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INTRODUCTION

Many investigations have been made concerning methods of reducing the
radar cross section of metallic bodies, especially with regard to applications to
radar camouflage techniques. Two methods have been widely used: the first utilizes
radar absorbing materials, the second consists in reshaping the body to change the
reflection pattern.

A third method, known as the method of reactive loading, is the subject of
investigation of this report. Only the case of back scattering is considered, and all
references to cross sections are to be understood as such.

The first known use of reactive loading to minimize the back scattering
cross section was made by Iams (1950) who applied the technique to metallic posts
in a parallel plate pillbox structure. Shortly after this Sletten (1962) employed the
method to decrease the radar cross section of objects in space.

Several authors (King, 1956; Hu, 1958; Xs and Schmitt, 1958) have studied
the problem of cross sections of a cylinder with and without a central load. Al-
though these investigations indicated that the cross section of a half-wavelength
cylinder can be significantly reduced by the use of a high reactive impedance load
at its center, the exact way in which the reactive loading behaves, as well as the
optimum method (i.e. that loading which minimizes the cross section) of loading are
still not well understood.

This report has two purposes: (1) to develop a theory to explain the behavior
of the cross section of a cylinder with loading; and (2) to determine the optimum
loading.

The problem is studied by considering the currents induced in a body illu-
minated by an electromagnetic wave. We consider the case of a plane wave which
illuminates a perfectly conducting cylinder whose radius is small and whose length

is less than two wavelengths. The plane wave induces a current on the cylinder;
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this in turn produces a scattered electromagnetic field. If an impedance is added
at the center of the cylinder, the induced current is modified, hence so is the scat-
tered field. It should be noted that there are three ways in which an impedance
change can reduce the scattered field: (i) by reducing the magnitude of the induced
current; (ii) by reversing the phase of the induced current over some part of the
cylinder; and (iii) by the combination of (i) and (ii). This third way is the most
effective for reducing the back scattering cross section. In fact, we shall show that
with central loading it is possible to reduce the broadside cross section to zero.

For a center-loaded cylinder the induced current is first determined as a
function ofthe cylinder dimensions, the midpoint impedance andthe incident electric
field. Using this solution we obtain an optimum impedance, i.e. an impedance
which gives a minimum back scattering. In order to verify this solution experi-
mentally, the induced current on loaded cylinders and the return from a cylinder
whose impedance is close to the calculated value are measured. The experimental
data for induced current and cross section areas are found to be in excellent agree-
ment with the theoretical values,

Throughout the study a resonant cylinder whose total length is equal to 0.43X
(A = wavelength) and an antiresonant cylinder of total length 0.85) are used as typi-
cal examples. When a plane wave is obliquely incident on the cylinder the induced
current can be divided into a symmetrical and an antisymmetrical component. The
symmetrical component is predominant for a resonant cylinder while the antisym-
metrical component is predominant for an antiresonant cylinder. Although the mid-
point impedance can have a strong effect on the symmetrical component of the in-
duced current it does not affect the antisymmetrical component. For this reason
central loading cannot appreciably reduce the large cross section lobes occurring

at off-normal aspects for the case of an antiresonant cylinder.
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This report is divided into two parts. In Part I we consider the case of a
center-loaded cylinder illuminated by a plane wave at normal incidence, and develop
the basic theory of central loading. In Part II the case is generalized to cover inci-
dence at any arbitrary aspect angle.

In the interests of simplicity, the analysis in both parts is limited to the case
of a thin cylinder. The case of a thicker cylinder and the effect of multiple loadings

will be investigated in the future. MKS rationalized units are used in the analysis

jwt

and the time dependence factor e is omitted.
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I
THE MINIMIZATION OF THE CROSS SECTION OF A CYLINDER
BY CENTRAL LOADING (BROADSIDE ASPECT)
We consider here only the cross section of a center-loaded cylinder for
broadside aspects. We first determine the induced current and then investigate the
scattered field.

1-1 INDUCED CURRENT ON A CENTER-LOADED CYLINDER

1-1.1 Basic Equation and Solution

The geometry of the problem is as shown in Fig. 1-1. A cylinder of radius
a and length 2h is assumed to be perfectly conducting and illuminated by a plane
electromagnetic wave at normal incidence with the E field parallel to the axis. At
the center of the cylinder is connected a lumped impedance ZL. The dimensions of
interest are

1 A<2h<2A
4
2 2 :
<
Boa <1
where A is the wavelength and BO the wave number. The second condition implies
that the cylinder is thin, and allows us to assume that only the axial current is in-

duced.

1-1.1a Integral Equation for the Induced Current on the Cylinder

In order to determine the induced current on the cylinder we apply an inte-
gral equation method.

The incident tangential electric field is assumed to be

where EO is constant along the cylinder. The tangential electric field at the cylin-

der surface due to the current and charge on the cylinder is
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FIG. 1-1: CYLINDER WITH CENTRAL LOADING ILLUMINATED
BY AN ELECTROMAGNETIC WAVE
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a_ o
E =- i juA (1.2)

where f is the scalar potential maintained by the charge and AZ is the tangential

component of the vector component maintained by the current. By using the Lorentz

condition
p=i% VA (1.3)
Bo
(1.2) can be expressed as
2
2
Ea=-j—°3—<—a—+5 A . (1.4)
Z 2 2 o/ z
BO 0z

The electric field maintained across the gap at the center of the cylinder is

related to the voltage drop across the center by the relation

6

g = - L: = =
Ejdz = <V'=2Z1(220) = Z, T (1.5)

-6

where VL is the voltage drop across the center load Z_ and I0 is the induced cur-

L
rent at the center of the cylinder. From (1.5) Ei can be expressed as

g _
EZ = leoé(z) (1.6)

where 6(z) is the usual Dirac delta function.
If the cylinder is perfectly conducting, the tangential electric field at the

surface (excluding the gap) of the cylinder vanishes. That is

Ea+Em=0 for 6 z<h and -h<z<-6. (1.7)
z A

At the gap, the electric field is continuous. Hence
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a in g
+ = = -
EZ Ez EZ ZLIoé(z), for 6<z2<K6. (1.8)

By combining (1.7) and (1.8) and making use of (1.4) it is possible to obtain a single

equation valid for the entire length of the cylinder:

5 2 X
3 A+BA =-j=2 [E - leoé(z)] (1.9)
for -hg< z < h.
Equation (1.9) is an inhomogeneous differential equation for AZ. Conse-
quently the general solution is expressible as the sum of a complementary function

and a particular integral.

NI +C,sinf 2+ ) |
AZ v I:ClcosBoz CzsmBoz &z) (1.10)

where VO is 1/\[uoeo , C ) and 02 are arbitrary constants, and 6(z) is a particu-

lar integral which can be written as

z
6(z) = Eio(s) - ZLIoé(s):] sinBO(z—s)ds
o
Eo 1 .
- FO- (l-cosBOZ)—'éZLIOsmBO|z| ) (1.11)

If E0 is assumed to be constant along the cylinder, the symmetry implies that 02

must be zero. Equation (1.10) then becomes

. E
AZ(z) = ;_:)1- [ClcosBOz + —BQ (1 —cosBoz) - % ZLIoSinBolzﬂ (1.12)

Y

for -h <z <<h.
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From (1.12), C, can be expressed in terms of AZ(h) as

1

E
. 0 1
= - — - + -— Z O
C1 secBoh IJVOAZ(h) BO (1-cos Boh) 5 LIosmBOh [
(1.13)

Thus from (1.12) and (1.13) we obtain the following equation:

. E
Az(z) - AZ(h) = ii sec Boh EjVOAZ(h) - E'O )cos Boz - cos Boh)

0o

1 .
+ 3 ZLIo s1nBo(h— [ z l)}

for -h<z<h. (1.14)

On the other hand, the left side of (1.14) is also related to the induced cur-

rent by
h
Mo
A (z)-A (h) = — I(z")K (z,2z"dz' (1.15)
Z Z 47 Z d
-h
where
K (z,z') = K (z,2')-K (h, z') , (1.16)
d a
- _7N%+
. JBO (z-2z")"+a
Ka(z,z') = (1.17)

and IZ(Z') is the induced current on the cylinder.
By equating (1.14) and (1.15) we obtain an integral equation for the induced

current on the cylinder,




' 1 — :_jf.ll
Iz(z )Kd(z, z')dz ¢

o
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sec Boh [:(jvoAZ(h) -

E

B—:— )cos Boz - CoS Boh)

-h

1
ts ZLIOsinBO(h—|zﬂ (1.18)

where §O= 1207 and (1.18) is valid for ~-h< z < h. Both AZ(h) and Io in the right

side of (1.18) are functions of Iz(z) and are still unknown.

1-1.1b Solution for the Induced Current on a Cylinder

The kernel Kd(z, z') in (1.18) has a sharp peak at z'=z. Moreover, it can
be shown numerically that the left side of (1.18) is nearly proportional to IZ(z) for

-h<z<h. Hence we may assume

Iz(z) = Cc(cosBOz-cos Boh) +Cy sinBO(h— |z]) . (1.19)

where CC and CS are constants to be determined. To obtain approximations to

CC and CS it is reasonable to divide (1.18) into two parts:
h

. E
C_\ (cosp 2~ cosp hK (z,2)dz' = —Jcﬁ"i sec (v A, (0)- 52
h 0 0
* (cos Boz— cos Boh) (1.20)
h
CS sinBo(h— lz'l)Kd(z,z’)dz' = :'Jz,?l secBthLI0 sinBO(h— [z[). (1.21)

-h °
Both (1.20) and (1.21) are valid for -h < z <h. They also agree at the end points,
z =Th, since both sides of the equations become zero at these points. To find the
constants CC and Cs we can match both sides of (1.20) and (1.21) at the center of

the cylinder, z = 0.
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From (1.20)
_i4 E '
¢ =T secB h(jv A (h) - == )(1-cosB h) (1.22)
c ¢ T 0 "0 z B 0
o cd 0
where
h
— 1 _ ! ' 1. 3
Tcd (cosBoz cos Boh)Kd(O,z )dz (1.23)
-h
From (1.21)
_ -j2w .
CS cT seoBOhZLIOsmBoh (1.24)
o sd
where h
— ; R ! 1
T 4 s1nBO(h lz I)Kd(O, z')dz' . (1.25)
-h

It should be noted that if CC and CS had been evaluated using a value of z
other than z = 0 the values for Cc and CS would be relatively little affected. The
substitution of (1.22) and (1.24) in (1.19) gives

E
_ -j4m 1 .. __0 _ _
IZ(Z) = fo [—TCd(JVOAZ(h) BO )(secBoh 1)(cos Boz cos Boh)

+

1 .
2Tsd ZLIOtanBOh smBo(h— IZI)] .
(1.26)

In order to obtain the final form of the solution we must still determine

Az(h) and IO in (1.26). By setting z =0, IO= Iz(z = 0) and we can express I0

10



THE UNIVERSITY OF MICHIGAN

5548-1-T

in terms of Az(h). A straightforward rearrangement of (1.26) then yields

. E
Iz(z) = :%43[ (ijAZ(h) - Tg‘z ) [M'(cos Boz - coS Boh)+N' sinBo(h— |z Iﬂ (1.27)

where
M!' = L (secB h-1) (1.28)
T o)
cd
-Z_tanB h(secf h+cosB h - 2)
G s . (1.29)
TchLtan Boh sin Boh - JGOTchsd

In (1.27) the only remaining unknown is Az(h). To determine it, we use the

definition of the vector potential

I
NO '
A(h) = — I(z")K (h,z"dz' (1.30)
Z 47 Z a

“h

where Ka(h, z') is defined in (1.17). Substituting (1.27) in (1.30) gives

iE M'T_+N'T_
A0 = T8 TowT_-wT (1.31)
oo ca sa
where h
= 1 ! 1 1.32
Tca (cosBOz cosBoh)Ka(h,z)dz ( )
-h
h
T =\ sin (h- |z'))K (b, z")dz' (1.33)
sa (0] a *
-h

11
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A final form for the solution of IZ(Z) is then obtained by substituting (1.31)

into (1.27). After some rearrangement we have

JE 1
Iz(z) - 305 <00s B h-MT -NT > \:M(cos BOZ - e08 Boh) *Nsin Bo(h_ l z l)]
) 0 ca sa

(1.34)
where
M = —— (1-cosB h) (1.35)
T o)
cd
7. sinB h(I-cosB h)>
L 0 cos 0
N = 5 (1.36)
TchLsm Boh— j 6OTCdTSdcos Boh

and T , T , T , T are defined in equations (1.23), (1.25), (1.32) and (1.33)
cd” “sd ca sa

respectively.
Equation (1.34) gives a complete expression for the induced current on a

cylinder with a central load Z_ when illuminated by a broadside constant electric

L
field Eo' Moreover, (1.34) is both simple in form and accurate. That it agrees
well with experimental values will be shown in section 1-2,

For completeness as well as convenience in computations, the integrals

T , T , T and T are reformulated as
cd "sd “ca sa

T4~ Ca(h, 0) - Ca(h’ h) - cos Boh [Ea(h, 0) - Ea(h, h{l (1.37)
Ty q = sinBh [Ca(h, 0)-C,(n, h)] -cosf h [Sa(h, 0)-$ (h, h)} (1.38)
T, = C,(h,h)-cosp hE,(h,h) | (1.39)
T, = sin Boh C, (b, h) - cos Boh Sa(h, h) (1.40)

12
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h
C (h,0) = g cosB z'K (0, z")dz! (1.41)
a h
h
C (h,h) = S cosB z'K (h z')dz' (1.42)
2 h
h
E (h,0) = S K (0, z')dz" (1.43)
a h
h
E (h,h) = S K (h z')dz' (1.44)
a h
h
8 (b,0) = S sinf_ z'| K 0, 2)dz! (1.45)
h
8 (b, h) = S_h smBo| ]Ka(h,z')dz' (1.46)

The integrals of (1.41) through (1.46) can be calculated on a digital computer.
We now consider a number of examples.

1-1.2 Induced Current on a Cylinder without Central Loading

L

I(z) =
7

The first and simplest case is that of a cylinder without loading. By setting

7. = 0 the induced current can be found directly from (1.34):

. 1-
jE cos Boh

Iz(z) - 308 \(T +T )cosB h-T > (COSBOZ_COSBoh) '
0 cd “ca 0 ca

Using (1.37) and (1.39) to express T . and Tca’ Iz(z) can be written

cd

jE0 l: (1-cos Boh)(cos Boz - cos Boh) ]
3OBO C (h, 0)cosB h-E (h, O)cosZB h-C (h,h)+E (h,h)cosB h
a o a o a a 0

(1.47)

13
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In this case the distribution of the induced current is that of a shifted cosine

curve. The maximum induced current occurs at

z=0 for § h < %T
° (1.48)
z =12 for §§7-T<Boh<27r

and is given by

jE (1-cos 1Boh)2 J
N 308, [c (b, O)cos B h-E (h, 0)cos28 h-C (h,h)+E (h, h)cosf h
a (0} a (0] a a [¢]

(1.49)

or

E —sinzBoh
IZ(A/Z) ) 30Boo ‘:C (h, O)cos B h-E (h O)COSZB h-C (h,h)+E (h, h)cosf h} .
a ’ o a’ o “a’’ 2 °
(1.50)

Theoretical and experimental results of IZ(O) as a function of h are com-
pared in Fig. 1-2. The theoretical results were obtained from (1.49) by the use of
a high speed computer. The experimental results were obtained by measuring the
current induced at the center of a cylinder whose radius is 3/16" and whose length
varied between A4 and 2X. The cylinder was illuminated by a plane wave with a
frequency of 1,088 Ge. Except near h = 0.7X, where a resonant peak occurs, the
agreement between theory and experiment is good. The discrepancy near h = 0.7\
may be due to a deficiency in the theoretical treatment or it may have its origin in
the experiment, i.e. the incident electromagnetic wave may not be uniform along

the cylinder for all cylinder lengths.

14
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However, in view of the good general agreement the discrepancy does not
appear serious. In Fig. 1-3 the current distributions for cylinders of various
lengths are shown. Good agreement between theoretical predicution and experimen-
tal results is evident.

For a cylinder whose length is 0.43X or 1.4X the induced current reaches
a resonant peak for Boa = 0,11. Since these current peaks imply large radar cross
sections we propose to decrease the cross sections by eliminating these current
peaks by using suitable impedance loading. This will be carried out in section
1-3.1. Before proceeding, we consider another example.

1-1.3 Induced Current on a Cylinder with an Infinite Midpoint Impedance

The second case to be studied is that of a cylinder with an infinite midpoint
impedance. Theofetically, the induced current can be obtained from (1.34) by set-
ting ZL= ®. Experimentally, an infinite impedance is approximated by a coaxial
cavity tuned at its antiresonant position. This coaxial cavity is built inside the

cylinder as described in section 1-2.1. A small probe then measures the induced

current.
When ZL = o, we have from (1.35) and (1.36)
-(1-cosfB h)
N _ 0
M __————sinﬁoh ) for Boh # nr. (1.51)

Substituting (1.51) into (1.34) then gives

0o

L) = S0p_

(l—cosBOh) [sinBol z|- sinBoh+ sinBo(h- |z I):l

\?SinBoh [Ca(h, 0)—(2—cosBOh)Ca(h, h)—cosBoh Ea(h’ 0)+ Ea(h’ hi]—(l—cosBoh)zsa(h, h]

(1.52)

16
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In this case the induced current is zero at the center of the cylinder and its distri-
bution along the cylinder is a combination of a sine and shifted sine curves.

The maximum induced current occurs at

z = h/2 for p h < 27 (1.53)
and is given by
_JE
1(0/2) = 3080 : (1.54)
o
2 sin i)il (1-cos gl )(1-cosfB h)
2 2 0

2
Einﬁoh [Ca(h, O)—(2—cosBoh)Ca(h, h)-cosBoh Ea(h’ 0)+ Ea(h’ h)] -( l—cosBoh) Sa(h’ h{]

The theoretical value of Iz(h/ 2) as a function of h/X is compared with the
experimental curve in Fig. 1-4. The agreement between the theoretical predictions
and the experimental observations is only fair. This lack of agreement is probably
due to the difficulty in experimentally obtaining an infinite impedance from a coaxial
cavity structure. The fact that closer agreement between theory and experiment is
obtained for ZL= j 20002 tends to support this explanation,

For three cylinders of different lengths the induced current distribution for
the case of infinite impedance loading is shown graphicall in Fig. 1-5. The agree-
ment between theory and experiment is good.

Moreover, with infinite impedance loading at the center, the induced cur-
rents at resonant lengths (namely 2h = 0.43X and 2h = 1.4)) are greatly reduced.
However, the induced current appears to have a peak when 2h = 0,92, and if a
small cross section over a wide frequency band is desired, this current peak must
also be suppressed. Thus we conclude that an infinite (or very high) impedance is
not optimum for minimizing the scattering over a wide range of frequencies. We

shall take up this problem again in section 1-3.1.

18
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1-1.4 Induced Current on a Cylinder of Near-Resonant Length with Various Central
Impedances
In this section we study the induced currents when the cylinder length is

chosen to be a resonant length. For experimental convenience we select the follow-

ing specific case:

a = 0,173\
%h = 0.43)
2y, =1y

This last condition restricts the central impedance to be purely reactive, and is
chosen because only a reactive impedance can be obtained experimentally from a
coaxial cavity. With these conditions the theoretical value of the induced current

can be expressed as

jE (cosB z-0.216)+ E-sin(77.5o— IB z\)
. 0 0 M 0
I(z) = 308 M S v (1.55)
z 0 j0.215- —(0.218-0.25)
where
N . —0.765XL 56
M 0.955XL— 24.6 )

Values of IZ(z) are calculated for values of Z_ equal to 0, o, -j1600§2, -j800%,

L
-j600Q, j1600€2, j800€, j6002 and j40092 and shown in Figs. 1-6a and 1-6b,

From the graphs we may observe the following:

(1) When ZL= 0 (no loading) the induced current is very large and is dis-
tributed along the cylinder as a shifted cosine curve,
(2) When ZL= o the induced current is greatly reduced in magnitude. Its

distribution curve becomes double-humped with a null at the center.

(3) When Z_ is capacitive and finite the induced current is smaller than

L

the case of ZL= 0 but larger than for ZL= .
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(4) When Z_ is inductive and finite, the magnitude of the induced current

L
is smaller than the case of Z_= o and is distributed in the form of three loops

along the cylinder. It is of inItJerest to note that the phase of the current at the cen-
ter loop is reversed.

The most significant result is (4). From it we conclude that it is possible
to reduce the broadside back scattering from a cylinder to zero by properly adjust-

ing the value of Z As we shall see in a later section (1-3), the optimum imped-

ance for zero bro;::lside back scattering with a cylinder of this size is inductive and
has a small resistive component.

To compare the theoretical predictions of Figs. 1-6a and 1-6b the induced
current along a cylinder of the specified dimension and with various cavity lengths
was determined experimentally., The results are shown in Figs. 1-14a and 1-14b.
The experimental curves closely resemble their theoretical counterparts. When
the cavity length (total length) is longer than 6.2 cm, the impedance of the cavity is
capacitive; when the length is less than 6.2 cm, the impedance is inductive. It
should be noted that the effective cavity length is greater than these values since it
is loaded with a dielectric material for which €r= 4.0, The approximate value of
the cavity impedance is calculated by using a standard impedance formula for a
transmission line and assuming that a capacitance of 0.4 uuf is shunted across the
gap at the center of the cylinder.

The comparison between theory and experiment is made in Fig. 1-7, where
theoretical curves for ZL= -j800Q2, o, and j8002 are shown. These curves
are compared with experimental results for £ =3.32cm, 3.10cm and 2.91cm
(where _/Z is the half-length of the coaxial cavity). The agreement between theory

and experiment is very good, indicating that the calculated value of the cavity im-

pedance is quite close to the corresponding theoretical impedance.
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FIG. 1-7: CURRENT DISTRIBUTION ALONG A CYLINDER AS A FUNCTION
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1-1.5 Induced Current on a Cylinder of Near Anti-Resonant Length with Various
Central Impedances

In this section we study the induced current when the cylinder length is an

antiresonant length. The following specific case is chosen:

a= 0,173
9h = 0.9)
2y, = 1%y

where we again consider only the reactive loading case.

For these conditions the theoretical value of the induced current is

. N o
jE (cosB z+0.951) + — sin(162 - |B z])
1(2) 2 9 M[ 0 M Iy ] (1.57)
0

0
308 —0.911+j0.217—%(0.111—3‘0.128)
where
N . -0.604X .
M 0.096>2L+ 71 -j52.2 ° ‘

The magnitude of IZ(z) is calculated for values of Z_ equal to 0, o, -j1600%,

-j800%, -j600%, j160082, j800%, j600$2 and sho;n graphically in Figs. 1-8a
and 1-8b. This family of curves is quite different from those of the preceeding
section. Although a purely reactive impedance reduces the magnitude of the induced
current and tends to reverse the phase of the induced current, it is not possible to
reduce the radar cross section to zero because current nulls do not occur in this
case. Actually, as will be shown in 1-3.1, the optimum impedance for zero broad-
side back scattering from a cylinder of this size should have a large resistive com-

ponent.
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In Figs. 1-15a and 1-15b the experimental results for the currents induced
on this cylinder are summarized. The general shapes of the experimental curves
are similar to the theoretical curves. A comparison between theory and experiment
is made in Fig. 1-9 for three typical theoretical curves and their experimental coun-
terparts. The agreement between theory and experiment is again good, although not

as good as in the case of a shorter cylinder.

1-2 CURRENT MEASUREMENT ON A CENTER-LOADED CYLINDER

1-2.1 Experimental Setup

A block diagram of the equipment used for the current measurement is
shown in Fig. 1-10, The cylinder was illuminated at broadside by a plane wave of
1.088 Ge from an L-band horn antenna with the electric field polarized in the direc-
tion parallel to the cylinder. A conventional probing method with a small current
probe was employed to measure the induced current amplitude on the cylinder.

The coaxial line leading from the probe was covered with radar absorbing
material (RAM) and oriented perpendicular to the E field to minimize its interaction
with the E field. The measurement area was also lined with RAM to reduce un-
wanted reflections. This is shown in Fig, 1-11,

Figs. 1-12 and 1-13 show partially disassembled components of the loaded
cylinder. The cylinder diameter is about 0.95cm and its length can be changed
from 10em (h = 0.1822) to 51.29c¢m (h = 0.93)) by the combination of center and
end pieces of different lengths. The center sections of the cylinder contain a sym-
metric coaxial cavity with an input gap at the center of the cylinder. The diameters
of the center and outer conductors of the cavity are 0.32cm and 0.79cm respec-
tively. By varying the cavity length, various input reactances are obtained. The
coaxial cavity is filled with a dielectric (Stycast HiK: €.~ 4, 6= 0.0001) in order

to reduce the cavity length to fit within the cylinder.
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FIG.1-9: CURRENT DISTRIBUTION ALONG A CYLINDER AS A FUNCTION OF
CENTRAL LOAD FOR h=0.452 (THEORETICAL AND EXPERIMENTAL)
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1-2.2 Experimental Results

Figs. 1-14a and 1-14b show the cylinder current distributions with
h = 0.215X for various central loadings. The curves are given in terms of the

cavity length L. The central impedance Z_ is not explicitly defined here, but its

L
relation to the cavity length L is given in the next section (1-2.3). When L = 0,
ZL= 0; ZL

0<L<6.2lcm ZL is inductive while for L > 6.21 cm but less than a certain

achieves its maximum ("infinite") when L is about 6.21cm. For

critical length, Z_ is capacitive.

L
The maximum current on a cylinder with h = 0,215A and Z_= 0 corre-

L
sponds to a resonant current. The relative amplitude of the current is normalized
to this maximum current. For the case of L = 5,83 cm the current distribution
is close to optimum, i,e. the cross section is close to zero. For other cavity
lengths the current distributions are also in good agreement with the theoretical
predictions.

In Figs. 1-15a and 1-15b we have the current distributions for a cylinder
with various cavity lengths and h = 0,444 . This particular cylinder length cor-
responds to an antiresonant length. The manner in which this affects the induced
current may be seen from the graphs: the introduction of a central impedance in-
creases, rather than decreases, the induced current in general. This implies an
increase in back scattering. Although the current distribution corresponding to
L = 5.58cm is close to the optimum distribution, it is impossible to reduce the
broadside cross section to zero by purely reactive loading. This is due to the fact
that the phase of the current is not completely reversed at the center part of the
cylinder and no current null appears with this loading. The asymmetries which
exist in the measured currents are caused by room reflections.

Fig. 1-16 shows the current distributions on a cylinder with fixed central

impedance but whose length varies from 2h= 10,03cm to 2h = 39,.73cm. The
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h = 0.215X, a =0,0173X. (EXPERIMENTAL)
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cavity length is kept at L = 6.34cm. The cavity length is rather arbitrary, but it
appears to give a high central impedance. An accurate antiresonant length of the
cavity was later found to be L = 6,21 cm.

1-2.3 Equivalent Circuit for Coaxial Cavity and Gap Capacitance

An approximate value for the input impedance of the coaxial cavity can be
obtained from the following observations.

In Fig. 1-17a the dielectric loaded coaxial cavity is schematically represen-
ted. The input terminals are at the center of the outer conductor and a stray capa-
citance is assumed to be shunted across the input terminals. If a voltage V is

applied at the input terminals the input current i is

D=4
i 1t i, (1.59)

where it is the transmission line current which flows inside the coaxial cavity and
iC is the current which flows through the stray capacitance.

It is evident that

i = ]wCSV (1.60)

but the transmission line current it requires a more involved argument for its de-
termination:

As shown in Fig. 1-17b, the coaxial cavity can first be simplified to the casg
of a transmission line driven by a voltage V at the center of one wire of the line.
This transmission line can then be considered as the superposition of two modes,

as shown in Fig, 1-17c. Hence

i, = i° + 2 . (1.61)

a
where iS is the current of the symmetrical mode and i~ is the current of the anti-

symmetrical mode. Since i° can be assumed to be a usual TEM mode current
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it can be obtained simply as

8 = "——VLz'— (1.62)
jZ tanpd
0
where Z0 is the characteristic impedance of the (assumed) lossless cavity, S is a
propagation constant, and [ is the half-length. Furthermore, a coaxial cavity
does not allow the existence of the antisymmetrical mode and so the antisymmetrical

current is small. Thus, neglecting i the total input current i becomes

. coL s V/2 .
P=1+1 jZOtanBI JwCSV (1.63)
The input impedance of the coaxial cavity is
j2Z tanfL
g =Y _ 0 (1.64)

L i 1-2wC Z tanfBL
s o

where Zo is known to be
60 ‘9
o e, 1

and Er is the dielectric constant of the dielectric in the cavity and I and r, are

the inner and outer cavity radii respectively. The value of the stray capacitance
CS in (1,64) is difficult to determine either theoretically or experimentally and an
indirect method was used:

We know that corresponding to Z_ = m the current distribution has a null at

L
z = 0 and maxima at z = fh/ 2. From the current distributions of Figs. 1-14a and

SRS vess— . U B - e I & -3 e a1 -1 _ s _ X OOt 1 i LA 2L
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For the cavity used in the experiment,

Zo: 27.2Q, W= 27rx1.088x109, €

I
-

and we obtain from (1.66)

CS = 0,402 uuf (1.67)

Using this value of CS, other input impedances have been obtained as func-

tions of L(=2L)

L(cm) Z; ()
5.07 j212
5.86 i 600
6.04 §800
6.10 i 1600
6.21 joo
6.39 ~§ 1600
6.55 -7 800
6.64 -j 600

The effect of the gap width on the induced current is shown in Fig. 1-18.
Since the amplitude of the induced current is greatly affected by the gap width, the
stray capacitance at the cavity input cannot be neglected in the calculation of the in-

put impedance.

1-3. THE RADAR CROSS SECTION OF A CENTER-LOADED CYLINDER

In the preceding sections we found the induced current on a center-loaded
cylinder as a function of cylinder dimension and the central impedance. We now
proceed to study the scattering from such a cylinder and determine the optimum

impedance for reducing the broadside cross section.
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1-3.1 Optimum Impedance for Zero Broadside Back Scattering from a Thin
Cylinder

Since the induced currents give rise to a vector potential from which the

scattered field may be computed, we use the expressions for the induced current in
(1.34) through (1.36) to first determine the associated vector potential.

For the far zone of the cylinder the vector potential is

Ho on 1 e—JBOR
4,% Ir 308 <cos6 h-MT -NT > M | (cospz-cosf h) =p— dz
0 0 ca = sa h
h e—]BOR
+ i -
N smBo(h |z)) o dz

-h (1.68)

where

R= Ro- z cos = distance between a point on the cylinder and the observation
point,

The scattered electric field in the far zone is then
S

- . _ . . 1.
E 0 jwA 0 ]wAZsme | (1.69)

and the corresponding Poynting vector is

S 1 2
P = o lEel (1.70)
o
The scattered field in the broadside direction is obtained when
o

6 =290 and R = RO . (1.71)

We then obtain

S (0]
E9(9—90 ) =

-iB R : - -
e 00 [M(smBoh BohcosBOh)+N(1 cosBoh)] L7

2
= E
B, o R cosp h-MT_-NT
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and
E2 M(sinf8 h-8 hcosfB h) + N(1-cosB h)
PS(9:9OO) _ 2 0 0 0 0 0 (1.73)
¢ 2.2 cosf h-MT -NT )
0 BORO 0 ca sa

Equation (1.36) gives N as a function of ZL' Hence (1.73) expresses the
Poynting power density as a function of the central impedance.
Thus to reduce the back scattering (6 = 900) radar cross section to zero we

simply make p° equal to zero. This gives the condition
sinf h-S h h
in BO BO cos BO

N _
M L-cosf h : (1.74)
Using (1.35) and (1.36), (1.74) can be rewritten as
ZLsm Boh( 1-cos Boh) sin Boh - Boh cos Boh
2 B 1-cosf h ) (1.75)
ZLsm Boh—JGOTSdcos Boh 0

By solving for Z_ in (1.75) we obtain the optimum central impedance

L
[Z _ —]60Tsd(1 - Boh cot Boh)
-9+ i
L o 2 cos Boh 2 Boh sin Boh

(1.76)

where TS is expressed in (1.38).

Eq?lation (1.76) gives the complete expression for optimum central imped-
ance as a function of the cylinder dimension. In view of its simplicity, the expres-
sion should prove useful in practical design.

In Fig. 1-19 the calculated values of [:ZL]O for a cylinder with a = 0,0173 1
are plotted as a function of the cylinder length h/X. Certain observations are evi-
dent:

(1) In general, the optimum central impedance for zero broadside back

scattering should have both resistive and reactive components.
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(2) For a cylinder shorter than one wavelength (h <0.52) the optimum im-
pedance is inductive and requires a resistive component.

(3) For a cylinder longer than one wavelength (h > 0.52) the optimum im-
pedance is inductive or capacitive but it requires a negative resistive component.

These results indicate that for cylinders shorter than one wavelength a pas-
sive impedance can reduce the crossy‘section to zero, but for cylinders longer than
one wavelength an active impedance is required. However, in the latter case an
active impedance may not be needed if the cylinder is loaded at two points.

In Fig. 1-20 the cylinder parameter is changed to a = 0.0517A and [ZL]O
is again obtained as a function of cylinder length h/Xx. The similarity to Fig. 1-19
is evident. For the thicker cylinder the resistive component remains relatively
constant but the reac:cive component is reduced—almost by a factor of two.

Another property which can be studied from (1.76) is the bandwidth charac-
teristic of this technique. To do this we consider a cylinder with h = 4cm,
a = 0.476cm and calculate the optimum impedance for a range of frequencies be-
tween 1Ge and 3Ge. The results are shown in Fig, 1-21, From the graph it is
seen that within this frequency range the optimum impedance is inductive and re-
quires a resistive component. For a wider range of frequencies an active imped-
ance is needed. This impedance appears to be obtainable by a simple network
synthesis.

1-3.2 Scattered Fields of a Center-Loaded Cylinder

In this section we calculate the bistatic scattered field of a center loaded
cylinder which is illuminated by a normally incident plane wave.

When a center loaded cylinder is illuminated by a plane wave at normal
incidence, the induced currents are given by equations (1.34) to (1.36). In turn,
these induced currents give rise to a vector potential in the far zone of the cylinder.

Using (1.68) which expresses the vector potential and (1.69) which express the
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scattered electric field we perform the indicated integration and obtain

-iB R .
o5 w00 EO Mh > o smBoh(HcosOﬂ
& 4r R 308 \cosp h-MT -NT ! B h(1+cos0)
0 0 0 ca sa 0
sin [Boh(l - cos@ﬂ sin(Boh cos0)
+ - ————
Boh(l - cos6) 2cos Boh Boh cosfH J
. X 5 cos(Bohcose)—oos Boh |
M Boh sin6

(1.77)

By plotting Ez as a function of 6 we obtain the bistatic scattered field. An exam-

ple will be considered.

For the case of a cylinder of resonant length we choose the following para-

meters:

h =0.213), a = 0.0173X
T 4= 3.17-j0.327
T 4= 0.696-j1.071

T = 0.62-j0.928
ca

= 3.63-j0.377
T = 3.63-j0

where the T's are calculated with the aid of a computer. We choose several dif-

ferent central loads: ZL= 0, oo, j800Q2, -j800%, -j600%, j626 and the opti-

mum central load ZL= 65+j626 2 (which can be obtained from Fig. 1-19 or from
(1.76)).
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For these seven cases of ZL the back scattered field (6 = 900) are calcula-
ted and listed in Table I. In the table the field strengths are normalized to the value
of EZ(Q = 90% when Z_ = 0.

L
TABLE I
Impedance Field Power
Strength
2, s 0 [ES]Z b
E6(9: 907) 9
0 1.0 1.0 0
00} .0841 .00707 -21.5
j 800 .022 .000484 -33.2
-j 800 .149 .0222 -16.5
-j 650 .144 .0207 -16.8
j626 .00943 .0000889 -40.5
65+j 626 0 0 -0

In Fig. 1-22 is shown the bistatic field patterns for the cylinder with Z_= 0,

L
7800, -j800%2 and . Although the scattered field is greatly reduced by the

introduction of the center loading, since none of these is the optimum loading, the

scattered field can be further reduced.

In Fig. 1-23 where the bistatic field patterns for Z_ = 65+ j626 and for

L

ZL= j626 are shown, the scale is magnified by a factor of 100 with respect to the

one used in Fig. 1-22, Even when Z_ is optimum the scattered field is not zero

except in the back scatter direction. I_I‘nstead, the pattern is seen to consist of four
loops of very small field intensity with maxima at 0 = 35° and 6 = 1450. However,
the maximum field intensity is 56 db below its value for ZL= 0.
I-4 SUMMARY
The important results obtained in Part I are summarized here.
The induced current on a center-loaded cylinder which is illuminated
normally by a plane wave is obtained as a function of the cylinder dimension and the

central impedance in (1.34) through (1.36).
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The effect of a central impedance on the induced current on a resonant

cylinder is investigated in Section 1-1.4 It is found that there exists an optimum

impedance which will reduce the magnitude of the induced current greatly and in
addition, reverse the phase of the induced current over the central part of the cyl-
inder. This optimum impedance will give zero broadside back scattering and very
low return in other aspects.

The effect of a central impedance on the induced current on an antireso-
nant cylinder is investigated in section 1-1.5, It is found that the induced current
is, in general, not reduced by a central impedance. Although we can make the
broadside back scattering vanish the scattering in other aspects may be enhanced.

An experimental study on the induced current has been carried out in
parallel with the development of the theory. The theory was carefully checked by
experiment at every step and the agreement between theory and experiment is ex-
cellent.

The scattering nature of a center-loaded cylinder is studied in section
I-3. The optimum impedance which makes the broadside back scattering vanish is
obtained in (1.76). The expression for this optimum impedance is very simple and
should prove useful in practical design situations. The optimum impedance as a
function of the cylinder dimension is shown graphically in Figs. 1-19 and 1-20. The
frequency characteristic of an optimum impedance for broadband effect is shown

graphically in Fig. 1-21,
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THE MINIMIZATION OF THE CEOSS SECTION OF A CYLINDER
BY CENTRAL LOADING (ARBITRARY ASPECT)

In Part I we considered the case of broadside illumination and established
optimum loading which results in zero back scatter for the broadside direction, It
is natural to ask whether that same optimum loading will minimize the back scat-
tering for off-broadside illumination angles. This question is taken up in part II
where we seek to find the induced current on a center-loaded cylinder illuminated
by an obliquely incident plane wave. After the induced current is obtained, both the
theoretical back scattered field in an arbitrary direction and the radar cross section
of the cylinder can be obtained and compared with experimental observations. Good
agreement between experiment and theory is obtained.

2-1 INDUCED CURRENT ON A CENTER-LOADED CYLINDER ILLUMINATED BY
AN OBLIQUELY INCIDENT PLANE WAVE

When a conducting finite cylinder is illuminated by a plane EM wave at
oblique incidence, the induced current does not have symmetry with respect to the
center of the cylinder. Nonetheless the induced current along the cylinder can be
divided into a symmetrical and an antisymmetrical component. Although a central
load will greatly change the symmetrical component of the induced current, such a
load has no effect on the antisymmetrical component., On a cylinder with a resonant
length, the symmetrical component of the induced current dominates the antisym-
metrical component; therefore, back scattering can be modified greatly by a single
load. On the other hand, on a cylinder with an antiresonant length, the antisym-
metrical component of the induced current dominates its symmetrical component;
hence a single center load can only modify the back scattering very slightly.

The same integral equation method of Part I will be used. It is perhaps
worthwhile to note that King (1956) solved a similar problem of a center-loaded

receiving antenna but he ignored the antisymmetrical component of the antenna
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current, His results are also rather complicated for our purpose. We use a some-
what different method in order to obtain a reasonably simple solution with an accu-
racy which is satisfactory for our purpose.

2-1.1 Integral Equation for the Induced Current on the Cylinder

The geometry of the problem is as shown in Fig. 2-1. A cylinder with a
radius a and length 2h is assumed to be perfectly conducting. A plane EM wave
is incident to the cylinder at an angle 6. A lumped impedance Z. is connected at

L
the center of the cylinder. The dimensions of interest are

-Lli}x<2h<2>x

2 2
<< 1.
B2

where A is the wavelength and BO is the wave number. The second condition im-
plies that the cylinder is thin and only the axial current is induced.
The tangential component of the incident EM wave along the cylinder is
assumed to be
in -jB sin6z

EV=E cosfe ° (2.1)
zZ 0

jwt
where E0 is a constant and the time-dependent factor eJ is omitted.
The current and the charge on the cylinder maintain a tangential electric
field at the surface which can be expressed as

gt = ~jwA (2.2)
Z 0Z Z

where ) is the scalar potential maintained by the charge and AZ is the tangential
component of the vector potential maintained by the current. By using the Lorentz

condition,
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(\ z=h
T .
I
gap = 26 Z
E EZL z=0
0 6
H
0
- |23
\) z =-h

FIG. 2-1: A CENTRALLY LOADED CYLINDER ILLUMINATED OBLIQUELY
BY AN EM WAVE
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p=i=5 VA& (2.3)
Bo
(2.2) can be expressed as
2
oo 2 (g2 ) . (2.4)
VA BZ 8z2 0 Z
0
The electric field maintained across the gap at the center of the cylinder can be ex-
pressed as
g _
E° = Z_1 6(z) (2.5)
V Lo

where ZL is the center load, IO is the induced current at the center of the cylinder
and 6(z) is a delta function.
Since the tangential electric field should be continuous at the boundary we

obtain the following equation
EX+E™ = 7.1 6(2) (2.6)
Z Z Lo

for -hg<z<h.

Equation (2.6) implies that the total tangential electric field vanishes on the surface

of the cylinder and maintains a voltage drop of Z IO across the gap at the center of

L
the cylinder.

The substitution of (2.1) and (2.4) in (2.6) gives

()
€ 6%

—jBOSinGZ
l:E cosf e -7.1 6(2):’ (2.7
0 Lo

for -h<z<h.
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The general solution for AZ is the sum of the complementary function and a partic-
ular integral
A =2 [C cosf3 z+ C_sinf z+9(z] (2.8)
Z vO 1 o} o

2

where vO is 1/‘] u € C and 02 are arbitrary constants, and where the partic-

ular integral 6(z) can be obtamed as

E —JBOsmGZ

I sinf lz! (2.9)

(e}

B B cos6 2 %1,

In (2.8) AZ can be divided into a symmetrical and an antisymmetrical component

A (z) = A(z) + A%(z) (2.10)
z z z
thus
S _—_J_ EO 1
Az(z) = v [Clcosﬁoz + Bocose Ccos (Boz sin6) - 5 ZLI sinf IZH (2.11)
a =l %
Az(z) = v [Czsmﬁoz -j BOCOSG sm(Boz sinf) | - (2.12)

We also divide the induced current on the cylinder into a symmetrical and an anti-
symmetrical component:

I(z) = I'(z) + I(2)

z z z
and, by the assumed symmetries,
a

(z) = I(-2), I2) = -I'(-2) | (2.13)

Z z z z ,
From the definition of the vector potential, we can write AZ in terms of IZ as

follows:
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h
s o s
A (z) = — I (z)K (z,z'")dz
z 4T zZ Z
“h
= Eo 1 J
= = + inf) - = 2.14
v, Ellcos B 2 B cost cos(Boz sinf) - 5 Z, I sinf lzl (2.14)
h
%) = ftg 12" K (z,2") dz'
AN = g z a’’
-h
. E
= 3— CysinB 2 - i3 Cgs 5 sin(8_zsind) (2.15)
o 0
where
—JB \/(z -z') 2+a2
K (z,2') = (2.16)
2 \/(z-z')2+a

Equations (2.14) and (2.15) are integral equations for the induced currents, I (z)
and I (z) We will determine Iz(z) and IZ(z) in sections 2-1.2 and 2-1.3 respec-
tlvely.

2-1.2 Symmetrical Component of the Induced Current

Instead of solving (2.14) directly for Ii(z), for convenience we will start

from (2.11), from which C1 can be expressed as

E
0
Bocos 6

C =secBh[vA(h)-

1
) cos(B hsinf) + < 5 LI sin h:] (2.17)

With (2.11) and (2.17), we obtain
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A (z) - A (h)
Z VA

. E
= él sec Boh {EvoAz(h) - Bocgs 5 cos(BOh sinéi\ (cos Boz - cos Boh)

o
E cosf h
+ % ZLIOsinBo(h— |z ‘) + %Oé;s??— [icos(Boz sin6) - cos(BOh sin@)}} .(2.18)

With the help of (2. 14), another integral equation for Ij(z) is obtained as follows:

h
Ij(z')Kd(z, z')dz'
-h
4 E
= jfjﬁ sec Boh l}VoAz(h) - BOC(:)S 5 cOS (Boh sin@ﬂ (cos Boz - cos Boh)
E cosf h
1
+ 5 ZLIOsinBO(h-lz I) + 739;50—8—99_ l:cos (Boz sin6) - (Boh sin@ZB (2.19)
where
K (z,2") =K (z,2') - K (h,z') (2.20)
d a zZ

s
and {0 is 1207. Equation (2.19) is valid for -h<z <h but AZ(h) and IO in the
right hand side of (2.19) are still unknown.

However, the right hand side of (2.19) suggests a form for the solution of
s
Iz(z) as
Iz(z) = Cc(cos Boz - cos Boh) + Cssin Bo(h- |z |) + Ce ‘E:os(Boz sinf) - cos(Boh sinei]
(2.21)

It is then reasonable to divide (2.19) into three parts as follows:
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h
Cc (cos Boz' - cos Boh)Kd(z, z') dz'
-h
-j4m S Eo
= CO secBoh ‘EVOAZ(h) - BOCOSG(Bohsme)] (cosBOz—cosBOh), (2.22)
h
i _ _ -jem . )
C, sinf (h |z l)Kd(Z’ 2)dz' = = sec B hZ I sinf (h lz) (2.23)
-h o
and
C6 [cos(BOz' sin6) - cos(BOh sin6) Kd(z, z') dz'
“h
idr E
= —é— B 0050 cos(Boz sinb) - cos(BOhsineﬂ . (2.24) ‘
0 0 ?

Equations (2.22) through (2.24) are well matched at the end points, z = Th. Fur-

thermore, the constants Cc’ CS and C, can be determined by matching these

6
equations at the center of the cylinder, z = 0. This matching yields

E
_ Ziar iv AS(h) - —> ing) | (1- h)  (2.25
Cc ¢ T sec Boh EvoAz(h) B 0056 cos(Boh sm@)] (1-cos Bo ) (2.25)
o cd 0
where h
= - 0, z')dz' 2.26
Tcd (cos Boz cos Boh)Kd( ,2')dz ( )
-h
and
- .—:j-?L- 1 2.27
Cs COTSd secBoh ZLlosmBOh ( )
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where
h
= i - [ !
TSd smBO(h |z'])Kd(0,z)dz (2.28)
-h
and
—j4m Eo
CG =TT B cos6 [1—cos(Bohsm0)] (2.29)
o 6d "o
where h
- ! i - i ! !
TGd E:OS(BOZ sin6) cos(BohsmG)] Kd(O,z )dz'. (2.30)
-h

The substitution of (2.25), (2.27) and (2.29) in (2.21) gives

. E
Iz(z) = —-Jciol {-,I—‘l;; {:jvoAz(h) o cc())se cos(Boh sin@):] (sec Boh— 1)(cos Boz - cos Boh)

)
- Z_ I tanf hsinf (h-|z)
2T Lo 0 0
sd
E
§ = 0

T Bocose 1- cos(BOh sin@ﬂ [cos(Boz sinf) - cos(BOh sine)]} _

(2.31)
In (2.31), Ai(h) and I0 are still unknown, but I0 can be determined from
(2.31).
By definition,
[ =1(0) =1(0)+1(0), but I7(0) =0
o 'z Z VA zZ
hence

S
IO = IZ(O) (2.32)
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IO can then be expressed in terms of Az(h) by letting z = 0 in (2.31), and after

some algebraic manipulation (2.31) itself can be rearranged to give

. E
Ii(z) = :ng:ﬂ {&voAz(h) - .Bocgse cos(Boh sin@il [M'l(cos Boz - cos Boh)
E

| + N'1 sinBo(h- IZH + Bocgse lez E:os(ﬁoz sinf) - cos(Boh siné):]

+ stinBO(h—lzﬂ} (2.33)

where
1
1 = ——— -
M1 T (secBOh 1) (2.34)
cd
- + -
. ZLtanBoh(sec Boh cos Boh 2) .39
1 TCdZLtanBohsmBOh - j60 Tchsd
1 :
M, = — [1-cos({3 hsm@)] (2.36)
2 T 0
6d
-Z_sinf h[l—cos(B hsin@Z]z
L 0 0
TGdZLsm Boh—J 60 TGdedcos Boh

In (2.33) the remaining unknown is Az(h). To determine it we use the definition

of the vector potential

5o

A% = (z)K (h,z')dz' . (2.38)
Z 47 Z a

-h

After substituting (2.33) in (2.38), Az(h) becomes
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. O T N i .
JE, l:cos(Bohsme)(Ml T FNIT ) - (MT, N2Tsa)]

s 1
Az(h) ~ v Bcosf I-M!'T -N!'T (2.39)
0 1 ca 1 sa
where
h
T = (cosB z'-cosB h)K (h,z')dz' (2.40)
ca ) o a
-h
h
T = sinf (h- |z'))K (b, z") dz' (2.41)
sa o) zZ
-h
h
T = &EOS(B z'sin6) - cos(B hsinGj)_\ K (h,z")dz'. (2.42)
Ha 0 0 Z

-h

If (2.39) is substituted in (2.33) and the result rearranged, the final form of the

solution for Ii(z) becomes

]EO cos(Boh sinf) - M2T9a_ NZTsa L (co8f - cos 1
308 cos6 cosfp h-M. T -N 1 0 0
0 0 1 ca

S
Iz(z) - T
1 sa

[Nlcos(BohsinG) -NMT, +M N.T -N_cosB h
+

1 2 62 1 2 ca 2 0 .
cosBh-MT -N J SmBo(h—lZ‘b
) 1 ca

lTsa
- M2 cos(Boz sin@)—cos(Bohsinez[} (2.43)

where

1
M1 = Tcd (1—cosBoh) (2.44)

) 2
—ZLsm Boh( 1-cos Boh)

= 5 (2.45)
TchLsm Boh - j60 TchSdcos Boh
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and M2 and N2 are expressed in (2.36) and (2.37).

Equation (2.43) expresses Iz(z) as a function of the cylinder size, the center

load Z_ and the incidence angle 6 of an EM wave.

L
As a matter of completeness and convenience, the integrals TC it TS & TG g
T , T and T, are expressed in terms of better known integrals:
ca sa 6a
= - - h,0) - E h,h] 2.46)
Tc q Ca(h’ 0) Ca(h’ h) - cos Boh Ea( ,0) a( ) (
= gi - - S (h,0)-8 h,h] 2.47)
T 4 smBoh [Ca(h, 0) Ca(h, hﬂ cos Boh [a( ) al( ) (
6 ) . ]
= - - 0)-E (h,h 2.48)
T, = Colh, 0~ C(h, b) - cos(§, hsin) [Ea(h, )-E_(h, ) (
T = C (h,h)-cosp hE (h,h) (2.49)
ca a o a
T = sinB hC (h,h)-cosB hS (h,h) (2.50)
sa o a 0o a
6
= - i h,h (2.51)
TGa Ca(h’ h) cos(Bohsme)Ea( ,h)
where
h
= ! 0,z'") dz' 2.52
Ca(h’ 0) cos Boz Ka( ,z") dz ( )
-h
h
- ' 1Y dz! 2.53
Ca(h’ h) cos Boz Ka(h, z') dz ( )
-h
h
E (h,0) = K (0,z") dz' (2.54)
a a
-h
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E (h h) % K (h z')dz' (2.55)
h

(h 0) = smB |z IK (0, z") dz' (2.56)
-h
h
s (b, h) g sinf_ |z]K (h, z') dz (2.57)
-h
h
C (h 0) = S cos(B A smG)K (0, z") dz  (2.58)
-h
h
Cg(h, h) = cos(Boz'sinG) Ka(h,z')dz' : (2.59)
-h

The integrals of (2. 52) through (2.59) can be calculated on a digital computer.

2-1.3 Antisymmetrical Component of the Induced Current

We can determine C2 from (2.12) as

E
02 = CSCB h |:V A%(h) + j BOCZSG sin(Bohsineﬂ (2.60)

Substituting (2.60) in (2.15), we obtain
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h
a
I (z")K (z,z')dz'
z a
“h
4T Eo
= -g—(; csc Boh BOCOS 5 l:sm(BOh sinf) sin Boz - sin Boh sm(Boz s1n9)]
+v Aa(h)sinB z} (2.61)
0z 0
If the solution for IZ(z) is assumed to be
a . . . A . .
IZ(z) = Ca sm(Boh sinf)sin Boz - smBOh sm(Boz s1n6‘ﬂ (2.62)

equation (2.61) is matched at z = 0. We will match (2.61) at two more points.
If we set z = h/2 in (2.61) and use the substitution of (2.62), the constant

Ca can be expressed as

X 21E_ B h B b
Ca = Ta(h/Z) 50500059 s1n(BOh sinb) sec - 2 sin <7 smG)

B h
+ 27 sec —— Aa(h} (2.63)
U 2 'z _
(0]

where

h
Ta(h/2) = [sin(BohsinG)sinBOz'—sinBohsin(Boz'sinO)] Ka(h/2,z')dz'. (2.64)

-h

By definition, Aj(h) is
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h
U
AYn) = =2 *(z")K (h,z') dz'
zZ T Z a
-h
“o
417 a a
where
h
T (h) = [s_in(B hsin6) sinfB ztsinB hsin(f z'sineﬂ K (h,z'")dz'.
a 0 0 ) 0 a
-h (2.66)

From (2.63) and (2.65), Ai’(h) is determined as

B h B h
E T (h) |}in(B h sin6) sec -%— - 2sin (—-(2)— sinOﬂ
-2 ° - . (2.67)

a p—
Az(h) B B h
wcosh [2T (h/2) - sec =7 (hﬂ

a 2 a

After substituting (2.63) and (2.67) into (2.62) we obtain the final form of the solu-

tion for Ia(z)
VA

1 Boh Boh
E = sin(B hsin6) sec —— - sin <—— sin@)
a 0 2 0 2 2
Iz(Z) B 308 cosf 1
0 T (h/2) - < secf hT (h)
a 2 o a

[sin(Boh sin0) sinBoz - sinBoh sin(Boz sin@ﬂ . (2.68)

Equation (2.68) gives the complete solution for the antisymmetrical component of
a
the induced current on a cylinder. It is noted that Iz(z) is a function of the cylinder
size and the incidence angle 6 only, and is entirely independent of the center load
Z
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For convenience the integrals Ta(h/ 2) and Ta(h) are expressed alternative-

ly as follows:

s . 90 . 6
Ta(h/Z) = sm(Boh sin6) S, (h, h/2) - smBoh Sa(h’ h/2) (2.69)
T (b) = sin(3 hsind) S (b, b) - sin@ hS(h, h) (2.70)
a 0 a o a’ ’
where
h
s:m, b/2) =\ sing 'sindK (b2, 20dz' (2.71)
“h
h
6
- + [ '
Sa(h, h) ) s1n(Boz st)Ka(h,z )dz' (2.72)
-h
h
Sgo(h, h/2) = sinf z'K (h/2, z') dz' (2.73)
a o a
-h
h
Sgo(h, h) = sinf z'K (h, z') dz' (2.74)
a o a
-h

The integrals in (2.71) through (2.74) can be readily calculated on a computer.

2-1.4 Numerical Results

To demonstrate the solutions we have obtained in the preceeding sections,
numerical calculations are made for two typical cases.
The first case is that of a resonant cylinder for which h = 0,215 and

a = 0.0173 A and with a central load Z j800%2, as found in Part I. This value of

L7l
ZL is close to the optimum value for minimizing the broadside back scattering.

Using it, the symmetrical component of the induced current is reduced more than
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20db from the value when ZL = 0. The distribution of the symmetrical component
of the induced current, Ij(z), is shown in Fig. 2-2 for different incident angles.

It is observed that the general behavior of Iz(z) is essentially independent of inci-
dent angle. This means that an optimum load for reducing the broadside back scat-
tering is also effective in reducing the off-broadside back scattering. As shown in
Fig. 2-3, the antisymmetrical component of the induced current, I‘Z(z), on this
cylinder is quite small. As already noted, Iz(z) is entirely independent of ZL but
is strongly dependent on the cylinder dimension and on the incidence angle. For a
cylinder with a resonant length, Iz(z) is usually very small compared to Iz(z).
Hence the fact that the magnitudes of Iz(z) and Iz(z) are comparable in Figs, 2-2
and 2-3 is a consequence of the large reduction in the symmetrical component pro-

duced by the nearly optimum load Z_ = j600%.

L
The second case is that of an antiresonant cylinder whose dimensions are

h = 0,425X and a = 0,0173) and with a central load ZL= j600Q. This ZL is
reather arbitrarily selected for actual numerical calculation. The distribution of
the symmetrical component of the induced current, Iz(z), for different incidence
angles is shown graphically in Fig. 2.4. We observe that the magnitude of Iz(z) is
only slightly affected by the incidence angle. This also assures that the optimum
loading for reducing the broadside back scattering will remain effective in reducing
the off-broadside back scattering. The antisymmetrical component of the induced
current, Iz(z), is very large for this cylinder and its dependence upon the angle of
incidence is shown graphically in Fig. 2-5. Comparing Figs. 2-4 and 2-5, we ob-
serve that the antisymmetrical component of the induced current dominates the sym-
metrical component. Since a central load can not change the antisymmetrical com-

ponent of the induced current, central loading will not be an effective method for

reducing the overall back scattering from a cylinder with an antiresonant length.
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It should be remembered that the total induced current is the vector sum of
its symmetrical and antisymmetrical components so that a simple addition of Iz(z)

and Iz(z) in Figs. 2-2 through 2-5 does not produce the total induced current, IZ(z).

2-1.5 Comparison Between Theory and Experiment

In order to check the theory, the current distribution was measured on a
cylinder with dimensions h = 0,425 and a = 0.0173A. A coaxial cavity, built in
at the center, was adjusted to simulate the central impedance of about j6002. The
actual cavity was filled with a dielectric (€r= 4) and the length of this cavity was
set equal to 5.07cm. The induced current on the cylinder was measured by a small
current loop and the cylinder was illuminated by an EM wave radiated from a horn
antenna.

The corresponding theoretical current distribution was calculated on a digi-
tal computer and a desk calculator.

The theoretical and the experimental results are compared in Fig. 2-6, and
the agreement is quite good. For this particular cylinder whose length is in the
antiresonant region, a large antisymmetrical current is predicted by the theory
when the incidence angle is other than zero degrees. This was confirmed by exper-
iment, as was the prediction that the antisymmetrical component of the induced cur-
rent should not be affected by the central load.

The main disagreement between theory and experiment is at the center of the
cylinder. One explanation may be that an ideal delta function impedance is assumed
in the theory but a finite gap exists on the experimental cylinder. Another may be
the difficulty encountered in obtaining a specified impedance by a coaxial cavity.

However, the general behavior of the induced current predicted by theory is
confirmed by experiment, and we will assume that our theory is adequate for our

purpose.
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2-2 BACK SCATTERING OF A CENTER-LOADED CYLINDER ILLUMINATED BY A
PLANE WAVE AT AN ARBITRARY ANGLE

The induced current on a center-loaded cylinder illuminated by a plane wave
at an arbitrary angle was obtained in section 2-1. Using the solution obtained there
we can calculate the back scattered field.

2-2.1 Back Scattered Field of a Center-Loaded Cylinder

With the same geometry as in Fig. 2-1 and the solution of the induced cur-
rent as expressed in (2.43) and (2.68) we proceed as follows:
The symmetrical component of the induced current Iz(z) maintains a vector

potential at a point in the far zone of the cylinder in the direction of 6:

-3 h
ip oRo S jBOz sin6
IZ(Z) e dz (2.75)

-h

where Ii(z) can be obtained from (2.43) and where RO is the distance between the
center of the cylinder and an observation point. It is important to note that in this
part of the study 6 is defined as shown in Fig. 2-1 and differs by 90° from the 6
defined in Part I.

Performing the indicated integration in (2.75), the final expression for AZS

becomes

. -iB R .
E - -
juE 00 oos(BOhsmG) MZTGa N2Tsa 2Ml
2 R cosf h-M. T -N
0 1 ca

1207rBo 0 lTsa cos36sin9

- | sin Boh sinf cos(Boh sinf) - cos Boh s1n(Boh s1n6)t|

r inf) - + - 2 inf)-
. Nlcos(Boh sinf) N, M, T, M, N,T - N,cos Boh:l [cos(Boh sinf) cosBOIﬂ
L cospoh-M T -NTg, cos° 0
(cont'd)
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o2 0 - si ; , 2.76
PyTEyp—— 2BOhs1n9 s1n(280hs1n9) X ( )

Similarly, the antisymmetrical component of the induced current IZ(Z) main-
tains a vector potential at a point in the far zone of the cylinder in the direction of
0: |

-iB R h
u TRR, j8 2 5in6

a 0O €
A% = = Iz(z) e dz (2.77)
-h

Z 47 R
o}

where 12 can be obtained from (2.68). After the integration in (2.77) is performed,

. -iB R I . Boh . Boh .
ju E .0 0 — sin(B hsinf) sec —— - sin( ——sinb
a 00 € 2 0 2 2
A0 = 2 R 1
12O7rBO 0 Ta(h/2) - 3 see Boh Ta(h)
[:sinB h E1+sin26)sin(26 hsinf) - 23 hsinGcosze:l
. 0 o) )
2cos 0sinf

- 4cos Boh sin6 sin2(Boh sinez__l (2.78)

To obtain an expression for the back scattered field, the following argument
is employed:

The total vector potential maintained by the induced current on the cylinder
is

A (6) = A%(0) + AXH) (2.79)
Z Z Z

The scattered electric field in the far zone of the cylinder due to the induced current

is
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= -j = 2.80
E, jwA jwA_cos6 (2.80)

and the Poynting power density of the scattered field is

(2.81)

Hence, using the values of Az(O) from (2.76) and Ai(@) from (2.78), the final ex-

pression for the back scattered field becomes

E _]BoRo cos(B hsinf) - M -N_T 2M
E () = - =2 e 0 2 9 2 sa 1
6 B R cosB h-M. T -N.T 2
0 1 ca

o} o) 1 sa cos 0Osinf

. [sm Boh sinf cos(Boh sinf) - cos Boh sm(Boh sm@):l

172 6a 12

cos Boh - Mcha_ N1 Tsa

i +
. {;Nlcos(BohsmG) NMT,+MN T NzcosBOh]

2 [cos(Boh sin6) - cos Boh] M,

[:26 hsinf - sin(2 hsm@]

2 ) 2s1n0
cos 0
{ Boh B h \
. 5 sm(BOh sinf) sec — - sin (—2— s1n@ )
1
T (h/2)- ~ secf hT (h) 200s2981n6
a 2 o a

. [sinBoh El +sin2 0) sin(2 Boh sinf) - 2 Boh sinf cos29]

- 4cos Boh sin6 sinz(Boh sin@{]}. (2.82)
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Equation (2.82) gives the complete expression for the back scattered electric field
of a center-loaded cylinder when illuminated by a plane wave with an electric field
E0 at an angle 6 with respect to the normal to the cylinder. When typical values
are calculated from (2.82) and compared with the experimental results, the agree-
ment is excellent, as will be seen in section 2-2.3.

It is noted that the radar cross section is usually defined as

2
E 9( )

E
0

lim 2

o = Ro-—aoo 47TR0

(2.83)

The experimental procedure will now be described.

9-2.2 Measurements of the Back Scattered Field of a Center-Loaded Cylinder

The radar cross section measurements were made at a range of 10 feet at a
frequency of 1.088Ge, the same as used for the current distribution measurements.
The center-loaded cylinders were illuminated by a plane wave whose electric field
vector was in the plane containing the cylinders. The back scattered fields from the
cylinders were recorded as a function of aspect angle, where the zero degree aspect
was chosen to represent the broadside direction.

Fig. 2-T shows three scattering patterns for a resonant length cylinder with
h = 0.2134 ) for three different coaxial cavities of L = 0 (ZL= 0), L=6.22cm
(ZL2 o) and L =5.83¢cm (ZL-’-"-j 600%2). We observe that the introduction of an

o~
L
than 30db. This impedance is only approximately optimum and it is believed that

impedance of Z_2j60092 reduces the cross section of a resonant cylinder by more

an optimum impedance, which is about Z_=65+j626<, would reduce the cross sec-

L

tion even more. Actually, in the experiment a maximum reduction of 35db was

achieved by a purely reactive loading using a dielectric loaded coaxial cavity.
Figs. 2.8 through 2. 11 show the scattering patterns for an anti-resonant

length cylinder with h = 0.4435) for four different coaxial cavities: L = 0 (ZL= 0)
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L =5.58cm (szj415Q), L =6.22cm (sz.V. o) and L =5,.07cm (zLe_'j2129).
In these figures, we see that the back scatter lobes for some off-broadside aspects
are not reduced by central loading. In particular, the large cross sections at about
40° off-broadside are due to a large antisymmetrical current induced on the cylinder
at this angle of incidence. Since the antisymmetrical current is not affected by a
change in the central impedance, the only advantage with an antiresonant cylinder is
the large reduction of the cross section at broadside incidence which results from

| the modification of the symmetrical component of the induced current.

Some additional measurements of the maximum reduction of the back scat-
tered cross section as a function of the cavity length are summarized in Table II,

In Table II, €r is the dielectric constant of the dielectric inside the coaxial cavity,
O ax is the maximum back scattered cross section of the loaded cylinder and o
is the maximum broadside back scattered cross section of a particular non-loaded
cylinder for which h = 0,2134A.

The variation of the maximum back scattered cross section as a function of
the cavity length is shown in Fig, 2-12 where three curves show the information
summarized in Table II. It is interesting to compare curve 1 and curve 3. Since
the dielectric constant of the dielectric of the cavity changes from 4 to 16, one would
expect the required physical length of the cavity to decrease by a factor of 2. In the
experiment the required physical length of the cavity was decreased by a factor of
1.5. This tends to indicate that the shunt capacitance across the input of the cavity
may change if the cavity is filled with different dielectric.

Fig. 2-13 shows the maximum back scattering cross section as a function of
cavity length for a cylinder with h = 0.215A., The three curves in the figure are
obtained by three different methods. Curve 1 is directly obtained from a back scat-
tering measurement; curve 2 is obtained from the measured current distribution

by means of a graphical integration; and curve 3 is the theoretical curve with an
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assumption of a shunt capacitance CS= 0.4 puf which was deduced in section 1-2,3.
However, if CS= 0.46 uuf had been chosen, curve (3) would shift to the left and co-
incide with (1) and (2).

TABLE II
Cylinder Length € Cavity Length “max
h r L (cm) o , do
0

0 0
5.07 -14.3
5.58 -25.7

0.21342 4 5.71 -34.9
5.83 -32.9
6.10 -22.5
6.22 -19.1
6.35 -17.4
7.12 -10.0
0 0.1
5.07 0.1
5.58 0.0

0.44351 4 5.71 -0.2
5.83 -0.7
6.10 3.0
6.22 3.6
6.35 3.0
7.12 2.5
2.92 -4.8
3.18 -7.5

0.2134x 16 3.29 -8.9
3.81 -25.6
4,07 -19.3

2-2.3 Comparison Between Theory and Experiment

In this section we compare the theoretical predictions and experimental ob-
servations of the back scattering cross section dependence on aspect angle. Fig.

2-14 shows the back scattering cross section of a resonant cylinder (h = 0.215))
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as a function of the aspect angle for three different loadings. When ZL= 0 (un-
loaded cylinder) the cross section is very large. When the same cylinder is loaded
with an infinite impedance (ZL= ™), the back scattering cross section is reduced
about 20db. If the loading is adjusted close to the optimum value (ZL= j600€),

a reduction of more than 30db is obtained. The agreement between theory and ex-
periment is excellent,

Figs. 2-15 through 2-17 show the radar cross sections of an antiresonant
cylinder as a function of the aspect angle for three different loadings. When the
cylinder is not loaded (ZL= 0), the back scatter%ng is approximately constant over
the aspect angle range of 0K 0K 50° with a slight maximum at 6 = 40°, The the-
oretical and the experimental results for this case are compared in Fig. 2-15 in
which the zerodb level is chosen to have the same absolute scale as in Fig. 2-14.

Fig. 2-16 shows the theoretical curve for Z_= j300Q compared with an ex-

L

perimental curve for Z_=j212Q. The point of interest is that for this loading the

back scattering in the bII‘Joadside direction is reduced considerably. These two
curves, though with different loadings, agree quite well over most of the aspect
range except for small 6. The maximum back scattering occurs at 6 = 42° and
its amplitude is not reduced by the loading.

_Fig. 2-17 shows the theoretical curve for Z_= j600S and a comparison

L

with an experimental curve for Z_= j415Q. The general behavior of these curves

agrees very well. The maximumll;ack scattering occurs at 6 = 42° and again its
amplitude is not reduced by loading.

In these three figures we find that the maximum cross section for an anti-
resonant cylinder at 6 ’-‘/-400 is not modified at all by a central loading. As men-
tioned before, this is due to the fact that this maximum back scattering is produced

by the antisymmetrical component of the induced current which is not affected by

a central impedance.
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The agreement between theory and experiment is found to be excellent. This
confirms the accuracy of the theory and the experiment and also the feasibility of the
reactive loading technique for the reduction of the radar cross section of a metallic
body.

2-3. SUMMARY

The induced current on a center-loaded cylinder illuminated by a plane wave
at an arbitrary angle is obtained in Section 2-1. This is essentially the generalized
version of the case studied in Section 1-1,

It has been found that when a cylinder is illuminated by an obliquely incident
plane wave the induced current has a symmetrical and an antisymmetrical compo-

nent. The symmetrical component can be modified greatly by central loading but

the antisymmetriogl component is not affected.

In a resonant cylinder the symmetrical component of the induced current
dominates the antisymmetrical component, In an antiresonant cylinder the anti-
symmetrical component is dominant. Therefore, the scattering cross section of a
resonant cylinder can be greatly reduced by central loading while the cross section
of an antiresonant cylinder can be modified only slightly.

The back scattered field of a center-loaded cylinder illuminated by a plane
wave at an arbitrary angle is obtained in Section 2-2, The effect of central loading
on the cross section of a resonant and an antiresonant cylinder is carefully studied
theoretically and experimentally.

The scattering cross section of a resonant cylinder can be reduced more
than 30db by an optimum loading. The scattering cross section of an antiresonant
cylinder can be reduced only in the broadside direction but the large cross section
in the off-broadside direction can not be reduced by central loading.

To reduce the overall cross section of an antiresonant cylinder or to in-
crease the bandwidth of the reactive loading technique a double or a multiple load-

ing may prove to be more effective.
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