
Spontaneous Basilar-Membrane Oscillation (SBMO)
and Coherent Reflection

EGBERT DE BOER
1

AND ALFRED L. NUTTALL
2,3

1Academic Medical Center, University of Amsterdam, Room D2-226, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
2Oregon Hearing Research Center, NRC04, Oregon Health & Science University, 3181 SW Sam Jackson Park Road,

Portland, OR 97239-3098, USA
3Kresge Hearing Research Institute, University of Michigan, 1301 E. Ann Street, Ann Arbor, MI 48109-0506, USA

Received: 16 August 2005; Accepted: 19 October 2005; Online publication: 21 January 2006

ABSTRACT

In a previous report (in JARO) we have described a
relatively high-frequency (15 kHz) spontaneous oscil-
lation of the basilar membrane (SBMO) in a guinea
pig ear; this oscillation was accompanied by a
spontaneous otoacoustic emission (SOAE) at the
same frequency. During the spontaneous oscillation
and after it had subsided, the mechanical frequency
response of the basilar membrane was measured by
way of a wide-band random-noise stimulus, and it
showed a number of spectral peaks, one of which
having the frequency of the original oscillation. This
pattern of peaks cannot be explained by assuming a
single place of reflection in the cochlea. In this paper
the process of Fcoherent reflection_ is artificially
evoked in a three-dimensional model of the cochlea
by imposing random place-fixed irregularities to
the basilar-membrane impedance. It is shown that
in the model a series of peaks arises in the frequency
spectrum of the basilar-membrane response which
phenomenon resembles the one found in the ex-
perimental animal. It is also shown that these peaks
are actually due to superposition of the primary wave
and a wave resulting from Fcoherent reflection_
which is reflected at the stapes. When the intensity
of the acoustic stimulus signal is increased, the
relative sizes of these peaks in the simulation
diminish in about the same way as in the experiment.

It is concluded that coherent reflection most likely is
the cause of the Fextra peaks_, and that this concept
can also explain the observed level dependence of
these peaks. The findings of this study lead to a
minor refinement regarding the actual requirements
for coherent reflection to arise.

Keywords: active cochlea, basilar membrane, co-
herent reflection, spontaneous oscillation

INTRODUCTION

In a previous report we have described a relatively
high-frequency (15 kHz) spontaneous basilar-mem-
brane oscillation in a guinea pig ear (SBMO), which
was accompanied by a spontaneous otoacoustic
emission (SOAE) at the same frequency (Nuttall
et al. 2004). Spontaneous otoacoustic emissions
are sounds that are emitted from a human or animal
ear, and are commonly considered to originate in
mammals from oscillations of the organ of Corti,
in particular, the basilar membrane (BM). The
aforementioned observation of a spontaneous BM os-
cillation (SBMO) and a coincident spontaneous oto-
acoustic emission (SOAE) with the same frequency
considerably strengthens this opinion. It has been
proposed that in mammals SOAEs are due to longi-
tudinal inhomogeneities of the organ of Corti, which
cause multiple internal reflections in the cochlea
(Kemp 1978, 1979; Shera 2003). The same expla-
nation should be true for spontaneous oscillations
of the basilar membrane. The inhomogeneities
may be due to morphological variations such as
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the presence or absence of outer hair cells (OHCs),
see Lonsbury-Martin et al. (1988) and Hilger et al.
(1995), or result from more subtle variations in
mechano-electric properties of individual cells (in
particular, OHCs). The commonly accepted mecha-
nism of multiple reflection involves two sub-processes:

I. Reflection of the forward-traveling wave, and
II. Reflection of the backward-traveling (retrograde)

wave by the stapes.

If the wave reflected in stage II enhances the primary
wave, the possibility of spontaneous oscillation of the
BM is increased. This enhancement can occur at a
limited number of frequencies, which explains that
SOAEs often occur in groups with a specific frequen-
cy spacing. A most general theory of stage I has been
worked out by Zweig and Shera (1995). They
developed the notion of Fcoherent reflection_, i.e.,
reflection occurring by random irregularities, they
described the criteria for this phenomenon to occur
and showed that it can account for many properties
of SOAEs. This concept was applied later, amongst
others, by Talmadge et al. (1998), and further
refined by Shera (2003). The original derivation was
made for a one-dimensional (long-wave) model; in a
recent paper the derivation has been extended to a
two-dimensional model, a model that incorporates
long as well as short waves (Shera et al. 2005). In the
present paper it is tacitly understood that the
backward-traveling wave—arising from coherent
reflection—is governed by the same physical princi-
ples as the forward-traveling wave. In other words, we
do not, at this moment, consider the possible
influence of a compression wave.

In the Nuttall et al. (2004) paper it was reported
that, before the spontaneous BM oscillation was
noted as well as after it had subsided, the measured
BM frequency response showed a number of fairly
narrow peaks, the largest one corresponding in
frequency with the oscillation. In that experiment a
wide-band acoustical stimulus was used to determine
the frequency response. When the level of the
stimulus was increased, these peaks diminished in
height, in other words, the peaks showed, more or
less, the normally observed amplitude compression.
The simplest explanation of our observations would
involve assuming a single place of reflection along
the length of the BM in the cochlea. We found,
however, that the pattern of peaks is too extensive to
be explained in this way. In the present paper the
question is asked whether the response pattern found
in that animal can be explained on the basis of
Fcoherent reflection_ occurring in a three-dimension-
al model of the cochlea. The answer to this question
is found to be affirmative. It is also shown that in the
model used all the extra peaks are really due to

superposition of the primary wave and a reverse
propagating wave, which is reflected by the stapes;
this finding confirms the validity of the underlying
principles. Furthermore, a deeper study is dedicated
to the variations of the peak amplitudes with stimulus
intensity, and a good deal of correspondence with
the data is found. Finally, the comparison of exper-
iment and theory leads to a minor refinement
regarding the actual requirements for coherent
reflection in the cochlea.

COHERENT REFLECTION

The principle of coherent reflection can be ex-
plained in the simplest possible form as follows. All
along the propagation course of waves in the co-
chlea there can occur reflections that are due to
irregularities of the anatomy and the physiology.
Each irregularity sends off two wavelets, one of these
can be designated as Freflected_, the other one as
Fscattered_. Where reflected wavelets from different
locations add in a constructive way they can give
rise to a sizeable reflected wave traveling toward the
stapes.

To understand the principle better, consider a
single-frequency wave. As it travels along the length
of the basilar membrane (BM), its propagation
velocity varies from location to location, and its
wavelength and wave number vary likewise. Take the
location where the wavelength is, say, 2 mm. Around
that location two irregularities 1 mm apart could give
rise to a reflected wavelet (two times p radians of
phase difference, one time from forward, and one
time from backward propagation). At a location
farther from the stapes the wavelength may have
decreased to 1 mm, the critical distance of irregular-
ities will then be 0.5 mm, etc., etc. Therefore, the
average density of irregularities that might give rise to
a reflected wave will vary from location to location.
For a sizable reflected wave to occur, it is necessary
that the irregularities have a more or less random
distribution over the length of the BM. More
precisely, all wavelengths that can be involved in
local wave propagation should be contained in them.
This simplified reasoning explains why irregularities
have to be truly Firregular_ in order to be able to
cause reflection. The second requirement for appre-
ciable reflection to occur concerns amplification. In
a region where the primary wave is amplified, the
reflected wave will be amplified, too. Therefore,
as regards the ultimate amplitude of the reflected
wave, this varies roughly as the square of the amplifi-
cation factor. Therefore, coherent reflection can
only occur a) in a region where there is appreciable
amplification, and b) where there is much less am-
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plification in flanking regions. These are the main
requirements for coherent reflection. More quanti-
tative details are found in Zweig and Shera (1995),
Talmadge et al. (1998) and Shera (2003), Shera et al.
(2005). In what follows we will see the underlying
principles at work.

DATA PROCESSING TECHNIQUES –
THE INVERSE SOLUTION

The cochlea is a frequency-dependent nonlinear
system. One way to stimulate such a structure and
to extract relevant information about its functioning
has been described by de Boer (1997). In order to
apply the underlying theorem (called the EQ-NL
theorem), it is compulsory to use a wide-band
random-noise signal as the acoustical stimulus and
to measure the input–output cross-correlation func-
tion (input is the velocity of the stapes, output the
velocity of the BM, both being functions of time).
The value of that stimulation method and the
analysis it gives rise to will become evident shortly.
In further interpretation of the results use is made of
Fscaling_, i.e., the property that the response pattern
in the cochlea shifts when the frequency is varied.
Hence we start with the Fourier Transform of the
measured cross-correlation function, and consider
this as a frequency response. That response is a
(complex) function of frequency f valid for one
location x (measured along the length of the BM),
and it can be converted to a function of x. In the
conversion the frequency f is assumed to vary as an
exponential function of x (see for more details de
Boer and Nuttall 1999). The resulting spatial re-
sponse is valid for one frequency (usually the best
frequency, BF, of the location of measurement is
chosen for this frequency). The spatial response,
which is a complex function of x, will be referred to
as a Fcochlear pattern_.

Next, a model of the cochlea is constructed. In
view of the aforementioned EQ-NL theorem this
model is a linear model. We have almost always used
a model of which the geometry is constant over the
full length of the model. To incorporate Fshort_ waves
is essential for physical–mathematical reasons (de
Boer 1979; Lighthill 1981). Therefore, the model has
been made three-dimensional so that it can accom-
modate Flong_ as well as Fshort_ waves – a three-
dimensional model (in which the BM is narrower
than the width and the fluid displaced by the BM can
thus move in three directions) is more realistic than a
two-dimensional model. A set of convenient solution
methods for this model has been published by de
Boer (1998). Given a certain cochlear pattern,
derived from a physiological experiment as described

above, we can apply the Finverse_ solution method.
With that method the BM impedance – which again is
a function of x – is determined in such a way that a
cochlear model with this impedance produces a
response that is identical to, or very similar to, the
measured response (the cochlear pattern). This
process is straightforward in a linear system. Howev-
er, the cochlea is nonlinear. The earlier mentioned
EQ-NL theorem states that the so-computed response
of the model – which is linear – corresponds to the
response of the original – nonlinear – cochlea,
provided the latter is taken in the form of, or derived
from, an input–output cross-correlation function for
a wide-band stimulus. The same is true for all levels of
stimulation (and thus for all degrees of average
saturation of outer hair cells). This set of properties
illustrates the value of the specific stimulation
method with wide-band noise for a nonlinear system
like the cochlea, and it is for this reason that we
always have used this type of stimulation (see, for
instance, de Boer and Nuttall 2000). It should be
noted in passing that all parameters derived from the
cochlear response, including the BM impedance, are
to be regarded as averages over the excursions in
time of the relevant signals (for instance, the BM
displacement or the BM velocity or the pressure in
the fluid).

A VIEW AT DATA FROM THE ANIMAL WITH
A SPONTANEOUS BM OSCILLATION

In the Nuttall et al. (2004) paper on a spontaneous
BM oscillation a few amplitude spectra were pre-
sented that were obtained with the wide-band noise
stimulation method outlined in the preceding sec-
tion (Fig. 8c in that paper, for details about the
experiments we refer to the paper cited). For the
present study the same frequency spectra have been
heavily smoothed (by windowing the associated cross-
correlation functions in the time domain) and one
result is shown here as Figure 1. Because of the
smoothing the individual peaks are clearly visible –
although somewhat widened – in this figure. The
stimulus signal was a two-octave wide band of pseudo-
random noise, with a period of õ20 ms, presented
continuously, and the mechanical response, the
velocity, of the basilar membrane (BM) was averaged
with the same period. Therefore, the spectral com-
ponents were very close together (õ50 Hz spacing);
too close to have them resolved in this figure. All
spectra shown were normalized with respect to a fixed
level, hence at low frequencies, where the cochlea is
linear, responses for stimuli 10 dB apart show up as
10 dB apart. Thick and thin lines show the response
spectra (amplitudes only) for various levels of the
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stimulus intensity, in steps of 10 dB. The labels
indicate the SPL of one octave of the noise. The
frequency scale of the figure encompasses less than
one octave. The stimulus levels range from 10 dB to
90 dB SPL per octave, from a low value where the
cochlea may be considered as linear to values where
the cochlea is heavily driven into nonlinearity.

Nearly all of these curves show a number of
amplitude peaks, in the figure they are connected
by thin vertical dotted lines. The peak around 15 kHz
is the biggest and corresponds to the Fspontaneous
oscillation_ that was observed in this animal. Note
that the size of all these peaks depends on stimulus
level, the peaks disappear above 80 dB SPL per
octave. We think it is important to note that the
bandwidth of all peaks is noticeably smaller than that
of the Fmain_ response peak (which can be identified
to occur around 17 kHz – the Fbest frequency_). As
said earlier, we did not find it possible to explain the

pattern of peaks by the assumption that there is a
single place in the cochlea (in the region tuned to 15
kHz), which causes appreciable reflection. Accord-
ingly, an intriguing question is whether the theory of
coherent reflection applied to a three-dimensional
model is able to explain:

a) the presence of these local peaks, and the pos-
sibility of a spontaneous oscillation,

b) the fact that these peaks are narrower than the
Fmain_ response peak of the cochlea at this lo-
cation, and

c) the variations of the amplitudes of these peaks
when stimulus level is varied.

That theory requires the cochlea to have, along the
length of the BM, a more or less random pattern of
irregularities in structure or functioning. Although it
is known that the guinea-pig cochlea is relatively
regular in its structure (Wright 1984; Lonsbury-

FIG. 1. Heavily smoothed frequency responses (BM velocity) of the
animal with a spontaneous BM oscillation, experiment code: b727,
equivalent to 24727. Responses were measured with pseudo-
random noise with a bandwidth of two octaves. Labels indicate lev-
el of the noise in dB SPL per octave (thick and thin lines alternate).
Note the five peaks, marked by vertical dotted lines; all are de-
pendent – in width and size, and somewhat in frequency – upon

level. The 15-kHz peak is what remained of the spontaneous
oscillation. On the ordinate scale, 0 dB corresponds to a velocity
of 8.89 10

_4 mm.s, taken over a bandwidth of 50 Hz. The thin
dashed curve is the phase response at 20 dB per octave, the scale
appears on the right. Note: responses have not been corrected for
the stapes response.
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Martin et al. 1988) we believe that the particular
animal studied (24727) might have been an excep-
tion (Nuttall et al. 2004).

SETTING UP THE STAGE

In the physiological experiment of which Figure 1
shows the spectra, insufficient data were taken to
allow us to construct a suitable mechanical model for
that particular animal. We have therefore considered
another animal (code number 19922), its measured
response to a wide-band stimulus signal and its
derived BM impedance function. And we will modify
the model associated with the latter animal in order
to incorporate coherent reflection and to demon-
strate properties associated with it. For low stimulus
levels, the BM impedance shows Factivity_, that is, over
a certain segment on the stapes side of the response
peak, the real part of the impedance is negative. In
terms of the dynamics of the system this means that
in that segment the power of the cochlear waves will

be increased. It is generally assumed that outer hair
cells – OHCs – are involved in this process of
Fcochlear amplification_. It is in this Factive_ segment
where we can expect coherent reflection to occur
(see Coherent Reflection Section).

Figure 2 shows a cochlear-pattern response (am-
plitude and phase) of animal 19922 in the upper
panel and the BM impedance of the same animal in
the lower panel, both depicted as functions of
location x. The acoustical stimulus – wide-band noise,
with a spectrum reaching from 125 Hz to 24 kHz –
had a low level: 20 dB SPL per octave. The sample
rate was 208 kHz, the number of samples in the
circular buffer 4096 so that the period was 19.696 ms
(rounded off to 20 ms). In this case the measured
BM velocity was normalized by the velocity of the
stapes for the same stimulus, as we have usually done
in our analytical work. The thick amplitude curve in
the upper panel shows the amplitude of the normal-
ized BM velocity; the thin phase curve shows the
corresponding phase. The BM impedance function,
computed with the Finverse method_, is shown in the

FIG. 2. Upper panel, BM velocity, converted from the frequency to
the location (x) domain, amplitude and phase. Data from another
animal, code 19922. Location x = 0 corresponds to the stapes. Thick
amplitude curve: original BM velocity response, normalized with
respect to the stapes response. Thin amplitude curve: BM velocity
response after resynthesis (see text). Phase curve: phase of original

BM velocity, phase scale on the right. Lower panel: BM impedance
recovered with inverse solution, real and imaginary parts. The
ordinate scale is nonlinear. Thick curves: BM impedance derived
from original response. These curves are valid for the frequency 16.5
kHz. Thin curve: real part after random corrugations have been
applied. This curve is also valid for 16.5 kHz.
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lower panel (real and imaginary parts, thick curves).
When that impedance is inserted in a model, and the
response of that model computed, the resulting
response is called the Fresynthesized_ response; the
amplitude of this response is shown by the thin
amplitude curve in the upper panel. The resynthe-
sized response appears as somewhat smoother, this is
due to the smoothing that the BM impedance
function has undergone. The response and imped-
ance functions shown in Figure 2 are valid for one
frequency, in this case, 16.5 kHz, the best frequency
at the location on the BM from which the measure-
ments in animal 19922 were made.

Next, we introduce random variations of a limited
size to the impedance. In that way we create a basilar
membrane with Firregularities_ in its mechanics. The
impedance function is perturbed, by applying a
certain pattern of random variations to it (we will
often refer to these variations as Fcorrugations_, the
reason will become clear shortly). As a matter of fact,
the random variations are only bestowed on the real
part of the impedance. This is done because we
expect that impedance variations will mainly arise

from variations in the functioning of outer hair cells,
and these cells have, in the relative sense, the greatest
effect on the real part of the BM impedance and on
cochlear amplification (see, for instance, de Boer and
Nuttall 2000). For reasons of clarity the variations
have been made largest around location x = 3.5
(mm). The spectrum (actually, the wave number
spectrum) of the variation function has been chosen
to be a low-pass spectrum, so that impedance vari-
ations faster than 6.6 per mm will not occur. By
limiting the wave number spectrum in this way we
ensure the impedance variations to be reasonably
smooth. The perturbed impedance is shown by thin
curves in the lower panel of Figure 2. Let it be
recalled that all functions shown in Figure 2 are
functions of x valid for one frequency.

The next step towards deriving a frequency
response involves computing the impedance function
in the x -domain for a large range of frequencies.
Hereby the basic impedance function is shifted in
place (remember, the cochlea Fscales_ frequency f
and location x) but the imposed impedance varia-
tions are taken as invariant and fixed in space. Figure 3

FIG. 3. BM response (upper panel) and BM impedance (lower
panel), layout as in Figure 2. Thick lines in lower panel: impedance
for 16.5 kHz as shown in Figure 2. Thin lines: the perturbed
impedance (real part) for a range of 20 frequencies, from 9.95 to
19.95 kHz in steps of 500 Hz. The basic impedance function scales

with frequency: For lower frequencies the impedance curve lies
more to the right. Because of the nonlinear ordinate scale the
corrugations are best visible where the real part of the impedance is
around zero. The place-fixed character of the corrugations is
obvious.
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illustrates the procedure. The thick curves in this
figure are the same as in Figure 2. In the lower panel
the real part of the impedance function is shown, by
way of thin curves, for a number of frequencies, from
9.95 to 19.95 kHz in steps of 500 Hz. For lower
frequencies the basic impedance curves lie more to
the right, for higher frequencies more to the left. It
should now be evident why the impedance varia-
tions can be called Fcorrugations_, and the average
size of the corrugations can be judged from the
figure (note the nonlinear ordinate scale). In
relation to the magnitude of the impedance the
corrugations are of the order of 5%. In the actual
computation, the perturbations are applied to the
impedance over the range of frequencies from 9.95
to 19.97 kHz but in much smaller steps, namely, 197
steps of 50.78 Hz.

THE RESULTING PERTURBED
FREQUENCY RESPONSE

For each of the so-obtained 197 shifted and per-
turbed impedance functions resynthesis is done,

resulting in 197 model-response functions, all com-
plex functions of x. The values of all of these
functions taken at one particular value x0 of x are
stored; they constitute the model-predicted frequen-
cy response for that location, from 9.95 to 19.97 kHz.
For x0 we take in this case the location corresponding
to the best frequency, 16.5 kHz, which is 4.0 mm, this
being the value that we have used earlier for trans-
forming the measured response from the frequency
( f ) to the location (x) domain. The result of the
entire procedure is shown by the frequency response
in Figure 4. All values are referred to the stapes
velocity at the same level of stimulation (20 dB SPL
per octave). The original (resynthesized) amplitude
frequency response is traced with thin lines, the am-
plitude response with corrugations on the BM with
thicker lines. The changes in the phase response –
see the undulations – are minimal. In the amplitude
response a number of more or less equidistant peaks
are seen. The pattern of these peaks is similar to that
in the data from Figure 1. As the finely dashed lines
and arrows indicate, several of these peaks corre-
spond roughly to differences of p radians in the
phase (incident and doubly reflected waves then

FIG. 4. Frequency response of the three-dimensional cochlear
model with corrugations applied to the BM impedance function.
Solid lines, amplitude in dB, finely dashed lines, phase (see ordinate
scale on the right). Thin curves: no corrugations; thicker curves:
corrugations applied. In the latter case the response amplitude

shows a series of more or less equidistant narrow peaks. Their
average distance is comparable to that of the extra peaks in Figure 1.
The finely dotted lines and arrows indicate that the phase difference
between the peaks is not far from p radians.
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have a phase difference of 2p radians). We should
not take that too literally, however, because (coher-
ent) reflection – being based on random perturba-
tions – introduces unpredictable phase variations. We
have repeated the procedure several times, with
different random functions for the corrugations.
The pattern of peaks is different in each case but
the average spacing remains about the same.

There is a fair degree of correspondence between
the data we obtained from the animal with a spon-
taneous oscillation of the BM, Figure 1 (lower stimu-
lus levels), and the computed response of a model
provided with mechanical corrugations of the BM,
Figure 4. The simulated response shows a series of
isolated peaks that have an approximately constant
frequency difference and are narrower than the main
response peak around the best frequency (16.5 kHz).
With this result we have answered questions (a) and
(b) of A View at Data from the Animal with a
Spontaneous BM Oscillation Section in the affirma-
tive: Coherent reflection can be provoked from a
random corrugation pattern and gives rise to charac-
teristic disturbances in the model response which are

similar to those observed in a specific animal,
property (a). Further, coherent reflection results in
peaks that are narrower than the main response peak
(property b). It is not difficult to see that, when we
slightly increase the size of the corrugations, a
condition can arise that gives rise to spontaneous
oscillation (the second part of property a). We
cannot simulate that with our computations, of
course, because our model is linear and should
remain stable. Finally, we want to stress that most of
the effects of coherent reflection are visible in the
region of the major response peak, that is, in the
region where wave propagation in the cochlea occurs
according to the short-wave model. Note that the
original derivation for coherent reflection was car-
ried out on a long-wave model. Apparently, the
principle of coherent reflection is a universal one
(cf. Shera et al. 2005).

The next step is to prove that the peaks are really
due to interference of two waves, the primary wave
and the twice-reflected wave, and not to another
mechanism. In the model used we can do that fairly
easily. The model is formalized as a matrix equation,

FIG. 5. As Figure 4, frequency response of cochlear model with a
specific set of corrugations applied to the BM impedance function.
The corrugations are different from those applied in Figure 4. The
dash–dot lines show amplitude and phase computed in the same

model, with the same corrugations, but with reflection from the
stapes suppressed. Peaks are still visible but they are much smaller,
and lie at different frequencies. Undulations in the phase have
nearly disappeared.
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in each row of the matrix are condensed the
mechanical properties of the basilar membrane at
one location as well as those of the cochlear fluid all
around it (cf. de Boer 1998). The unknown variable
in the matrix equation is the pressure in the fluid
very close to the (midline of the) BM. The first row of
the matrix describes conditions at the stapes location,
it normally expresses the fact that the stapes velocity
is given and that the fluid has to follow. That row can
simply be modified to mean that the stapes is driven
by a velocity source via an impedance. For the
parameter we take the Fcharacteristic impedance_ at
the stapes location, or its complex conjugate (de
Boer 1984); in this way we artificially ensure that a
minimal amount of reflection takes place at the
stapes. Figure 5 shows a typical result. Firstly, it shows
a computed frequency response just as Figure 4, but
with a different set of corrugations. Therefore, the
locations and heights of the peaks and valleys are
different from those in Figure 4. Secondly, the com-
putation is repeated with the same impedance corruga-
tions but with the stapes driven by the appropriate
impedance so as to suppress reflection at that
location. The result is shown by the dash–dot lines.
Apart from a general decrease of about 6 dB (the
characteristic impedance approximately matches the

input impedance of the model) the peaks and valleys
have diminished considerably in magnitude. We may
conclude that the original peaks and valleys indeed
result from the addition of two waves of which one
has been reflected two times. The remaining undu-
lations with stapes reflection reduced are due to
imperfect elimination of reflection by the stapes and
Fcoherent scattering_ of the primary wave, a necessary
by-product of coherent reflection.

EFFECTS OF STIMULUS INTENSITY

The effects illustrated by Figures 4 and 5 are derived
from a response function obtained from animal
19922 at a very low level of stimulus intensity (20 dB
SPL per octave). At higher levels that animal showed
the usual variations of response and impedance (de
Boer and Nuttall 2000). In the context of the EQ-NL
theorem, the obtained response functions (all de-
rived from input–output cross-correlation functions
as described in Data Processing Techniques – The
Inverse Solution Section) have a specific meaning.
We repeat: When from a measured response the
corresponding BM impedance function is derived
and resynthesis applied, the resulting model re-

FIG. 6. Computed response curves (amplitudes) for various
stimulus levels (20 to 80 dB per octave in steps of 20). Original
frequency-response data from animal F19922_. For all stimulus
levels the same pattern of corrugations was used (different from the

one in previous figures). The vertical dotted lines indicate the
individual peaks. With increasing stimulus level the amplitude of the
peaks decreases in about the same way as in the experimental data
of Figure 1.
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sponse is identical to or very close to the measured
response function. Note that the resynthesized re-
sponse is from a linear model whereas the measured
response is from a nonlinear system. This correspon-
dence holds true for all degrees of saturation, i.e., for
all stimulus levels.

This reasoning leads to the next stage in our analy-
sis: We should do the simulation procedure with the
same artificial corrugations and apply it to data ob-
tained from animal 19922 over a range of stimulus
levels. For the preparation of the next figure we have
taken the following steps. Beforehand we fixed a pat-
tern of impedance corrugations as described above.
Response functions – all measured via the cross-corre-
lation technique – were taken from the same animal,
19922, for a series of stimulus levels (from 20 to 80 dB
SPL per octave). Each of these frequency responses
was converted to the x-domain, and subjected to the
inverse solution to find the associated BM impedance
function. Next, following Setting Up the Stage
Section, we converted each impedance function to
the range of frequencies from 9.95 to 19.97 kHz, and
imposed the corrugations upon it. Let it be repeated
that we have used the same pattern of corrugations at every
stimulus level. Finally, we computed the frequency

response as in The Resulting Perturbed Frequency
Response Section, for each of the stimulus levels.
Plotting of the results is done in a different way than
the one used in Figures 4 and 5. All curves are now
plotted with respect to the stapes response at a fixed
level (in this case _20 dB SPL per octave). In fact, this
is similar to the way of plotting in Figure 1. Because
of this normalization the amplitudes for low frequen-
cies – where there is no amplitude compression – are
20 dB apart for every 20 dB of intensity difference.

Figure 6 shows a result of this procedure. To avoid
cluttering the figure, we have plotted only results for
20, 40, 60 and 80 dB SPL per octave. The size of the
typical, reflection-caused, peaks is seen to decrease
with increasing level in approximately the same way
as in the data of Figure 1. For the sake of complete-
ness, we have repeated the procedure for data from
the same animal using a different pattern of corruga-
tions. The result is shown by Figure 7. The distribution
of peak frequencies is seen to be different from that
in Figure 6, but the way in which the peak amplitudes
decrease with increasing level is qualitatively the
same. With these findings the question of item (c) in
A View at Data from the Animal with a Spontaneous
BM Oscillation Section is answered affirmatively.

FIG. 7. Computed response curves (amplitudes) for various stim-
ulus levels (20 to 80 dB per octave in steps of 20). Original
frequency-response data from the same animal, corrugation pattern
different. As a result the frequencies of the extra peaks are different

from those in Figure 6, but the way in which the size of the peaks
diminishes with increasing stimulus level is similar. Note the
(unexplained) tendency of the peaks to move upward in frequency
when the sound level increases.
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SUMMARY AND COMMENTARY

In this report we have shown that providing for
coherent reflection in a three-dimensional model of
the cochlea can give rise to characteristic disturban-
ces in the response, extra peaks arising with a more
or less constant frequency difference. These extra
peaks are similar to those observed in a specific
animal (24727), the one that has shown spontaneous
oscillations of the BM. We also showed that the
pattern of these computed peaks depends, as
expected, on the choice of the random pattern of
corrugations applied in the model computation.
Furthermore, we demonstrated that the peaks are
really due to the superposition of two waves, the
primary wave set up by the stimulus, and a second
wave that results from a reverse propagating wave –
which is due to Fcoherent reflection_ – being re-
flected by the stapes. It is easy to see that, when
we would increase the size of the corrugations, we
could approach a condition of spontaneous oscilla-
tion. In this way we have fully answered question (a)
of A View at Data from the Animal with a Sponta-
neous BM Oscillation Section: Local peaks are
explained and spontaneous oscillation is possible. Is
it surprising that the extra peaks generated by
coherent reflection are narrower than the main
response peak (question b)? The answer is: No, not
at all. The spacing of the peaks is governed by the
intrinsic phase response, in particular, extra peaks
can arise where the response phase changes by
approximately : radians, see Figure 4. The phase
range covered by the main response peak – which is
the broad peak centered at 16.5 kHz – is larger,
hence the main peak can include several sub-peaks.

Finally, we applied the same computational tech-
nique, with the same pattern of corrugations, to data
obtained at various levels of stimulation, and we
found (Figs. 6 and 7) that with increasing stimulus
level the sizes of the peaks diminish in approximately
the same way as they do in the data of the original
animal with the spontaneous oscillation (Fig. 1). In
this way we also have answered question (c) of A
View at Data from the Animal with a Spontaneous
BM Oscillation Section.

An intriguing problem seems to be that in our
computation results the frequencies of the extra
peaks have a tendency to increase in frequency with
stimulus level. Why this should be so and whether
it is an intrinsic property of the system remains to
be seen; if true, it is probably related to the small
but systematic flattening of the phase response
curves with increasing stimulus level. In the original
experimental data of Figure 1 we see this feature
in the peak at 15 kHz but to a much lesser extent
in the other peaks. Furthermore, the extra peaks in

Figures 6 and 7 do not clearly show the typical
bandwidth widening that the main response peak
demonstrates (see the thin lines). As explained
earlier, the extra peaks have an intrinsic separation,
which can be expected to depend only little on
stimulus level because the phase variations with level
are small. As an additional item it is stated that we did
not intentionally attempt to simulate a cochlea that
has the largest possibility of becoming unstable at
15 kHz. We chose to illustrate more general proper-
ties of wave travel and coherent reflection instead,
and therefore concentrated on the region around
16.5 kHz. That is probably also the reason why the
separation of the measured peaks in Figure 1 does
not exactly correspond to that in the simulation
figures.

A few further questions may be raised. In Coher-
ent Reflection Section we noted that the amplitude
of the reflected wave is quadratic in the amplification
factor. The twice-reflected wave is amplified again
before it adds to the incident wave, but this one is
amplified as well, hence the size of the interference
peak (expressed as a ratio of amplitudes) will also
vary as the second power of the amplification. On this
basis we might have expected the size of the peaks
to diminish more rapidly with increasing stimulus
level than we observe it in Figures 6 and 7. The an-
swer to this paradox lies in the intricate relation be-
tween cochlear amplification and maximum amplitude of
response. In an earlier paper (de Boer and Nuttall
2000) we have made a careful study of that relation.
Assuming that variations of cochlear amplification
were due to partial saturation of the Factive_ mech-
anism, we could completely account for a) the
observed variations of the maximum response am-
plitude as well as b) the variations in cochlear tuning.
In the simplest terms: Compression of the maximal
response amplitude is much larger than the variation
occurring in cochlear amplification due to saturation
(compare Patuzzi et al. 1989). In still different terms:
Famplification_ should not be judged on the basis of
maximum response. And translated to the present
situation: The variations of cochlear amplification are
relatively small, and therefore the effect of stimulus
level on peak size is gradual.

What were the fundamental requirements for
coherent reflection? An important one was amplifica-
tion, which should be manifest over a restricted
segment along the length of the BM (Zweig and
Shera 1995). Since our procedure still works at high
stimulus levels, where maximum response amplitude
has diminished considerably, we conclude that the
Famplification requirement_ should refer to Fcochlear
amplification_ and not to Fresponse amplitude_ per se.
Note, in this connection, that we have applied the
corrugations to what we consider to be the compo-
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nent controlling cochlear amplification: the real
component of the BM impedance.

The subject of reverse propagation of waves in the
cochlea has recently received a new impulse, starting
by observations of Ren (2004a, b), which raise the
question whether Fcompression waves_ would be
important. Our mathematical treatment has exclu-
sively been based on anti-symmetrical waves in the
cochlea (equal amplitudes but opposite signs of the
fluid pressures in the two channels of the model).
Physically, this means that in our model fluid waves
of this type can freely propagate in the two direc-
tions, forward and reverse, and our solutions of the
matrix equation have automatically included these
waves. On the basis of our data we can justify the
inclusion of reverse anti-symmetrical waves. Consider
the phase curve depicted in Figure 1. The phase
values at the intersections with the five vertical dotted
lines are indicated. From the four phase intervals
three are of the order of p radians. For a reinforce-
ment of the amplitude a phase difference of 2p
radians between the consistuent waves is necessary. If
forward and reverse waves travel with the same speed,
each has to contribute p radians for a peak to occur –
as we have shown in Figure 4. It is impossible to
explain our data with a compressions wave (in which
the pressures are equal in amplitude and in polarity
in the two channels) playing the part of the reverse
wave – in that case the phase steps between the peaks
would be 2p instead of p radians. A more precise
description of the differences between compression
waves and propagating waves in relation to experi-
mental results will be given in a further report.

ACKNOWLEDGMENT

The authors are deeply indebted to Jiefu Zheng, who
performed the physiological experiments with the greatest
skill and acquired the animal data on which the theoretical
work in this paper is based.

REFERENCES

DE BOER E. Short-wave world revisited: Resonance in a two-
dimensional cochlear model. Hear. Res. 1:253–281, 1979.

DE BOER E. Auditory Physics. Physical principles in hearing theory,
part II. Phys. Rep. 105:141–226, 1984.

DE BOER E. Connecting frequency selectivity and nonlinearity for
models of the cochlea. Audit. Neurosci. 3:377–388, 1997.

DE BOER E. A method for forward and inverse solutions of a
3-dimensional model of the cochlea. J. Acoust. Soc. Am.
103:3725–3728, 1998.

DE BOER E, NUTTALL AL. The Binverse problem^ solved for a three-
dimensional model of the cochlea. III. Brushing-up the
solution method. J. Acoust. Soc. Am. 105:3410–3420, 1999.

DE BOER E, NUTTALL AL. The mechanical waveform of the basilar
membrane. III. Intensity effects. J. Acoust. Soc. Am. 107:1497–
1507, 2000.

HILGER AW, FURNESS DN, WILSON JP. The possible relationship
between transient evoked otoacoustic emissions and organ
of Corti irregularities in the guinea pig. Hear. Res. 84:1–11,
1995.

KEMP DT. Stimulated acoustic emission from within the human
auditory system. J. Acoust. Soc. Am. 64:1386–1391, 1978.

KEMP DT. Evidence of mechanical nonlinearity and frequency
selective wave amplification in the cochlea. Arch. Otorhinolar-
yngol. 224:37–45, 1979.

LIGHTHILL MJ. Energy flow in the cochlea. J. Fluid Mech. 106:149–
213, 1981.

LONSBURY-MARTIN BL, MARTIN GK, PROBST R, COATS AC. Spontaneous
otoacoustic emissions in a nonhuman primate. II. Cochlear
anatomy. Hear. Res. 33:69–93, 1988.

NUTTALL AL, GROSH K, ZHENG J, DE BOER E, ZOU Y, REN T.
Spontaneous basilar membrane oscillation and otoacoustic
emission at 15 kHz in a guinea pig. J. Assoc. Res. Otolaryngol.
5:337–349, 2004.

PATUZZI RB, YATES GK, JOHNSTONE BM. Outer hair cell receptor
cur-rent and sensorineural hearing loss. Hear. Res. 42:47–72,
1989.

REN T. Propagation direction of the otoacoustic emission along
the basilar membrane. Association for Research in Otolaryn-
gology, Mid-Winter-Meeting Abstracts, 27: 343 (#1011),
2004a.

REN T. Reverse propagation of sound in the gerbil cochlea. Nature
Neurosci. 7:333–334, 2004b.

SHERA CA. Mammalian spontaneous otoacoustic emissions are
amplitude-stabilized cochlear standing waves. J. Acoust. Soc.
Am. 114:244–262, 2003.

SHERA CA, TUBIS, A, TALMADGE, CL. Coherent reflection in a
twodimensional cochlea: Short-wave versus long-wave scattering
in the generation of reflection-source otoacoustic emissions.
J. Acoust. Soc. Am. 118:287–313, 2005.

TALMADGE C, TUBIS A, LONG GR, PISKORSKI P. Modeling otoacoustic
emissions and hearing threshold fine structures. J. Acoust. Soc.
Am. 104:1517–1543, 1998.

WRIGHT AA. Dimensions of the cochlear stereocilia in man and in
guinea pig. Hear. Res. 13:89–98, 1984.

ZWEIG G, SHERA CA. The origin of periodicity in the spectrum of
evoked otoacoustic emissions. J. Acoust. Soc. Am. 98:2018–
2047, 1995.

DE BOER AND NUTTALL: SBMO and Coherent Reflection 37


	Spontaneous Basilar-Membrane Oscillation (SBMO) �and Coherent Reflection
	Abstract
	Introduction
	Coherent Reflection
	Data Processing Techniques &ndash; �The Inverse Solution
	A View at Data from the Animal with �a Spontaneous BM Oscillation

	Fig1
	Setting Up the Stage

	Fig2
	The Resulting Perturbed �Frequency Response
	Effects of Stimulus Intensity
	Summary and Commentary
	Acknowledgment
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AardvarkPSMT
    /AceBinghamSH
    /AddisonLibbySH
    /AGaramond-Italic
    /AGaramond-Regular
    /AkbarPlain
    /Albertus-Bold
    /AlbertusExtraBold-Regular
    /AlbertusMedium-Italic
    /AlbertusMedium-Regular
    /AlfonsoWhiteheadSH
    /Algerian
    /AllegroBT-Regular
    /AmarilloUSAF
    /AmazoneBT-Regular
    /AmeliaBT-Regular
    /AmerigoBT-BoldA
    /AmerTypewriterITCbyBT-Medium
    /AndaleMono
    /AndyMacarthurSH
    /Animals
    /AnneBoleynSH
    /Annifont
    /AntiqueOlive-Bold
    /AntiqueOliveCompact-Regular
    /AntiqueOlive-Italic
    /AntiqueOlive-Regular
    /AntonioMountbattenSH
    /ArabiaPSMT
    /AradLevelVI
    /ArchitecturePlain
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialMTBlack-Regular
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeLight
    /ArialUnicodeLight-Bold
    /ArialUnicodeLight-BoldItalic
    /ArialUnicodeLight-Italic
    /ArrowsAPlentySH
    /ArrusBT-Bold
    /ArrusBT-BoldItalic
    /ArrusBT-Italic
    /ArrusBT-Roman
    /Asiana
    /AssadSadatSH
    /AvalonPSMT
    /AvantGardeITCbyBT-Book
    /AvantGardeITCbyBT-BookOblique
    /AvantGardeITCbyBT-Demi
    /AvantGardeITCbyBT-DemiOblique
    /AvantGardeITCbyBT-Medium
    /AvantGardeITCbyBT-MediumOblique
    /BankGothicBT-Light
    /BankGothicBT-Medium
    /Baskerville-Bold
    /Baskerville-Normal
    /Baskerville-Normal-Italic
    /BaskOldFace
    /Bauhaus93
    /Bavand
    /BazookaRegular
    /BeauTerrySH
    /BECROSS
    /BedrockPlain
    /BeeskneesITC
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BenguiatITCbyBT-Bold
    /BenguiatITCbyBT-BoldItalic
    /BenguiatITCbyBT-Book
    /BenguiatITCbyBT-BookItalic
    /BennieGoetheSH
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BernhardBoldCondensedBT-Regular
    /BernhardFashionBT-Regular
    /BernhardModernBT-Bold
    /BernhardModernBT-BoldItalic
    /BernhardModernBT-Italic
    /BernhardModernBT-Roman
    /Bethel
    /BibiGodivaSH
    /BibiNehruSH
    /BKenwood-Regular
    /BlackadderITC-Regular
    /BlondieBurtonSH
    /BodoniBlack-Regular
    /Bodoni-Bold
    /Bodoni-BoldItalic
    /BodoniBT-Bold
    /BodoniBT-BoldItalic
    /BodoniBT-Italic
    /BodoniBT-Roman
    /Bodoni-Italic
    /BodoniMTPosterCompressed
    /Bodoni-Regular
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolFive
    /BookshelfSymbolFour
    /BookshelfSymbolOne-Regular
    /BookshelfSymbolThree-Regular
    /BookshelfSymbolTwo-Regular
    /BookwomanDemiItalicSH
    /BookwomanDemiSH
    /BookwomanExptLightSH
    /BookwomanLightItalicSH
    /BookwomanLightSH
    /BookwomanMonoLightSH
    /BookwomanSwashDemiSH
    /BookwomanSwashLightSH
    /BoulderRegular
    /BradleyHandITC
    /Braggadocio
    /BrailleSH
    /BRectangular
    /BremenBT-Bold
    /BritannicBold
    /Broadview
    /Broadway
    /BroadwayBT-Regular
    /BRubber
    /Brush445BT-Regular
    /BrushScriptMT
    /BSorbonna
    /BStranger
    /BTriumph
    /BuckyMerlinSH
    /BusoramaITCbyBT-Medium
    /Caesar
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-Italic
    /CalligrapherRegular
    /CameronStendahlSH
    /Candy
    /CandyCaneUnregistered
    /CankerSore
    /CarlTellerSH
    /CarrieCattSH
    /CaslonOpenfaceBT-Regular
    /CassTaylorSH
    /CDOT
    /Centaur
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturyOldStyle-BoldItalic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Cezanne
    /CGOmega-Bold
    /CGOmega-BoldItalic
    /CGOmega-Italic
    /CGOmega-Regular
    /CGTimes-Bold
    /CGTimes-BoldItalic
    /CGTimes-Italic
    /CGTimes-Regular
    /Charting
    /ChartreuseParsonsSH
    /ChaseCallasSH
    /ChasThirdSH
    /ChaucerRegular
    /CheltenhamITCbyBT-Bold
    /CheltenhamITCbyBT-BoldItalic
    /CheltenhamITCbyBT-Book
    /CheltenhamITCbyBT-BookItalic
    /ChildBonaparteSH
    /Chiller-Regular
    /ChuckWarrenChiselSH
    /ChuckWarrenDesignSH
    /CityBlueprint
    /Clarendon-Bold
    /Clarendon-Book
    /ClarendonCondensedBold
    /ClarendonCondensed-Bold
    /ClarendonExtended-Bold
    /ClassicalGaramondBT-Bold
    /ClassicalGaramondBT-BoldItalic
    /ClassicalGaramondBT-Italic
    /ClassicalGaramondBT-Roman
    /ClaudeCaesarSH
    /CLI
    /Clocks
    /ClosetoMe
    /CluKennedySH
    /CMBX10
    /CMBX5
    /CMBX7
    /CMEX10
    /CMMI10
    /CMMI5
    /CMMI7
    /CMMIB10
    /CMR10
    /CMR5
    /CMR7
    /CMSL10
    /CMSY10
    /CMSY5
    /CMSY7
    /CMTI10
    /CMTT10
    /CoffeeCamusInitialsSH
    /ColetteColeridgeSH
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CommercialPiBT-Regular
    /CommercialScriptBT-Regular
    /Complex
    /CooperBlack
    /CooperBT-BlackHeadline
    /CooperBT-BlackItalic
    /CooperBT-Bold
    /CooperBT-BoldItalic
    /CooperBT-Medium
    /CooperBT-MediumItalic
    /CooperPlanck2LightSH
    /CooperPlanck4SH
    /CooperPlanck6BoldSH
    /CopperplateGothicBT-Bold
    /CopperplateGothicBT-Roman
    /CopperplateGothicBT-RomanCond
    /CopticLS
    /Cornerstone
    /Coronet
    /CoronetItalic
    /Cotillion
    /CountryBlueprint
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /CSSubscript
    /CSSubscriptBold
    /CSSubscriptItalic
    /CSSuperscript
    /CSSuperscriptBold
    /Cuckoo
    /CurlzMT
    /CybilListzSH
    /CzarBold
    /CzarBoldItalic
    /CzarItalic
    /CzarNormal
    /DauphinPlain
    /DawnCastleBold
    /DawnCastlePlain
    /Dekker
    /DellaRobbiaBT-Bold
    /DellaRobbiaBT-Roman
    /Denmark
    /Desdemona
    /Diploma
    /DizzyDomingoSH
    /DizzyFeiningerSH
    /DocTermanBoldSH
    /DodgenburnA
    /DodoCasalsSH
    /DodoDiogenesSH
    /DomCasualBT-Regular
    /Durian-Republik
    /Dutch801BT-Bold
    /Dutch801BT-BoldItalic
    /Dutch801BT-ExtraBold
    /Dutch801BT-Italic
    /Dutch801BT-Roman
    /EBT's-cmbx10
    /EBT's-cmex10
    /EBT's-cmmi10
    /EBT's-cmmi5
    /EBT's-cmmi7
    /EBT's-cmr10
    /EBT's-cmr5
    /EBT's-cmr7
    /EBT's-cmsy10
    /EBT's-cmsy5
    /EBT's-cmsy7
    /EdithDaySH
    /Elephant-Italic
    /Elephant-Regular
    /EmGravesSH
    /EngelEinsteinSH
    /English111VivaceBT-Regular
    /English157BT-Regular
    /EngraversGothicBT-Regular
    /EngraversOldEnglishBT-Bold
    /EngraversOldEnglishBT-Regular
    /EngraversRomanBT-Bold
    /EngraversRomanBT-Regular
    /EnviroD
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /ErasITC-Ultra
    /ErnestBlochSH
    /Euclid
    /Euclid-Bold
    /Euclid-BoldItalic
    /EuclidExtra
    /EuclidExtra-Bold
    /EuclidFraktur
    /EuclidFraktur-Bold
    /Euclid-Italic
    /EuclidMathOne
    /EuclidMathOne-Bold
    /EuclidMathTwo
    /EuclidMathTwo-Bold
    /EuclidSymbol
    /EuclidSymbol-Bold
    /EuclidSymbol-BoldItalic
    /EuclidSymbol-Italic
    /EuroRoman
    /EuroRomanOblique
    /ExxPresleySH
    /FencesPlain
    /Fences-Regular
    /FifthAvenue
    /FigurineCrrCB
    /FigurineCrrCBBold
    /FigurineCrrCBBoldItalic
    /FigurineCrrCBItalic
    /FigurineTmsCB
    /FigurineTmsCBBold
    /FigurineTmsCBBoldItalic
    /FigurineTmsCBItalic
    /FillmoreRegular
    /Fitzgerald
    /Flareserif821BT-Roman
    /FleurFordSH
    /Fontdinerdotcom
    /FontdinerdotcomSparkly
    /FootlightMTLight
    /ForefrontBookObliqueSH
    /ForefrontBookSH
    /ForefrontDemiObliqueSH
    /ForefrontDemiSH
    /Fortress
    /FractionsAPlentySH
    /FrakturPlain
    /Franciscan
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /FranklinUnic
    /FredFlahertySH
    /Freehand575BT-RegularB
    /Freehand591BT-RegularA
    /FreestyleScript-Regular
    /Frutiger-Roman
    /FTPMultinational
    /FTPMultinational-Bold
    /FujiyamaPSMT
    /FuturaBlackBT-Regular
    /FuturaBT-Bold
    /FuturaBT-BoldCondensed
    /FuturaBT-BoldItalic
    /FuturaBT-Book
    /FuturaBT-BookItalic
    /FuturaBT-ExtraBlack
    /FuturaBT-ExtraBlackCondensed
    /FuturaBT-ExtraBlackCondItalic
    /FuturaBT-ExtraBlackItalic
    /FuturaBT-Light
    /FuturaBT-LightItalic
    /FuturaBT-Medium
    /FuturaBT-MediumCondensed
    /FuturaBT-MediumItalic
    /GabbyGauguinSH
    /GalliardITCbyBT-Bold
    /GalliardITCbyBT-BoldItalic
    /GalliardITCbyBT-Italic
    /GalliardITCbyBT-Roman
    /Garamond
    /Garamond-Antiqua
    /Garamond-Bold
    /Garamond-Halbfett
    /Garamond-Italic
    /Garamond-Kursiv
    /Garamond-KursivHalbfett
    /Garcia
    /GarryMondrian3LightItalicSH
    /GarryMondrian3LightSH
    /GarryMondrian4BookItalicSH
    /GarryMondrian4BookSH
    /GarryMondrian5SBldItalicSH
    /GarryMondrian5SBldSH
    /GarryMondrian6BoldItalicSH
    /GarryMondrian6BoldSH
    /GarryMondrian7ExtraBoldSH
    /GarryMondrian8UltraSH
    /GarryMondrianCond3LightSH
    /GarryMondrianCond4BookSH
    /GarryMondrianCond5SBldSH
    /GarryMondrianCond6BoldSH
    /GarryMondrianCond7ExtraBoldSH
    /GarryMondrianCond8UltraSH
    /GarryMondrianExpt3LightSH
    /GarryMondrianExpt4BookSH
    /GarryMondrianExpt5SBldSH
    /GarryMondrianExpt6BoldSH
    /GarryMondrianSwashSH
    /Gaslight
    /GatineauPSMT
    /GDT
    /Geometric231BT-BoldC
    /Geometric231BT-LightC
    /Geometric231BT-RomanC
    /GeometricSlab703BT-Bold
    /GeometricSlab703BT-BoldCond
    /GeometricSlab703BT-BoldItalic
    /GeometricSlab703BT-Light
    /GeometricSlab703BT-LightItalic
    /GeometricSlab703BT-Medium
    /GeometricSlab703BT-MediumCond
    /GeometricSlab703BT-MediumItalic
    /GeometricSlab703BT-XtraBold
    /GeorgeMelvilleSH
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansBC
    /GillSans-Bold
    /GillSans-BoldItalic
    /GillSansCondensed-Bold
    /GillSansCondensed-Regular
    /GillSansExtraBold-Regular
    /GillSans-Italic
    /GillSansLight-Italic
    /GillSansLight-Regular
    /GillSans-Regular
    /GoldMinePlain
    /Gonzo
    /GothicE
    /GothicG
    /GothicI
    /GoudyHandtooledBT-Regular
    /GoudyOldStyle-Bold
    /GoudyOldStyle-BoldItalic
    /GoudyOldStyleBT-Bold
    /GoudyOldStyleBT-BoldItalic
    /GoudyOldStyleBT-Italic
    /GoudyOldStyleBT-Roman
    /GoudyOldStyleExtrabold-Regular
    /GoudyOldStyle-Italic
    /GoudyOldStyle-Regular
    /GoudySansITCbyBT-Bold
    /GoudySansITCbyBT-BoldItalic
    /GoudySansITCbyBT-Medium
    /GoudySansITCbyBT-MediumItalic
    /GraceAdonisSH
    /Graeca
    /Graeca-Bold
    /Graeca-BoldItalic
    /Graeca-Italic
    /Graphos-Bold
    /Graphos-BoldItalic
    /Graphos-Italic
    /Graphos-Regular
    /GreekC
    /GreekS
    /GreekSans
    /GreekSans-Bold
    /GreekSans-BoldOblique
    /GreekSans-Oblique
    /Griffin
    /GrungeUpdate
    /Haettenschweiler
    /HankKhrushchevSH
    /HarlowSolid
    /HarpoonPlain
    /Harrington
    /HeatherRegular
    /Hebraica
    /HeleneHissBlackSH
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Narrow
    /Helvetica-Narrow-Bold
    /Helvetica-Narrow-BoldOblique
    /Helvetica-Narrow-Oblique
    /Helvetica-Oblique
    /HenryPatrickSH
    /Herald
    /HighTowerText-Italic
    /HighTowerText-Reg
    /HogBold-HMK
    /HogBook-HMK
    /HomePlanning
    /HomePlanning2
    /HomewardBoundPSMT
    /Humanist521BT-Bold
    /Humanist521BT-BoldCondensed
    /Humanist521BT-BoldItalic
    /Humanist521BT-Italic
    /Humanist521BT-Light
    /Humanist521BT-LightItalic
    /Humanist521BT-Roman
    /Humanist521BT-RomanCondensed
    /IBMPCDOS
    /IceAgeD
    /Impact
    /Incised901BT-Bold
    /Incised901BT-Light
    /Incised901BT-Roman
    /Industrial736BT-Italic
    /Informal011BT-Roman
    /InformalRoman-Regular
    /Intrepid
    /IntrepidBold
    /IntrepidOblique
    /Invitation
    /IPAExtras
    /IPAExtras-Bold
    /IPAHighLow
    /IPAHighLow-Bold
    /IPAKiel
    /IPAKiel-Bold
    /IPAKielSeven
    /IPAKielSeven-Bold
    /IPAsans
    /ISOCP
    /ISOCP2
    /ISOCP3
    /ISOCT
    /ISOCT2
    /ISOCT3
    /Italic
    /ItalicC
    /ItalicT
    /JesterRegular
    /Jokerman-Regular
    /JotMedium-HMK
    /JuiceITC-Regular
    /JupiterPSMT
    /KabelITCbyBT-Book
    /KabelITCbyBT-Ultra
    /KarlaJohnson5CursiveSH
    /KarlaJohnson5RegularSH
    /KarlaJohnson6BoldCursiveSH
    /KarlaJohnson6BoldSH
    /KarlaJohnson7ExtraBoldCursiveSH
    /KarlaJohnson7ExtraBoldSH
    /KarlKhayyamSH
    /Karnack
    /Kashmir
    /KaufmannBT-Bold
    /KaufmannBT-Regular
    /KeplerStd-Black
    /KeplerStd-BlackIt
    /KeplerStd-Bold
    /KeplerStd-BoldIt
    /KeplerStd-Italic
    /KeplerStd-Light
    /KeplerStd-LightIt
    /KeplerStd-Medium
    /KeplerStd-MediumIt
    /KeplerStd-Regular
    /KeplerStd-Semibold
    /KeplerStd-SemiboldIt
    /KeystrokeNormal
    /Kidnap
    /KidsPlain
    /Kindergarten
    /KinoMT
    /KissMeKissMeKissMe
    /KoalaPSMT
    /KorinnaITCbyBT-Bold
    /KorinnaITCbyBT-KursivBold
    /KorinnaITCbyBT-KursivRegular
    /KorinnaITCbyBT-Regular
    /KristenITC-Regular
    /Kristin
    /KunstlerScript
    /KyotoSong
    /LainieDaySH
    /LandscapePlanning
    /Lapidary333BT-Bold
    /Lapidary333BT-BoldItalic
    /Lapidary333BT-Italic
    /Lapidary333BT-Roman
    /LatinoPal3LightItalicSH
    /LatinoPal3LightSH
    /LatinoPal4ItalicSH
    /LatinoPal4RomanSH
    /LatinoPal5DemiItalicSH
    /LatinoPal5DemiSH
    /LatinoPal6BoldItalicSH
    /LatinoPal6BoldSH
    /LatinoPal7ExtraBoldSH
    /LatinoPal8BlackSH
    /LatinoPalCond4RomanSH
    /LatinoPalCond5DemiSH
    /LatinoPalCond6BoldSH
    /LatinoPalExptRomanSH
    /LatinoPalSwashSH
    /LatinWidD
    /LatinWide
    /LeeToscanini3LightSH
    /LeeToscanini5RegularSH
    /LeeToscanini7BoldSH
    /LeeToscanini9BlackSH
    /LeeToscaniniInlineSH
    /LetterGothic12PitchBT-Bold
    /LetterGothic12PitchBT-BoldItal
    /LetterGothic12PitchBT-Italic
    /LetterGothic12PitchBT-Roman
    /LetterGothic-Bold
    /LetterGothic-BoldItalic
    /LetterGothic-Italic
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LetterGothic-Regular
    /LibrarianRegular
    /LinusPSMT
    /Lithograph-Bold
    /LithographLight
    /LongIsland
    /LubalinGraphMdITCTT
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /LydianCursiveBT-Regular
    /Magneto-Bold
    /Map-Symbols
    /MarcusHobbesSH
    /Mariah
    /Marigold
    /MaritaMedium-HMK
    /MaritaScript-HMK
    /Market
    /MartinMaxxieSH
    /MathTypeMed
    /MatisseITC-Regular
    /MaturaMTScriptCapitals
    /MaudeMeadSH
    /MemorandumPSMT
    /Metro
    /Metrostyle-Bold
    /MetrostyleExtended-Bold
    /MetrostyleExtended-Regular
    /Metrostyle-Regular
    /MicrogrammaD-BoldExte
    /MicrosoftSansSerif
    /MikePicassoSH
    /MiniPicsLilEdibles
    /MiniPicsLilFolks
    /MiniPicsLilStuff
    /MischstabPopanz
    /MisterEarlBT-Regular
    /Mistral
    /ModerneDemi
    /ModerneDemiOblique
    /ModerneOblique
    /ModerneRegular
    /Modern-Regular
    /MonaLisaRecutITC-Normal
    /Monospace821BT-Bold
    /Monospace821BT-BoldItalic
    /Monospace821BT-Italic
    /Monospace821BT-Roman
    /Monotxt
    /MonotypeCorsiva
    /MonotypeSorts
    /MorrisonMedium
    /MorseCode
    /MotorPSMT
    /MSAM10
    /MSLineDrawPSMT
    /MS-Mincho
    /MSOutlook
    /MSReference1
    /MSReference2
    /MTEX
    /MTEXB
    /MTEXH
    /MT-Extra
    /MTGU
    /MTGUB
    /MTLS
    /MTLSB
    /MTMI
    /MTMIB
    /MTMIH
    /MTMS
    /MTMSB
    /MTMUB
    /MTMUH
    /MTSY
    /MTSYB
    /MTSYH
    /MT-Symbol
    /MTSYN
    /Music
    /MysticalPSMT
    /NagHammadiLS
    /NealCurieRuledSH
    /NealCurieSH
    /NebraskaPSMT
    /Neuropol-Medium
    /NevisonCasD
    /NewMilleniumSchlbkBoldItalicSH
    /NewMilleniumSchlbkBoldSH
    /NewMilleniumSchlbkExptSH
    /NewMilleniumSchlbkItalicSH
    /NewMilleniumSchlbkRomanSH
    /News702BT-Bold
    /News702BT-Italic
    /News702BT-Roman
    /Newton
    /NewZuricaBold
    /NewZuricaItalic
    /NewZuricaRegular
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NigelSadeSH
    /Nirvana
    /NuptialBT-Regular
    /OCRAbyBT-Regular
    /OfficePlanning
    /OldCentury
    /OldEnglishTextMT
    /Onyx
    /OnyxBT-Regular
    /OpenSymbol
    /OttawaPSMT
    /OttoMasonSH
    /OzHandicraftBT-Roman
    /OzzieBlack-Italic
    /OzzieBlack-Regular
    /PalatiaBold
    /PalatiaItalic
    /PalatiaRegular
    /PalmSpringsPSMT
    /Pamela
    /PanRoman
    /ParadisePSMT
    /ParagonPSMT
    /ParamountBold
    /ParamountItalic
    /ParamountRegular
    /Parchment-Regular
    /ParisianBT-Regular
    /ParkAvenueBT-Regular
    /Patrick
    /Patriot
    /PaulPutnamSH
    /PcEncodingLowerSH
    /PcEncodingSH
    /Pegasus
    /PenguinLightPSMT
    /PennSilvaSH
    /Percival
    /PerfectRegular
    /Pfn2BlackItalic
    /Phantom
    /PhilSimmonsSH
    /Pickwick
    /PipelinePlain
    /Playbill
    /PoorRichard-Regular
    /Poster
    /PosterBodoniBT-Italic
    /PosterBodoniBT-Roman
    /Pristina-Regular
    /Proxy1
    /Proxy2
    /Proxy3
    /Proxy4
    /Proxy5
    /Proxy6
    /Proxy7
    /Proxy8
    /Proxy9
    /Prx1
    /Prx2
    /Prx3
    /Prx4
    /Prx5
    /Prx6
    /Prx7
    /Prx8
    /Prx9
    /Pythagoras
    /Ranegund
    /Ravie
    /Ribbon131BT-Bold
    /RMTMI
    /RMTMIB
    /RMTMIH
    /RMTMUB
    /RMTMUH
    /RobWebsterExtraBoldSH
    /Rockwell
    /Rockwell-Bold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /RomanC
    /RomanD
    /RomanS
    /RomanT
    /Romantic
    /RomanticBold
    /RomanticItalic
    /Sahara
    /SalTintorettoSH
    /SamBarberInitialsSH
    /SamPlimsollSH
    /SansSerif
    /SansSerifBold
    /SansSerifBoldOblique
    /SansSerifOblique
    /Sceptre
    /ScribbleRegular
    /ScriptC
    /ScriptHebrew
    /ScriptS
    /Semaphore
    /SerifaBT-Black
    /SerifaBT-Bold
    /SerifaBT-Italic
    /SerifaBT-Roman
    /SerifaBT-Thin
    /Sfn2Bold
    /Sfn3Italic
    /ShelleyAllegroBT-Regular
    /ShelleyVolanteBT-Regular
    /ShellyMarisSH
    /SherwoodRegular
    /ShlomoAleichemSH
    /ShotgunBT-Regular
    /ShowcardGothic-Reg
    /SignatureRegular
    /Signboard
    /SignetRoundhandATT-Italic
    /SignetRoundhand-Italic
    /SignLanguage
    /Signs
    /Simplex
    /SissyRomeoSH
    /SlimStravinskySH
    /SnapITC-Regular
    /SnellBT-Bold
    /Socket
    /Sonate
    /SouvenirITCbyBT-Demi
    /SouvenirITCbyBT-DemiItalic
    /SouvenirITCbyBT-Light
    /SouvenirITCbyBT-LightItalic
    /SpruceByingtonSH
    /SPSFont1Medium
    /SPSFont2Medium
    /SPSFont3Medium
    /SPSFont4Medium
    /SpsFont4Medium
    /SPSFont5Normal
    /SPSScript
    /SRegular
    /Staccato222BT-Regular
    /StageCoachRegular
    /StandoutRegular
    /StarTrekNextBT-ExtraBold
    /StarTrekNextPiBT-Regular
    /SteamerRegular
    /Stencil
    /StencilBT-Regular
    /Stewardson
    /Stonehenge
    /StopD
    /Storybook
    /Strict
    /Strider-Regular
    /StuyvesantBT-Regular
    /StylusBT
    /StylusRegular
    /SubwayRegular
    /SueVermeer4LightItalicSH
    /SueVermeer4LightSH
    /SueVermeer5MedItalicSH
    /SueVermeer5MediumSH
    /SueVermeer6DemiItalicSH
    /SueVermeer6DemiSH
    /SueVermeer7BoldItalicSH
    /SueVermeer7BoldSH
    /SunYatsenSH
    /SuperFrench
    /SuzanneQuillSH
    /Swiss721-BlackObliqueSWA
    /Swiss721-BlackSWA
    /Swiss721BT-Black
    /Swiss721BT-BlackCondensed
    /Swiss721BT-BlackCondensedItalic
    /Swiss721BT-BlackExtended
    /Swiss721BT-BlackItalic
    /Swiss721BT-BlackOutline
    /Swiss721BT-Bold
    /Swiss721BT-BoldCondensed
    /Swiss721BT-BoldCondensedItalic
    /Swiss721BT-BoldCondensedOutline
    /Swiss721BT-BoldExtended
    /Swiss721BT-BoldItalic
    /Swiss721BT-BoldOutline
    /Swiss721BT-Italic
    /Swiss721BT-ItalicCondensed
    /Swiss721BT-Light
    /Swiss721BT-LightCondensed
    /Swiss721BT-LightCondensedItalic
    /Swiss721BT-LightExtended
    /Swiss721BT-LightItalic
    /Swiss721BT-Roman
    /Swiss721BT-RomanCondensed
    /Swiss721BT-RomanExtended
    /Swiss721BT-Thin
    /Swiss721-LightObliqueSWA
    /Swiss721-LightSWA
    /Swiss911BT-ExtraCompressed
    /Swiss921BT-RegularA
    /Syastro
    /Symap
    /Symath
    /SymbolGreek
    /SymbolGreek-Bold
    /SymbolGreek-BoldItalic
    /SymbolGreek-Italic
    /SymbolGreekP
    /SymbolGreekP-Bold
    /SymbolGreekP-BoldItalic
    /SymbolGreekP-Italic
    /SymbolGreekPMono
    /SymbolMT
    /SymbolProportionalBT-Regular
    /SymbolsAPlentySH
    /Symeteo
    /Symusic
    /Tahoma
    /Tahoma-Bold
    /TahomaItalic
    /TamFlanahanSH
    /Technic
    /TechnicalItalic
    /TechnicalPlain
    /TechnicBold
    /TechnicLite
    /Tekton-Bold
    /Teletype
    /TempsExptBoldSH
    /TempsExptItalicSH
    /TempsExptRomanSH
    /TempsSwashSH
    /TempusSansITC
    /TessHoustonSH
    /TexCatlinObliqueSH
    /TexCatlinSH
    /Thrust
    /Times-Bold
    /Times-BoldItalic
    /Times-BoldOblique
    /Times-ExtraBold
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Oblique
    /Times-Roman
    /Times-Semibold
    /Times-SemiboldItalic
    /TimesUnic-Bold
    /TimesUnic-BoldItalic
    /TimesUnic-Italic
    /TimesUnic-Regular
    /TonyWhiteSH
    /TransCyrillic
    /TransCyrillic-Bold
    /TransCyrillic-BoldItalic
    /TransCyrillic-Italic
    /Transistor
    /Transitional521BT-BoldA
    /Transitional521BT-CursiveA
    /Transitional521BT-RomanA
    /TranslitLS
    /TranslitLS-Bold
    /TranslitLS-BoldItalic
    /TranslitLS-Italic
    /TransRoman
    /TransRoman-Bold
    /TransRoman-BoldItalic
    /TransRoman-Italic
    /TransSlavic
    /TransSlavic-Bold
    /TransSlavic-BoldItalic
    /TransSlavic-Italic
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /TribuneBold
    /TribuneItalic
    /TribuneRegular
    /Tristan
    /TrotsLight-HMK
    /TrotsMedium-HMK
    /TubularRegular
    /Txt
    /TypoUprightBT-Regular
    /UmbraBT-Regular
    /UmbrellaPSMT
    /UncialLS
    /Unicorn
    /UnicornPSMT
    /Univers
    /UniversalMath1BT-Regular
    /Univers-Bold
    /Univers-BoldItalic
    /UniversCondensed
    /UniversCondensed-Bold
    /UniversCondensed-BoldItalic
    /UniversCondensed-Italic
    /UniversCondensed-Medium
    /UniversCondensed-MediumItalic
    /Univers-CondensedOblique
    /UniversExtended-Bold
    /UniversExtended-BoldItalic
    /UniversExtended-Medium
    /UniversExtended-MediumItalic
    /Univers-Italic
    /UniversityRomanBT-Regular
    /UniversLightCondensed-Italic
    /UniversLightCondensed-Regular
    /Univers-Medium
    /Univers-MediumItalic
    /URWWoodTypD
    /USABlackPSMT
    /USALightPSMT
    /Vagabond
    /Venetian301BT-Demi
    /Venetian301BT-DemiItalic
    /Venetian301BT-Italic
    /Venetian301BT-Roman
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /VinetaBT-Regular
    /Vivaldii
    /VladimirScript
    /VoguePSMT
    /WaldoIconsNormalA
    /WaltHarringtonSH
    /Webdings
    /Weiland
    /WesHollidaySH
    /Wingdings-Regular
    /WP-HebrewDavid
    /XavierPlatoSH
    /YuriKaySH
    /ZapfChanceryITCbyBT-Bold
    /ZapfChanceryITCbyBT-Medium
    /ZapfDingbatsITCbyBT-Regular
    /ZapfElliptical711BT-Bold
    /ZapfElliptical711BT-BoldItalic
    /ZapfElliptical711BT-Italic
    /ZapfElliptical711BT-Roman
    /ZapfHumanist601BT-Bold
    /ZapfHumanist601BT-BoldItalic
    /ZapfHumanist601BT-Italic
    /ZapfHumanist601BT-Roman
    /ZappedChancellorMedItalicSH
    /ZurichBT-BlackExtended
    /ZurichBT-Bold
    /ZurichBT-BoldCondensed
    /ZurichBT-BoldCondensedItalic
    /ZurichBT-BoldItalic
    /ZurichBT-ExtraCondensed
    /ZurichBT-Italic
    /ZurichBT-ItalicCondensed
    /ZurichBT-Light
    /ZurichBT-LightCondensed
    /ZurichBT-Roman
    /ZurichBT-RomanCondensed
    /ZurichBT-RomanExtended
    /ZurichBT-UltraBlackExtended
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


