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1.0 INTRODUCTION

The Variseg analysis which is presented in this report lays the
foundation for a new class of occupant dynamics simulation models.
It follows the lead established in the MVMA 2-D Model (1), the Calspan
CVS (2), and the UM-VCS-1 vehicle crashworthiness simulation (3). The
analytical concepts which are used make possible the simulation of
various problems in human protection such as:

- deformable joint structures (e.g., knee joint for use in
design studies of restraint bolsters)

- addition of an ankle joint for more accurate prediction of lower
extremity kinematics in frontal impact

- Toose coupling of flesh mass (e.g., the leg) with the skeletal
linkage to compare cadaver, human, and dummy responses measured in
experiments

- breakage of bones and joints in pedestrian impacts with the
front of a vehicle

- the inclusion of a multijoint neck and spine to provide a more
flexible torso linkage.

In addition, they bring the user one step closer to simultaneously
tapping the power of rigid body dynamic and finite element analytical
tools. Variseg, as the name implies, is intended to allow the user to
specify an arbitrary number of segments connected in an arbitrary
manner with joints of recognized characteristics. As a program,
Variseg will be Version Five of the MVMA Two Dimensional Model.



Section 1.1 The MVMA Two Dimensional Model

The MVMA Two Dimensional Model is the current descendant of a long
chain of simulation programs dating from 1966. The MVMA Two Dimensional
Model itself has been through four previous versions and is now a five
processor program which expands or contracts to fit the complexity of
the current data set. This feature essentially eliminates lost runs
due to data deck size and minimizes the storage capabilities necessary
for simple runs.

Section 1.2 The Generalizations To Be Made

Yet just as in its earliest predecessor, the MVMA Two Dimensional
Model is a fixed linkage, eight mass model. This configuration is more
than adequate for most applications, butmakes all but impossible the
modeling of breaking 1imbs, knee transverse displacements, an ankle
joint, loose leg flesh, etc. The generalizations included in Variseg
are designed to offer maximum increased flexibility without making the model
usable only by specialists.

1. Instead of eight segments, each of which participate in the
equations of motion, the user may specify as many or as few as is needed.
Not all of the segments are required to be in the equations of motion
but rather can be determined from constraining relationships at the user's
option.

2. Instead of a fixed linkage, the user can connect or leave
unconnected each specified segment as suits his purpose. Four basic
types of connectors and six specialized variants are formulated.

3. Instead of a fixed vehicle for which acceleration profiles in
three degrees of freedom may be specified, Variseg allows acceleration
profiles or velocity profiles, or position profiles to be specified for
any component of any one point of any segment.



4. Instead of allowing applied forces only to the head, Variseg
will allow applied forces at any point of any segment.

5. For the user interested in doing so, it will be possible to
specify arbitrary coordinate systems and units for each segment for
both input and output. The problem will, of course, be solved in consis-
tent coordinate systems and units. One conversion will be made before
solution and another after.

6. Ellipses will be generalized to allow both nosition and orien-
tation as a function of time with respect to any segment.

7. Lines will be generalized to allow attachment to any segment.

8. MWhere angulation occurs in joints and connectors, one or more
of five types of resistance to angulation will be specifiable for both
flexion and extension.

9. Where elongation occurs in joints and connectors, one or more
of two types of resistance to elongation will be specifiable for both
extension and contraction.

10. Other model features such as belts, etc. will be modified
minimally to obtain needed information from the new equations.

11. A restart procedure will be added to facilitate continuing

-

runs.

Section 1.3 The Implications of the Generaljzations

With the generalizations outlined in the previous section each of
the modeling problems mentioned can be attacked. In general, multiple
vehicles and/or multiple occupants/pedestrians of varying complexity
can be modelled. Certain kinds of simple mechanisms can also be modelled.

A1l this is achieved without any additional complexity; it is intrin-
sic in the approach. Also a simple problem can be described by a simple
data set. The MVMA 2-D system of defaults will be adjusted so that the
user will need to supply only non-standard information. The program will
also be modified to accept a free-format input more suitable to current
interactive systems but will still accept the keypunch-based previous
input formats.



Section 1.4 Report Layout

Section 2 will discuss the basic layout of the analysis. Section 3
will present the types of joints and connectors and develop the equations
governing them. Section 4 will deal with the other constraints and their
equations. Section 5 is technically not analysis but is included because
discussion of analysis by itself would seem incomplete. In a program as
dependent on the techniques of implementation as Variseg, the complete
analysis can not be understood without consideration of how and when the
equations are used.



2.0 COORDINATE SYSTEMS, UNITS, AND EQUATIONS OF MOTION

Coordinate systems abound in Variseg for purposes of user conve-
nience. The coordinate systems are divided into three classes:

1. The External Input Systems, defined by the user for describing
the problem,

2. The Internal Systems, in which the problem is solved, and

3. The External Output Systems, defined by the user and used to
record the results for printing and postprocessing.

The external coordinate systems are used only for input and output
and therefore can be whatever the user wishes them to be. This includes
such unusual features as measuring angles positive clockwise and non-
orthogonal systems. The default external system definition will be Z
positive downward, X positive forward, and angles measured positive
counterclockwise as in Version Four of the MVMA 2-D. It is presumed
that users will almost always prefer this definition; however, situations
have arisen in which unusual systems could have been used to cut down the
Tabor in setting up data sets.

The Internal Systems are used for the solution of the problem and
are chosen to yield the simplest equations. After input is complete, the
run description is converted from External Input Systems to Internal Sys-
tems. After solution at each time point, the results are converted from
the Internal Systems to the External Output Systems and recorded for
printing and postprocessing. The user can therefore describe the prob-
Tem in the most convenient manner, have the problem solved as efficiently
~as possible, and then see the results in the manner he desires.

The External Systems are defined in terms of each other but ulti-
mately in terms of the basic Internal System which is the only prede-
fined system.

The Inertial System has the X-axis pointing forward and the Z-axis
pointing upward, a right-hand system. Angulation is measured counter-
clockwise from the X-axis.



X

Fig. 1. The Inertial System

Section 2.1 Relationship to Inertial System

A11 other coordinate systems are specified by supplying:

1. the counterclockwise angle from the positive x-axis of the
Inertial System to the positive x-axis of that system,

2. the counterclockwise angle from the positive x-axis to the
positive z-axis of that system,

3. the direction indicator for positive angulation in that sys-
tem, and

4. the x and z coordinates of the system origin with respect to
the Inertial System:

(Each User Defined System can actually be defined in terms of another
User Defined System or directly in terms of the Inertial System. If the
~ User Defined System is defined recursively, it must be possible to re-
Tate the system ultimately to the Inertial system.)

Corresponding to each User Defined System is a Model Defined In-
ternal System which has its x-axis coincident with the User Defined x-axis
and has a z-axis completing a right hand, orthogonal system. Angulation
of the Internal System is always positive counterclockwise. Figure 2
shows the most general case, a User Defined System, q, which is non-ortho-
gonal and measures angles positive clockwise. Figure 2 also shows the
corresponding Internal System and the relationship of both systems to the
Inertial System as well as the position of a Point P in space.
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Fig. 2. A User Defined System and its Relationships



In Figure 2,
"'é

Let

Rc‘, is the position vector for the System q Origin with respect
to the Inertial System. This vector is valid for both User
Defined System q and Internal System q.

X7 are the x and z axes of the Inertial System (with unit vec-
tors T, K)

,q;:t,ad't are the x and z axes of User Defined System q (with unit
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which must satisfy one of the following:
0 < g_%_< 180° = 0>.O.>"l30
'6*%. is the Inertial angle between T and M‘_
,(,b% aan‘_are the x and z axes of the Internal System q (with unit vec-
tors 1.‘_ ,\_ This is always right-handed and orthogonal.
P%)Ga‘ are the position vector of Point P and its direction with re-
spect to the User Defined System q.

qu,%% are the position vector of Point P and its direction with re-

spect to the Internal System q.

i
P,@ are the position vector of Point P and its direction with re-

spect to the Inertial System.
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We can relate the Internal System and the User Defined System g as
follows:

—-—

/p.x,% = /P'I"(}( + /Pz,} U.r(tﬂ-i_
Pot * Pag dn Ly

(5)
and the inverse relationships
' - AN - 0N QL
fog = Poy Py @0
' - D QL
‘P"‘% = 'Pl"“ e % (6)

The direction of angulation for the User Defined System q is de-
fined by the Angulation Direction Indicator (Aar)

where />\ - 1 for counterclockwise positive
Tr -1 for clockwise positive

then

The above relationships are used to convert from User Defined Sys-
tems to the Internal Systems before problem solution and then to put the
computed results in the appropriate User Defined System for postprocess-
ing. The analysis from this point on will deal exclusively with problem
solution and hence with the Inertial System and the Internal System.

—_ —_ =

For any body segment, n, P - Rm + PM

—y
where Pn is the position vector to a point P defined with respect to the
body segment, n.



If 1f 0 = ?_E and
K
then e
IM.']: hm ! K
e (9)
em - Aﬂ\ e = -~ iy -ty .E
kh‘I R
1
ot b (10)
- (_4‘\',,_&5 wﬁlh
or inversely
-1 T (11)

If we adopt the convention that a vector equation such as (3) or
(4) can be written in matrix form as a column vector by

P
6 = ( p':) that is by 1isting the
coefficients of the unit vectors. The set of unit vectors hidden by this
notation is generally supplied by context but where the underlying system
needs to be made explicit we will add a subscript with the number of the
internal system and further we will understand the Inertial System as
system zero.

Then equation (8) can be written

( L4 iym n 19,,"‘
- - 12
P/ Nam/y Pym e

normally matrix equations will be written all in one frame of reference
and using the vector symbol without the arrow to stand for the corres-

ponding matrix.
So we would say ' P - RM + 0[1 lsjh (13)

or P - R, = c17;~ ;S;_ (14)
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and inversely

5; = AM( p—RM)

Section 2.2 Units

The user is free to use whatever units that are convenient both for
input and output. Units will be defined in terms of conversion factors
relating the units used to one consistent set of units. More than one
system of User Defined Units can be defined and used as convenient, but
as with User Defined Coordinate Systems, the User Defined Input Units
are converted to one consistent system before problem solution and then
converted to the User Defined Output Units for postprocessing. It is
suggested that the inches, pounds, seconds system generally be used for
the internal consistent units because experience has shown this system
causes fewer numerical problems in solution. (Some years ago after we
first incorporated SI units as an option in the MVMA 2-D and were running
parallel runs in English and SI, we found that for some data sets, the
ST runs required smaller time steps for solution. The reason was not
discovered.) Whenever the old airbag algorithm is used, it is mandatory
that the internal system be the American Standard. If airbag is not
used, then any consistent system of units will be possible as the inter-
nal system. The reason for this restriction is that the old algorithm
has constants imbedded which were not easy to compensate and which are
good only for American Standard.

Section 2.3 Basic Equations of Motion

Each segment is considered to be either a rigid two dimensional
body if mass and inertial properties are provided, or to be a frame of
reference which can not be included in the equations of motion if this
information is not provided. In the Tatter case, the position, orienta-
tion, etc., must be completely definable from constraint equations.

Each segment is represented by three degrees of freedom. Some of
these degrees of freedom are not really free but are controlled by im-
plicity or explicity constraints.

For the purpose of this analysis an implicit constraint is one that
can not be changed during the course of a run, e.g., an unlockable, un-

11



breakable pin joint. These will be handled by setting up the equation of
motion omitting these degrees of freedom and then computing them from
the constraint equations from the results of solving the equations of
motion. The "implicit" implies an indirect use of the constrain ing equa-
tions in solution of the problem.

The explicit constraint is one that can be modified during the run,

e.g., a lockable, breakable pin joint or a rolling-sliding constraint.
These are handled by leaving the "bound" degrees of freedom in the equa-
tions of motion, using constraint forces to cause the desired motion, and
adding equations to compute constraint forces. The "explicit" implies
direct use of the constraint equations in solution of the problem.

If a group of segments is joined by implicit constraints, it forms
a chain. A chain must be singly connected in the sense that only one
path of implicit constraints can exist between any two links of the chain.
The chain, however, can be joined to itself with an explicit constraint.

Experience has shown that shorter equations are better than longer
equations both from the point of view of numerical stability as well as
computational speed. Length of equations can be minimized by basing
chains on a properly chosen interior segment. Each chain will then be
analyzed for the optimal choice of base segment. Starting in each case
with the base segment, the chain will be organized by the model into
branches in such a way that all chain segments are in at least one con-
tiguous line of segments, the total number of all such appearances of
segments is a minimum, and the base segment is interior to the chain.
This chain and branch structure is used throughout the run after being
. set up in the input processor.

Each chain will have at least two branches. Every segment will
appear in at least one branch of one chain even if a chain of one. Con-
sider Fig. 3, the traditional eight segment man. There is clearly only
one chain.



I”— -\‘
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Head \ |

\
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Lower Arm
Upper Torso
Middle Torso
Lower Torso L
Lower Leg

Upper Leg

Fig. 3. The Eight Segment Man

Contrast the effect of taking various body. segments as the base
segment of the chain.

Base Segment Branches Total Appearances
Head 2 3+6=9

Upper Torso 3 2+3+5=10
Middle Torso 3 3+4+4=1]
Lower Torso 3 4+5+3=12
Lower Leg 2 6+ 7 =13

Table 1. Effect of Base Segment Selection
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Here the head would appear to be the optimal base segment, but another
factor comes into play. Even though the equations have one extra term, Up-
per Torso is a much better choice because the Head is usually the lightest
body segment of all and numerical stability is affected by the relative
heaviness of the base segment. The Upper Torso is the optimal choice for
this chain. This is the basis for the interior selection rule outlined
above. This organization is done automatically when the tables for execu-
tion are set up.

As in the case of the previous versions of the MVMA Two Dimensional
Model, the Lagrangian approach is used.

A(él)..?.l-{-f?.y- 30

a——— a, i p Q’:
dx % 3%, el % % (16)
Kinetic energy for all rigid segments is expressible as
N ' 2 ‘i S
T 1> w3 ]+ 18
2 4
=1 (17)

and the kinetic energy terms reduce to

%(QT)_%%:: i, z M{(I‘-a—ﬁ} +’3, %ﬁfjt)ﬁdéja

so the total kinetic contribution to the equations of motion for

segment n and the i th equation is

T = /1«/\4\(”,.,\2:%M *("}»——%)"’I 8,

0f course the partials in equation (19) will be zero for all gene-

3'5; o)

m,‘:

ralized coordinates not associated with any branch of which the segment
is a member. Since these contributions appear in equation (18) exactly
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once for each segment, the segments held in common by more than one
branch are skipped in all but the first branch taken up.

The procedure for generating the kinetic energy terms will be as
follows. Each segment will be taken in turn. Using the tables in which
branch organization has been stored by the Input Processor, the branch
and Tink number on the branch will be looked up and the contribution to
each of the generalized coordinates will be added in starting with the
base segment and working out to the segment in question. The generalized
coordinates will depend on the types of connectors along the branch. A
recursion relationship will be developed for each connector and these
will be used to build up the contributions along the appropriate branch
to each segment.

Section 2.4 Handling of Constraints

In keeping with the Lagrangian approach, constraints are handled by

the Langranian multiplier method.

If the constraints are of the form:

62(‘6”%»-‘-)1;«)” =0 6«\ 2=1,M

then the equations of motion will be changed by setting

M
Qi - Z C'{ g_ﬁ (20)

) £=q 3%&'

in equation (16) and moving to left hand side. In addition, con-
straint equations are added to cover the new unknowns (;Q for ﬂ:f,ﬂ&.
These are put in terms of accelerations.

2oy - k(3240

for,f:() m .

In this form, these equations can be solved along with equation (16)
conveniently. The new unknowns are simply the constraint forces
necessary to keep the corresponding constraint satisified. These con-
straint forces will be used for determining whether joints unlock and/or

15




break where applicable. Explicit constraints then are handled in terms
of augmenting the equations of motion by constraint equations in terms of
accelerations which are solved with the equations of motion. For brevity,
we will call this augmented set of equations, the equations of motion.

Implicit constraints are those for which the affected degrees of
freedom are eliminated from the equations of motion and for which no
constraint forces are computed. Constraint forces are not needed for an
unbreakable, unlockable joint, and therefore represent needless computa-
tion. In this case, the constrained degrees of freedom are computed
after the equations of motion are solved using expressions in terms of
the "true" degrees of freedom. These expressions are presented in the
sections dealing with the joints and are generated functionally along
with the kinetic energy terms.

Any massless coordinate systems are either rigidly attached to
another coordinate system (for special input/output purposes) or are con-
trolled by position, velocity, or acceleration profiles as a function of
time (e.g., to simulate a vehicle). In the first case, the degrees of
freedom are computed by transformation equations from the degrees of
freedom of the attached coordinate system. In the second case, the de-
grees of freedom are computed from the profiles supplied, the current
time, and the degrees of freedom of the system with respect to which the
profiles are specified.

This feature can be used to model oné or more vehicles or vehicle
parts which move as a function of time. It could also be used for ob-
taining output with respect to a moving observation point without af-

~ fecting the equations of motion.




3.0 JOINTS AND CONNECTORS

This section describes the available ways in which two body segments
can be joined together in the sense of affecting each others motion with-
out contact forces. The mechanisms which are used for this purpose are
called joints and connectors. The distinguishing character of a joint is
that it represents a usual model for the human body part whereas the con-
nectors are more general and correspond to mechanical connectors usually
found in more general structural simulations.

Joints and connectors effectively remove degrees of freedom from the
equations of motion. The preceding sections have discussed the general
approach taken for elimination of degrees of freedom. The following sec-
tions will describe in detail the types of joints and their impact on the
equations.

3.1 General Types of Connectors

Connectors fall into two classes, those that constrain implicitly
by removing degrees of freedom from the equations and those that constrain
explicitly by leaving the degrees of freedom alone and adding constraint
equations to bind some of them. Table 2 lists the connector types, the
types of constraint, a description of the connector, the net effect on
the degrees of freedom and the net effect on the number of the equations
of motion. In interpreting these latter two columns, assume that there
are three degrees of freedom and three equations for every body segment.
These fifteen connectors will be investigated in the following sections.

Each of the connectors will be thought of in terms as "states" of motion
| and "transitions" between states. Each of the implicit connectors have
one state. Each of the explicit connectors can take on variable states.
Each state will be described followed by the tests for transition to
another state and finally by the transition equation itself.

Section 3.2 Unbreakable Pin Joints and the Equations of Motion

Fig. 4 shows body segment n connected to body segment m by means
of a pin joint. The notation is the same as before except that two sub-
scripts are used; the first one is the defined point number at which the

17



segment M

segment N

Fig. 4. Pin Joint Geometry

connection takes place and the second is the body segment number. The bar
still indicates a specification with respect to the body segment system

and the lack of a bar still indicates an inertial relative specification.
If the defined point subscr_l'pt js zero, then the center of gravity is al-

ways indicated. Hence, .= for all 4 .
y : ' Ro)é_ =0 f 4—
So in matrix form

Rom =

T T =
-~ RO,N\ + AM RQ,M - Glm R{)M
: (22)

Without loss of generality, let us assume that segment n lies closer to
the base segment on the branch. Let us also assume that these two seg-
ments have link numbers on the branch of a and a+] respectively. Define
a function "‘]i.,i ("‘) such that for branch j and link number a,
the function takes on the value of the true segment number (n) and the
point subscripts § and k at which connections in the chain occur for

i =1, 2, and 3, respectively. Let us simplify the

18




TABLE 2.

Connector Types

| ' ' Change in | Change in
Numbert Type Name Constraint Description Figure Degrees tquations
{ Type Number of of
\ Freedom Motion
1 } Pin Implicit | Unbreakable, unlockable 4 -2 -2
2 i ctxtensional { Implicit Unbreakable, unlockable, -2 -2
! no rotation no rotation at either
! end. Redefines one de- 5
gree of freedom as dis-
tance.
3 Extensional | Implicit Unbreakable, unlockable 0 0
with 2 rota- effectively a ball joint 5
tion at both ends. Redefines
one degree of freedom as
4 With 1 rota- distance and another as 5 -1 -1
tion second angle.
5 Rigid no Implicit Unbrezkable, unlockable, 5 -3 -3
rotation no rotation at either
end. Redefines two seg-
| ments as one.
5 Rigid with Implicit Unbrezkable, unlockable, 3 -2 -2
single rota- effectively a ball joint
tion at one end.
7 Rigid with Implicit Unbreakable, unlockable. 5 -1 -1
double rota- effectively a ball joint
tion at both ends.
8 Lockable Explicit Unbreakable, will un- 4 -3 when locked -2+ 1 =
pin lock when constraint
torque exceeds spec-
ified value.
9 | Lockable  |Explicit | Will unlock as with 7 ¢ 0 when broke -3
! breakable and will break when -2 when unlock-
pin constraint forces ex- ed
ceed specified. -3 when locked
n Lockable Explicit | Will unlock and/or 9 when broke +3
breakable break much as 7 and 5 -1 locked ro*a-
extensional . 8 but enlongation as tion on lock-
| with 2 rota- Pwell, ed =longation
Lions | -2 unlocked rota-
11 Extensional ! tion at one
with 1 rota- ‘ end or uniocCk-
Ition l ed ,
- -3 ail locked
12 Extensioral i
with 0 rota- ’
tion ‘

19




TABLE 2. Connector Types

T -
Number Type Meme Constraint Description Figure Jeqrees Zcuations
ype ﬂumbe; of of
' rreedom ‘otion
13 Rolling and/ | Explicit Rolls or slides along - -3 all locked +3
or sliding specified perimeter ,
14 Neck model Implicit Special case of 3 for 5 0 0
compatibility
15 Shoulder Implicit | Special case of 3 for | 6 Y 0
model compatibility L

Note: These Connector Types represent variaticas
of only three basic conrectors.

20



notation as follows:

- T5 TN
Rojaﬂ - Q°J°~ t Aa Ri)& -Aa..(.; R‘J‘-ﬂ (23)

where RZ& = él;m where M=1}l){'(&) and
)

Z:’ng (&) the existing
defined point

Riya

1

R‘L,N‘ where M = ')‘)‘)-a(a*‘l)and

the entering

k: nz)i(aﬂ)deﬁned point
and A‘_‘ = d m "““M”-M_:Wl,[(a)

Looking back at equation (19), we see that Afm ) %» y O )
3&,’.«» 'Qﬁn a_q:_‘l
d the . are necessary in order to compute
—5-%"— ) )& ) an ‘ai
/ 4 A

the contributions to the equations of motion. FEach of these quantities
are related by recursion equations. T T

AR, 0t - 2_@_0;4. 2}_" ) _ E&H -
§€‘:J ey a}‘ + R-z)k ’)%* R'J“-’H (24)

where ?;ég\_T — 4ty -C84 Cif ?—;‘:Qa
(3%2 :

and zero otherwise.



. i . dde = ddasr . T.
K Lat! K“)k +( G“-) (e""')cs (ﬁu' Oati Rl)a.,c

(25)
“e ~ adk Q&q‘. o
RO)M' = Ro)& '+ ( aea) Rl)& 6 ()é”' R()O.H G' [ T
A (26)

- A& eo, lea + AD.H G.A-f( R[)CL'("

ote tha ada ; T = ad&‘T ZA(AT)%
Note that (-27&’.. &) — _5_62) Ba o G a

So the procedure for each branch involves starting with the base
segment, computing the partials and time derjvatives and then the kinetic
energy contribution for each branch segment in turn. For each new

segment, one non-zero partial will be modified and one will be non-zero
for the first time.

Section 3.3 Breakable Pin Joints and the Equations of Motion

This type of joint is a variation of the pin joint in Section 3.2.

The variant is that the joint may become unconnected or it may become im-
mobile. The approach taken is to treat each of those possibilities as a
"state of motion" and to provide a separate analysis for each of the states
expressed in common terms so that the when and how of transitions between
states can be specified. Toward this end, each state is defined in terms
of its operational constraint equations and each transition is defined in
terms of constraint equations which are a function of time.

State 1 (When the joint is free to move).

The motion in this state is governed by two constraint equations:

— T
’Zo,»*'&MR' —R'O:”“-A’““RQ = ©

e (27)




State 2 (When the joint is locked so that it cannot move).
The motion in this state is governed by three constraint equations.
T = T ~
Ro,m+ dm K&,,m _Ro,m -Jm\ QQ;"“ =0

and (28)
€},."€3~A "{5C =
State 3 (When the joint is broken apart)
The motion in this state has no constraint equations. The two body
segments are not connected.

A11 three states can be described by the following equations

Ro,m+ dm Egm "Ro,m"al:n El,m =\

e'm—e/w\ = >\9 (29)

where the three new variables take on values which define the states

so when
>\4 = ;\%_: 0 gnd >\Gfr~ee, we have State 1,
when Aw = -0 and \.. = , we have State 2, and
when all three ar‘: free, a\;e have State 3. xe 9<
How CX, CZ and Ce are the forces (or torques) necessary to

maintain the constraints. When these exceed certain specified values,
the joint begins transition to unlocking or breaking. This is accom-
plished by treating the constraint forces not as independent variables,
but as constraints or as determined as a function of time until transi-
tion is complete. In order to complete the equations of motion, the
equations replace the constraint equations.

For the unlocking joint,?te_remains a constant with the value of
the unlocking torque. When the sign of the X acceleration changes, the
joint torque must be less than the unlocking torque in magnitude and the
equations again compute constraint forces for the locked state.

For the breaking joint, the process is irreversible when complete.
When the breaking force is exceeded in either component, thee)\ equations
replace the constraint equations and both Cx and Cz are ramped from the
breaking force down to zero as a function of the maximum magnitude of the
vector 5(: This means that further reduction in the C's are tied to
further increase in [)& only, not to time or to reversals. If()\l be-
comes less than a prescribed quantity, the equations are put back as be-
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fore except that the breaking forces are set to the current values of
the C's. Once the C's go to zero, the constraint equations are removed
and the model behaves as if the segments were never joined.

Section 3.4 The Extensional Connector and Variants

The Unbreakable Extensional Connector and the Rigid Connector both
have four variations -no angulation, angulation at either end, and angu-
lation at both ends. Figure 5 illustrates the situation.

Fig. 5. Rigid and Extensional Connector Geometry

The basic matrix equation is

Qo,m\ + ALEL,M ’p\‘m'{'& Rf,., (zj: }L‘;l (30)
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The variations in these connectors depend entirely on what is in-
cluded in the degrees of freedom and what is held constant. Table 3

summarizes each connector.

The contributions to the kinetic energy are

3@_0,:;4\ - ?_@_o,m +(3§m)‘l‘t_zgm . (—A&ﬁé‘ '.;,éf l[_‘

< . ¢, 17
2 %‘i Qoh 3%"' Uﬂ'&d %‘ (31)
4 (Lon&i ?&3 (DJM)TE
" Wy 3%; ¢, &ym
. . d T . adm
RO,M\ = RO,M + (-;.;') Ryjmen. ( ] QQ,M P )
3y 32

The proper interpretation of equations (31) and (32) depends
on the applicable line of Table 3. In equation (31), the corresponding
partial is zero if a "No" is listed under the potential degree of
freedom. The time derivative {equation (32)) necessitates determining
the dependence relationship if motion is possible for the "No" entries
in Table 3. If[Lﬂis not a degree of freedom, then “"l l:i o

However, since all angles are with respect to the Inertial System
if theé)i column is "No", then &, - €3i = B which is a con-

stant, and
(33)
. Vs
if the {}~§o1umn is "No", then Q.. — {}i = B, which is another
constant.

The time derivatives are obtained from the equations (33) in case
of angular dependences and are used in equation (32).




Table 3 The Family of Extensional Connectors

3 (Degrees of freedom) include
Connector
RQ)M 'G'M\ QQ)M eM 6'4: “—{’

Extensional No No Yes? Yes No Yes
no rotation
Extensional No No Yes? Yes Yes | Yes
1 rotation

in base segment end
Extensional No Yes Yes? Yes No Yes
1 rotation

on other end
Extensional No Yes Yes? Yes Yes | Yes
2 rotations

Rigid No No Yes? Yes No No
no rotation

Rigid No No Yes? Yes Yes | No
1 rotation

near end

Rigid No Yes Yes? Yes No No
1 rotation

far end
Rigid No Yes Yes? Yes Yes | No
2 rotations
Number of degrees always 1 2 1 1 1
of freedom dependent

Note that while it is not known whether Qoﬂis free or not, the chain

as a whole will effectively provide two degrees of freedom at this

point.
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For compatibility sake, the "neck" and "shoulder" joint models of
the MVMA 2-D, Version 4 are available wherever the user specifies. These
are both special variations on the double rotation flexible joint and

differ in choice of degrees of freedom.

Fig. 6. The "Shoulder" Joint

Here the degrees of f:SEdom chosen are the inertial components of
Rs and a circle of radius Fls is set up about the near joint end
which is supposed to represent the area of free motion for the shoulder.
This will supercede usual joint force production and is discussed more
fully in Reference 1. The "neck" model looks just like Fig. 5 and
differs only in the particular joint forces available.

Breakable and lockable extensional connectors are treated just
the same way as described in Section 3.3 except that the basic constraint

equations have one more term (see equation (27)).

< 5 T = (@53 -
Ro,n\'\' a'm Qi)"‘-Roﬂ"‘_J'N‘ RQ,M +(A&-&1) lLL[ = 0 (34)
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and there is no need of equation {29). When “-ll! is locked, an
equation ll—lk\ - L_ , a constant,is added.

There are eight Locked States plus the Broken State for the
Extensional joint with two rotations. The lesser degree of freedom
possibilities mentioned in Table 3 lead to a similar reduction in
locked states.

3.5 Rolling and Sliding Constraints

This type of constraint is considered essentially to be a

connector and is pictured in Figure 7.

Fig. 7. The Rolling-Sliding Constraint

-,
where ’hi is the vector from Eﬂ; Center of Gravity to the Instan-
taneous Center of Rotation and T} is the vector from the center of

rotation to the point of contact. .



T T
If Tp= Rc,n\ +Am AM + d'w ATS (35)

T T
and " TM\= Ro,m\ -('dm,ém‘f'dmﬁ Mo s (36)

then the connection equation is

TM: TM at any given instant.

For either rolling or sliding, the normal component of velocity
at the point of contact must be the same. For rolling, in addition,
the tangential component must be the same as well.

So for rolling

Tae = T (37)
and for sliding
T
+ .
(%M) Mo - (TM) R (38)
[l ||
2

For general shapes of segments the ,R“ and ;i vectors
can be difficult to compute. If a two-dimensional curve is defined
narametrically as

&= O (£) : .
(ERTE CaUak

then the radius of curvature is [f\( z ! v ,
Y-y (39)"
the center of curvature is . .
. k
Af = - . n-n o

* See note next page.



the normal to the curve is

(rohiefidi e, w

and the tangent to the curve is

o R

Two curves are tangent at a point if

4.‘:&_‘ -,/ = O (43)

We will be dealing with only two shapes, the ellipse and the
Tine. Of the four combinations of these shapes, 1ine on line rolling
is not allowed so that a Tline can either be s1iding or be held in
place when interacting with another line.

For an ellipse, the equations

A = o;cm.?bcad.—/r‘é“."“g Ao-0 Ko
1= o M- B wad + b g Md"{'%eﬂ

where a( is the parameter andp is the inertial orientation
angle of the ellipse. a and b are the semi-major axes along the x and

(44)

z axes of the ellipse system. Me,o)’zmare the inertial coordinates
of the center of the ellipse and the origin of the ellipse system.

*Equations (39) through (43) are taken from page 546, Volume I, Reference

(4).




Then comparing with above, we see

¢(t)= a ¥ od- LMB@,;OL-P Ae,o

¢ (%)
Y (%)

(1] = -G 0§ damai - btonf ud

1)

- 6w Wod T htng 4and '*Fe,o"d

1)

o Mflod + bG8 by 4, P

LP(,Q: o A § Al 4 e d Lo d

) (#) = ~& 2§ ood =Lt § 4mdnd = 2¢ 7Y

When these are substituted back in (39) through (42), we have

™ =%
everything necessary for computing [Lh and }1~‘ for any given value
of &\ which depends on the other shape.

For a line
go=$(@) = Aot N "_ALLJ")
= Nyt d Gy

f= w(d) = Foo4m (3 )
= %—L,o +4 LOQCL%,
In the latter form 4, is the distance along the line.

Since curvature is infinite for a line, equations (39) and (40)

will not be used for a line. JQ‘ will be taken as the vector to the
tangent point and ;‘nn will be defined as a unit normal at the tangent
point for any given value of 4.

For any of the combinations of shapes, the two parameters des-

cribing the tangent point on each of the two shapes are obtained from
the "touching" equations.
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b (t,) = $alts)
Y, (#,) = W, (#.) (47)

Once the equations are solved for the two parameters,
equations (37) are completely determined and there remains only
to put this vector in terms of its normal and tangential components
rather than its inertial components as in (37). Equation (38)
is the magnitude of normal component and

, TN
lTMl "‘(( "‘) y )[n | is the tangential

component. The corresponding components of equations (37) then

form the constraint equations which are added to the equations of
motion. The two constraint forces will be the normal and tangential
constraint forces. These two forces in comparison with user specified
values determine if the constraint is broken or sliding.

When s]iding,t] and t2 are invariant in time. The normal con-
straint equation is used as before. The tangential constraint force
is held constant and the tangential constraint equation is given an
additional unknown, the relative tangential velocity which is solved
for. When the tangential acceleration changes signs, the sliding
will cease and rolling recommences. The equations are put back for
rolling.

When the normal constraint forces exceed the user specified breaking
force, both normal and tangential constraint forces are ramped to zero,
the t] and t2 parameters are held constant, and both the normal and
tangential relative velocities are solved. lthen the ramping is
complete, the constraint equations are removed altogether.

Section 3.6 Joint Forces

In the preceding sections, the handling of connections from the
point of view of their impact on the degrees of freedom in the equations
of motion has been discussed. In addition, each of the connectors has
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the capability for resisting motion in each of the allowable degrees
of freedom. This section will examine force production by connectors
and joints. These forces are of the nature of F(S)

where é is a positional deflection and a function of certain
of the degrees of freedom. The potential energy for this force is

Y
V = / F(m) duw (48)
0

and the contributions in the equations of motion (see equation (16))
are

@

[
\\ D]

|

U V 3 :_F(S)D

—-— ——— ————
@R nm—

[T % e

\V

Here the symbol Qi is used to indicate not an applied force but

rather what will be called a "generalized force". The factor [~ (é;)

¥y
g,
strong resemblence to the relation

is the force and the factor is called the lever arm because of

Torque = Force x Lever Arm
anc¢ it serves the same purpose although it is in general not a
distance.

Table 4 presents a description of the types of force resistance
available to both the pin joint and the extensional connector. Sliding-
rolling connectors do not offer resistance of this sort.



TABLE 4 Types of Joint Forces

Type Description
General Material 1f & "So 2 0 ) F (5‘"50) Used
From Rest
If S"go <0, F;(SO—S) Used
General Material If 5 7 51,(, ) ;3 (C'S ..gu) Used
From Stop
If SQS § < gu) ')asv\(,- Used
If § < 58 ) Fy (58’5) Used
. . - > c -
Friction If lél 2 5E : Fs A—am ) Used
if | §] < 8, % Fs Used
3
Viscous Damping If 5 2 55 ) CVS Used
r §< 8 S cus Used

Muscle Tension

F is used where F satisfies:

f’ 4 £é: = "'4i é;

C

et s an | |
T ag lM(i)l

See Section 2.3.2, Vol. 1 of MVMA Report (Ref. 1)

In the above, each constant and function indicated is inputted to

the program for eac

of joint restraints.

equations of motion

h usage of each type of joint force. That is to say Ehat
each joint or connector can have any desired combination of the above types

For each such usage, the force is applied to the
via equation (49).
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4.0 FORCED OR APPLIED VARIABLES

It is often very useful to cause a particular sequence of events
on one part of a system and then to simulate the reactions of the rest
of the system to these events. To aid in this endeavor, Variseg per-
mits the specification of four types of prescribed events, the position
of any point as a function of time, the velocity of any point as a func-
tion of time, the acceleration of any point as a function of time, and a
force as a function of time applied to any point. The following sections
deal with these events.

It will be noted that no sophistication has been employed in the
numerical differentiation formulas used in the following sections whereas
the numerical integration formulas are exact. The reasons for which these

sections were set up this way are as follows:

1. The model is position dependent and almost rate independent
(dependent on rate sign); the accuracy is where it is needed,
and

2. More sophistication would be misleading since the user is very
unlikely to supply the necessary information to do a proper
job to obtain accurate derivatives.

The user is warned that if rate information is important to a par-
ticular run, the user must obtain good velocity or acceleration informa-
tion and submit it to the model. The position option will be used mainly
for special coordinate system placement.

Section 4.1 Forced Position

When a displacement is specified as a table of points in time,
straightforward curve fitting is used in order to approximate velocity
and acceleration. If there are four or more table points, each four
points are taken in turn and equations (50) are used.

s = G A3+ 8t T+ 8, %18
v= 238, +28:.4 +§;

a= 68 % +28%




where

5( = ‘;—: [d‘q‘ - qd "d:_-o(;]
$,= "5"\’ E °¢‘I(t'+tl+i3.) +°L:L(xa+*:_+k,3)
4d3(Rotti+ty) —dg (£+ £, +4 )J

8,2k L-diCh i Fattady sty b ) dy (k£ buty oy,
- dgkfo*lf t A3+ %3 ’e°)+d¢(7€°¢ + X At A 2 J

By= 4 [ EiAdtydy pRobFada b gk £, ~Roti Ay gy |

and further

L (At (F3mx ) (£2x) S
o'\;_: (ﬁz—fz)(tz x0) (Ras )
hy= (%3 -1) (43 to) (Fi-%a)5y
A : (#,- t)(iri)(*t o) 2
gz (£) (571 (Br2) (£t (£27to)(#1-%,)

given that the four table points are labelled

(iU)SoJ, (X(JSI); (t’-JSl), ol (ti’ ,S;)

If thereareonly three table points available the equation
(50) simplifies to equation (51).



For three point tables,

3,: 0

$, =
_ L pu 2 2 - p N

;= TES'*O*'S"’&:L*SJ"S'*‘- 3.4 gd‘} (51)

:L(- [su t, +AaSa tSita =52y =Se 2y S x“]

8u = [Sath +Sitoty+ Sokit,

- S EISitate - Sate t ,‘]

where

R R I Y S 7 T S Sy 3% SO

For two point tables,

~B\‘= °

$,. o
_ S("Su . (52)
3- 12( "Tb

i@(‘_: Sg

For one point tables
‘61 =0
820

63:0
.6‘4_: So



Section 4.2 Forced Velocities

- “3'39.‘1‘3“']5.63*"*‘8“** £(#)
vz $ AT+ 854 + 8¢ .
o= a_.U + 83

where 83_ s 63 , and ‘gq- are exactly similar to the definitions

given in equations (51), (52) and (53) of the preceding section except
the V/; replaces S; wherever it occurs. 5 (t.) is the computed value for
that point or in the case of the first group of points it is initial
conditions specified by the user.

Section 4.3 Forced Accelerations

Sl 4% g g At VAR (R

Vv = —L 8 *l-(-.@ut +V (%) (55)

-

a = 33*-{-6‘(-

whereB;and.eq_ are defined as in (52) and (53), except that now 3

replaces S; and the V(to) and S(t,) are both related ultimately back
to initial conditions.

We have yet to discuss how these impressed accelerations,
velocities, and displacements are related back to the body segment
for which the point in question is defined. MNow since the forced

variables can be specified with respect to any coordinate system,
Fig. 8 illustrates the situation.



segment N
system

segment M
system

RO,I‘I

ROsm

Inertial System

Fig. 8. Forced Acceleration



RO'&_ = Ro,;m 'l'al-:m S,k = 0‘1 Eﬂ,m

(56)

are the ingredients to the contributions to the equations of motion

specified in equation (19) or

da\T T T
aKo,h bgo,m ‘B‘-Mg d ?—S: by
A MR COR ST L

a?d . A .. )
ré.O,m Ro)m" A S,{;, ae’m) SR ( b

-
-

. > dm'
L GunSe + &»Rz,m‘fl( )9 54

Note that not only time derivatives but also the partials:;f the
specified vector Sk are included because if one component of S is
left unspecified, it is considered to be left free. In this case, the
appropriate portion of equation (56) is added to the equations of
motion and the missing component is solved for. If there are no unknowns
which are not generalized coordinates in equation (56), then P\g,,,is
eliminated from the equations of motion and (56) is used to compute

Ro,m . This effectively makes the forced variable into an

unlockable and unbreakable but movable pin joint without joint force
capability.

Then to complete the usefulness of this feature, if the component

specified is angular, it is always taken to specify the angle from

the body segment system to the point.




Section 4.4 Applied Forces

Forces can be applied to any points in terms of either Cartesian
or polar components specified with respect to any system. If the
point is specified with respect to Segment n and the force with respect
to Segment m then the components of the force vector in the segment n
system are

-
dm da Fsy (58)

The normal component 1is the dot product of the force vector
and the unit vector to the point from the origin. The tangential

component is the vector difference of the vector and its normal com-
ponent, hence

Qs,, = con@m Fr

Q%m - A*/V‘e o~ 'FT (59)
where f;r and F:h’ are the tangential and normal components

obtained above.
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5.0 PREVIEW OF INPUT TO VARISEG

Variseg will accept numbered input cards of fixed format as de-
scribed in volume 2 of the MVMA 2-D Model (Ref. 1). Some of these cards
must be generalized somewhat. This older format of input was keypunch
oriented with fixed column ranges and identification field in columns 73
through 80. The approach has been found inconvenient with the advent of
terminal systems and direct submittal of data decks into disk files.

Variseg will also accept a free format symbolic form of input de-
signed for user ease. The following rules control the free format in-
put:

1. Card identification is always first and is a specified three
or four character designator. The card terminator is a period
which replaces the last comma.

2. Usually one name is required immediately following the card
identification and before the field terminator (a comma).

3. Certain specific fields are expected with each card. Each
field consists of an optional symbolic designator, an appro-
priate value or name, and field terminator (comma).

4. The user elects to use default values by failing to specify a
field or a whole card. A field can be left unspecified by in-
cluding only the field terminator for the field or by skipping
the field by use of designators. -

5. The fields for each card are expected in a specific order. Any
field without its designator will be taken as the next field in
the expected sequence. If the designator is present, it will
cause the pointer which keeps track of position in the ex-
pected sequence to be reset to the designated field. The im-
plications are that the user can work in sequence or in arbi-
trary order and specify only the fields for which the default
value is not adequate. Both techniques can be used inter-
changeably.

Table 5 contains a sampling of the free format cards with their
card designators, expected sequence of fields, and their field designa-
tors. Table 5 shows only two of many cards to illustrate the type of
input. Details are not yet complete for many of the cards.
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