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PREFACE

This is the forty-third in a series of reports growing out of the
study of radar cross sections at The Radiation Laboratory of The University
of Michigan. Titles of the reports already published or presently in process
of publication are listed on the preceding pages.

When the study was first begun, the primary aim was to show that
radar cross sections can be determined theoretically, the results being in
good agreement with experiment. It is believed that by and large this aim
has been achieved.

In continuing this study, the objective is to determine means for
computing the radar cross section of objects in a variety of different
environments. This has led to an extension of the investigation to include
not only the standard boundary-value problems, but also such topics as the
emission and propagation of electromagnetic and acoustic waves, and
phenomena connected with ionized media.

Associated with the theoretical work is an experimental program
which embraces (a) measurement of antennas and radar scatterers in order
to verify data determined theoretically; (b) investigation of antenna behavior
and cross section problems not amenable to theoretical solution; (c) problems
associated with the design and development of microwave absorbers; and (d)

low and high density ionization phenomena.

K. M. Siegel
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FOREWORD

This report extends and generalizes the work reported by
Professors C. L. Dolph and H. Weil in "Studies in Radar Cross Sections
XXXVII - Enhancement of Radar Cross Sections of Warheads and
Satellites by the Plasma Sheath", The University of Michigan Radiation

Laboratory Report 2778-2-F, RADC-TR-59-239; (December, 1959).
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ABSTRACT

The plasma sheath surrounding a conducting spherical satellite
is studied. The density distributions of the positive ions and the
electrons in the space are obtained respectively. The satellite is
assumed to be charged and the potential of the satellite is determined.
The change of the radar cross section of the satellite due to the plasma

sheath is evaluated.
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I
INTRODUCTION

A conducting sphere is assumed to move with a constant velocity V
through a dilute, electrically neutral, ionized atmosphere consisting of
oxygen and nitrogen atoms, 0+ and N+ ions and electrons. The density
distributions of the positive ions and the electrons are assumed to be uniform
in their undisturbed states. The velocity of the sphere V is assigned to be
8 Km/ sec. At the altitude of 500 Km, the root mean square velocity of the
positive ions Vi is about one tenth of that of the sphere, and the root mean
square Vel.ocity of the electrons Ve is at least one order higher than V.

The density distribution of the positive ions is found by using the
following model: since the density of the ions is very low at 500 Km
altitude, a free molecule model is quite adequate and the interactions between
the ions can be ignored. Because Vi<< V, the sphere is traveling at a
supersonic velocity compared with that of the ions. The disturbed density
distribution surrounding the sphere can be obtained by integrating the
zeroth order velocity distribution function and assuming only diffuse reflec-
tion on the surface of the sphere. The calculation is facilitated but leads
to a same answer if the sphere is assumed to be stationary and the ions
are flowing past the sphere with a mean stream velocity V. The final
density distribution is a superposition of two distributions, namely: (1) the

distribution due to the main stream. This is equal to the density distribution



THE UNIVERSITY OF MICHIGAN
2764-6-T

if all the ions are assumed to stick on the surface of the sphere when
they hit it. This leads to a distribution similar to a hollow wake behind
the sphere; (2) the distribution contributed by the diffuse reflection. The
ions which hit the surface of the sphere should be diffusely reflected
and satisfy the boundary condition of no absorption or emission from the
surface of the sphere. This distribution leads to a pile-up of the ions in the
front of the sphere if only the existence of the ions is considered. However,
this does not occur because of the existence of the electrons and the con-
ducting surface of the sphere. Suppose the sphere is charged negatively
(this will be justified later), all the ions which hit the sphere may be
neutralized by the excess of the electrons on the conducting surface of
the sphere as the relaxation time of the conductor is extremely short.
Therefore, those ions reflected back from the surface of the sphere are
already neutralized and there results a pile-up of the neutral particles,
instead of the ions in front of the sphere. This argument leads to the
conclusion that the final distribution of the ions is equal to the distribu-
tion due to the main stream.

The density distribution of the electrons can be obtained after the
density distribution of the ions is determined. Since Ve>> V, the
distribution of the electrons should not be disturbed significantly by the

sphere if only the existence of the electrons is supposed. However, in
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a plasma medium, due to the property of electric neutrality and the low
mass of the electrons, the distribution of the electrons must be determined
by solving a Poisson's equation and assuming the Boltzmann distribution of
the electrons at equilibrium.

It is an essential step for the complete determination of the density
distribution of the electrons to determine the potential of the sphere. As
Ve>>Vi’ it is evident that the sphere must be charged negatively so that
the numbers of electrons and ions which hit the surface of the sphere per
unit time are adjusted to be equal at equilibrium. Using this condition
the potential of the -sphere can be obtained.

After the density distribution of the electrons is completely determined,
the radar return from the disturbed region is obtained by integrating the
Compton scattering from the electrons. The phase factor is taken into
account but the secondary scattering and attenuation are ignored.

Numerical results are presented as computed from the théoretical
results for some particular values of the parameters.

The analyses in this paper are carried out by emphasizing the
physical picture and avoiding the mathematical complexity. Some reasonable
approximations are made in order to obtain a more explicit and simpler

solution which is amenable to numerical computation.
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II

DENSITY DISTRIBUTION OF POSITIVE IONS

A conducting sphere is assumed to travel with a constant velocity
V in a uniform plasma medium and we aim to find the disturbed density
distribution of the positive ions surrounding the sphere. The coordinate
system to be used in the mathematical formulation is shown in Figure 1.
As discussed in the Introduction, the density distribution of the ions is
found by assuming only the existence of the ions and forgetting the
presence of the electrons at this stage. The calculation is facilitated
if the sphere is aséumed to be stationary and the ions to flow past the
sphere with a mean stream velocity V. Of course, this modification leads
to the same density distribution surrounding the sphere as one would get
by considering the sphere moving with velocity through a stationary plasma.

The density distribution due to the main stream is found first and

that due to the diffuse reflection later.
A. The Density Distribution Due to the Main Stream of Ions.

The velocity distribution function of the main stream of the ions is

m; .9
o m, )3/2 e— IR, (c-V)
i 0 27rKTi
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0, = cos  V1-B—
2
=sin + 2
r
- y stream
- ’— —
V  sphere
|
!

FIG. 1: COORDINATE SYSTEM FOR THE DETERMINATION OF
DENSITY DISTRIBUTIONS.
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For convenience the following normalizations are made:

After dropping the primes from the normalized velocities, a new velocity

distribution function for the main stream of the ions is

s =2
.0 e-—(c-V) (1)

The ion density due to the main stream at point P (r, 6, #}) can be

written as
(0} 27 ¢)
n 1 . a2
s _ 0 2 : -(c-V)
n=ng - 5 S ¢ de S d¢0 S sing do e
T 0 0 0 . (2)

Equation (2) implies that the density at point P is less than the unperturbed
value by the amount which could possibly be intercepted by the presence of
the sphere. The integral on the right hand side of equation (2) is just an
integration in the velocity space to sum up all the ions whose velocity
vectors point away from the sphere and lie within the solid angle subtended
by the sphere at point P. In this integration, the vector T is taken as the

polar axis of a new spherical coordinate system (See Fig. 1).
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With the understanding that the density deviates significantly from
the unperturbed value only in the region behind the sphere or where 6 is
small when V (normalized velocity) is much bigger than 1, a reasonable

approximation is made to facilitate the integration. That is

2 2

c +V2-20Vcos6cos 90.

G-0% =+ V2 - 28.V

This approximation is poor in the region immediately near the

surface of the sphere and will be improved later. The above approximation

leads to
, ( s-9)2 1B 2 2
7735 S ¢ de Sd¢o S sing_do_ o (e V) 2_29_ [erfc(-VcosG)e—V sin“g
0 0 0
- ¢OS 91 erfe (-V cosf cos@l) e-V2(1—cos29 0052 01)] _
With

Note that erfc stands for the complimentary error function.

niS at point P(r, 6, #) is obtained as
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S n | - V2 sin2 6
n.=n - 2 erfe (-Vcosh) e
i o 2

: 2
( 2 ( 2 2, .2 R 2
- 1—52— erfc (-V [ 1- R—2 cos 6 ) e~V (sin” 6+ r2 cos Oﬂ (3)
r r

In order to improve the accuracy of equation (3) in the immediate
neighborhood of the sphere, the density distribution of the ions on the
surface of the sphere is studied.

At r =R, niS can be obtained easily if rectangular coordinates are
used and the vector T is made the z-axis.

0 w w
S no —(8—\7)2 no
ni = —37—2 S ch S dcy g dcZ e =< erfc (Vcosh).
T - ~m -

(4)

From the comparison between equations (3) and (4) and the

asymptotic behavior of equation (2), it is found that the following form improves

the accuracy of equation (3) quite appreciably:

n 2 .2 R
- i 1 - =
nf =n - —22 [erfc (‘VCOSG) e V sin 6 ( r )

2
2 2 2 2 R 2
- i 4+
—Jl R erfc (-V /l— B cos0) e V- (sin 6 g 08 0)
r2 142 T
(5)
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Equation (5) leads to an exact solution when 6 = 00, or 6 =7, and r = R.
When V is about 10, equation (5) can be simplified further because
o
2 for 0 £6 <90

erfc (-V cos6) : 0 for 900 <p < 180°
1 for 6 =90°

2
and erfc (- V \,l - —Piz—- cos 0) can be approximated similarly except at
r

R ~ r. The careful study of the whole formula of equation (5) suggests

. . s
a neat approximate expression for n, as follows:

2
s . -V2 sinze V2sin20 E R2 —V2 coszf) -B—-—
n, =n 1-e (e r - \1-—=e 2 )
i o 2 r
r
0
for 0 £ 6 £90
nis =n_ for 90° < 9 < 180°. (6)

The approximate density distribution as expressed in equation (6) is
particularly accurate when V is much bigger than 1. The approximation is
poor at 6 = 90° for r = R. This approximate expression has an advantage

of simplicity in form and is very convenient for the further development of the

theory later.

B. Density Distribution Due to the Diffuse Reflection of the Ions.

As the main stream of the ions hits the surface of the sphere, the

ions are supposed to be reflected diffusely. No specular reflection is

10
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assumed to take place. The boundary condition on the surface of the sphere
is as follows: at equilibrium, the number of theions hitting the surface of
the sphere must be equal to the number of the ions reflected diffusely from
it per unit time‘. Using this boundary condition the velocity distribution
function of the diffusely reflected ions on the surface of the sphere is easily
determined. After this, the density distribution of the ions due to the diffuse
reflection from the sphere at any point in space away from the surface of
the sphere can be obtained.

This assumes the velocity distribution function of the diffusely reflected
ions on the surface of the spheré as

d no -c2

fi =ARW2— e (7)

where AR is a coefficient to be determined. Applying the boundary condition

on the. surface, a relation is found as follows:

6] ® (0] -Nn 0 ® ® - a2
no —c2 =2 de de de ¢ e—(c_V)
ARWz—SchSdcyS dczcxe Tr372 S xj yj zZ X
T 0 - -00 - - -

Again the rectangular coordinate system is used and T is made to coincide
with the z-axis. The integrations can be carried out and a solution for AR

is then obtained as

11
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2 2
AR = - 7 V cos 6 erfc (V cos 6) + e_V cos 0
2 - JT V cos 6 erfc (Vcos6) for 6 % 90° . (8)
Therefore,
d no —c2
f =- —— Vcosf erfc (Vcosh) e
i T
N 9 (9)
or = - —719- (¥+ 1) erfc (V.7) e ©

Equation (9) shows that the density of the diffusely reflected ions on the
surface of the sphere is a function of 9..

With the help of equation (9), the density distribution contributed
by the diffusely reflected ions at any point in space away from the surface

of the sphere can be formulated as

Q 27T 91
d % —c2 2 S
n =- — e ¢ de dg sing do (V.n') erfc (V.n') (10)
i T ) o o

0 0 0
Equation (10) means that only those reflected ions whose velocity vector
‘points away from the sphere and lies within the solid angle subtended by
the sphere at point P can reach there and contribute to the density. ' is
the unit normal vector on the surface of the sphere at the point where the
ion is reflected. And the factor (V- 1') erfc (V -+ n') takes into account the
density of the reflected ions on the surface of the sphere at that particular
point where the ion is reflected.

12
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To evaluate the integral a new spherical coordinate system is
assigned and T is made its polar axis. Furthermore, some approximations
are made to make the integration possible. Since V is about 10, it is a fair

approximation to state that
erfc (V- 1) = erfc (V. 1) = erfc (V cosé) .

For V. n' an exact expression is found as follows: T' can be expressed

. S 3 . .
in terms of r and € or in terms of the new spherical coordinates as

2

-&-L2

(r«7c) R

_________(1__2)_
r

2 2 2
rc

=
|

o |
1
ol
+
=

R2 2 A
- 4y 2 - g i
(- cos 6 2 sin”f ) sin 6  cos ¢0 X

r \/ RZ 2
. . . N
t R (-cos 0+ 72— - sin” 6 ) sin 6, sin ¢0 y

2
r R 2 A
= - 4] —— - si
+ = 1 (cos90 \/ rz sin 90) coseo] zZ

and

V =V (sinfcos@ X + sin6sin@ § + cos 6 7).

The substitution of these expressions in equation (10) gives

13
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d no ¢ —c2 2 61 7
n, = - — erfe (Vcos6) S e cdc) sin6 do 3 ap -
i T o o 0
0 0 0
Vr R2 2
C R [(—cos 0, + :-5 - sin 60) sinf_sinf cos(¢o—¢)
R2 2
+cosf+(-cosf +//—— - sin" O ) cosO cos(ﬂ
o I_2 o) 0
= ‘no\ﬁT_ V cos 9 erfc (VcosG)E— 2 1 - —R2 +1—(1-Ef)3/2+ lIf-
2 S R | 37V 27872 33

(11)
Equation (11) expresses the density distribution contributed by the ions
reflected diffusely from the sphere. It shows a pile-up of ions in front of
the sphere and this density dies away in the radial direction. These points

are of physical plausibility.
C. The Final Density Distribution of the Ions in a Plasma Medium.

If the sphere travels in a region where there exist only positive ions,
the final density of the ions must be n, = nis + n? . However, in a plasma
medium this is not the case. Suppose the sphere is made of conducting
material and charged negatively as it moves in the plasma region, those
ions which hit the sphere are neutralized immediately by the electrons on
the conducting surface of the sphere. Therefore, those reflected ions are
already neutralized and n? actually means a pile-up of neutralized particles

14
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in front of the sphere. A more complicated model can be established on
the basis of the argument that the process of neutralization of the positive
ions by the electrons on the surface of a sphere which is not conducting is
probably not complete. In this case, part of n;l is neutralized and the
result is a pile-up of ions and a pile-up of neutralized particles in front
of the sphere.

It is concluded that

(1) If the sphere is conducting

(2) If the sphere is not conducting

n'ns+ nd
i TR

p is a fraction which represents the percentage of the reflected ions left
unneutralized. p may be a function of the property of the material used
on the surface of ‘the sphere and the density of the ions and so forth.

In this paper, the sphere is assumed to be conducting and n, is

assumed to be equal to nis .

15
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III

DENSITY DISTRIBUTION OF ELECTRONS

In the previous section, the density distribution of the positive

ions is found to be

2 7\
i V2 sin%0 , VPsinZe & R —vieos’p B
n=n |[1l-e (e r -\|[1l-—/—e 2 )
i 0 2 r
r
for 0 < § < 90° >
=n_ for 90° < 6 < 180° . Y,

(6)

It is now possible to proceed to find the density distribution of the
electrons. In a highly ionized plasma, the relaxation time for the electrons
is so short that the electrons obey Boltzmann's distribution at equilibrium.
That is

ep

o KTe

o - 0y (12)
Where §§ is the static potential at any point in the space, e is the charge
of an electron (magnitude), K is Boltzmann's constant and T, is the
temperature of the electrons. It is reasonable to set Te = Ti =T at the
altitude of 500 Km.

One more important condition is to assign a potential for the sphere.

Since the sphere is conducting, the sphere itself is an equipotential body.

16
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So let the potential of the sphere be
¢=¢Oatr=R. (13)

With equations (6), (12) and (13), it is sufficient to seek a solution
for § and then n,.

To determine @, a Poisson's equation as follows must be solved.

2 e.
Vp-=- . (n,-n_)
ef
en n.
0 KT L (14)
EO n

(]

A conventional way of solving equation (14) is based on the assumption that

ef

< is much less than unity and the exponential term is then expanded

in series. This converts equation (14) to an inhomogeneous Helmholtz

equation. However, this method breaks down when

~

than unity. A modified method is presented here to solve equation (14)

eQ . ;
T ‘ is not much less

more generally.

Assume the potentiai at any point in the space is a superposition of
two potentials, namely: (1) a potential maintained by the charges on the
sphere; (2) a potential maintained by the positive ions and the electrons
in space. The potential at any point in space maintained by the charges

on the sphere can be written as %— ¢o’ because the sphere has a potential

17
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1
of ¢o and this potential must decay as T The potential at any point
in the space as maintained by the positive ions and the electrons is
denoted as ¢1 and is to be determined. Usually E;. ¢o will be much

greater than . in the immediate neighborhood of the sphere. The

1

resultant potential at any point in space is then

_ R
¢—?¢0+¢1 (15)

The substitution of equation (15) in equation (14) gives

e¢1

KT

It is now allowable to assume that is much less than unity. This

is justified because in the usual case [¢o ’ is much bigger than |¢1,
After this assumption is made, the above equation can be rewritten as
9 £ R en £ R n
2 en KT r o * 0 KT r "o i
Py R (R

6OKT G'O nO

(16)

Equation (16) looks like an inhomogeneous Helmholtz equation _(E(cept that
=

KT r "o

the second term has a variable coefficient. The factor e
approaches unity as r increases. This factor may deviate appreciably

from unity only in the region where r is around R or in the immediate

18
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neighborhood of the sphere. Therefore, it is a fair approximation to

rewrite equation (16) as

2 2 eno _Kg’i‘-%‘ao ni
VB -B e |e - = (17)

0
with 2

eOKT

The solution of equation (17) can be written down immediately according

to the theory of Green's function as follows:

1 -8 IT'-%I en —= ——13,”— n,
¢ ) = - e o) o KT r o i av
1 . A4r n

V | - 2 €o o
=B | pt-7 _g_i
) en . B | -7 n, <7 7 2 dv. (18)
- 471'6 - - n - €
o g | - 7| 0

Due to the property of the kernel of the integral in equation (18), it is

reasonable to write

en n = 2 B |31 - 2|
¢ #) = 0 i eKT r ‘o e av
. n w1 V

47TeO (0]

‘The integration can be carried out by letting |t - | =s as follows:
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: ©
-8 lr' -7l -Bs
© == dv = - 47rs2ds=47r
It - 7l S 2
A" 0 B
Therefore,
N e R
a KT i KT r (0]
¢1(I') e [(—n——) -e :l (19)
o P=r

The electron density is obtained after the substitution of equation (19)

in equation (12)

er, e ry
n =n KT r ‘o KT:n KT r o(1+ .0
e o
e R e R
= 2y n, =24 7.
- eKTr 0 1_‘_(_1_) —eKT r'’'o
o n0 rr=?

The substitution of equation (6) in the above expression leads to the final

solution for the density distribution of the electrons as follows:

e R e R ' 2

_ KT r ¢o KT r ¢o -stinze stinZGB R2 —V2cos20~3—

n=ne 2-¢ -e (e r-Jl-—e 2)
e o 2 r

0
e R e R
?&?%[ ﬁ‘?‘%}
=n e 2 -e

for 0° < 6 < 90

for 90° < 0 < 180° .
(20)

Equation (20) gives the complete solution of the electron density distribution

20
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in space except that the potential of the sphere ¢0 is left undetermined. It
is noted that there is a discontinuity at 6 = 90° for small r as expressed
by two different formulas for two separate spaces. This discontinuity is
not important because it is smoothed down as soon as r is increased. The
next section is devoted to the determination of ¢o. After that the electron

density distribution is completely determined.
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v

POTENTIAL OF SATELLITE

It is an important aspect to determine the potential of the sphere
which moves in a plasma medium. Since the root mean square velocity
of the electrons is much higher than that of the positive ions, many more
electrons than positive ions may hit the sphere per unit time. At equi-
librium, equal quantities of electrons and positive ions should hit the
sphere per unit time. ' To achieve this equilibrium, the sphere must be
charged negatively so that the number of electrons hitting the sphere is
cut down, because only those electrons having high enough energy to
overcome the potential barrier at the surface of the sphere can reach the
sphere. The photoelectric effect is ignored as it has been proved to be
small.

The velocity distribution function for the electrons is
Me

a2 a2
3/2  2KT (c-V)

m

=n ( e

e e 27 KT )
e

e

After the normalization as before, or after division of the velocity by
2KT,
i

, a new function is expressed as follows:

3 —a2(5-V)°

n
e
f: = ;§]-2 a e (21)
Mo
where a = — &1, and Te is assumed to be equal to Ti‘
i
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The density distribution of the electrons at the surface of the sphere

is obtained from equation (20) as follows:

At r =R
e¢o e¢o o con®
i ﬁ- '—K—T— for 0 L0 90
o T 1 e 1 -e
(22)
e¢o e¢o
=noeKT 2 - e XT | for 90°< g < 180°
The critical velocity cz is defined as
1 2KT o \2 _
o (B ) - pe
or
o_1 |e o‘ (23)
ce o KT

where ¢o is assumed to be negative. Thus only those electrons having velocity

higher than ci can overcome the potential barrier and reach the surface of

the sphere.

The number of electrons hitting a unit area of the surface of the

sphere per unit time is found as follows:

e
- (09} (00)
o n 2 s w2
NS e 3 -a(c-V)
___S_ = - de de de ¢
- X y z x 32
-0 -0 -0 g
n 2 0 2
- +
=& [ 1 « (ce Veoso) V cosferfc [a(COJfVCOS@a]
2 — ©
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It is noted that the above integration is performed by using rectangular
coordinates and T is made the z-axis. The retardation of the electrons
caused by the negative potential of the sphere is neglected.

From equation (23) it follows that
)
ce >V

1
because P is of the order of 102 and V is around 10. Using this inequality,

it follows that

Ne e 1 ~(ac® )2 Y
— = —2—- [—-—-—- e e =V cosf erfe (« ceﬂ (24)

Therefore, the total number of electrons hitting the surface of the

sphere per unit time is

S 2 ne 1 (o co )2 o}
N =27R g sing d — {:—— e e’ - Vcosferic (ec j
e 2 T e

T
0 o| =
e—— — | 2 0,2
=7 R2 noeKT l-e KT} gsin 6 do E—% e_(ace ) -V cos ferfc (acz)]
0

s
————— m—— 2
2 K g 1 ~(ac’
+ 7R n e N 2—eKTJ sin 9 do [—e (ace) —Vcos@erfc(aco)]
o m Ta e
2

2 -2 o 9 -2
_ VTR eKT (ac’) (3-2 eKT )+ 7 VR 0 e KT erfe (aco)
o 0] 2 0] e
A 4
. ﬁaR e KT ~lacg)” 5, KT
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0 |0, s
With ¢ ¢_ = , N can be expressed as follows:
e KT e
, 2e¢0 3e¢0
Ns=‘/7TRn (3eKT —ZeKT) (25)
e a s

The number of positive ions hitting the surface of the sphere can

be determined in a similar way as follows:

The normalized velocity distribution function for the main stream of

the ions is
n, - a2

S - | - (c~-V)

i 372 ’

s

The density distribution of the positive ions on the surface of the

sphere is obtained from equation (5) by letting r = R. That is

at r = R
%
n, = - erfc (V cos 6),

or from equation (6), at r = R
. 0 for 0° < 6 < 90°
n, = v .
! n for 90° < o <180° (26)

has the meaning

® O

A velocity c(; which is defined analogously to ¢

(]

c. and pointing

e

that those positive ions having a velocity lower than

away from the sphere may be attracted back by the negative potential
of the sphere. The value of Cio is defined as
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or
(27)

As c? is much smaller than V, and as the motion of those ions mentioned
above caused by the negative potential of the sphere is unknown, the effect
of c;) is neglected in the following calculation.

The number of positive ions hitting a unit area of the surface of the

sphere per unit time is

n 2 2

. 1 _

= — — e V ocosd V cos@ erfe (V cosb)| . (28)

2
a

Therefore, the total number of the positive ions hitting the surface

of the sphere per unit time is

T n 2 2
1 _
Nf: 2T R2 S sinf dé -—-i— [—-— e V cos @ -V cosf erfe (V cosej

0 2 | \r .,
Vi
=7 R2n S sin 6 do -—L e Veos 6 _ V cos ferfc (VcosB)
o V1
/.
2
2 J‘ERZ
=7t R n V+ n erfe (V)
o A" o
Sr R0V (20)
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s
At equilibrium, the boundary condition Ne = Nis , leads to an

equation as follows:
2e5250 3ef,

SeKT—zeKT =\yraV . (30)

The potential of the sphere, ¢o’ can be determined from equation (30). The
numerical calculation shows the result in good agreement with the experimental
data. It is noted that equation (30) mathematically gives two solutions for ¢o’
one negative the other positive when V is around 10. The negative solution
for ¢0 is recognized as it agrees with the original assumption. The positive
solution for ¢0 lac:ks physical justification and no attempt is made to interpret

it.
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CHANGE OF SCATTERING CROSS SECTION OF SATELLITE

A uniform plasma is disturbed by the flight of the sphere. The
electron density in the region surrounding the sphere has been obtained
in a previous section. The result shows that the electron density deviates
significantly from the unperturbed value in the immediate neighborhood of
the sphere. This deviation dies down gradually in the direction away from
the sphere. If the density of the electrons is not very high, the attenua-
tion of thé wave as it penetrates into the regioh and the secondary scat-
tering between the. electrons can be neglected. The scattering due to the more
massive ions is also ignored. Therefore, the radar return from the disturbed
region is obtained by integrating the individual Compton scattering from the
electrons.

The backscattered power per unit solid angle per electron for unit

incident power density is given by

Q
1}

9 2
© J . (31)

47 € mc2
o

Thus the change in the radar cross section of the sphere caused by the
disturbed region surrounding the sphere in a plasma medium, or in other

words, caused by the plasma sheath, is represented as

n . 2
o=4r o n2 S (—-Ei -1) e21kd dv . (32)
e o n

A% o
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n, has been found in equation (20), and d is the distance from the observa-
tion point to the individual electron. k is the propagation constant of the
electromagnetic wave and is defined as —%\ZT- with A as the wavelength. The
factor ezik(jl takes into account the phase relation of the wave as it passes
from the transmitting antenna to the region and back again to the receiving
antenna,

The distance d as shown in Figure 2 can be expressed as a funcﬁon

of r, 6, § (electron coordinates) and R, @, ® , (observation point

coordinates) as follows:

1
d:(R2+r2—2-§ -?‘)2
(o) (0]
1
r2 2r 2
= o 1+——§--—ﬁ-—-(cosecos@ + sinf sin @ cOS(¢“¢))
R (0]
o
r2
5R0+-—2—§-—-r(cosecos@ + sin@ sin @) cos (f- ) ).
0

The square of the magnitude of the integral appearing in equation (32) can

be transformed into the following form:

n . 2
jII2= S (__I_lg__ 1) e21kddV
A" o
2
n 2ik [—zl:f{_ - r(cos 6 cos @) + sin6 sin @cos (f - {)))]
= (-r-l—e-— 1)e o
\Y

Substitution of the expression for n, in the above integral gives

29

d



THE UNIVER‘SITY OF MICHIGAN
2764-6-T

electron

(r, 6, )

® ® )

observation
point

FIG. 2. COORDINATE SYSTEM FOR THE DETERMINATION OF
SCATTERING CROSS SECTION
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(00)
1=—% drS B\ do rlsing [1-eXT T
R

2
. e2 ik [-é%o - r(cosf cos (@) + sing sin @ cos (f - (I) ))]

© 27 % E?_o_ R 5 5
- drB d¢§ 0 r’ singe KT TV 8100
R 0

2 2
( \' Smf)% } 2 —Vzcosze —132—)
. R
e -1-== e r
e

2
2ik [—2%; - r(cosf cos (@) + sing sin @) cos (¢—(I)))] .
' e
(33)

The first integral of equation (33) is independent of @ , S0 it can be

simplified to the following form by letting @ = 0°,

ef 2
—-—9--%}2 Zik[ r —rcosOJ

[00) 27 m
1 -S dr g d¢S a0 r% sing |1 - e KT e R,
R 0 0

—t
il

0 sin 2kr r dr . (34)

1
1
w’gﬂ
~

The second integral of equation (33) can be simplified a little by assuming
the the main contribution of the integral is from the region where 6 is small.

This leads to
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100) 2 % efo R 2 92

... ~Vsin 6
L, = - g dr % d¢8 d9 rsing o XL T e
R 0 0

2
2 R 2 2 R
Zsin“6- 2 -Vcos“6=%
® r R r
e ~1-== e :
2
r

2
2ik {21‘? ~r(cosf cos (@) +sindsin @ cos(f- ) )]
0

¢ €

® g Homr
t_on drrz e O JKT T 40 5ind e-21krcos(0-— @ )
R 0
25in6 (1 -2 2 . 9. 2 R
=V sin®g (1 -77) 2 -Vsin“g+cos”6 ~5)
R r
i ~J1-"g3 e .(35)
r

I1 and I2 can be numerically evaluated and after that the change of the radar

cross section of the sphere is obtained from equation (32) as

) 2 2
o = 47rcreno ‘Il+12| ) (36)
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NUMERICAL RESULTS

The theoretical formulas developed in the previous sections are used
in the numerical calculation for a typical case of a spherical satellite. In

this section, the potential of the satellite and the change of its radar cross

section due to the plasma sheath are calculated.

A spherical satellite of 1 m radius moving with a velocity of 8 Km/sec
at altitude of 500 Km is considered. For this case the following numerical

data can be assigned:

0.1 electron-volt (or T = 1160°K)

KT

n = 102 1/m’

0

v, ~ 1 Km/sec , v, ~ 200 Km/sec

KT . Km/sec
m

m
1 + +
2 (assuming O and N ions) .

T\ 166

The normalized velocity V =8.

(1) The potential of the Satellite.

From equation (30)

2ef 3ef,
KT KT .
3e -2e = yraV = 0.085 .
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So

with

2764-6-T

0.18

[¢’)
1]

~-Inb5.55=~1.71

KT = 0.1 e.v.

-0.171 volt.

g, =

The Russian experimental data shows that the potential of a satellite at night

is of the order of 0+ 1 volt. The theoretical prediction is of the right order.

(2)

From equation (36)

where

and

The change of the scattering cross section of the satellite.
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® _ 1 .r7l 5 ikﬁ
2
I =_21r__ g l-e e Ro sin 2kr r dr
1 k
1
® NESI N P
R - -9i -
Iz = =27 % drr2 e ° e r do sinf e 21k r cos (6 ®) .
1 0
-64 sin29(1—'_‘lj) Y@Nlﬁo '+ cos29 ‘%‘)
* |e WAS BEE“ ol
5 B 1
™ E?B'o ¥ RE?OB‘
1S G R N D :
Because t ) S8 I\Y ND _.cu, the upper limit of r is assigned
to be 30 m. - vn the fact that the main contribution to 12 is from the

region of small 6, 12 can be approximated further. The forms of I1 and 12

used in the numerical calculation are as follows:

30 _1.71 2
_ 2 . r :
I1 Sl l-e sin 2kr r dr
1
30 _1.71 ‘
12 = oy g drrze r e—21krcos@ )
1
f 1 1
1 8\[1-— 8 /1-—5
e—64(l— r) r x2 _64 r x2
’ dxe -— dx e
g\1-1 8
r 0 0
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I and I2 are calculated for one case of k and three values of () .

Namely, k = 27 / 15, and 9 =450, 600, 900. The numerical results are

shown in the following table:

TABLE I

CHANGE ON SCATTERING CROSS SECTION OF SATELLITE

(1 M RADIUS)
_— y1SED
s B
. BEROR o © GEPORT
15 PAG oF

™ opENDA AT 2
gEE A . 2.29x10
| ® =45 3.67 x 10

It is understood that as the frequency increases the change on the
scattering cross section decreases. The method used in calculating the
change on the scattering cross section at a frequency much higher than

the plasma frequency may have to be improved.
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ADDENDA TO THE UNIVERSITY OF MICHIGAN RADIATION LABORATORY
REPORT 2764-6-T, "STUDIES IN RADAR CROSS SECTIONS XLIII -
PLASMA SHEATH SURROUNDING A CONDUCTING SPHERICAL
SATELLITE AND THE EFFECT ON RADAR CROSS SECTION"

NUMERICAL CALCULATIONS
(continued)

In connection with the calculation of the change of the scattering cross
section of the satellite, it is learned that the upper limits of the integrals, I;
and I,, should be specified carefully. In the first place, the upper limits
should be finite because: (1) The disturbance caused by the satellite in the
plasma will be restored gradually through the ambipolar diffusion which was
not taken into account in the analysis; (2) The beamwidth of the radar used in
the satellite tracking is very sharp and only a limited space can be illuminated.
Fortunately, it is found in the numerical calculation that the significant con-
tribution to the integrals comes from the region where r is smaller than 2 Km.
As r becomes bigger than this value the phase factor becomes important and
the effect of cancellation takes place.

A numerical calculation is made for the case of 1 m radius satellite and
the incident electromagnetic wave of 15 m wavelength. The integrals used in

the calculation are

2 2
\3.75 x 10° LI &

2 r
U 1-e e sin 2kr r dr

Ilz__k—



\/3.75x103 L ikr

I, = - 27 drr e e e

- 1
-64(1-2) 8V1-= . 64 8\/1-—12-
r
. |2 e dx - 68 & dx
1
L 8 1_r 0 0

The upper limit is specified in such a way that the absolute value of I, is a

maximum. The final results are shown in the following table.

® o (cross section in mz)
. 90° 3.6 x 10°

60° 5.4

45° 2.7

The results show that the scattering of the electromagnetic wave has
the broadside effect. This implies that the reflection of the electromagnetic
wave is maximum when the satellite is right overhead and this reflection dies
out rapidly as the satellite moves away. This effect may cause a strong pulse
type reflection in the course of the satellite passage.

The accuracy of the numerical data is not very high because all
computation was done on desk calculators and the theory itself is approximate.

However, the orders of the results are expected to be correct.
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