

1
m, 3/2 - 2KT,
fio - no 2m KTi © (6)
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fe' and fi' are the perturbed terms and n, is the unperturbed density of the
plasma.
If the velocity distribution functions for the electrons and the ions are

assumed to be Maxwellian at any point in the physical space, the Boltzmann

equations lead to

of
e - e =
+ ¢ - - — . —
ot ¢ vfe me E vcfe 0 ()
8fi e =
— + ¢c-Ve+ = E -Vt =0 (8)
ot i m, ci

1

Since the plasma is stationary, the time derivative terms should drop out. Due

to the one-dimensional geometry, the variation is only in the z-direction. There-

fore
N afe
c Vi = ¢ —
e z 0z
of of
—
E- Vf = E2- —2 2 =£8-2
ce ac oc
of 2 m E
— E e oc _ e o f
2 oc KT ze
oc z e
With these relations, Equation (7) becomes
of
e cE
. + — i
o KTe fe 0 (9)
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Equation (9) can be solved subject to the boundary condition fe——> feo as

x — o, and the relation E = - V@ = — %g 2. The final solution for f, is

ef 3/2 - mc? ef
KTe me 2KTe KTe
f =1 e = no me- e e (10)

e eo

Where @ is the potential in the space and is normalized to zero at infinity.
Thus the velocity distribution function of the electrons is determined as a

function of space and velocity.

Following similar reasoning, Equation (8) can be reduced to

of
i eE .
57 KTi fi = 0 (11)

and the final solution for fi is
e@ ' m.C
3

1
KTi m, /2 - 2KTi - KTi
fi = fio e = n0 m?l ) e . (12)

Equation (12) gives the velocity distribution function of the positive ions as a
function of space and velocity.
It follows from Equations (10) and (12) that the number densities of

the electrons and the positive ions can be expressed as follows:

KT
n =n e © (13)




THE UNIVERSITY OF MICHIGAN
4134-2-F

n,=n e (14)

Potential Distribution in the Plasma Sheath
The number densities of the electrons and the positive ions in the
plasma sheath are thus determined as functions of the potential in the space.
It is now necessary to evaluate the potential distribution in the plasma sheath.

The potential in the plasma sheath is the solution of a Poisson's equation as

follows:

V3= 2 (o-n)
€0 1 e

ep  ep
ne KT, KT
= - 2 (e _e 9 (15)

Assume Te= Ti: T for simplicity, and owing to the one dimensional variation,

Equation (15) is reduced to the differential equation

d2¢ 2n0e e
5 = ~C  sinh ( XT g) . (16)
dz o

The boundary conditions for @ are

P = ¢o at z = 0 (on the plate)

# = 0, and %g=0 as z > .

Equation (16) can be solved as follows:

10
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Rewrite Equation (16) as
&9
= o sinh (Bf) (17)
2
dz
with
2n e o
< = a, I—(_’I—‘ = B
0
Let
2
d
B_ gy, L pd o,
dz dZ2 dg

Equation (17) becomes

= a sinh (BP)

gls

£ cosh BP + c

B 1

0 P
l

or

gl
I

+ \/2—5‘ cosh Bp + 201 (18)

Subject to the boundary condition of

gga 0 asz-—>oo (oras §— 0)

c, is found to be — Equation (18) then becomes

1
g \E oamon - rz\/gsmhégé . (19

™IR

11
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ap

dx is always positive in the plasma sheath. There-

p is always negative and
fore, the negative sign in Equation (19) is taken. The integration of both sides

of Equation (19) leads to

p

or

pp

o—.- —
4—10gtanh ol 2 8 Z

Q

2
~ log tanh
8 g

This can be simplified to

or

BY
= % tanh * l:e_ \/:2?3—2 tanh j4—0 : (20)

2n e
The substitutions of o = Eo and B = _K% in Equation (20) give a final solution
0
for P as follows:
2n e2
€ KT ef _1
4KT -1 o 0
= —= 1
¢ o tanh l; tanh KT _ (21)

The solution of § can be checked easily because § — 0 as z —> o, and

¢=¢oasz:0.

12
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Potential of the Plate
The potential distribution in the plasma sheath is found as a function

of some parameters and the potential of the plate, ¢o' ¢o can be determined
from the condition that the same amount of electrons as positive ions will hit a
unit area of the plate per unit time at equilibrium. Owing to the fact that the rms
velocity of the electrons is much higher than that of the positive ions, more elec-
trons than ions tend to hit the plate per unit time except the plate is charged nega-
tively so that only high energy electrons can reach the plate.

Assume the potential of the plate as Q)O, which is negative. A critical

velocity of the electron is defined as

or

(22)

€, Mmeans that only those electrons whose velocities are higher than c o and
e
point toward the plate can overcome the potential barrier on the plate and reach

the plate. Similarly a critical velcoity for the positive ion is defined as

. (23)

13
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Thus, the ion having a velocity lower than cio and points away from the plate
may be attracted back to the plate.
The application of the boundary condition at equilibrium yields an

equation as follows:

_ceo o cio %
- c dc de de [f ] = |-\ cde +\ec de dc dc [f]
Z z b yled zZ z zZ z X yLi
Z—CD Z:(I)
Z0 200 200 -~ (o) ~m (o'}

The integrals can be carried out to be

or

|e¢ I m,
ol _ 1 \/_i 1
KT 108 I:z V m_ * 2] ' (24)

It is learned that the potential of the plate, ¢o’ is a function of the temperature

and the mass ratio of ion and electron.

Density Distributions of the Electrons and the Ions in the Plasma Sheath
Up to this point the potential distribution in the plasma sheath is com-
pletely determined. The density distributions of the electrons and the ions in

the plasma sheath are obtained by substituting the potential @ of Equation (21)

14
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in Equations (13) and (14). The final solutions are

2n e2
— - o Z
1 € KT e¢o
n, = n_ exp 4 tanh = (e tanh ART )-_ (25)
2n e2
1 € KT e¢o
n,=n_exp| - 4 tanh ~ (e ! tanh AKT ) (26)

It is noted that [250 is negative. From Equations (25) and (26) it is observed that
both ne and ni approach n0 quite rapidly as z increases. The thickness of
the plasma sheath, H, is obtained by finding a value of z at which ne is 0.95 no

(arbitrary), and after that point n, and n, are very close to no.

lef |
€KT tanh 4K?r

7 198 “Zin(0.0129)
2noe

H = (27)

It is noted that in the numerical calculation the MKS unit system should be used.

m,
As an example, a plasma with T = lOOOOK, w El- = \l1823, and
e

12

3
no =10 1 / m is considered. In this case, the numerical results are found

to be as follows

o4,

KT 3.08, ¢O = —0.266 volt, H = 0.605cm .

15
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Non-Linear Modeling the Potential Distribution
Equation (16) could also serve as the starting point in a non-linear
modeling attempt, where the potential distribution for two different temperatures
is sought, with but one experiment. This equation is a representative of a gen-
eral class of equations treated in some detail in [2] .

Specifically, simplifying the equation somewhat as in (17) we have the

two equations

2
d—g — «a sinh (Bl¢) =0 (28)
dz

S

— «a sinh (le//) =0 (29)

N

dz
where the only difference is a change in the constant 8. We wish to find ¢ as a
function of . With 2] we can immediately write, without employing any boundary

condition

df o — (30)

S sinh B, #af /S dinh By

or

df = . (31)

—— B
V coshBlfljJrc1 2 \}cosh82w+ c,,

where ; and c, are constants of integration.

In general the integrals in (31) will be elliptic but in the special case

when ¢ = ¢ = -1, (31) becomes

16
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_da Ay

B Y = B 5 (32)

sinh sinh

2 2

. 1 Bl¢ 1 BZ(//
— logtanh —— = — log tanh — + ¢ (33)

B, 4 B, 4

where c is a constant of integration. To evaluate ¢ we apply an initial condi-

tion of the form ¢ = where g = ¢o hence

B, P By
c= L log tanh 1o L log tanh 2.0 (34)
B 1 4 B 2
Substituting (34) in (33) yields
B, # - By
tanh — tanh —
L log — 4 _ L log — 2 (35)
B, BS, B, By,
tanh tanh
4 4
or explicitly
B
1
By B
4 -1 B 1 ¢o tanh 4 2
p = — tanh tanh (36)
B, 4 By
tanh 4—

Thus in this case it is possible to find a non-linear modeling function and in fact
this does correspond to the physically significant case as can be verified by

eliminating z from (20) and a similar equation for different values of f3.

17
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I

PLASMA SHEATH FORMED BY A MOVING PLASMA
ON AN INFINITE PLATE

In this chapter the plasma sheath formed by a moving plasma on an
infinite plate is investigated. The significance of this study is to investigate the
behavior of a moving plasma on a plane boundary or the behavior of a stationary
plasma on the surface of a moving plate. This analysis may be useful in the
investigation of the antenna on a space vehicle which is wrapped by a plasma
sheath.

The analysis is approximate, however some significant correction
terms which are ignored in the conventional studies are evaluated.

Assume a moving plasma, having a mean stream velocity V, moves
toward an infinite plate located in the x-y plane. If the potential of the plate is
allowed to float, the plate gets charged negatively and a plasma sheath forms on
the plate. In this analysis, the distribution functions and the densities of the
electrons and the positive ions and the potential distribution in the plasma sheath
are obtained.

Distribution Functions

A moving plasma moves toward an infinite plate which is located in the

x-y plane. The unperturbed velocity distribution functions for the electrons and

the positive ions can be expressed as

18
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m
m 3/2 ZK;e -2
feo = -2;—&,—171— e (1)
m,
N2 - o @
f =n (———— e ! (2)

A

—
with V= -Vz,
As the moving plasma hits the plate, the distribution functions are

disturbed in the vicinity of the boundary. In general, the distribution functions

can be written as

f =f +1°"
e eo e
(3)
f. = £ +f
i io i

fe' and fi' represent the perturbed terms. fe and fi can be determined from
the Boltzmann transport equation. In the case of a moving plasma, fe and fi
are functions of space and velocity. Moreover, the dependence on the space and
the velocity coordinates are found inseparable. Therefore, an approximate
approach is devised to determine fe and fi'

It is necessary to make some reasonable assumptions here.

(1) As the moving plasma hits the plate, there occurs only the diffuse
reflection of the surface. The specular reflection is ignored.

(2) Equal quantities of the electrons and the positive ions hit the unit

area of the plate per unit time at equilibrium.

19
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(3) The neutralization taking place on the plate is assumed to be com-
plete. This implies that those positive ions and the electrons reflected from
the plate are assumed to be neutralized.

(4) The plate is charged negatively.

With these assumptions the pile up of the reflected particles in the front
of the plate can be ignored because they are neutralized particles.

Use the Boltzmann transport equation,

of E St

a e

iR Ve+ =& vcf = <_St) (4)
m col. .

and assume the distribution functions as

e - 2

m_ 3/2 2KT_ -V

=2 \gmwr ) © ©
e
m
i a2
m, 3/2 2KT, (c-V)

f —ni(z) 27K, e (6)

Note that Equations (5) and (6) are approximate expressions, because the space
and the velocity coordinates are not separable in this case.
The substitution of Equations (5) and (6) in (4) for the steady state give

of

e eE \"
_— + — —_ ==
0z KT (1+ c )fe 0 (7)
e z
of
i ek \'
—_— — _—— + _— —
e = ar 0% )= ®
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The integration of Equation (7) in the velocity space yields an equation for n, if

f is approximated with feo in the third term of (7). That is

e

of

e 3 eE 3 .. eE v 3
—_— + - == A
jaz det gr fo de KT | o Teo?®
e e Z

or

e, e . _ em Y & (9)

9z KT KT c e - °

e e Z

If the r.h.s. of (9) turns out to be small, the approximation is valid. It is
found to be

-V t
—!f d30=—-n 2V'eV e dt|= —-vn (10)
c ‘eo ) eo

Z
me
! —
v 2KT v
e

In the usual case, Yo turns out to be very small. Therefore, the approximation

where

made in Equation (9) is valid. Now (9) can be solved subject to the boundary

condition of ne-——> no as z — o, and the relation E =- %g as follows:
ep
n =n eKTe - n ek (11)
e o] oye KTe

Equation (11) gives the electron density as a function of space because fisa

function of space. Although (11) is an approximate solution it carries an extra

THE UNIVERSITY OF MICHIGAN e
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correction term which is usually ignored.
For the case of the positive ions, the approximation made in solving
(7) is not valid because the effect of the third term of (8) is enormous. Equation

(8) is solved approximately as follows:

of

i 3 eE Vv 3
—_— . + —
5 de KT, (1 - ) o dec

1 Z
or

ong eE eE v 3
—_— = + .
oz KT, o KT, c, fode (12)

(13)

where

¢ turns out to be near unity in the usual case. Subject to the boundary condition

of n, - no as z — o and the relation E = - %g , the perturbed term of the

ositive ion, n.', can be determined as
P

i i

n' = - Ee%_ (1—')/)n0 (14)
1

22
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Therefore,

— + | J— —_ 1 - e 15
n,=n_+n n_ no( 'yi) _QKT, (15)

Equation (15) gives the density of the positive ions as a function of space.

The factor, (1 - 'yi) is very close to zero for V' greater than 1. Therefore,

the second term of (15) serves as a correction term. To get an idea about the

magnitude of Ve and vy these are calculated for the case of T = IOOOOK, and

m, = (16 x 1825) m_. The results are: Yo = 3.2 x 10_3 and A =1 for

V = 7TKm/sec, Y, = 6x 10™° and Y, = 0. 97 for V = 1Km/sec. This implies

that when V is around or higher than the rms velocity of the positiv_eQ ions, but
e

much lower than that of the electrons, the assumption of ne = n0 e KT and

n =n is quite accurate. This is equivalent to stating that at this mean stream

velocity of the moving plasma the potential of the boundary gives a small effect

on the distribution of the positive ions but the distribution of the electrons is

entirely governed by the potential of the boundary. For the mean stream velocity

of the moving plasma lower than the rms velocity of the positive ions the correc-
X 2
. . t .
tion terms should be taken into account. Se dt is tabulated to facilitate compu-

0
tations. (See Table I)

Potential Distribution in the Plasma Sheath
The density distributions of the ions and the electrons have been deter-
mined as a function of the potential or of the space in the preceding section. The

potential distribution in the plasma sheath can be found by solving a Poisson's

23
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TABLE I
2
3’5 efdt = Ax10°
(6]

X A P X A P X A P
o [o 1.70(6.7035 75983 |0 || 4.8 | 1.0811 27786 | 9
.05 | 5.0041 6992 | -2 || 1.75]7.6850 89817 | 0 || 4.9 [ 2.7909 92389 | 9
.10 | 1.0033 43383 | -1 || 1.80(8.8543 99688 | 0 || 5.0 | 7.3541 89348 | 9
.15 | 1.5113 26386 | -1 || 1.85]1.0254 42272 | 1 || 5.1 | 1.9778 61774 |10
.20 | 2.0269 89793 | -1 || 1.90|1.1939 08605 | 1 || 5.2 | 5.4291 66458 |10
.25 | 2.5530 74677 | -1 || 1.95|1.3976 42572 | 1 || 5.3 | 1.5210 31469 |11
.30 | 3.0924 83086 | -1 || 2.0 |1.6452 62808 | 1 || 5.4 | 4.3491 39612 |11
.35 | 3.6483 25877 | -1 || 2.1 |2.3190 52389 | 1 || 5.5 | 1.2691 74669 |12
.40 | 4.2239 76023 | -1 || 2.2 |3.3452 50713 | 1 || 5.6 | 3.7799 45897 |12
.45 | 4.8231 28889 | -1 |l 2.3 |4.9398 02230 | 1 || 5.7 | 1.1489 19440 |13
.50 | 5.4498 71235 | -1 || 2.4 |7.4676 21621 | 1| 5.8 | 3.5639 15749 | 13
.55 | 6.1087 61080 | -1 | 2.5 [1.1556 02507 | 2 || 5.9 | 1.1282 19327 | 14
.60 | 6.8049 20923 | -1 || 2.6 |1.8302 26303 | 2 || 6.0 | 3.6448 74848 | 14
.65 | 7.5441 47374 | -1 || 2.7 |2.9659 42341 | 2| 6.1 | 1.2016 82417 | 15
.70 | 8.3330 40927 | -1 || 2.8 |4.9165 86436 | 2|| 6.2 | 4.0430 59123 | 15
.75 | 9.1791 60408 | -1 || 2.9 |8.3346 99927 | 2 || 6.3 | 1.3881 59382 | 16
.80 | 1.0091 20769 | O || 3.0 |1.4445 45766 | 3| 6.4 | 4.8637 72076 | 16
.85 | 1.1079 24967 | 0 || 3.1 |2.5591 06616 | 3| 6.5 | 1.7390 32700 | 17
.90 | 1.2154 98595 | O || 3.2 |4.6331 25068 | 3| 6.6 | 6.3451 09838 | 17
.95 | 1.3332 07308 | 0 || 3.3 |8.5706 33926 | 3| 6.7 | 2.3624 56410 | 18
1.00 | 1.4626 51863 | 0 || 3.4 |1.6197 22651 | 4| 6.8 | 8.9759 06314 | 18
1.05 | 1.6057 16168 | 0 || 3.5 [3.1268 14157 | 4| 6.9 | 3.4800 01325 | 19
1.10 | 1.7646 26158 | 0 || 3.6 |6.1652 40644 | 4| 7.0 | 1.3767 78248 | 20
1.15 ] 1.9420 22025 | 0 || 3.7 |1.2414 92189 | 5| 7.1 | 5.5581 34208 | 20
1.20 | 2.1410 47271 | 0 || 3.8 |2.5529 88287 | 5| 7.2 | 2.2896 64923 | 21
1.25 | 2.3654 58828 | 0 || 3.9 |5.3608 52644 | 5| 7.3 | 9.6247 57736 | 21
1.30 | 2.6197 63680 | O || 4.0 |1.1494 02557 | 6| 7.4 | 4.1283 84333 | 22
1.35 | 2.9093 88950 | 0 | 4.1 |2.5161 68785 | 6| 7.5 | 1.8069 26236 | 23
1.40 | 3.2408 94369 | 0 | 4.2 [5.6236 11905 | 6| 7.6 | 8.0699 03889 | 23
1.45 | 3.6222 38609 | O | 4.3 |1.2831 56637 | 7| 7.7 | 3.6775 76227 | 24
1.50 | 4.0631 14269 | 0 || 4.4 |2.9889 27772 | 7| 7.8 | 1.7100 87084 | 25
1.55 | 4.5753 70719 | O | 4.5 |7.1073 35497 | 7| 7.9 8.1140 17191 | 25
1.60 | 5.1735 49665 | 0 | 4.6 |1.7252 00132 | 8| 8.0 | 3.9283 73639 | 26

1.65 | 5.8755 65931 | O || 4.7 |4.2746 46980 | 8
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equation as follows:
V2% =- 2 (n-n)

€ ie
0

on /2P
o) KTg eQ eQ

- — - - + -
. <e Y, KT_ 1+ (@ 'yi) KT, (16)

For simplicity, let Te = Ti =T, (1- " 'ye) = v. Equation (16) becomes

% _ o RQ@T_ ef
= — (e -1+ (17)

2
2
0z eo KT
The boundary conditions for @ are

P = ¢o at z = 0 (on the plate)

p =0 as z > .

Equation (17) can be solved as follows:

¢

2
d_ o -1+ sp) (18)
oz

with

Let
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then Equation (18) becomes

3 PR

or %g=f\/2a([—13e8¢—¢+é

onQ

oy > 0 When z - o (or as p — 0) as

Therefore, (19) yields

dz = 1 Qggb 1 o2
\/ 22 Vé(e -1)—¢+-§ S¢
and
1 dt
2 = = +C
V2 \Fl“(eBt— D-t+1 &2 2
0 B 2

The abritrary constant 02

Finally, an implicit solution of  as a function of z can be obtained as

MICHIGAN —1

(19)

The arbitrary constant C1 can be determined subject to the boundary condition

(20)

can be determined by the condition of § = ¢o at z = 0.

(21)

Ve dt

V 20 T f
¢ \/E (e - 1) - t+
o

26
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In the usual cases the integral can be evaluated approximately by expanding the

denominator into a power series. The result is

e —

KT 1+~ ef 1 ef .2 \/1+1)+ 1

= + = + e

log (v 2 " 6KT 24 (KT) 2 6V2(1+7)
2 ef e

n e (1+7) KT \/1+1(+ 0 1 ( 0)2+V1+1 1

+ = (== +
2 6KT 24 ' KT 2 6V2(1+)

. © -

€ KT
0

(22)

For the case of —I%% <1, a zeroth order approximate expression of (22) becomes

(23)

Potential of the Plate

The potential distribution in the plasma sheath is found as a function of
some parameters and the potential of the plate, ¢0. ¢o can be determined from
the condition that equal quantities of the electrons and the positive ions hit a unit
area of the plate per unit time at equilibrium. Owing to the fact that the rms
velocity of the electrons is much higher than that of the positive ions, more elec-
trons than ions may hit the plate per unit time except the plate is charged nega-
tively so that only very energetic electrons can reach the plate.

Assume the potential of the plate as ¢0, which is negative, and critical

velocities for the electrons and the positive ions are defined in the same manner

27



THE UNIVERSITY OF MICHIGAN
4134-2-F

as in Chapter II.

The condition at equilibrium yields an equation as follows:

-C (09) (00)
eo
- ¢ dc dc [ ]
zZ Z X
200 - -0
C. @®
io
= | - c de + c dec de dc [f:] (24)
zZ Z VAR / X yLid .
Z =0
-0 0 - @
Under the conditions
KT o v2 > <2KT > (25)
m m,

e

Equation (24) becomes after the integration as follows:

H m, )
= erf \V 2KT> —erf A% ~2—IZ’;'~ +\[—|:-<—TQ‘ - (26)

The potential of the plate, @ o can be determined numerically from (26). How-
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ever, when the conditions in Equation (25) are valid, (26) may be approximated

as follows

4

- 2KT

1
log (27)
KT V T V me

Density Distributions of the Electrons and the Ions in the Plasma Sheath

Up to this point there is enough information for the determination of the
density disbributions of the electrons and the ions in the plasma sheath. The
procedures are as follows: (1) For a specific plasma with m, m, n, V and
T given, the potential of the plate is determined from Equation (26). (2) The
potential distribution in the plasma sheath can be calculated from Equation (22).
(3) After the potential in the plasma sheath is found the densities of the electrons
and the ions are obtained from Equations (11) and (15).

As an example, a plasma with the following parameters is considered.

m, = (16 x 1825) m_ (oxygen ion)
T = 1000°K
V = 7Km/sec
n = 10° 1/ce
o
In this case of
KT
n = n e , n, = n
e o i o
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—2 = _ 961

A distance, H, at which ne= 0.95 no can be calculated as follows:

= 0. e __ .
If ne 95no, KT 0.0513

So from Equation (22),

H = 0.925 cm.
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v

THE INTERACTION OF A HIGH INTENSITY ELECTROMAGNETIC FIELD
WITH A LOW DENSITY PLASMA

The purpose of this study is to explore the basic properties of a plasma
when it interacts with a high intensity EM wave. There are many publications
on this subject but they are concerned mainly with the small signal case. The
conventional result valid for the small signal case is no longer accurate for the
large signal case. In this study it is found that some basic parameters of the
plasma vary as the functions of the field intensity.

The approach used in this chapter is to find the velocity distribution func- |
tion by solving some basic equations exactly. After the velocity distribution func-
tions of a plasma are obtained many basic properties of the plasma are readily
found. The conventional approach adopted in many papers 5 through 8 is to

assume the velocity distribution function as the sum of an isotropic part and a non-

isotropic part varying with the frequency of the incident wave. In the case of a
high intensity incident wave this assumption is not valid and the veiocity distri-
bution function should be found directly from a Boltzmann equation without any
approximation made before solving the equation.

The zeroth-order velocity distribution function obtained exactly from
a simplified Boltzmann equation produces some conventional properties of the

plasma. The first-order velocity distribution function obtained from a Vlasov's
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equation can produce some significant results. Some parameters of a plasma

are evaluated as functions of the field intensity.

Formulation of the Problem
The interaction of an EM wave with a plasma can be described with two
sets of equations, namely the Boitzmann equation and the Maxwell equations.
These two sets of equations are mutually coupled and results in the non-linear
character of the partial differential equation which is to be solved. Assuming
an incident EM wave of high intensity interacts with an infinite plasma, the

Boltzmann equation is

af - e - N KN e a0 S . af
=+ V- + = (E + "V f+ = E+ V= (S
wtV A\V4§ (E +v x B) Vf & +v xb) Vf (at )0011

(1)
where f is the velocity distribution function, V is the velocity of the charged

-

particle of the plasma, E and B are the electric and magnetic fields of the
incident EM wave, and § and b are the internal fields induced in the plasma.

E and B can be represented as follows:

= A
E = Ecoswt X

. . m @
B = Bceoswt y = P coswt §
o

€ and b are the solutions of the two wave equations which are derived from the

Maxwell equations.
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P BE_, 23,1 g, 2 > e, \Tr v L O .fAd3
Hofo 2 T Mot € VP T Ky Bt A\Via e VL8, v
ot o A o A
(3)
% % - E : -, A3
VP-pe —F=-u VI =-u Vx e vadv (4)
oo at2 o o = A

To make the problem more specific the following assumptions are made.

(1) The plasma consists of electrons, positive ions (singly charged)
and neutral particles.

(2) For the low density plasma the collision term is ignored. This is
the case of the ionosphere. The collision term is important in the case of high
density plasma which will be investigated in later chapters.

(3) The incident EM wave is assumed to be of high intensity but still
low enough that a non-relativistic analysis is valid.

(4) The frequency of the EM wave is higher than the electron plasma
frequency of the plasma.

(5) The plasma is of infinite extent and homogenous in its unperturbed
state.

(6) In the analysis the spatial variation is neglected. This implies that
the velocity function is to be determined as a function of the velocity and the time
only.

(7) Although the intensity of the EM wave is probably limited by the
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breakdown condition of the plasma, this phenomenon is not considered in the
present study.

Based on these assumptions, two groups of basic equations for the
electrons and the positive ions of the plasma can be formulated as follows:

(A) For the electrons:

—2 . = E+vxB) Vi - —E+vxb) Vi =0 (5)
ot m v e m v e
e e
A
2 98 _ e 2lvu-t)dve &V (- 1)d
vg_MoEo 2~ Ho® Bt V(fi fe)dv € (i e) M
ot o]
(6)
2
Vzﬁ—u e 2P _ -u eVx \ v(E-£) &y (7
oo at2 o) i e

(B) For the positive ions:

of,
i

N

i<ﬁ+$x§>-v f.+—§*‘(g+;x}3\)’ Vi =0 (8)
ml V1 ml Vi

with Equations (6) and (7). These equations are solved in the following sections.
After fe and fi are evaluated many basic properties of the plasma, e.g., the

conductivity, the permittivity, and the energy density etc., can be found easily.

Zeroth-Order Velocity Distribution Function
In the zeroth-order analysis, the incident magnetic field and the inter-

nal fields are neglected. The assumption is made on the ground that the effect
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due to the incident electric field is much greater than that caused by the other
fields. This assumption leads to a simplified Boltzmann equation and a zeroth-
order velocity distribution function. A refined first-order solution is attempted
in a later section.

The simplified Boltzmann equation for the electron is

8fe(0) o afe(O)
- —E =
ot m cos wt ov 0 ©)
e X
and for the positive ions,
+ — . p—
ot . E coswt . 0
i X
Equation (9) is solved exactly as follows:
af(o) 8f(0)
€ _ ycoswt —— = 0 (92)
ot ov
X
With v = fn—E . The value of Ve is between - and oo and a steady state solu-

e
tion is sought. One more condition is provided by assuming that fio) is a

Maxwell-Boltzmann distribution in the absence of the external field.

Define
@

ikv
F(k, t) =§ fe(o)e X av
-Q0

X

and take the Fourier Transform of (9a). This yields the following equation.
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% + iykcoswt F= 0 (10)

Equation (10) can be solved and the solution for F is

—i'yké sinwt
F(k,t) = Fo(k) e (11)

Fo(k) is a constant with respect to t and is to be determined from a boundary
condition. Since in the absence of the external field (y is zero) fio) is MB

distribution, Fo(k) can be found as follows:

(00) e 2
me /2 - 2KTe M 1kvX
Fo(k) - no 27 KT © © dvx
m (v +v) KT
_ 4 _ e k2
me 2KTe 2me
=1\ 5 KT e e . (12)
e
ffao) is obtained by inverting F(k, t) as follows:
Q
-ikv
{0 - L S Flk,t) e * dk
e 27
~© m (v2+v ) K
- ——ek—ry—smwt—lkv
1 Mo
Y no<27rKTe © g o
-0
XY
w

3/2 - 2KT [(vx+ smwt) + v +v2] .
% 27rKT (13)

This is the exact solution of (9a).
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Similarly, for the positive ions the zeroth-order velocity distribution

can be found as

m, .
2 2, 2
3/2 - — v - ¥ sinwt)+ vi+v
m, 2KT, X W y z
02 4 (——) . L (14)
i o \2w KTi
E
where «' stands for gn—l- .
i
These velocity distribution functions are obtained from a simplified
Boltzmann equation without any approximation made in solving the equation.
These functions can be used to calculate some approximate properties of a

plasma. In effect, these functions produce the conventional results which have

been derived by other methods.

Applications of Zeroth-Order Velocity Distribution Function

In this section the zeroth-order values of the current, the conductivity,
the permittivity and the energy density of the plasma are obtained by using the
zeroth-order velocity distribution functions found in the preceeding section.
Zeroth-Order Current:

By definition, the zeroth-order current is

3O _ S 27in) v+ e S 'x?fgo) Oy

After carrying out the integration, it is found that
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ez e2
~(0) A no no . A
J'=J x = + E sinwtXx (15)
X wm wm,

This agrees with the known result.
Zeroth-Order Conductivity:
The conductivity is defined as the ratio between the current and the

applied electric field. That is

2 2
en, en,
o= -j [ + j} (16)
wm wm,
e i

Zeroth-Order Permittivity:

If the permittivity is defined as € = eo(l + jw;‘e ), the zeroth-order

permittivity of the plasma in the absence of a constant magnetic field is found

to be
2 2
W o W
€ =c¢€ 1- 2 2 17
o 2 2
w w
2 2
en e n
Where w = s, W = . This result is a well-known one.
pe meeo pi mieo

Zeroth-Order Energy Density:

With the energy density of the plasma defined as

1 m v2f (0) d3v + 1 m,v2 fgo) d3V

2 e ‘e 2 i i (18)
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The zeroth-order result is

oo [ 2 (2]

3KT, m, 2.2

i if e E .2
+n0 2 + 5 5 o Jsimut| . (19)
wm,
1
The time average value of u is
K
S 3 Te E 2E2
o) 2 4 2 2
w

3KTi mi e2E2
+ +
" 2 4 2 2 ' (20)
w ml

First-Order Velocity Distribution Function
The zeroth-order velocity distribution functions of the plasma have been

found by neglecting the incident magnetic field and the internal fields. These
approximations are justified in the small signal case. However, for a high
intensity incident EM wave these approximations are not justified, because the
velocity of the charged particles of the plasma induced by a strong EM wave
could be very high. In order to find some basic properties of the plasma with

a higher accuracy and valid for the strong signal case, a first order velocity
distribution function is attempted in this section. The basic equations to be

considered are the Vlasov's equation and the Maxwell equations.
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(1) ~ =~
A_ L L E+vxD)- v f(1)+—(§+vxb) v iD=
ot m v
(21)
Equation (21) is the Vlasov's equation without the space variation term.
The internal fields are found as follows:

By neglecting all the space variation terms, the internal fields can be written

down from Equations (6) and (7) as

b=0 (22)
and
_ai'g’ e 0 3
=~ 5 ‘v‘(fi-fe)dv.
ot o)

With the assumption that é varies as em, Té’\ can be found approximately as

> . -e _8_ -X(O) 3
£ = o o vfe dv
we
o
2
“pe
= _pé_ EcoswtX | (23)

The substition of Equations (22), (23), and (2) in (21) give two basic equations

for the electrons and the positive ions as follows:

afil) afil) VZ Bfil) vx Bfil)
- + i — -_ =
ot B ycosuwt aVX ycos wt 5 B ycos wt 5 8vz 0 (24)
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and
8f§1) Bffl) v Bffl) v 8f§1)
Ly Bv' coswt T ' cos wt £z L4 v' cos wt < 1 —0 (25
ot avx c avx <, E)VZ

wze
where B = (1 + —%'), c0= velocity of light, v and ' are defined as before.

w
Equations (24) and (25) can be solved exactly and the method used in solving (24)

is briefly outlined as follows:

Write (24) as

1 af;1) afil) afil) af((31)
+ + - =
coswt ot A ov B \ ov Vx ov 0 (26)
X X zZ
where A= -By, B= g— .
o
Define a new variable 7~.
T A sin wt
w
and a new constant
1
C=B/A=-—
coB
Equation (26) then becomes
afél ) Bf(i1 ) 8fil)
+ 1+ —_— =0. 1
d7 a Cvz) avx CVx 8VZ 0 @7

The initial condition for f((el) is assumed to be
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m
3/2 - —& (VP4 V24 v)
(1) e KT, x vy =
fe (v,0) = n 27rKTe e (28)
Equation (27) implies, (9,
dvX dvZ
a7 = 1+cv -7 g/—
z X

Using a well-known technique of integrating first order partial differential

equations, it can be shown that (27) has a general solution as

(1) _
fe = g(ul, u2) (29)

= 2(v2+ v2)+v (30)
2 X 4 z

1 1 1+ cv,
— + — 3 - —
u, 7 . sin T 20u1 (31)
where g is an arbitrary function of W and u,. To construct an appropriate

solution for fél), one can make use of the condition that as t =0 (or T* = 0),

g(u 1’ uz) should reduce to (28). By finding an expression for vi+ vz in terms

of u, and u, at T =0, ffel) can be constructed.

[\V)
ol

u - —2'5 (V1+ 20u1 sincu2— 1), ata 7T =0
c

Using (30) and (31), it follows
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(1-coscM(1+ cvz) - cvxsinc 7

2 2 2 2
u 02 (\i 2<3u1 sincu, 1) = vV,

c c2/2
Hence
3/2 .
m m (1-coscN(l+cv ) - cv sincT”
f(1) —q e o 3 e V2+V2+V2+ Z X
e o\ 27KT 172kt Y% Yy V2 2
e e c’/2

(32)
A further simplification is made as follows:

2 2
v +v +v2+ 2 (1 -cosc?)1l+cv)-cv sine?
X 'y =z c2 Z X

V

) [1 - cos ( —Lsmwt)]
Be w
o o

= v2+ vi_*l— v2+ 2Bc v sin (—'Y— sinwt) + ZB c (-
o

2
=E/+Bc sin(—y—sinwt):] +v2+ [V-BC (1-cos (—X sinwt) )
x "o we y z "o we

W

Therefore, the final solution for fe

3/2
f(l) = e - v + Bc sm(—L sin wt) ’ + 2
e ~ "o\ 2rkT | P 2KT o, Yy

{:v - Bc (1-cos (—'L smwt)] }] (33)

with
2
w e (=3
B=(1+ _.Pz_) , Y= ST velocity of light.
w e

By using the same technique, fi‘l) can be found-as
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m /2 m 2
(1) i i . Yo 2
== -— - +
fi no\3, KTi exp 2KTi Ve Bcosm ( oo Sin wt) vy

o

, 2
+ [v - Be (1-cos (X sinwt))J } (34)
Z (o] we

(o)

ith ot = SE
with vy o

i
Equations (33) and (34) are the exact solutions of (24) and (25). These
solutions are mathematically very neat and physically very plausible. Some

interesting results are found with (33) and (34) and are presented in the next

section.

Applications of First-Order Velocity Distribution Function
In this section the first order values of the current, the conductivity,

the permittivity and the energy density of the plasma are obtained.

First-Order Current:
With the current defined by:
- N 3
J(1)= -e Vf(l) d3v +e V\ffl) dv
e i
the result is found to‘ be

A

+ A
XTI (35)

j‘(l): 3
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2 2

w ek wp_g eE
J =en 1+ 2 )¢ sin(—— sinwt) +en (1+ ) ¢ sin( sinwt) (36)
X o 2 o) wm C o 2" 7o wm.c

W e o W io

2 2

© E w e eE
J =en (1+ )¢ cos( e sinwt) — en (1+ Ly cos( sinwt) , (37)
-Z o w2 o wmeco o) w2 o) wmicO

The factor is always smaller than unity, because is the velocity
e o

of the electron induced by an incident electric field E and this cannot exceed the

velocity of light, thus (36) and (37) can be expanded into Fourier series as

follows:
w2 3
pe eE 1 eE 1 1 ek
Jx eno( 2 ) wm 2 (wm ) 320 4 (wm )
W e 8 c e
o o)
3 5
eE 1 cE 1 1 eE
+ - + - i
wm 2 (wm ) 320 4 (wm ) ] sinwt
i 8c i c i
o
2
W 3 5
pe, | 1 1  eE 1 1 eE
+ + -
eno(l 2 ) ‘:24 2 (wm ) 640 4 (wm )
w c0 e Co e

w2 5 5
pe 1 1 ek 1 1 eE .
+ + ‘——— — + —
eno(l o ) 1920 C4 (wme) 1920 04 ( wmi) sinSut  (38)
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2
w 2 4
pe, |1 1  eE 1 1 eE
= - + —
J eno(l 2) 4 ¢ (wm ) 64 3 ( wm )
w o e c e
fo)
11 ek 11 em
4 c wm 64 3  wm.
o) i c i
o)
2
W 2 4
pe, |1 1 eE ° 1 1  eE
.+_ —-—
ten (1 2) 4 c (wm) 48 S(wm)
w o e c e
o
1 1 eE 1 1 eE 4
_Zg—(wm) @ B(wm.) cos 2wt
o} c i
o)
2
w 4
pe 1 1 ek 1 1 eE .
+ —_— _ —_
renF o T2 3 Com) T Toz 3 Coml) | cosdut. (39)
w c0 e c i

Some significant points are summarized as follows:
(1) In the absence of a constant magentic field, a strong EM wave produces a
drift current in the plasma in the direction of the propagation of the wave. This
phenomenon can be visualized from the physical point of view.
(2) The current produced in the direction of the E field of the incident EM wave
has odd harmonics and that in the direction of propagation of the incident wave
has even harmonics.
(3) The current induced by a strong EM wave is not a linear function of the field

intensity of the incident EM wave.
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First-Order Conductivity:
If the conductivity of a plasma is defined as the ratio between the
fundamental component of the current to the incident electric field, the con-

ductivity is found to be

2
we e e 1 e 3 e 3 2
o) =—jen(1+p) + - ( ) + (—) E
XX o 2 wm wm 2 wm wm,
w e e 8c e i
o
5 5
y — [(e>'+<———e)JE4 (40)
wm wm,
320¢ e i

o
The conductivity in the z-direction cannot be defined since IZ does not have a
fundamental component.
First-Order Permittivity:
According to the definition of the permittivity of the plasma,

o

e =€ (1+2%
XX o) jwe
o
the result is found to be
2 2 2 2 2
€xx w o W o w ; 1 w o 2 W . 2 9
XX 1+ B _pe ., _pt| _ pe ) + B2 & E
€ 2 2 2 2 2 2 wm,
o} W w w 800 W e () i
1 2 e 4 wzi e A 4
+ B2 =—)* 4+ B (=) E (a1)
4 2 "wm 2 " wm.,
32000 w e w i

This is a function of the intensity of the incident EM wave.
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First-Order Energy Density:
With the energy density of the plasma defined as

vzf(l) +

u = 1 m d3v 1 m.szgl)dgv
2 e ‘e 2 i

the result is

3 ol 2 2 eE
u=n = KT +m(1+_p_q) c (1- cos( sinwt) )
o) 2 e e w2 o) wmec0

3 wz@ 2 2 eE
+n |SKT.+m(1+ ) ¢~ (1-cos( sinwt) ) | (42)
o2 i i w2 o wmic0

The time average value is
2 2

W 2 2 ) 2
3 1 pe cE 1 pe 1 eE
=n l KT me(l wz ) (w ) ” me(l wz ) 02 (w e)

<l

2 e 4
2 2
W2 2 W2 4
3 1 be \° eE 1 6.’ 1  eE
= = + ) . = +_D_ _— (=
+ o KT+ gm(1+—5%) (- -) = gm(d 2 ) 2 <Umi) :l . @)
(o]

Non-Linear Modeling the Velocity Distribution Function

Equation (9a) can serve as the starting point of a non-linear modeling

attempt in the following way.

For different values of v, say e and Vg, We write

of ot ‘
5t~ "1 cos Wt 5"/; =0 (44)
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of of
2 2
5t~ YooOsut v_ =0 (45)

Now we ask if it is possible to find f2 as a function of f 1 alone.

Assuming that such a relationship does exist we try to determine it as

follows. We assume

f2 = f2(f1) hence
ot f. ot ov df, ov
1 X 1 X
and (45) becomes
df of of
2 1 1 N
3 [at — Yycoswt 7= :l = 0 (46)
1 X
or making use of (44)
df2 Bfl
Fooswt 5T (71— 'yz) =0 (47)
1 X
of
Since oy is not identically zero and 7 is chosen # Ty it follows that
X
df
2,
1
or f2 = constant. This result is physically impossible thus we conclude that

f = fz(fl) is invalid. We might then ask, more modestly, if we can find f2 as

2
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a function of f 1 and t, however for these modeling attempts it seems more
appropriate not to work directly with the velocity distribution function but an
integral of this function as will become evident in the non-linear modeling dis-

cussion of the next example, the high intensity field acting on a weakly ionized

gas.
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THE INTERACTION OF A HIGH INTENSITY ELECTROMAGNETIC FIELD
WITH A WEAKLY IONIZED GAS

The previous chapter treated the interaction of a high intensity EM field
with a very low density plasma where the collision effect can be neglected. In
this chapter the interaction of a high intensity EM field with a weakly ionized gas,
or a plasma of low ionization, is considered. The collision effect is important
in this case.

A partially ionized gas is assumed to be composed of electrons, the
positive ions (singly charged) and neutral particles. The possible collisions are
e-n, i-n, e-i, e-e, i-i, and n-n. If the degree of ionization of the gas is low,
only the e-n and the i-n collisions are important in the analysis. Fortunately,
the mathematical models for these two types of collision afe simple, therefore,
a rather rigorous analysis is possible, The Boltzmann eql;ation is solved
exactly with a simple mathematical model for the collision. Some reasonable
approximations are made to derive some useful parameters only after the exact
solution of the Boltzmann equation is obtained.

The zeroth-order and the first-order solutions for the velocity distri-
bution function are found. The basic parameters of a plasma are evaluated as

the functions of the intensity of the incident EM field.
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Formulation of the Problem

The Boltzmann equation is

of e A e - of
— o . — . + — + . — —_— 1
ot V- Vit m(ﬁ-*-vxﬁ) va m(g VXB\) va (at)coll. L
where E and —ﬁ are external fields and can be expressed as
E = Ecosut £
= E A )
B = Bcoswt § = E—coswty
o)
LN PN
The internal field €& and b are found in the previous chapter as
w2
-
£ = —g E coswt X
N (3)
b= 0

The spatial variation is neglected again in this part of the study.

The collision term is approximated as follows:

For the electron case, among all types of collision the e-n collision is
predominant when the degree of ionization is low. To take into account this
collision the simplest mathematical model is to assume

f
)

coll. - —V(f—fo) (@)

v is the collision frequency of the electrons and the neutral particles. v is known
to be nearly constant for the low velocity electrons and nearly proportional to the

velocity for the high velocity electrons. A more accurate behavior of v was
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found in experiments but is too complicated for the theoretical analysis. In order
to improve the accuracy of the collision model expressed in (4), fo must be
modified. fo is the equilibrium state of f and can be assumed to be a Max-
wellian distribution in the small signal case. However, if the incident EM field
is strong, f0 may be quite different from Maxwellian. It has been found that the
isotropic part of f which is constant with respect to time varies as a function
of the intensity of the incident EM field (5) . After the substitution of equation (4)
in (1), the comparison of both sides of (1) suggests that fo in (4) should be the
isotropic part of f because the left hand side of (1) is dependent on time when
no constant external field is present. By modifying fo and specifying v care-
fully, the collision model expressed in (4) is acceptable for the present analysis.
The zeroth-order analysis is made by neglecting the incident magnetic
field and the internal fields. These neglected fields are taken into account in

the first-order analysis.

Zeroth-Order Velocity Distribution Function
For the zeroth-order analysis, the effects due to the incident magnetic
field and the internal fields are neglected. The simplified Boltzmann equations
to be solved are as follows:

For the electrons:

8f(1) Bf(o)

e e _ )
— ycoswt v, = V(fe feo) (5)

ot
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where y = EmE , Vv is the collision frequency of the electrons and the neutral
° (0) .
particles, and feo is the equilibrium state of fe . feo will be specified care-

fully later.

For the positive ions:

(0) (0)

8fi afi 0)
_— 4 ] —_— = ! -
ot v' cos wt P v (fi fio) (6)
b’
where ' = %nE— , V' is the collision frequency of the positive ions and the
i
neutral particles, and fio is the equilibrium state of fEO). fio can be assigned

to be Maxwellian due to the large mass of the positive ions.
The analysis is carried out for the electron case only.

Equation (5) implies the following relations:

(0)

dvX dfe
dt= —"""— = ——— (7)
-ycoswt —y(f(o)— £ )
e eo

From (7) two equations are obtained as follows:

v + Ysinwt = C = constant (8)
X W
df((ao) (0)
—— + —_
dt er ero ©)

Equation (9) leads to

j;/dt Svdt . ¢ Svdt
[e fe ] t =

e f(o) -
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0
If the collision frequency v is assumed to be independent of time, t, ffe ) can be

written as

MO vi ot (10)
e eo .

-0
In evaluating the integral, feo is considered to be a function of t. Originally
f is a functionof v, v, and v . However, with (8) f in this integral
eo x 'y z eo

should be rewritten as

f W,v,v)=> f (C—Isinwt,v,v)
eo X 'y z €o W vy oz

or (10) is rewritten as

t
S0

vEf (C- X sinws,v ,v )eyS ds . (10a)
e eo W vy oz

-0
In order to put the integral on the right of (10a) more explicitly, a new variable

u = s-t is introduced. This changes (10a) to
0
th f(o) =
e

+
ez/(u t) du

vi (C- Y sinw(u+t), v, v) (11)
eo W y 'z

-

The constant, C, is eliminated by substituting (8) in (11). Thus

Q
0
0) Y .. Y . vu
£ = vf v +- sinwt -~ -+ sinw(u+t), v ,v [ e  du
e eo | x w W y oz

-

Changing the variable u into -u, the final solution for féo) is obtained as
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Q0
-vu

£ = vf [v + X (sinwucoswt + (1 - coswu) sinwt), v , v] e du
e0 | X W y oz
o (12)
Equation (12) is the exact solution of (5) subject to the assumption that v is

independent of time. The argument of feo appearing in (12) means that the Vo

term in the original form of feo is to be replaced by
vt g [sinwu coswt + (1 - coswu) sinwt] .

Equation (12) is a definite integral and can be evaluated immediately once feo
and v are specified.

In order to have an accurate form of feo which is also appropriate for
the formulation (5), the following cases are considered.

As the first choice, the result obtained by Margenau [5] will be used.

That is

v me/2d02
f = Aexp | - (13)

o , KT+ My 2 /6(c 2+ wr2)
where M is the mass of neutral particles, A is the mean free path of the electron

and the neutral particles. A is a constant defined in such a way that

gf d3v=n
€eo [o)
(0)

0
If (13) is used, fe can be expressed explicitly as
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2
(v_+ H(u, t))2+ V2+ v
X z

y
(©) © . me/2d02
fe = ve du A exp | - 5 5 5 2.2 (14)

0 KT+ My A7 /6(c™+w™)")
0

where H(u,t) = g sinwucos wt - (1 - cos wu) sinwt:] . In the evaluation of (14),
v can be assumed to be a constant or v/ depending on the circumstance.
As some special cases the following are considered:
2

M 2
(1) For the case of KT > —g— , W > v, or when the frequency of the EM field

w
is higher than the collision frequency and the kinetic energy added by the incident

EM field is smaller than the thermal energy of the electrons, an approximate

0
expression for f‘(3 ) can be found as

0 m
fio) _ 8 ve Mdu A exp{- ZK?I‘e [(VX+H(u, t))2+vi+ vz]} (15)

0
with
2
M
T, =T+ Y (16)
6K [w2+ 32
A m
e
My~ . (0)
(2) For the case of 5 >> KT, or the very strong EM field case, fe can be

w
expressed as

@ 3 2
) 7 Mo 2 2
f = du A exp —— | (v._+H(uy, t)) +v +v
e 2 2 X

0 2My A

+ 2w A [(v + H(u, t)) +v + ]} 17
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corresponding to the limiting case of feo’

[ Sme(_v4+ 2w2h2v2) ]
f = Aexp | -
eo 2M’}?>t2

2
(3) For the case of Vz >w , or as the frequency of the EM field is lower than

the collision frequency, the result obtained by Chapman and Cowling (10) seems
more appropriate. In this case

\

Smec?’dc J
f = Aexp | - (18)
o 3KTe? + Myor>
0
and 1/2
oY [(:v +H(u, t))2+ V2+V2 ]
X y z 3
(0) -vu Smee de
fe = ve du A exp |- 5 5 3 (19)
3KTc +My A
0 0
2 2 2 Az
(4) For the case of V" >w and My = >> KT, the limiting case of (18) or the
c
result obtained by Druyvesteyn is used. That is
[ Smev4 ]
f =Aexp | - —=—0 (20)
| €eo 4M'yz)\2
and
©
(0) -vu 3me 2. 2, 2
fe = ve du A expy - 5 5 (v. +H(u, t)) +v +v (21)
4Mvy A X y oz
0
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As a matter of interest and with the purpose of checking the theory, a
well known result of fe for the small signal case is reproduced from (12) .
When the incident EM field is small, it is accurate to assign feo as

2
m v

3/2 e
m __c
f = e o 2KT
eo o\ 27 KT

and it is also reasonable to put

£ [v + < (sinwucoswt + (1-coswu) sinwt), v_, v ]
oo | %<t X 'z

2
m v

3/2 e
m T T9KT Mo
= n e e =X vx(sinwucos wt + (1 - cos wu)sin wt)

27 KT KT w

The substitution of this expression in (12) gives

f(O) = f [ - -—me v s LA coswt - ——me \% — sinwt
e eo KT x 2 2 KT x 2 2
w +v + v
afeo W <afeo>
feo TV 5 39 < By >coswt TV "5 23\ oy sinwt (22)
v tw A v tw A

This result was derived by Margenau () .

Application of Zeroth-Order Velocity Distribution Function
In this section the zeroth-order values of the current, the conductivity
and the permittivity are obtained by using the zeroth-order velocity distribution

function found in the preceeding section.
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Zeroth-Order Current:

With the zeroth-order current defined as

5O = o\ 319 4%
e
it can be found that
7O_- 14
X
and
(v +H(u, t))2+v2+v2
X y z 5
m_/2de :l
J = -e vdv dv.dv Aexp| — :
X *x ¥y z KT+ M72k2/6(c2+w2>u2)
s 0
0
ve " du (23)
0

To evaluate this complex integral approximately, a new variable v)'( = vX+ H(u, t)

is introduced and v is held constant at this step. Equation (23) then becomes

2
00 (00 v

5 me/2dc -
JX = 4re du dvv. A exp| - 55 5 23 H(u,t)ve
KT+My A /6(c™+w A7)
0 0 0
Think of v as v/X, and find a value of v which corresponds to a point near the

peak of the integrand of the above integral. This value of v is a root of the

following equation.
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2
2 v3 exp [— me/ZdC J =0
ov KT+ Mya2/6(c2 +woh2

0

The root of this equation is found to be

1/2
- 1 \/ 2.2 2.2 2 2,2
= —0= + + - +
v 2V—ni [ 8meM'y Y (Zmew A"+ 6KT) 2mew A"+6KT
(24)
JX is approximated as
2
Q0 v 9 @ 5
9 me/ch 5 "3
J = 4rme v dv A exp| — 5 2 5 2.3 H(u,t);e du
X KT+My A7 /6(c”+w A7)
0 0 0
= en Y —2—1&—— cos wt + en y 7-(*)———2 sinwt (25)
W+ (F/A) W'+ /N

It is noted that (25) is the approximate value of the current. If the harmonic
components of the current are needed, (23) must be evaluated more accurately.
Zeroth-Order Conductivity:

The conductivity is defined as the ratio between the current and the

applied electric field. It is found to be

o = o0 - io, (26)
r i
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2 2 2 2 1/2
My N ECE 3KT _w 3KT
2 2m )\2 2 2m hz 2 2m 7\2
. = 0o° e e (27)
2
* e || My” | _(,_3_2_+ 3KT 2+w_ , _3KT
2
2m A 2 2m A 2 2m )tz
e e e
n e2
o (28)
o, = 5
oM My~ _w_ 3KT 9_ 3KT
2m ?\2 2 2m )\ 2 2m 7&2
e e
Zeroth-Order Permittivity:
o.

If the equivalent permittivity is defined as € = 60(1 - Bgl— ), the zeroth-

order permittivity of the plasma in the absence of a constant magnetic field is

found to be
— 2
€ = € 1- 1 (29)
o 9_ 3KT
2m )\ 2m K 2 2m ?xz
- —
n e2
where w2 = 9
pe m €
e o

It is interesting to show that a well known result for the conductivity
2

in the small signal case can be derived from (23). When KT >> Mg— , (23)
W

can be written as
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™ m v
e m :
= —e vdv.dv.dv A e 2KT [1— —Sy H(u, ta ve " du
X X Xy z KT 'x
- 0
2 Q
mv
4me me 4 ~ 2KT -vu
= 3 XT vidvAe H(u,t) ve du
0 0
me
Letting u = SKT v’ JX becomes
o)
2 4
Jd = S Yn e e—u A du cos wt
X sz "o W24 2

o0
8 —u2 wuz .
+ Yn e e du sinwt
2
3\[77 0 w2+1/
0

and the conductivity can be written as

9 [0}
ne 2 2
- — 0 8 e—u vu du
T me 3V7r- Wty
0
@
ne2 2 2
o, = 9 8 e_u ~ du
i m 3V
e w+v
0

These are the results obtained by Margenau [8] .
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First-Order Velocity Distribution Function
The Boltzmann equations to be solved for the first-order analysis are
as follows:

(A) For the electrons,

af(l) af(l) \ Bf(l) v af(l)
e e Z e X e
—_ _ = - =
” By cos wt an v cos wt = aVX Y cos wt S v
1
= - v(fi ) feo) (31)

2

W
where 3 = (1+ —%), c, - velocity of light, v and v are defined as before.
w

(B) For the positive ions,

afil) afil) v, afil) Ve Bf?)
+ ' —_— A _ 4 —=
ot By' coswt v ' cos wt R P v' cos wt o ov
X o X o z
— vt ) (32)
i io
where v' and v' are defined as before.
Equation (31) implies
dx dz df(el)
Ve N Vx - I/(f(l)- f )
-B- . ) ycos wt - 5 vcosut e eo
o} o)
Three equations are obtained from (33) as follows:
v, 5
+ (B- — i =
Ve B Co) " sinwt ¢, (34)
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VX
v +—= Y singt = ¢ (35)
Z ¢ W 2

o
df(l) (1)
— + ot = yf (36)
dt e eo

or

v = O (37)
x 1 /% 2
1+ -—2 5 sin wt
c w
0
¢, N
c. — (— - Isinwt) Ismwt
2 o c0 w
z 1 42 2
1+ —5 2 sin wt
c w
o

Following the same procedure as in the zeroth-order analysis, an expression

for f((al) can be found to be

00

f(l) = ve "auf (v',v', v') (39)
e eo Xy 'z

0

f (v',v',v') means that v , v , v terms in the original form of f are to be
eo X 'y z Xy 'z eo
replaced by v)'(, V;,, V'Z. v)’(, v;’, v'z are expressed in terms of vx,vy, v, t, u,

and some other parameters as follows:
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2
v o= 12 v E_ ié :YE -;—(sinwusinmut - coswu(l—coszwt)ﬂ
X X
1+ L2 sinzw(t—u) % Y
2 2
c W
o
\%
_ _Z gEinwucoswt'l-(l—COS(.OU)Sinwt]
o
+ Bg Esinwucoswt+ (1 - coswu) sinwt] } (40)
v =v (41)
y y
2
v = 1 v+ £ L ginft
1 422 z 2
1+ = L sin®ut-v) “
2 2
c W
2 1
— B x = sinwu sin 2wt
c 2 2
o W
2 1
- —c& 15 5 (1- coswu)(l - cos 2wt) (42)
oW

After the substitution of (40) = (42) in (39), fil) can be theoretically

evaluated as a function of velocity, time, and the intensity of the EM field. The
actual evaluation of (39) may be quite impossible without some approximations.
The applications of the first-order velocity distribution function are straight-

forward but are omitted here to avoid the lengthy mathematical formulas.
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Non-Linear Modeling the Induced Current

We may use this example in a non-linear modeling attempt in the fol-
lowing way. In one system we measure the effect of applying a weak EM field
to a plasma, while in another system we would like information when a strong
field is applied.

In this example, our purpose is to predict the result of the strong field
experiment from the data obtained in the weak field experiment. This problem
can be solved if we can model the basic differential equations which govern the
two systems. That is to say we aim to obtain a quantity in system II as a function
of the quantity in system I theoretically. The quantities of interest are the inducedh
currents in two plasma systems to which two different electric fields are applied.
We assume that the two systems have identical plasma of weakly ionized gas type.
If an electric field of E coswt is applied to the first system, there will be an
induced current il. The question is what will be the current i2 in the second
system if a strong field, ,[,E cos Qt, is applied to it. ,2 is a constanf much
bigger than unity. If we can succeed in solving for 12 as a function of i, theor-

1

etically, we can predict 12 from i1 which can be obtained from a much easier
experiment.

For the two systems of plasma assumed above, we can formulate two

Boltzmann equations to describe them as follows:
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of of n_(t)
eE 1
pralie mcoswtav = _Vl(fl_ o flO) (43)
X o
_32 - l@coswt Ef?_ = -v_(f.— nz(t) £ ) (44)
ot m 8Vx 272 no 20

f1 and f2 represent the velocity distribution functions of the electrons in system
I'and II. To system I, an electric field, E cosuwt, is applied in the x-direction
and to system II, a strong electric field of l E coswt is applied in the same
direction. /é is a constant much larger than unity. v, and v_ are the collision

1 2

frequency of the electrons with the neutral particles in the two systems. vy and

1/2 are the functions of the‘gas temperature and the intensity of the applied field.
The collision model adopted in this analysis is the elastic collision type with
conservation of particle during the collision. The conservation of particle is a
necessary condition for the formulation of (43) and (44) in which the spatial vari-
ation terms are dropped. n, (t) and n2(t) are assumed to be the fluctuating
densities and n is the unperturbed density for both systems. It can be proved
later that nl(t) and nz(t) are independent of t from (43) and (44).

fl and f2 are functions of velocity and time and the attempt to solve f2
as a function of f1 is difficult. However, there is a trick to sidestep this diffi-

culty by eliminating one of the independent variables before solving (43) and (44)

in the velocity space.
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Thus, from (43)
of n_(t)
0 3 1 3 1 3
ot fldv— cos wt po dv —Vlg(fl— " flO)dV
X o
or, since
of
1 3 3 3
- d = 0, Sflodv—no, andgfldv—n1
0
5t n1 =0 (45)
The same operation on equation (44) gives
9 _

If the unperturbed densities in the two systems are the same and equal to .,

ut = n_ = .
then we can p n1 9 no

The operation, SdeSV, on equation (43) yields

of n,(t)
0 3 eE 1 3 1 3
ot flvxd v - m cos wt ov de v = —Vlg(fl— o flO) de v
X o
or
0 eE
— + ———— = -_
ot (nlul) m cos wt n, v o (47)
where

3
nlu1 = Sflvxd v
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and fl 0 is the equilibrium state of fl and is assumed to be isotropic in the velocity
space.

The same operation on (44) gives

0 ek .
ot (n2u ) + ,Z m coswtn2 = —1/2n2u2 (48)

The combination of equations (43)-(48) gives two differential equations as follows:

d eE

—_— + —_ . ==

Tty = cos wt (49)
d ek

— + ——— — p—

at Yot Vol = L cos wt (50)

Now, we have transformed (43) and (44) to (49) and (50). The quantities U, and

u, are to be found instead of f. and f,. The problem is simplified because u

2 1 2 1

and u, are functions of t only.

The next step is to try to solve u, as a function of u,. An equation

relating u, and u, is immediately found as follows:

d

— u_ + = — u, +

at Yo T VY f,( u, tvu ) . (51)
An expression of u:2 as a function of u, can be produced from (51) in the following
way.

—v2t v_t

= - +
u, = e l(dt u vlul) e dt

vt Vzt
[5 (ue )dt+(1/—1/)g1 dt] .
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That is

u, = /eul + l(vl— v2) e u, e dt (52)

Equation (52) shows that the mean velocity of the electrons does vary non-linearly
with the applied electric field.

There are the following ways to express u, as a function of u, more

explicitly.

(1) If we can determine w from an experiment, u, will be known

immediately after u. is substituted in the integral appearing in (52).

1

(2) Solve (52) by successive approximations. That is, consider the

second term on the right of (52) as a correction term and substitute u, with

% u, in the first approximation.

(3) If we can determine theoretically an approximate solution of W

(this is possible in many cases) then u_, can be obtained after the approximate

2

solution of u is substituted in the integral in (52). In this case U, will be an

approximate solution. It is perhaps interesting to show the result for this
particular example. From (50), a solution (exact in this particular example)

of u1 is found to be

E
w = -2 1 (v. coswt + wsinwt). (53)
1 m 2 2 1
v tw

The substitution of (53) in (52) gives
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(v,-v,)
u, = lu + ,LEE- 2 1 w,v —wz)coswt+ (v, +v_ )wsinwt
2 1 m 2 2 2 172 1 72
(v1+w )(V2+w )
(54)
If the electric currents are defined as
i, = -enlu1 s i, = —en2u2
and
n1 = n2= n0 ,
then the relation between two currents can be expressed as
noezE (V2- 1/1) 9
i= Adi- L (v.v_-w )coswt+ (v, +v_ ) wsinwt
2 1 2 2,2 2 12 1 2
(vl+w )(v2+w )
(55)

Thus 12 is determined as a function of i1 and t. This time dependence will not

appear in the actual experiment. The quantity we can measure in an experiment

is the magnitude of the current. For this quantity the relation is

2 2 2
|i \ _ &H _'Lnoe E (Vz— Vl)(vlvz—w )
2 1 m (v2+w2)(v2+w2)
1 2
5 2 _1/2
neE (-v)v,+v)w
+ (Ldni - L2 2 1 1 2 ] (56)
1 m 2 2,2 2
(V1+w )(v2+w )

This relation can be checked experimentally.
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Note that
1 3KTle M72
v, = T , T =T+
1 A m le 9 3 M 2
6K |0 + —— (KT+ ~1—)
2 2
A m 6w
1 |[3KTge L2
v, = T > T =T+
2 A m 2e 2 3 1,2
6K | W’ + —— (KT + ——1’—
)u m
where A = mean free path of the electrons and the neutral particles,

T = temperature of gas,

_ eE
Y m ’

M = mass of neutral particles.
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VI
THE ELECTRICAL CONDUCTIVITY OF A PARTIALLY IONIZED GAS

In this chapter an expression for the electrical conductivity of a partially
ionized gas is derived where both electron-neutral particle and Coulomb type
collisions between particles play important roles. As mentioned previously,
considerable work has been done along this line. Margenau 6, (6) and his
group published a series of papers dealing mostly with low intensity fields and
weakly ionized gas. Spitzer ﬁﬂ and his co-workers on the other hand dealt with
the small signal static conductivity of a fully ionized gas. In a weakly ionized
gas Coulomb collisions between charged particles are neglected. Boltzmann's
equation is solved in these cases by considering only collisions between the
electrons and neufral particles. In the fully ionized case, however, it is the
Coulomb collision which determines the electron velocity distribution function.

This chapter deals with an intermediate case of the interaction between
a low-intensity electromagnetic field and a partially ionized gas where neither
the electron-neutral particle nor the Coulomb collisions can be neglected. The
term conductivity, as used here, is defined in the usual manner as the ratio
between the current produced in the ionized gas to the amplitude of the incident
electric field. The effects of inelastic collisions and a steady magnetic field are

neglected in the present analysis.
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The contribution to the collision term in Boltzmann's equation due to
collisions between neutral particles and electrons is accounted for by the stan-
dard analysis [10] , ﬁ?;] . The contribution due to Coulomb collisions, however,
is rather complicated to analyze. Here, we shall use the Coulomb collision
model derived by Dreicer @3 from the Fokker-Planck equation. After assuming
that the interacting electromagnetic field is of low intensity, an expression for
the electron velocity distribution function is derived by solving Boltzmann's
equation with the above two models for the collision terms. Expressions for the -
electrical conductivity in various cases are then derived. To the extent that the
assumptions for the collision models are valid, the expressions derived here for
the conductivity are quite general in nature. The expressions reduce to the well-

known relations for both the limiting cases of fully and weakly ionized gases.

Basic Formulation of the Problem
In this section we shall formulate the problem in general terms. The
basic parameter which has to be determined before one can obtain any information
about the ionized gas is the electron velocity distribution function. Let us define
the electron velocity distribution function F(v,t) such that Fd3v gives the number
of electrons whose velocities lie in the element of volume d3v situated around the
point v in the velocity space. It is assumed that the macroscopic properties of

the gas do not vary from point to point. Then the distribution function F satisfies
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Boltzmann's equation:

oF - _ (9oF
5t + alt) - VVF = <8t> (1)
coll.

where
2(t) is the force per unit mass on the electrons,

Vv is the gradient operator in velocity space,

and (%%> is the rate of change of the distribution function due to various
coll,
types of collisions. Here we assume,

&), - &) (),

where the subscript cn means collision between electron and neutral particles,
and cc means Coulomb collisions between the charged particles. Explicit expres-
sions for the collision terms depend on the type of model one assumed for the gas.
In general there should be considered two other equations similar to (1)
in order to account for the velocity distributions of the heavy neutral particles
and positive ions. However, for simplicity of analysis it is assumed here that
the heavy particles are stationary relative to the motions of the electrons. This
is a reasonable assumption compatible with the physical cases where the mass of
a heavy particle is about 1830 times heavier than that of an electron.
In the present problem the acceleration of the electrons is assumed to

be of the form
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eE cosuwt
) = - ——— (3)

where
Eo is the amplitude of the incident electric field (polarized along the
z-axis),
w is the angular frequency of the incident field,
-e is the charge of an electron,
m is the mass of an electron.
The effect of the alternating magnetic field is neglected. After the distribution
function F is determined from (1), the current produced in the gas may be

obtained from the relation,
3
J=-nev = -e \ Fd vvcos6 (4)

where,
J is the z-component of the current, assumed positive along the positive
direction of the z-axis,
VZ is the mean velocity of the electrons along the positive z-direction,
6 is the angle between the z-axis and the velocity vector ¥,
n is the electron density. The integration in (4) extends over the

entire velocity space.

7




THE UNIVERSITY OF MICHIGAN
4134-2-F

Discussion of the Collision Terms
As mentioned in the introduction we shall consider only two types of

elastic collisions—electron-neutral particles and electron-heavy positive ion.
If the gas is fully ionozed and of high density, then collisions between charged
particles of the same kind (for example electron-electron, ion-ion) should also
be considered. The electron-neutral particle interaction is a short-range
phenomenon and explicit expressions for this are taken from the standard analysis

[10] , [l?J . Since Coulomb force is a long-range phenomenon, the cumulative
effects of small deflections suffered by the electrons at large distances become
very important [:lﬂ and they cannot be accounted for in the same way as is done
in the first case. Random two-body encounters associated with distances smaller
than the Debye length A are assumed to be the sole mechanism for Coulomb
interaction considered here. This type of interaction is in general accounted for
by the Fokker-Planck equation. The detailed derivation of the collision term from
the Fokker-Planck equation is given by Dreicer (13) . Here, we take our col-
lision term after applying the relevant approximations to the general Coulomb

collision term give by Dreicer.

Evaluation of the Electron Distribution Function
In the analysis we shall make use of the Lorentz approximation which

states that the collisions between various particles produce a spherically
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symmetric velocity distribution—small deviations from spherical symmetry are
1
then explained accurately enough by the second coefficient F (v) in the spherical

harmonic expansion of F:

Fcos 0, v) — F(v) P_(cos 0) = ) + cos 6 F(v) (5)

where,
the polar axis is chosen to be the z-axis,
Pr'ls are the Legendre polynomials.
For the small signal case it is assumed that F1 << FO. This condition physically
means that the average velocity of the electron gas is small compared to the root-
mean square electron speed. This is reasonable if the perturbing field is small.
By using the orthogonality property of spherical harmonics the following
relations are obtained after the integrations over the angles are carried out.

88

electron concentration nO = S FO47I'V2dV, (6)
o
the electric. current JZ = - L%E F1V3dv. (7

After expanding the term 2 (t)- '{7VF in equation (1) into its spherical coordinate
components in the velocity space and substituting (5) into (1) and equating the terms
independent of cos 0 and those dependent on cos 6 the following relations are

obtained.
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8FO _ ycosuwt 0 8 (8)
ot 2 ov

3v

1
%——ycoswt —— G > < > (9)

where

The contributions due to electron-neutral particle collisions are (10) , (12),

0
< > = —15 ﬁ %(VBFOVG(V)) + K—T2 %(vzve(v)%) (10)
Mv
< > F vy ) (11)
cc
where

T

z/e(v) = 27 Nv S (1-cosp) sinBce(B, v) dg, (12)
o

N = the number density of neutral particles,

o (B,v) = differential cross section for elastic scattering through the
angle f3,

M = the mass of the neutral particles,

T = temperature of the electron gas

K = Boltzmann constant.
The factor ve(v) may be identified with the collision frequency of electron-neutral

particle collisions. In general l/e(V) is a function of v; but for a hydrogen
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plasma ve(v) is independent of v for v above several electron volts.
The Coulomb collision terms, subject to the Lorentz approximation and

the condition — << 1, are given by (i3],

M
8F1 - _ no‘:}i (13)
ot 3
ce \%
0
oF _
( ot > = 0 (14)
cec

where

H ln(?x/p ), (15)

= the average impact parameter (distance of closest approach between

the two colliding particles),

e, = charge on a heavy ion = Ze, Z being the degree of ionization,

A = the Debye shielding distance,
-9 -1 -1
dre = |1 / 97| 10 ~ Coulomb-volt "-meter
o

After substituting the relations (10), (11), (13) and (14) into (8) and (9), the fol-

lowing two equations are obtained.

KT 0 2 oF

2 P Vv (v)—a—;' ) (15)
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1 0 n .
oF oF _ o ei 1
- vcoswt< - >— EG(V) il b (16)

It is interesting to note that, subject to the present approximations made, the
Coulomb interaction effectively increases the collision frequency from Ve(V)

to [z/e(v) + n f(;i/ VSJ in the equation determining the perturbed distribution F1 .
Equations (15) and (16) together determine the distribution function F.

In order to solve the two simultaneous equations (15) and (16) we assume
that the isotropic part of the distribution function is independent of time. After
applying the technique of solving differential equations by Laplace transforms,
it can be shown that the solution F1 of (16) in terms of FO is given by the

following

_E/(VH Oelj
Flz 1att 0) e

( w - P 9 sin wt
[:ve(v)+ 0 ei]

v (v) +n P./VB
(S 0 el

+ cos wt
n ("2
w2+ [1/ (v)+ [o) el]
e 3
' norei:‘
e o el \%
B n (7. )2 © (17
2 o 'ei
w + E/ (v) + ]
e 3
v
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It can be seen from (17) that the combined collision effect (electron-neutral
1
particle and Coulomb) relaxes the perturbed distribution function F~ to the

following steady state value

v (v)+n r /v
F _7< C 2 sinwt + ) cos wt
WP+ [y (v) + —°—§-‘-] W+ E/e(v)+ 1]
v

(18)

After substituting (18) into (15) and taking the time average, the following is

obtained,
3
+
P oo | 2 aF YWMtn A
T T 20v |V Tov
6v w2+ (:1/ (v)+n P./v3:'2
e o ei
1 m 9 f3.0 KT o0 [2 BFO
— — — — + —_— — ———
2 M vV 7T e(> 2av( ™) v (19)
\% Mv
0
From (19) F can be written in the following form,
— Aexp - mvdv - (20)
wl WG
o KT
6v (v) n (".7)2
e 2 o'ei
w + ve(v)+ 3

v
where A is a constant. If Coulomb collisions are neglected the distribution
function (20) reduces to the one given by Margenau (5) , (6) for the constant mean

free path case. If the thermal energy of the electrons is large and the electric
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field EO is sufficiently small, then the term KT in the denominator of the

0
integrand in (20) is predominant and F reduces to the Maxwellian distribution

/2 2
FO= no( m >3 oV /KT 21)

27 KT

where the constant A has been determined by using the relation (6). Equation
(20) indicates that, strictly speaking, FO cannot be assumed to be Maxwellian
and independent of the field intensity EO. As we shall see later this fact makes
the electrical conductivity of the ionized gas a non-linear function of the field
intensity. We are now in a position to calculate the conductivity of the gas. This

is done in the next section.

Expressions for Electrical Conductivity
After using (7) and (18) the following relation is obtained for the electric

current,

47re2Eo va
3 \ 2 6 3
m v+[vz/(v)+n (",]2
0 e o ei

3
v WIv +n (. 0
[ S 0.2l cos wt] v6 <%% >dv (22)

w2v6+ [1/ (v)v3+ n (O .:]2
e o ei

Defining complex conductivity as o = o.- ici, it can be shown that,
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o

3 0
. — - <8F >dv (23)
! wv+ vz/(v)+nr]

4:7“32 v (V)v + n f' < >
g = - — (24)
f Sm w2v6+ [1/ (v)v +n \—'J
0

For the d.c. case w =0, 0, = 0, Gr = ch c If Coulomb collisions are neglected,

and F0 is assumed to be given by (21), then (23) and (24) can be written in the

2
following forms after introducing the dimensionless parameter x = nv

2KT °
160
47re2n0 9 w _X2 4
o. = —_— e X dx (25)
i 2 2
! Sm (7r)3/2 W +1/e(x)
9 o)
4re n v (x) 2
o = o 2 —L x4dx (26)
T 3m (7r)3/2 w2+ Vz(x)

In general z/e(x) is a complicated function of x and the integrals in (25) and (26)
are not always amenable to integration in closed forms. For constant v , o,

and . as given above reduce to the familiar forms.

Conductivity of a Fully Ionized Gas
In this section we shall derive expressions for the a.c. conductivity of a

0
fully ionized gas. In order to simplify the analysis it is assumed that F is
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given by (21). Since the gas is fully ionized ve(v) = 0 and hence (23) and (24)
may be written as follows:

0 0)

2
_dmenm, ot /2 8, G x7e'X2dx 27)
%~ " 3m 3/2 \m 2/2KT\3 6. 2.2
() W/ )x +n [,
0 m 0o el
(0]
47re2n 3/2 10 -x2
o o 2w <2KT & (28)
i 3m (”)3/2 m w2<2KT)3x6+ n2§"2_
0 m 0O el

For the d.c. case, w=0 Consequently, ci= 0 and the d.c. conductivity is

given by:
(o)
. - are® 2 <2KT>3/ 2 X7e—x2 o (29)
D.C 3 3 )
mr'ei (r) /2 m
0
7 —x2
But gbx e dx = 3 and therefore,
0
o ane 2 <2KT>3/ 2 50)
D.C. m r;’i (W)3/2 m
Expression (30) can be transformed into the familiar form for resistivity (1/ % C)

of a fully ionized gas a given by Spitzer (14] .
We shall now calculate o, as given by (27). For this we need to evaluate
the integral

I = —X—é—e—— dx (31)
X ta
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where

3 n (2,

_ _o _ei
a = 2 (2KT 3 (32)

After a change of variable t = x2, the integral (31) can be written as follows:

1
1= 5 3 dt. (33)

3, 3
After breaking the term 1/t"+ a” into partial fractions and making use of the

[00) n -t
known result S n e+ " dt = K (t ), where K is the modified Bessel function

1
of the second kind and order n, the following is obtained,

o L K+ — 1 [H(l)( 7T1/6)+H(2)( Tri/G):l

632 192 2 2 3
‘- 1 . 3 - 6
y — 5 5 ‘:H; )( ae m/6) - Héz)(aem/ )] (34)
A
where Hél) and H(32) are the usual notations for Hankel functions. Using the
result [15)that H(l)( 7“/6) is the complex conjugate to H(2)( 7TI/G), (34) may
be written as follows:
1 T .
1= — K3(a) - 5 pcosf + psinf , (35)
6a 12a 4 V§a
where
Hél)(ae-m/6) = pcosf - ip sinf.
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Thus the following is obtained for o

2
47e n 3/2 K, (a)
_ 0 2 2KT a 3 TP T .
o = (m ) + cosf + s sinp | (36)

6 1
r 3m (7r)3/2 n \‘;i 2

The integral in (28) can be similarly evaluated and the following expression is

obtained for ci:

2
dme n, g, (2KT>3/2 a
3/2

0’ —
i m m 2 <2
() no rei
Ti/3 -7i/3
. K9/2(a) Kg/z(—ae )+K9/2('ae )
6 B 12

- Wl? E<9/2(_ae7ri/3) - Kg/z(—ae—“/Sﬂ] (37)

If F0 is assumed to be non-Maxwellian, in general, one has to take recourse to

numerical methods in order to evaluate crr and cri.

Discussion
In the above the electrical conductivity of a partially ionized gas has
been discussed in detail. The general expressions derived for conductivity may
be applied to specific cases keeping in mind the assumptions made in the analysis.
For non-Maxwellian distribution for the unperturbed distribution function and
collision frequency depending on velocity, the conductivity has to be calculated

by numerical methods. Depending on the type of gas and the degree of ionization,
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one can, however, make some reasonable physical assumptions which will greatly
simplify the calculation. It is evident from the above analysis that even in the
small signal case and for weakly ionized gas, strictly speaking the electrical
conductivity turns out to be a non-linear function of the field intensity. From
this, at least qualitatively, one would expect that in the case of high intensity
field the electrical conductivity, if it can be defined in the usual sense, will
heavily depend on the field amplitude. This conclusion should be true for weakly
as well as strongly ionized gas. The case of the interaction between high
intensity EM field and strongly ionized gas will be investigated in the next

chapter.
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VII
NON-LINEAR ELECTRICAL CONDUCTIVITY OF A FULLY IONIZED GAS

The electrical conductivity of a fully ionized gas was investigated by
several authors [11] , [1?;] for a small d.c. electric field case, in which case the
analysis is linearized and small perturbation approximation is justified. How-
ever, when the impressed electric field is not small the analysis can be much
more complicated and the conductivity may have non-linear behavior. The
purpose of this chapter is to study the general behavior of the electrical con-
ductivity of a fully ionized gas based on the Fokker-Planck equation. A method
which may be useful in the study of electrical conductivity is developed.

An electric field of arbitrary intensity is assumed to be applied uniformly
throughout a fully ionized gas which is of infinite extent and spatially homogene-
ous. To find the electrical conductivity the mean velocity of electrons induced
in the plasma is first obtained and from that the induced electrical current and
the electrical conductivity of the plasma are determined. In the d.c. case,
an instability phenomenon which is called the runaway effect can be observed.
This instability automatically restricts the intensity of the impressed electric
field to be lower than a critical value. Under this restriction, the d.c. electrical
conductivity is obtained as a function of the intensity of the electric field and other
parameters. In the a.c. case, the runaway effect loses its significance if the

impressed frequency is higher than a critical value. For high intensity micro-

90




THE UNIVERSITY OF MICHIGAN

4134-2-F

waves, the electrical conductivity can be very non-linear. In this chapter a

simple way of obtaining an approximate electrical conductivity is also presented.

The Basic Equations
An electric field, E coswt, is assumed to be applied along the x-direction
to a fully ionized gas which is of infinite extent and spatially homogeneous. The

basic equation which describes the system is a Fokker-Planck equation as follows:

afe eE afe o] 1 82

—_— =22 —_ = — < >S) + = < >

5 coswt == = _S_ P (fe Avi ) 5 E v v (fe AViAVj )
e X i i 1,] 1]

(1)

fe is the velocity distribution function of the electrons of the plasma. The
spatial variation term is neglected so that fe is to be determined as a function
of velocity, v, and time, t, only. The right hand side of (1) represents the
collision effects of electrons with positive ions and electrons due to the friction

and the dispersion in the velocity space. These two terms can be represented

&'ﬂ by

o] d 8He
2 o el = = ) 0 @
1 1 1 1 1
1 Z 5% 1 E 52 82Ge
el < —_ -
2 &—ov_ ov, (fe AViAVj>) 2 <&— 0v. ov, (fe 8v.8v.) (3)
1,) 1 ) 1) 1] 1]
and N
f (1) 3 £ELY
H =H +H = B—x 2 \m=—= dV!
e Hep ee ‘Z ‘_‘7_V‘dv 2 \V-V' d'v (4)
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G, = G G, = MI\F-Fl t@odv+|F-¥ (@ odv| ©

4
Fe= 4—”(32 Xm,(r‘)t‘l‘).
0

m
e
h = Debye shielding length
po = average impact parameter for a 900 Coulomb deflection.
The positive ions of the plasma are assumed to have a Maxwellian dis-
tribution and undisturbed by the impressed electric field. The velocity distribu-

tion function of the positive ions is

P Y (6)

—P

with ozp = 9KT °

n = unperturbed density of the plasma.

With the information expressed in (1) to (6), we are, in principle, able
to solve for fe' However, it is hopelessly complicated, especially if (1) is
considered without making any approximation. Fortunately, for the purpose of
studying the electrical conductivity we can find it much easier to solve the prob-
lem by integrating (1) in the velocity space and solving some moment equations

which are thus obtained.

First of all, the operation gdBV on (1) gives
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8ne 8fe> 3
ot = | \Btleonr. V=0 ()

This is valid as long as the conservation of particles during the collision is
asserted. Equation (7) implies that n, is independent of time. This is actually
a necessary condition if the spatial variation of fe is assumed to be zero. We
can, therefore, let

n =n (8)

Secondly, the operation vadBV on (1) gives

of
0 eE < e> 3
—_= 4+ == — —
ot Nt cos wt n, " de v (9)
e coll.

nu= vadsv
e e x

In carrying out the right hand side of (9) the following facts are used.

where

(1) The collisions between like particles do not alter the total momentum
of the parent gas.

(2) The dispersion in velocity space leaves the momentum of a gas
element unchanged.
Based on these reasons and using (2) to (5) the right hand side of (9) is simpli-

fied to the following form.
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__e> vd3v=— —a—(f ——ep)vdgv
ot X ov g
oll X
v
5 | o £EL0
— _— 1
r(; fed v Bvi 5 - dv
v v!
£ (v',t)
= { 3 9 ’
e fed v an T%—_??'l- d v (10)

In deriving (10), fp is assumed to be Maxwellian and fe is assumed to be an even
function of vy and v, The substitution of (10) in (9), with (8), yields

r f("t) 3
8—u+(;1—E-coswt= £ fdv — dv' (11)

v-vl

Equation (11) is to be solved. From it the mean velocity of electrons, u, can be

determined.

Simplification of Equation (11)
The crucial part of solving (11) is to evaluate its right hand side. It will
be evaluated in a form convenient for further study in this section.

The integral

M@, t) =
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can be evaluated exactly if fp is assumed to be Maxwellian as expressed in (6)

That is
3 —ozzv’2
a o o)
M(V) = n > d v'
o (ﬂ)3/2 |v-+

V!
This integral is analogous to the potential integral in electrostatics. Analogously
the integral gives the potential at the point v in the velocity space produced by a
spherically symmetrical charge density expressed as

2 2
a v

47n (oz3/7r3/2)e P
o p

This potential is well known in electrostatics and the exact answer is

3 \'J 2 2 (00) 2 2
N o 1 - V 2 -0V
M(V) = 47n —2—+ = e P ylavr + e P yuay
o, .3/2 |v
(7)
o %
1
=n = erfle v) (12)
ov P

The right hand side of (11) then becomes

r.h.s. = [ Svi L [l erf (o V)]
8Vx \% P

2.2

o - V

=-[ Cyvi | S erflav)- &= Le P (13)

e X e 3 o) T 2
v \' v
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Therefore, (11) finally becomes
a -(1/2V2
ou -@—coswtz— h dBVVf —l—erf(av)——g—ie p (14)
ot m e X e V3 p 7 V2

\%

Approximate Electrical Conductivity
For the purpose of showing the usefulness of (14), the approximate
electrical conductivity will be found in this section.

We can interpret the r.h.s. of (14) as

2 2
3 1 9 o -a v e2
-\ vt | Serfev) —=Se P |=-=—n |are~) @5
e X e 3 p T 2 m o
v v e
v
where
1 3 . . .
du = 0 fede v = density of the mean velocity of electrons in the
o
velocity space,
1 3 .
u= — fev d v = total mean velocity of electrons,
n, X
v
2 2
ele 1 2 ip —apv
R(v) = 2 ? ert(apw’) L V2 e (16)

= electrical resistivity in the velocity space.

For practical purposes, in many cases, we can write (15) approximately as
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2 3 e2 3 e2
- — dvv f Rlv) = - — R(¥) dvvf = - —R(V)nu (17)
xe m X e m 0

e e e
A% \%

where vV is an appropriate value of v which is to be substituted in R(v) so that
(17) is valid. For example, V can be assigned as the rms velocity of electrons.

If the r.h.s. of (14) can be approximated in the way expressed in (17),

ou eE e2
— + — coswt = —=[— n R(V))] u (18)
ot me me [o)

Equation (18) gives a steady state solution immediately as

eE 1 2
u= - — 5 £ 5 R(V)coswt + wsinwt | (19)
m 2 m o)
e [e ] 2 e

—n R(V)| +w
m_ o

(14) becomes

From this the induced current, J = -en u, and the complex electrical conductivity,
c=JJ/E = .- 0, are easily determined.

The approximate electrical conductivity is then

e2
2 — n R(V)
ne m o
o — -0 e (20)
r m 2
€ [E—n R(¥V) | +w
m o
e
2
noe W
Oi - me 2 2 (21)
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and
reme 1 9 a —az'\72
R(V) = — —3erf(a\7)—v—7—}22e p
e v p v
-_ |[EXT L ™
m ’ p 2KT

In the next two sections, the electrical conductivity for the d.c. and a.c.

cases are analysed more exactly from (14). The non-linear behavior will then

appear.
D.C. Electrical Conductivity of a Fully Ionized Gas
For the d.c. case, or w =0, (14) can be reduced to
e, 3 1 2 o -arv
E=-— dvv f —erf(av)———‘ge P (22)
e xe V3 p 7 V2

If the electrons acquire a mean velocity, u, after a d.c. electric field, E, is

applied to the plasma, fe can be assumed to have a form as

ag - [(v —u)2+v +v ]
f =n (23)
e o (”)3/2
Mo
with ae = _ZEE

Upon the substitution of (23) in (22), the mean velocity, u, can be deter-

mined. In evaluating the integral in (22), it is learned that
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m
—P
m

av ~ afla =
p p e e

Hence, (22) can be approximated as

3 Qe o o —012 (v —u)2+v2+ v2
Mm 1o} el x y z
E = e en e dv dv dv v =
e z R 3/2°
°  3/2 X y X [v +v +v2]
() X 'y z
- -m -0

with a very high degree of accuracy. The integral can be evaluated exactly

(details are included at the end of this chapter) and (22) finally becomes

2 2
reme 1 2 ae —aeu
E = - n — erf(ozeu) - s (24)

N

e o) 2
u

Equation (24) shows that the mean velocity, u, is non-linearly dependent on E
and other parameters. u can be solved as a function of E from (24) at least
numerically. After u is determined as a function of E, the current and the
electrical conductivity are obtained immediately

The behavior of the induced current, J, as a function of the electric
field, E, is shown graphically in Fig. 1. We observe a very important phenom-
enon at this point. That is when E is increased higher than a critical value, Ec’
the induced current increases monotonically and shows instability. This effect
is called the runaway effect. If can be found numerically that Ec corresponds

approximately to ozeu =1 and its value is
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FIGURE 1: THE INDUCED CURRENT IN A FULLY IONIZED GAS
AS A FUNCTION OF D.C. ELECTRIC FIELD
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’
(r'eme><me e3 h no
Ec = O.43nO ——e _2KT> = (0.867 EIM.(;;) T (25)

Because of this phenomenon the analysis of the d.c. electrical conductivity of a

fully ionized gas should be restricted to the case of

E <E, or u < 2KT (26)
c m

if sensible results are expected.

Under the condition expressed in (26), (24) can be written as

Ez._rc’amen 2 3|2 _ 223,145
e o T % 3% 7 5%" 7 %"

If the d.c. electrical conductivity is defined as

o = 3= —en =
D.C E o E
D can be expressed as follows:
. s\ & ok 2 20 e 2(2KT>2 22
D.C 4 Tm m 80 rm n m
e e e e e e

N 94372 e (ZKT 4 2l -1 1)
3584 \{"m n m
e e o e

This expression shows that o is dependent on E, n and other parameters.

D.C.

When E is very small D C reduces to
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o

34\1? &2 <2KT )3/2

\_'61‘11 m

D.C.
e e

which is about 1/2 that obtained by Spitzer (11 .

A.C. Electrical Conductivity of a Fully Ionized Gas
If fe has a form as expressed in (23), (14) can be written as

2 2
a -au
ou eE 1 2 e e
—— + — — — ——— — — —
" m_ cos wt r;no le erf(aeu) =2 © :] (28)

To determine u we have to solve the above non-linear differential equation.
Analogous to the d.c. case, first of all we have to find a critical condition

which serves as a limitation to avoid instability. The easiest way to assure a
stable solution for u is to make the linear term always larger than the non-linear

term in (23). That is

[04 Q’2u2
du 1 2 e e
ot > r;no [uz erf(aeu) - V—; 5 © J

)
Since 3;-1 is roughly equal to wu and the right hand side of the above inequality has
a maximum at u = ;1— , the following relation can be obtained. That is

e

R

1

R
o N

e
[\S]
L J

1 2 e
> ——— cx——— ———
wu Seno ‘ uz erf(aeu) - = 2 e

' 1
and a critical value of w is obtained if u is replaced with o s follows:
e
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b = 0.43n [e° = 0.43n <2‘3— 4” (29)
c “o'ee : 2KT >

Therefore, we can state that in the analysis of the a.c. electrical conductivity
of a fully ionized gas the electric field E can be of arbitrary value if w > wc.

In the actual case, the determination of u from (28) is quite involved
and only special cases are discussed here.

When E is small and azuz << 1, (26) can be written as

Ju 4 3 eE
—_— + — = o—
ot <3V_7r r;noae> u m_ cos wt (30)
The steady state solution for u is
eE 1 4 r 3 .
= +
u m >2 2 [3 G enoae cos wt wsmwt] (31)
3 \[—
With the definitions J = -noeu, and o = I% =0 - ioi, the a.c. electrical
conductivity can be found as
n e2 4 r'n a3
o 3V 'eo e
* Ine 4 Pn a3) + w2
3V ‘eoe
2
ne
_ _0 (33)
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When E is large and ozzu2 >>1 but w > w.s (28) can be written as

(o B
%l—l + —%-9 = - & cosut. (34)

m
u e

u can be obtained if this non-linear differential equation can be solved.

Evaluation of a Definite Integral
A definite integral appeared in deriving (24), the evaluation of which was
omitted to avoid obscuring detail, but is presented here for completeness. The

following integral is to be evaluated as a function of the parameters o and c:

00 os) 00 ~
2 2
o [(x— c)2+y +Z2]
I = xdx dy dz [2 5 2] 372 (35)
X ty tz
- -0 -
Let: z' = ax
X' = oz s = ac (36)
y' =ay
o¢) © 0 & 29 12]
1 o z'-8) +y" +x
I= - z'dz' dy' dx'
3/2
o [(z')2+ (y')2+ (x’)2:] /
-0 ~00 -

Note that ol is a function of s only. Define I 1(s) = ¢gl. Introduce spherical

coordinates:
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x' = rsinfcosf
y' = rsin@sinf (37)
z' = rcos®f

One obtains:
2T T (00)
2
- Er— S Ccos 9)2 + szsin Gj
Il(s) =\ dp \ sinBcos6d6 \ dr e (38)
0 0 0

Note that the integrand is independent of . Let t = r-scos. It follows that:

scos 6
2 .2 2
Il(s) = 27 enS sin 6 sinfcos O do [V%— + e_t dt (39)
0 0
Integrate by parts: s cos 0
2
u = V- - e tat
2
0
—s2 0828
du = -ssinf e ¢ dé
—s2s'n26
dv = e ! sin O cos 6 db6
_ —szsin29
v =
252
-S S T
2 2 2
Il(s) = 27 [:—I—{O;? +\ et dt) —(\%— +\ et dt>} -— \ sinfe d9]
2s
0 0 0 (40)
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T —52

Il(s) = 7T erfs - 2se (41)

s

In terms of the original parameters we write I:
T —01202

I(a,c) = 32 N7 erflac) — 2ac e (42)

ac
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APPENDIX A
NON-LINEAR MODELING OF BESSEL FUNCTIONS

This appendix treats the non-linear modeling of two systems described

by Bessel functions. The domain of regularity of the modeling function or trans-

formation between the systems is investigated and an explicit series representa-

tion of the modeling function is obtained. The corresponding results (2) for trig-

onometric functions are included (and expanded), not only for comparison, but

also because they suggest the structure of the coefficients in the modeling function

series.

Statement of the Problem

Suppose a (physical) system is described by the following differential

equation with initial conditions:

at t = 0:

at s = 0;:

2

Q_X+1QX+K2y:O (1)
2 t dt 1

dt

y(0 =1, at 0. (2)

Another system is described in terms of the independent variable s:

9
- (3)
2 7 s ds 2
ds :
x =1 , EO_, (4)
ds
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Let the independent variables of the two systems be related by a change

of scale:
s = at (5)

The initial conditions on x remain unchanged, (4), and the differential equation
for x as a function of t becomes:
2
d x + aK.x =0 (6)
A non-linear modeling function is a transformation, y [x], giving the
solution y(t) in terms of x(t). We assume that y (x] is not explicitly a function

of t. Thus

d d dx
af= i A*3 I (7)

Essentially, finding y (x)] means eliminating t from the two systems. Suppose
the solution of (1) and (2) is:

y = glKt) (8)

It is not difficult to show that x(t) is given by:

X = g(Kzs) = g(Kzat) (9)

We can obtain y (x] formally or symbolically as:

K .
y& = g[ﬁl; g—l(xzt = gE{g-l(XZ] (10)
2
where
K1
K= — (11)

23
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The characteristics of the transformation y (x] thus depend on the parameter K.
This can be seen also by making the change T = aKzt in (1) and (6). Restric-
tions of K which make y (x] single-valued are called similitude conditions (1] .

We will attempt to investigate these conditions by expressing y (X] in a power

series whose coefficients depend on K.

Mappings

Before proceeding to the development of the modeling function, y (x],
we digress to a discussion of the systems (1)-(4) and the corresponding situation
for g = cost in which we suppose that the solutions are known. Strictly speaking,
if non-linear modeling is to be fruitful, we cannot solve the original equations
analytically, at least not in a practical representation. We hope to find the
transformation y [x] between two '"unsolvable" systems and by performing one,
x(t), experimentally, then to deduce a solution, y(t), of the other through y (x] .

However, one must distinguish between determination of modeling trans-
formations on the one hand and the theory or study of such determinations on the
other. The latter, of course, properly includes some questions of technique as
well as of existence and limitations. By considering modeling of "known'' equa-

tions we hope to develop general principles and methods more readily. In later
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sections we determine modeling functions for systems corresponding to Bessel

and trigonometric functions without solving the original differential equations.

In this section, by assuming known properties of the solutions, i.e. y(t) and x(t),

we obtain information which allows us to interpret and extend these later results.
Consider then, the solutions of the systems (1)-(4). (We assume the

simplification of parameters introduced previously.)
y(7) = JO(K?‘) (12)
x(7) = JO(7“) (13)
The modeling function is obtained symbolically as
y6 =7 K5 (14)
o) 0
It is clear that y (X] is not necessarily uniquely defined for all values of x and

-1
K since Jo is a multi-valued function. Even so, it is conceivable that y (x]

is single-valued for some choices of K. Consider systems defined by:

y1(7“) = cos(K7) (15)
Xl(’/“) = cos (7 (16)
Yy & = cos[Kcos_l(x)j (17)

When K is an integer, n, (and for no other choice) ¥y (x]) is single-valued [1] @] .

K=n= ¥y x) = Tn(x), Tschebyscheff polynomial  (18)
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We see that not only is yl (x) single-valued, it is actually an entire function of

x considered as a complex variable. For example, the case n = 2 is:

¥y &) = Tz(X) = 2x2— 1 (19)

To obtain all values of x and y, however, we must consider that 7~ in equations

(3) and (4) also takes on complex values. For suppose 7T is real. Then |xI|

does not exceed unity and we obtain only a portion of the function defined by (19)

Y ®)= T2(x) = 2o 1 x| <1 (20)
Suppose T" varies over a strip:
T =0+ in (21)
0<o<T s 0<n<ow (22)
0O<o<T S -0 <n<o0 (23)

Now we obtain all complex values of x just once, i.e. the function cos7"
maps the strip onto an entire x plane. Hence cos_lx can be defined so that it is
one-valued onto the strip. For this restriction we would expect y, (x]to be unique
for all K (and not just integer cases). What is the behavior of this function?

To investigate singularities we compute the derivative of Yy (x). Here, of course,

we are again freely using knowledge of the solutions of the original systems.

dy. (T)
ay, & .
v 1 . _d7r _ -KsinK7 (24)
M dx dxl(T) -sin T°
d7r
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Singularities will occur only when sin7° is zero but not necessarily even there.
If sinK7" is also zero the singularity is removable. This happens when K is
the ratio of two zeros of the sine function, in this case, when K is an integer.

The question arises: suppose we consider a region analogous to the
strip for the Bessel function, i.e. a region of the complex 7° plane which maps
under x = JO('/’) onto the x plane one-to-one. We have here again a proper
(i.e. single-valued) definition for J:(x). Thus the function y (x) can be
properly defined for all complex x (and for any K) as long as x results from
taking 7 within the fundamental region. This gives rise, in general, to many
different possibilities (one for each fundamental region) for y (x], each restricting
the range of T°. For example the fundamental region containing T = 0 and
small positive values of 7 extends along the real axis up to T= 7‘1 such that
J 1(7'1) = 0.

If we represent y (x] for this T -region, say in a power series, we
would expect a singularity (divergence) when x = JO( 7'1) unless K were a ratio
of two zeroes of the function J 1(7‘), since

q (X]— _ —KJI(K'T')

dx Jl(T) (25)

A,
We expect these numbers Ki= —71—: , Where Jl()\i) = 0, to be significant in the
1

power series representation for y [x] just as in the trigonometric example.
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Taking these K values is no guarantee that various branches of y (x] will have
the same representation, however. The periodicity of the trigonometric function

is apparently what allows this for ¥y x].

Derivation of Differential Equations for the Modeling Function
No loss of generality (see (11)) is suffered by lumping all parameters
into one constant K in terms of which the similitude conditions are described.

Consider, then, y(t) and x(t) defined by:

‘y‘+f+ K%y = 0 (26)
X + f + x =0 27)
at t = 0: y(0) = x(0) =1 (28)

y(0) = x(0) = 0
It is desired to find the modeling function y (x] in terms of K (i.e. by eliminating
t) without solving the differential equations. From (26) and (27) we determine
a differential equation for y (x). From (28) we can obtain sufficient boundary
conditions to determine y (x) uniquely. Let primes denote derivatives of y with
respect to x. Since y(t) =y x(t)] we have:

y =y'x (29)

‘y‘ = y")'(z + y"x' (30)
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From (1), (2), (4), and (5):

)'(zy" - xy' + K2y =0 (31)
Since the modeling functions are non-linear in general (y" # 0) we see

that 5(2 is a function, say f, of x only:

2
K = EX;-K—X = f(x) (32)
2
f(x)y" — xy'+ Ky =0 (33)

From (27) and (32) we determine an equation for f(x):

pr= L — oy = gg_2X (34)
X t
f' +2x = — —2t§ (35)

Differentiate again with respect to x:

2 2%
1" _ = _ =22
"+ 2 5 e (36)
t
A2 .
f(f'+ 2) = 26 X (37)
2 t
t
Substitute from (35):
1 2 f!
f"+ 2) = 5 (f'+ 2x)” + 3 (f'+ 2x) (38)
Finally:
f(f"+2) = (f'+2x)(f'+x) (39)
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at x =1 (i.e. att = 0):

y@ =1

f(1) =0

f' (1) = 2%
from which (see below) f' (1) = -1

In (42) we have encountered a removable singularity in the term %( .

situation occurs in determinin "at x =1:
gy

Y _ Y
y X X
From (1) and (2) we find that, as t —> O:

x+?+x——> X +X +x—=>0

SR

Similarly

. y 2 .
y+‘::[+ Ky —» 2y +K2y—>0

2 2
. Ky K
y = 5 2
Hence from (44), (46), and (48):
2
y'(1) = K

115

From (39) we can obtain f as a function of x. Then (33) determines the modeling

function y (xJ. From the conditions (28) on y and x as functions of t we find

(40)
(41)

(42)

(43)

A similar

(44)

(45)

(46)

(47)

(48)

(49)
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Summarizing from (33), (39), (40), (41), (43), and (49) we have the

following system for the modeling function y (x):

fy" — xy' + Koy = 0 (50)
f(f'" + 2) = (f'+ 2x)(f' + x) (51)
y() =1 y() = K (52)
£(1) = 0 f1(1) = -1 (53)

Series Solutions for the Modeling Functions
A brief description of the situation corresponding to g = cost will be
helpful. These results have been obtained elsewhere, [1] , [2] but the emphasis
here is on the power series representation.
Let:
.. 2 .
y +tKy=0 , y(0) = 1, y(0) =0 (54)
X +x=0 s x(0) = 1, x(0) = 0 (55)

y =y () again implies (31),

fyn - th + sz — 0 . (56)
.2
Since f = X~ we obtain, using (55), a differential equation for f as a function

of x:

f d ..
fr = T = = 2% = -2x (57)

f=c-x (58)
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when t =0, x=1, and f =0. Hence f(1) = 0.

f=1—x2

MICHIGAN

Boundary conditions on y (x) near x = 1 from (54) are:

y@ =1, y'[1]=§=*.‘4=1<2

X

A power series solution is now written down for the equation for y (x] using

conditions (60).

(1—X2)y” - xy'+ sz =0

vy =1+ i sm(Kz)(x—l)m
m:
s1 = K2
s = KAk 1)
2 3- 2!
L - K- 9
3 35 3!
m-1 2 2
o (K™-i")
*m ’Q; m! (3-5-...@2m-1))

The zeroes of sm are just ‘the integers with absolute value less than m.

they are cumulative and trivially approach these values as m increases.

the zeroes, ni, of the derivative of g,

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

Thus

Consider
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g(t) = cost (67)
g(t) = -sint (68)
Sinni =0 (69)
n, = 7i i=0, t1, T2,... (70)
n= T | (71)
n.
= =i (72)
M

We find that the coefficients of the power series expansion of the modeling
function are polynomials whose zeroes approach the ratio of the zeroes of the
derivative of the function being modeled to the first such zero. If we take K=1i
the series (62) becomes finite. It is the series for Ti(X) (Tschebyscheff
polynomial) expanded near x = 1. A series solution for y (x] corresponding to
the Bessel function is now obtained near x = 1 by first obtaining a series for f(x)

from (51) and (53), then substituting this into (50), and using (52).

Let:
f(x) = § a (x-1)" (73)
f== "
Inserting this series into the equation ff" - (f')2 = 3xf' — 2f + 2x2, we obtain,

near x = 1:
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~ n m-2
E a (x-1) ; a m(m-1)(x-1)
n m
n=o m=o
- -1
- na (x—l)n 1 ma (x—l)m
n m
n=o m=o
n 0 -1
=3 ? na (x-1) + 3 E na(x—l)n
n n
n=o a=o

-2 i an(x-—l)n+ 2(x—1)2 + 4(x-1)+ 2 (74)
=0

After computing the Cauchy products and changing indices we have:

i i aa  (i6-1-i@-p] ="
n=o =0

(3n-8) a (x—l)n_2+3§;(n—l)a x-1)""2
n-2 & n-1

n

+2x-1)° + 4lx-1) + 2

(75)
Equating like powers of (x-1) yields:
2
0 2 0 (76)
0'a1a0=3'0'a0 (77)
—a2 = -2a_+ 3a_ + 2 (78)
1 0 1
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- + + = + +
23.1a2 Oaza1 633a0 al 6a2 4 (79)
-3a,a_ - 2a2+ 3a,a, + 12a,a. = 4a_+ 9a_+ 2 (80)
173 2 31 40 2 3

Finally for n > 5:

£ jajan_j(Zj -n-1) = (3n-38) a o7t 3(n- l)an— . (81)
The conditions on f(x) obtained in (53) imply
3= 0 (82)
ap = -1 (83)

Clearly (82) and (83) satisfy (76), (77), and (78). Equations (79) and (80) deter-
mine a, and aq uniquely:

a, = -3/4 (84)

ag = -1/72 (85)

Noticing that (81) is a linear equation in the highest subscript of a for n > 5,
we see that the coefficients are uniquely determined in a recursive way. Since

we need them later we list the values of a, and a_:

4 5
1 2
a, = — = —— (86)
4 288 (4!)2
a -13-42 -52 ) (87)
3.(5") 3-(5")
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For this application (i.e. starting with a_ = 0 and a = -1) (81) can be simplified:

0

a.a . j(2j-n-2) = (3n-5) a + n2a n>4 (88)
{= jn-(G-1) n-1 n

Assuming a series solution for f(x) near x = 1 is known, we can solve
fy" - xy'+ sz = 0 near x =1 as follows. Let
y &) = ; b (x-1)™ (89)
m
m=o
From the equation for y (x) :

a (x-l)n i m(m-1) b (x—l)m_2
n $= m

n=o

—i mb (X—l)m—i mb (x-1)"" 1+ Kzi;b x-1)™=0 (90)
m = m - m

m=0

§ ii-Dba  (x-1™ 2 i (m-2)b__(x-1)™ "2
=3 =5 1 m-1 TE m
—g (m-1)b (x-1)m'2+K2 ; b (x-1)m°2=0 (91)
m-1 m-2
m= m=

Equating like powers of (x-1) we obtain:

0- bOaO =0 (92)

. + ¢ -— . —
0 boa1 0 blao 0 b1 0 (93)
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Equations (92) and (93) impose no restrictions.

For m 2 2,

i-1)b.a_ .= (m-1)b_ .+ (m-K>-2)b (94)
12; i m-i m.—l m-2

We can determine the coefficients bm uniquely in terms of the a . A

few terms are calculated for reference: (We assume a_ is zero for all applica

0
tions )
2
bl = K bO (95)
(This agrees with (52).) 9
(K- 1)b1
b2 = 2(1-a) (96)
1
2
(K'- 2+ 2.‘412)b2
= 7
b3 3(1 - 231) (o7
(K2 3+ 6a.)b,+2a_b
4 4(1 - 3a1)

Taking the values of a previously found, putting them into (96) - (98),
and continuing the process we find an expansion for the modeling function, y x
near x = 1.

- R (K)(x-1)™
yx) = iz bm(x—l) =1+ i e 5 (99)

m=o m=o (m!')
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2
R, =K
R, = K(K- 1)
2
R3 = K2(K2— 1)(K2- 7/2)
R, = KA DK 11K+ 26) (100)
R, = KK DK - 2axt+ 2B g2 29T
5 3 ;
R = KAK2- 1)(KS- 445+ 1287 g4 7263 2, 13,001

6 2 2 2

The zeroes of these polynomials possess some very interesting properties. Up

to m = 6 they are all real. Their squares are listed in Table II.

TABLE 1I
m Squares of Zeroes of RIn Ordered in Magnitude
1 0
2 0 1
3 0 1 3.5000
4 0 1 3.4385 7.5615
5 0 1 3.4103 7.3735 13.2162
6 0 1 3.3944 7.2799 12.8431 20.4826
A, ¢
<ﬁ> 0o 1 3.3523 7.0493 12.091 18.4772
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)\i 2
The last line is a listing of the quantities W where the )\i are
1
defined as the non-negative zeroes of the Bessel function J 1 The natural and
A,
obvious conjecture is that the zeroes of the polynomials Rm approach Yl' .
1

This conjecture has not, as yet, been proved. However, similar results are
obtained for other cases and a result of this nature is believed valid for a rather

large class of modeling functions of the type:

y = g[Kg'l(x)j (101)
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APPENDIX B

LOCAL ALTERATION OF ATMOSPHERIC DENSITY
WITH ELECTROMAGNETIC ENERGY

Summary

It is assumed that by some means a spherical domain in a homogeneous
atmosphere can be uniformly heated so that the density reduces by a factor 1/v
at the center of the sphere. First the steady state with this density ratio is
considered and the power needed to maintain the steady state is evaluated. Second,
there is assumed uniform atmosphere for t <0, the power supply starting at t = 0.
Then the time is evaluated after which a density ratio of 1/y at the center of the
sphere is reached. The density and temperature distribution are given and a
simple formula is derived for the power supply needed to achieve a density ratio
1/v in a spherical domain of radius a and in a time interval to. For v =10 and
a = 100 cm, the total energy to be delivered until this density ratio is obtained is

of the order of 3. 106 Joules.

Problem I
In an infinitely extended gas a spherical volume of radius a is constantly
heated with a heat production P per unit volume and unit time. Determine the
steady state and the density distribution.
Make the center of the sphere the origin of a coordinate system. Since

we are concerned with the steady state the continuity equation is trivially satisfied.
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The equation of motion gives a constant pressure throughout the whole space. The
energy law gives

- V. (V1 = P, (1)

where o is the heat conductivity. Finally we have the equation of state which is
pT = pooToo (2)

The suffix m refers to infinite distance, p is the density.

The heat conductivity is practically independent of the density, however
1/2

varying with temperature as T / We neglect this variation, which will not

change the qualitative picture. We have then in polar coordinates

d2 T
d‘r2

d

-P <
o (r <a)

+

I

IR

(3)
=0 (r>a) .
We have the boundary conditions

T and — continuous at r=a, T =T atr = oo.
dr o o)

(4)
The unique solution is
3
T=T7T + & & (r > a) (5)
(00} 30 r
T =T + P (3a2— r2) (r <a). (6)
@ 6o

The density distribution is then given by
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P a3 1
P = Py or_ x| @re @
o)
-1
. P 2 2
pP=p [1+ Py (3a-r)] (r <a) (8)
oo}
The problem contains only one essential parameter which is
o Pa2 (9)
60T
w
Put r = as, then
-1
£ = [1+-23 (s >1) (10)
o S
(0o}
-1
i a(3—s2ﬂ (s< 1) . (11)
Po
Figure 2 gives a rough sketch of p/pOO for @ =1 and « = 3.
1.0
0.8+
0.6 a=1
olo, 051
0.4]
0.2
0 ' t } }
0 1.0 2.0 3.0 4.0 5.0
S = r/a
FIGURE 2
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As is seen, one has p(O)/pOO= 0.1 if @ =3. Then p/poo= 0.5 for s = 6.

The value o = 3 is equivalent to
2
Pa™ = 180T . (12)
(0]

The total production of heat per unit time is

an a3P = 2471 acT . (13)
3 (0 0]

The heat needed to make p(0)/ Po™ 0.1 is therefore proportional to a, that is,
to the radius of the sphere inside which an appreciable drop in density is desired.
It is remarkable that a, o, Too are the only parameters entering the necessary
power.

A rough estimate is given with o ~ 2, 104 erg/cm sec 0K, Too= SOOOK,

and a = 100cm.
— a P = 5.1010erg s_1 = 5000 J s—1 (14)

Of course, one has also to compensate for the loss by black body radiation, which
is certainly not negligible for T(0)= SOOOOK. Hence the above result gives a

lower limit of the power needed to maintain the steady state.

Problem 1II
In an infinitely extended gas a spherical volume of radius a is constantly
heated with a heat production P per unit volume and time. Determine the tem-

perature, the density and the velocity field in the initial stage after the power
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supply has started, if the gas was at equilibrium before.

Assumptions:

1. viscosity can be neglected

2. heat conduction can be neglected

3. the pressure is practically constant
While the first assumption is certainly a good approximation, since there are no
boundaries and hence no boundary layers, the second assumption is certainly not
generally correct. It is, however, a good approximation in the initial stage and
the duration of the initial stage can be well defined. The temperature conductivity

k = p—z- is approximately k = 2 cmz/ sec; this says that heat spreads over a
p

distance of 1 cm in about 1 second, or over a distance of 100 cm in about 10, 000
seconds. In our problem the initial stage is determined by the condition that heat
conduction takes place only over a distance which is small as compared to a.
This is equivalent to
t << az/k. (15)

As long as t satisfies this condition the neglect of heat conductivity should not
alter the results essentially.

The third assumption is usually made in the theory of flames and its
justification is given there. It can certainly be applied in our case as well, As a
consequence we can disregard the equation of motion which would only give the

small accelerations in which we are not interested.
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First we have the equation of state which is written

pT =p T (16)

po and To are the initial values of the density and of the temperature respectively.

Obviously we have p = p , and T =T , where p and T refer to infinite
o o) o} w o 0] (0]

distance.

The continuity equation is

dp L=
Olt+pVV 0 (17)

with d/dt being the substantial derivative.
4.2 .3y | (18)
The temperature satisfies the equation

ar

& = P(r<a), = 0 (r>a). (19)

pc
p
and cp is the specific heat at constant pressure.

From (16), (17), and (18) we obtain

0=p——dT+TgQ=—E—-TpV-V(r<a),=—TpV-§f’(r>a) (20)
dt dt c
or
V- ¥ = P (r <a), v-v’= 0 (r>a)
Tpec
o0op

Because of spherical symmetry we may assume that v has only a radial

component which depends only on r. Then (20) can be easily integrated to give
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3

v=gf(r<a), v= —=@>a), (21)
Tr

T, which has the dimension of a time, is defined by

_ 3
T—PcTop . (22)

P o
In (21) we have assumed that v is continuous at r = a. This can be concluded
from T and hence p being continuous as well as the mass flow p v.

With the velocity field as given in (21) we integrate the continuity equation

(17), which we write now in the form

%, 9. o o, 1 8 2
ot + (V) 0 or ot + r2 or (r'pv) 0. (23)

We have to distinguish three domains of the variable r. The first domain is

< a. Upon insertion of (21) into (23) one finds

-3t
b =pe o gr<a. (24)

The second domain extends from a to.é';‘(t) where £(t) is the distance
from the center which has been reached by the gas originally at r = a in the
process of expansion. Beyond r = g(t), the gas is at temperature To’ since
heat conduction is neglected and therefore the density is also unchanged. We
have now to determine £(t).

In the interval a <r < £, we have from (21) and (23)
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3
_@_Q-{-—__a___ée_——_;o
ot 2 Oor

Tr

Hence p is a function of t — -r——?; which assumes the value (24) at r = a.

3a

3, 3
-3tfT + r /a"- 1 (ag r < E(t)).

Now we are able to determine £(t). It is given by

p€) = Py or

SR

1
g~ 1.5a, and for tfr =1/3, p(0, 3T) =0.36p , EX1.25a.

(25)

Thus

(26)

(217)

Figure 3 gives the density as a function of r/a for T/t = 3/4, p(0, ZC)’)\:O. lp ;

t=0
.o —/———————
0.81
0.6+
0.44 t = T/3
0.2}
0.1 t=3C/4
0 } + t
0 0.5
£/a 1.0 1.5
FIGURE 3
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The whole picture is independent of the special values of P and a.
Their values enter only in the scales. Of course the picture will change if the
condition (15) is violated.

It is convenient to express P in terms of the P in (9) which is the power
1

per unit volume needed to maintain the steady state with a density ratio (1+ 3a)”

at the center. (see (11)). This P will be denoted by Pst’ We have then

P =BP (28)

with some numerical constant 3. It is clear from the outset that a density ratio
(1 +3a/)_1 will not be ultimately reached if 3 < 1. It is also clear that 8 =1 will
bring us ultimately down to this density ratio; but the neglect of heat conduction
will not permit us to apply our results down to this density ratio. If, however,
B>>1, let us say 3 = 10, then we reach this density ratio (1 +3a/)_1 during a
time interval 0 <t < ty which complies with the inequality (15). The ultimate
density for t = o will, of course, be lower than (1+3a)—1,

To prove this, we insert (28) with the value (9) of Pst into (22) to obtain

1 a2
T = 'z—ag T (29)
Then we have from the definition of to and from (24)
egto/c =143 = 1+ 3a” (30)
26k T

133




THE UNIVERSITY OF MICHIGAN

4134-2-F
or
kt 2
0 1 kT 3a
_— = = =X +
g 3 2 In(1 26T ) (31)

The right hand number is always less than (25)_1 so for 3 =10, (15) is very well
satisfied.

So far we have only proved that for 8 >>1 the neglect of heat conductivity
is permitted upto t = to. Now we give an expression for the time to needed to
achieve a density ratio (1 +301)_1 = 7—1. From (29) and (30) we obtain

2
. a
t, = 50 - Dk Ay . (32)

Furthermore we evaluate the total power delivered up to to. It is, from (22) and

(24)

3
a CppoTo Anry. (33)

Hlo

4m
3

- a Pt =——a3~3ch
o o

p

. - 7
or, with T = 300°K, Py 10 3gm cm 3, c % 0.24cal/gmgrad = 10 erg/gm°K

% a3Pto = 4—37ra3,bwy . 3.10° ergcm”3 . (34)

We obtain in particular for a = 100em and v =10,

4?” a3PtO = 3.106Joule (35)

It is, of course, evident that 8 should not enter the equation (34). This quantity

B served only to indicate the power needed in this problem to achieve a certain
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density ratio in relation to the power needed to maintain the steady state at this
density ratio. As is seen, by comparison with (14), in this numerical example
Bto is of the order of 600.

Using the equation of state of air and assuming a specific heat = g R/M

(M = average molecular weight of air), we can simplify (33) into

%aBPt():%lraB- /2 p dn vy, (36)
which reveals clearly the dependence on pressure.

Our assumption of a constant pressure over the whole space is, of course
not exactly correct. One important consequence of this assumption is the steady
velocity field which we have obtained in (21) while we would expect that a distur-
bance travels at a finite speed and does not affect the initial state at some distance
until after some time. However, if the process of heating is relatively slow so
that t0 is large compared to the time during which a disturbance travels over a
distance a, we can expect our results to be valid though (21) would no longer be
correct at least outside the zone reached by the disturbance. But it is certainly
a good approximation in the domain of interest, that is inside the sphere of
radius £(t) which is less than 1.5 a in the numerical examples. It is possible

to give a justification by integrating the equation of motion

av

P =~ grad p (37)

for the pressure by using (21). We restrict to r < a and find
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2
-3tft r
p(r,t) = p(0,t) — p_e - (38)
° o

p(0,t) does, according to our assumptions, not depend on t. Inserting now the

equation of state

_ 39
P, R/M Ty (39)
we obtain
2
pe,t) _ o M xt S3the o (40)
p RT 2
o o 2T

Now 1. 4RT0/ M is the square of the sound velocity v The correction term in
(40) is therefore 0.7(r/T vs)z e_St/t which is in fact small if the time sound
needs to travel over a distance a is small compared to C .

The preceding analysis is applied to find power required to heat a 1 meter
sphere in the ionosphere between 60 and 100 Km so that the density at the center
is1 / 4 the ambient value. The results are shown in Fig. 4. The power required
on the ground was computed assuming the heating is accomplished by high fre-
quency power absorption and that the power given by (9) is increased by two
factors. The first factor accounts for the small fraction of the power which
will be absorbed in traveling a distance a (taken as 1 meter). For frequencies
greater than 3 Mcs (greater than expected plasma and collision frequency), this

factor is given approximately by:
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Pa: absorbed power = 8amacT

a = density factor = 1
a = sphere radius = 1 meter

3
o = heat conductivity = 1.51x 10 o

Too: ambient temperature = 166°K

2 2
FP = pattern factor = 20 5
40 D

w = microwave operating frequency = 30 Mc

3
antenna diameter = 10 meters

velocity of light

F AT absorption factor

1

v = collision frequency = 3.3 Mc

6(15 7|b 8%) 90 100

h, altitude (kilometers) —

FIGURE 4: POWER REQUIRED TO EFFECT A 75% REDUCTION
IN DENSITY AT THE CENTER OF A 1 METER ATMOSPHERIC SPHERE

AS A FUNCTION OF ALTITUDE
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2
w v
F, = 2ka, L —Lz
2cw

where £ is the absorption coefficient, wpthe plasma frequency, v the collision
frequency and w the microwave frequency. The second factor accounts for the
fact that at these high altitudes, even very large antennas with relatively narrow
beams will illuminate a much larger area of the ionosphere than the desired 7

square meters, and is given by

where D is the antenna diameter, h the altitude, and A the wavelength. Using
(9) with « = 1, values of ionospheric temperature and heat conductivity given
in the 1959 ARDC model ionosphere (18], and the above factors, the ground
based power requirements can be quickly estimated, and are given in Fig. 4.
It is found that this power is relatively independent of frequency in the frequency

range indicated. This power requirement is seen to be large even though the

value given by (9) is not.
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