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1 Introduction

Consider the design and manufacturing of a product. During the design
stage, variables describing the performance of the product are identified, and
functional requirements or constraints (in terms of these variables) are pro-
duced by applying scientific and engineering knowledge. A simple example
of a variable is the diameter of a hole. An associated functional constraint
might be the statement that this diameter must be greater than a certain
value.

The design intent described by the functional requirements are trans-
formed into manufacturing specifications as expressed by dimensions and
tolerances. The former specify the “nominal” values of the design variables,
while the latter give “allowable” deviations from these nominal values. These
dimensions and tolerances in turn determine the machining processes and the
manufacturing yield, i.e., the fraction of items produced that actually satisfy
the functional requirements or constraints. It is then not unreasonable to
raise the question of how these dimensions and tolerances are specified.

The manufacturing yield can be defined to be the probability that the
manufactured part fulfills the functional requirements. This paper reports on
a way to determine the dimensions (or the nominal values) of design variables
such that the manufacturing yield is maximized. This is accomplished by the
application of a continuous simulated annealing method, Hide&Seek.

In section 2, the yield optimization problem is formulated and the appli-
cability of Hide&Seek discussed. In section 3, correctness and convergence
rate of Hide&Seek are verified by applying the algorithm to several simple
yield optimization problems with known optima. In section 4, Hide&Seek
is applied to a classic problem in dimensioning and tolerancing. The results
are summarized in section 5.

2 Formulation
Let the vector of design variables be z

z = (z1,22,+, )



and let the m different functional requirements be expressed by the inequal-
ities

f,(g) 20,] = 1,...,m.
The feasible region of the design is then the set F', defined by

F={z: fi(@)>0,j=1,..,m}.

Any z that falls inside F' is considered to be functionally acceptable. The
nature of the physical manufacturing process is modeled by letting z be a
vector of random variables following some known continuous distribution. In
particular, it is assumed that the manufacturing process is such that z has
a multivariate normal distribution with a vector of expected values u

H_-'—'(ﬂl,ﬂg,"',ﬂn)

and a variance-covariance matrix &
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which describe, respectively, the expected values and the variability of the
manufacturing process. The yield is, by definition, the probability that the
random vector z falls inside the region F. Usually, u can be selected by de-
ciding upon particular settings and parameters of the manufacturing process.
In this case, the yield, given the selection of y, is Y'(p):

Y(p) = PrizeF} (1)
= /F¢(£;ﬁ,z)d£

where ¢(z; 4, ¥) denotes the probability density function of the multivariate
normal distribution N(y; X). Different choices of y produce different yields.
To maximize yield, the vector u can be found by solving the following opti-
mization problem:

max  Y(u) (2)



To solve this optimization problem, two types of algorithms are needed:
one for computing Y (), and the other for searching for the u that maximizes
the corresponding yield.

Suppose, for the moment, that the exact value of Y'(1) can be determined.
By restricting g to vary within the feasible region F, the optimization prob-
lem (2) is reduced to the following global optimization problem:

rélea}( Y(p) (3)

Bélisle et.al [1] give a continuous simulated annealing algorithm, Hide& Seek,
for solving such a constrained global optimization problem and prove conver-
gence to the global optimum. In what follows, Hide&Seek is used for solving
problem (3).

There is, however, one difficulty in applying Hide&Seek: Computing the
value of Y (u) for all 4 € F involves the computation of a multidimensional
integral, which, in general, is unusually difficult to obtain with the accuracy
required to distinguish its behavior as a function of y. In this paper, Y'(4)
is not computed, but is instead estimated using Monte Carlo Simulation.
This estimated yield (which is unbiased) is then used in conjunction with
Hide&Seek. Since the proof of convergence to the global optimum in [1] ap-
plies to deterministic objective values, it was not clear how Hide&Seek would
perform when the objective values are not deterministic. In the following
two sections, the combined algorithm, Monte-Carlo/Hide&Seek (MC/H&S),
is applied to several yield optimization problems and empirical results are
reported.

3 Initial Tests

To verify optimality and convergence of MC/H&S, the combined algorithm
was applied to two sets of simple yield optimization problems with known
optima.

3.1 Problems with Hypercubical Feasible Regions

A test problem called Hypercube is first considered. It assumes a manufac-
tured part with n independent unit-variance dimensions, and a functional



constraint set that requires each dimension to be within +3 standard de-
viations from the origin. This is perhaps the simplest test problem whose

optimum g can be easily derived. Formally, Problem Hypercube is stated as
follows:

Problem 1 (Hypercube)

max Y(p)= /F ¢(z; p, L) dz

where:
' g=($1,$2,"',$n), ENN(E,E)

1.0 00 --- 0.0
00 1.0 --- 0.0
00 0.0 --- 1.0

F={z:-30<z;<30,i=1,...,n}

By symmetry, the optimum p is clearly the origin, (0,0,...,0). The
resulting maximum yield is

(8(3.0) — (=3.0))" ~ 0.9974"

where ®(t) is the cumulative unit normal function.
The estimates of the optimal yield, obtained by MC/H&S with 10,000
points in each Monte Carlo simulation, are shown in Figures 1 through 4 for

n = 2,4,8, and 16. In these figures and those in section 3.2, percentage of
error is calculated as follows:

% Error = 1 - (Estimated Yield / Optimal Yield).

As these figures show, even for the n = 16 case, convergence to within 5% of
the optimum is achieved with fewer than 150 iterations.
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Figure 1: Yield for Hypercube with n = 2 and optimal yield = 0.9974?
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Figure 2: Yield for Hypercube with n = 4 and optimal yield = 0.9974*
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Figure 3: Yield for Hypercube with n = 8 and optimal yield = 0.99748
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Figure 4: Yield for Hypercube with n = 16 and optimal yield = 0.9974'

3.2 Problems with Hyperspherical Feasible Regions

A second simple problem with known optimum is defined as Problem Hyper-
sphere. Here, F' is assumed to be a hypersphere of radius 3, centered at the
origin.

Problem 2 (Hypersphere)
Hypersphere is the same as Problem Hypercube except F is now defined by

F={z:) z}<3.0%
1

By symmetry, the optimum g is again known to be the origin and the

maximum yield is
Xn(3.0%)

where x2(t) is the cumulative Chi-Square function with n degrees of freedom.

The results of applying MC/H&S (where, in each iteration, the yield is
estimated by a Monte Carlo simulation of 10,000 points) to Problem Hyper-
sphere-with n = 2,4,8, and 16 are shown in Figures 5 Through 8. These
figures show that, for n = 2,4, and 8, the combined algorithm MC/H&S pro-
duces solutions within 5% of the optimum with less than 200 iterations. For
n = 16, however, slower convergence is exhibited. This phenomenon might
be attributable to the fact that, in order to estimate the small optimal yield
(0.086586) to the precision required, a much larger sample size is needed in
the Monte Carlo Simulation.
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Figure 5: Yield for Hypersphere with n = 2 and optimal yield = 0.988891
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Figure 6: Yield for Hypersphere with n = 4 and optimal yield = 0.938901
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Figure 7: Yield for Hypersphere with n = 8 and optimal yield = 0.657704
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Figure 8: Yield for Hypersphere with n = 16 and optimal yield = 0.086586

3.3 Test Results

The empirical test results indicate that the combined algorithm MC/H&S
performs well at least for these symmetric problems. This may have resulted
from the fact that the yield approximated by the Monte Carlo simulation is
an unbiased estimator of the actual yield. The drastic difference between the
(estimated) optimal yields for Hypercube and Hypersphere problems having
the same dimension n also demonstrates that a commonly used approxima-
tion scheme - fitting the largest inscribed hypersphere within F in order
to get a tractable integral — will be poor when n is large. This is shown
in Figure 9, which compares the actual yield for the case when the feasible
region is a hypercube, and the estimated yield obtained from the inscribed
hypersphere scheme, i.e.,

Y(actual) ~ 0.9974"
Y(estimated) = x2(3.0%)
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Figure 9: Comparison of Actual Yield and Estimated Yield

4 Four-Hole Yield Optimization Problem

In this section, a more realistic situation is considered: The simultaneous
drilling of four holes such that the center of each hole must lie within a
circular region!. This situation is illustrated in Figure 10.

By sampling a sufficient number of the drilled holes (or by assumption),
it is possible to determine:

1. for each hole, the probability distribution of the center, in particular the
mean vector and the variance-covariance matrix for the center location
random variables, and

2. the relative locations of the mean center vectors.

In many cases, it is possible to translate or rotate the fixture holding the
part, with respect to the four drilling tools, so that the yield can be im-
proved. (It is assumed that such a translation and/or rotation will affect
only the locations of the mean centers, but not the probability distributions
of the centers around their respective means.) The following problem seeks
a rotation and/or translation such that the yield is maximized:

1The center of each drilled hole is assumed to be computable, for example by sampling
a certain number of points from the profile of the hole and then fitting an ideal circle to
the points. Since different circle-fitting algorithms may give different centers for the same
set of sampled points, the selection of an appropriate algorithm is also an important issue,
but beyond the scope of this paper. See [3] for a detailed discussion on this issue.

9



Pl B
e N
, \
Y} \
1 \
] 14 \
' Q |
\ !
\ U
\ ’
Al .
A ’
Seade”
0.59
--" -~
. ) .~ SN
’ A , N
’ \ ’ \
) , \ \ [J { \ \
r— : L re i iy
$ +
' gl ' -0.5 0.5 1 \ o [ |
\ 1 ) 1
\ N \ ’
\ ’ \ ’
N P N ’
\\ ’ ‘\ .
Sewe’ Sew=’
-0.5¢
o=
” ~
” AN
’ \
1] \
] -14 \
! o ]
\ '
\ ’
\ ’
Al ’
A ’
Seol-”

Figure 10: Problem Four-hole Yield Optimizatior. The center of each of
the four holes is required to lie within the corresponding thick-lined circular
region. The four dashed circles, with centers at the black dots, shows an
example of four holes satisfying the constraints.
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Problem 3 (Four-hole Yield Optimization)

Let X; be the random variable center location vector (z;;,z;2), and let X
denote a matrix, in which the i** row represents the vector of the (random
variable) center of the i** hole,

T T12
X = To1 T22
Z31 T32
T41 T42
Let the vector y; = E[X;] and the matrix u denote the locations of the mean
of the center locations of the four holes,

Hi1 fa2

K21 f22

K31 [32

Ha1 P42
That is, u;; = E[z;;]. Assume that the components of X; are Normally
distributed with a high correlation. Thus,

Xi = (zi,zi2), Xi~N(pi,Zi), 1=1,23,4

where (for example)

l[:

0.0008 0.0009

In addition, assume that the feasible region has been defined by the require-
ment that the center of each of the four holes must lie within circular regions
of radius 0.1 centered at the four corners of the square defined by (1.0, 0.0),
(0.0, 1.0), (-1.0, 0.0), and (0.0, -1.0). This feasible region can be written as

5 = [ 0.0009 0.0008 }

F = {.:\’ : Ifl:aix (zip —cos((i = 1) *7/2))? + (zi2 —sin((s = 1) x7/2))* < 0.1%}
Let
d = (dz,dy, df)

be the amount of translation and rotation which will be applied simulta-
neously to the fixture in order to change the mean centers from y; to pl,
1 =1,2,3,4. That is, for i =1,2,3,4,

cos(d6) sin(df) ]

[ Fa M ] - [ fir - Haa ] [ —sin(df) cos(df) + [ dz dy ]
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A translation and rotation d is sought such that the yield will be maximized:

YW)=Pr{X€eF
gedax  Y(W)=Pri{XeF}

MC/H&S was first applied to this problem with the vector of the initial
mean centers p almost at the four corners of a square:

0.9795 -0.0571
—-0.0266  0.9367
—-1.0205 —0.0693
-0.0144 -1.0632

This initial configuration is shown in Figure 11. (In this figure and those
that follow, mean centers are connected by line segments to indicate their
relative locations.)

12



Figure 11: Initial configuration for Four-hole Yield Optimization with square-
like relative locations of u. Shaded regions represent (schematically) the
probability distributions of the centers.
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During each iteration of Hide&Seek, a new mean centers matrix u' was
generated by applying to p a translation-rotation d' found by the algorithm.
The yield was estimated using Monte Carlo simulation with 10,000 samples
of X. The yield obtained at each of the 200 iterations and the correspond-
ing d' are shown in Figures 12 and 13. Since the relative locations of u
are squarelike, it is reasonable that the “optimal” translation and rotation d
found by MC/H&S should produce a p' that almost coincides with the four
points (1.0, 0.0), (0.0, 1.0), (-1.0, 0.0), (0.0, -1.0). This is confirmed by the
the final configuration shown in Figure 14.

Yield
1,

0.4

0.2

50 160 L) 760 Iteration

Figure 12: Yield vs. iteration for Four-hole Yield Optimization with square-
like relative locations of y
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Figure 13: Amount of translation and rotation for Four-hole Yield Optimiza-
tion with squarelike relative locations of x. Successive d' are labelled by the
iteration number ¢. The optimal d is indicated with a star.
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Figure 14: Final configuration for Four-hole Yield Optimization with square-
like relative locations of . Shaded regions represent (schematically) the
probability distributions of the centers.
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In the above example, the mean centers were almost at the corners of
a square (representing, for example, a well set up and controlled process).
Suppose, however, that the relative locations of y are distorted to start with,
and therefore it is no longer possible to rotate and translate y to lie on the
four corners of a square. This case can be illustrated by letting

1.1 0.0
| 00 10
=1 -1.0 00

0.0 —1.0

The initial configuration is shown in Figure 15. It is still desirable to deter-
mine the translation-rotation d that will maximize yield. Again, the yield
at each iteration was estimated using Monte Carlo simulation with 10,000
samples of X. The yield obtained at each iteration and the corresponding
d' are shown in Figures 16 and 17. Since the original relative locations are
distorted, the yield obtained is substantially less than that obtained in the
previous case. The final (yield-maximizing) configuration is shown in Fig-
ure 18.

17



Figure 15: Initial configuration for Four-hole Yield Optimization with dis-
torted relative locations of u. Shaded Regions represent the probability dis-
tributions of the centers.
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Figure 16: Yield vs. iteration for Four-hole Yield Optimization with distorted
relative locations of u

5 Conclusion

MC/H&S was first applied to simple yield optimization problems with known
optima. These test results are encouraging: in each ease, the solution ob-
tained from applying Hide&Seek converges to the the true optimum after
a number of iterations which, although depending on the dimension of the
problem, is reasonably small. The results indicate that Hide&Seek promises
to work well even when the objective function values are not deterministic.
It is conjectured that this is due to the fact that an unbiased estimator of
the actual yield is used for the optimization.

The problem in Section 4 differs from those in Section 3 in an important
aspect: The variables over which the optimization is performed are different
from the variables in which the feasible region (and thus the yield) is defined.
Therefore, the feasible region and the yield for each set of optimization vari-
ables are defined implicitly (rather than explicitly as in Section 3). Again,
MC/H&S produces solutions which converge to the optimum in a reasonable
number of iterations. It would be interesting to compare the performance of
MC/H&S to deterministic optimization algorithms, if an efficient method of
computing the yield could be obtained.

Less satisfactory is the estimation of yield by Monte Carlo simulation.
At each iteration, a large number of n-dimensional random points must be
generated in order to estimate the yield to a certain precision. For example,
sampling 10,000 10-dimensional points for 100 iterations translates into gen-
erating 10" random numbers. This quickly becomes a bottleneck during the

19
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Figure 17: Amount of translation and rotation for Four-hole Yield Optimiza-
tion with distorted relative locations of y. Successive d' are labelled by the
iteration number t. The optimal d'is indicated with a star.
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Figure 18: Final configuration for Four-hole Yield Optimization with dis-
torted relative locations of y. Shaded Regions represent the probability dis-
tributions of the centers.
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optimization process. However, since the feasible region never changes over
the entire optimization process, it is suspected that an importance sampling
technique [2] might be applied to improve the efficiency of successive yield
estimations.
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