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INTRODUCTION

In the interpretation of optical and microwave absorption spectra of crystal-
line solids, the so-called crystalline field theory, which is based on the ionic
approximation, has been proved to be a remarkably successful one. The essential
problem is to diagpnalize the free ion Hamiltonian plus the perturbation due to
ligand field. Two equivalent approaches are in use, namely, the strong-field
scheme and the weak-field scheme. In the former approach the full use of the
symmetry of ligand field from the beginning leads to simplified exprgssions for
the matrix elements (see Sugano and Tanabe). In the latter approach the advantages
are that one can make use of the results of the corresponding free-ion calculations
and, as a result of the spherical symmetry, one can get a general formula fof the
reduced matrix element. In this report, we use the weak-field scheme for the
evaluation of matrix elements in L-S coupling scheme. The interest is mainly on
the iron-group (3d-group) elements so that Racah's results in the free atom case
are still largely applicable. Racah's method combines the tensor algebra, which
is the extension of vector algebra in Condon and Shortley, and the method of con-
structing the wave function for equivalent electrons using the vector-coupling
formula and fractional-parentage coefficients. We shall find that the applica-
tion of this powerful technique will not only give a systematic way of evaluating
matrix elements of all terms that appeared in our Hamiltonian, but will also
greatly simplify the computations of seemingly very complex problems of evaluating
mafrix elements between many electron wave functions.

References to the use of this technique to atomic and nuclear physics are

1



scattered in various literatures and monographs. A variety of notations has been
used, so that considerable care is needed in applying the indicated formulas. For
this reason, we shall present a summary of relevant formulas in a manner conven-
ient for application to solid-state physics. Also, the reference to tabulations
of requisite numerical constants will be given.

In Part I, we first introduce the concept of irreducible tensors and some
of its algebra. The extended Wigner-Eckart theorem which is applicable to irre-
ducible tensors of any rank is then stated. Using the Wigner-Eckart theorem,*
we then evaluate the most general form of matrix elements involving spin-free
(space-free) tensors, tensor product of two commuting tensors, scalar product
of two commuting tensors, and double tensors between eigenfunctions in the L-S
coupling scheme in terms of various recoupling-coefficients (3-j, 6—j‘and 9-J
symbois) of angular momenta and certain types of reduced matrices.

In Part II, then, we try to reduce each term of the Hamiltonian to these
standard forms. We shall find that if we fix our attention on oniy a single con-
figuration, evaluation of all the matrix elements can be reduced to the calcula-
tions of two types of reduced matrices, i.e., (oSLHﬁ(k>Ha'S'L‘) and (aSLHquHa'S'L').
For each of them, we then give formulas in terms of the fractional-parentage
coefficients and Racah coefficients so that our problem of evaluating matrix ele-
ments is completely solved.

The type of terms we consider in the Hamiltonian are:

1. electrostatic interation between equivalent electrons

2. crystalline field potential

*And the vector-coupling formula.



3. spin-orbit coupling energy

L. spin-spin interaction energy

5. hyperfine interaction

6. quadrupole interaction.

As supplements to the text we give:

Appendix A: Rotation of coordinate system and rotation of field;

Appendix B: Proof of Wigner-Eckart thorem;

Appendix C: Definitions and properties of 3-j, 6-j and 9-j symbols;

Appendix D: Numerical tables for: (dnozSLH'U(k)Hdna'S’L'), k =2,b, n=2,5
and (dnaSL”VikHdna'S'L’), n =2,4, k = 1,2 which should be enough for evaluation

of matrix elements of the six kinds of interaction considered above.






PART T

1.1 TDEFINITION OF IRREDUCIBLE TENSOR OPERATORS

A set of 2k+l operators Tg(k integer, q = -k, -k+1 ..., k-1, k) which
transform irreducibly according to the k-th irreducible representation of the
rotation group, under rotations of the frame of reference, is called an irre-
ducible tensor of rank k.

A rotation R(oBy) where (apy) are the Euler angles corresponds to a rota-
tion matrix R(0py) such that the components of a vector in unprimed (original)

coordinate system S and the primed (rotated) coordinate system S' are related

by :
' ==R(agy) It - (1.1)

This rotation R(aBy) gives rise to an unitary operator OrR by which the set of

components of an irreducible tensor is transformed according to
X

k -1 _ k (k)
Or Tq Or = ; Tq' Dq'q (R) , (1.2)

q'=-k

and also by which a wave function IaSLJM > is rotated into (see Appendix A)

()

Og loSLaM > = lasLaM' > Dy (R) (1.3)
MY
(3)
where Dpi, (R) is defined by
(J)
Dm‘?m (R) = <jm" |Og | jm > (1.4)

and ljm > is the simultaneous eigenfunction of total angular momentum J® and
Z-component of it J,. (Edmonds 4.1.10).%¥

It is well known that the operator Og can be written in terms of the total

*See References.



angular momentum operator as

Oge(8) = exp (ieJy) (1.5)
where ¢ is the axis of rotation and © is the angle of rotation (Edmonds, 4.1.9).
For an infinitesimal rotation &6 abéut axis €,

O (88) = 1 + 1seJ,

-1 ~
Ore(86) = 1 - ideJg

D<(1'<;)1(59) = <kq'|lL +idedg|kg > = By, + 186 < kq'|%|kq >

a'a

therefore Eq. (1.2) becomes

k
(1L +1 6J¢ ) T§ (1 - iﬁng) = Z Tg, 8q'q * i%6 < kq' [Jg lkq >
q ==k
or
k k , 6
[T Tq] = Ty < ka IJE lkq > (1.6)
/, .

1

q
vhich is valid for any arbitrary 86. From Eq. (1.6) it ewksily follows the fol-

lowing three commutation relations of T§ with respect to the angular momentum J,

k _ 1/2 k
[9e, Tl = [k Fa)(k+q+1)] T,y (1.7)
k k
[Jo, Tq] = qTqy (1.8)
where .
Iy = Jyg t idy I, = Iy .

Equations (1.7) and (1.8 ) are the alternative way of defining an irreducible
tensor which is useful wheﬁ one prefers an algebraic way of proving theorems
about Tg (see Racah II).

Examples of irreducible tensors:
A. Fork=gq = O; Dgo(R) = 1 therefore Eq. (1.2) gives

0 -1 0
O TO Og™~ = Tg
6



which shows that T3

B, Fork=1,q=4,0
1
[T4, T1]
[J4, T&]
[J+) T].:l]
Let
1 1

T -
Then Eq. (1.9) leads to

[T, Tx]

[T T ]

y

[Jx; Tz] =

"5 (Tx +11) 5

is invariant under

1 Equ. (1.7) and

0 [J_, T1]

Jori g, T2

= Verd(r, T}

1
TJ.l

the following set of

0 [Iy 1] =

iTz [Jy) IIIZ ]

AT, [Ty, Tl =

rotations and hence is
(1.8) give

= V2 [Jo, T3]
= Vel [, T
] = 0 [3o> T4 ]
. %(TX-iTyh T

commutator relations

0 [3,, T,]1 = 0
i, [J,, Tx] = il
AT, [J,. Tyl = il

a scalar.

= Ti (1.9)
=‘ 0
= -Ti,
1
o = TZ &
)
v (1.10)
X L4

It is immediately seen that (Ty, Ty, TZ) defined this way is just the T
type of vector defined in TAS.* Since J, L, and S are all T type vectors

with respect to J, the following type of combinations of components of J,

L, and S 1 1
Lyp = +*?J'§(thiLy) = ?—2Li 5 Ly o= L, (1.11)
are examples of first rank irreducible tensors.
In general, let us define
P by \1/2 a
Cpm(T) = Ql+l) ¥, (r)
(1.12)
m+ |m L :
( > ) (2- )! /é [ml imé
= (-1) (G ln])! P, (cos ) -
and remember
o JE
I - Cpn(8,0) = [(2+ m)(f tm+1)] Cy, mtl (e,9)
Ly sz(6,¢) = mclm(e;d)) s

*See References.



regarding then Cgm(f) as an operator and noting that both L and L, are first

order linear differential operators, we obtain immediately

(% m)(rtn )12 ¢, an(d)

Ly, CpplT)]

which shows that Cgy(?) (m = -4,..., +£) is an f-th rank irreducible tensor

operator with respect to orbital angular momentum L, which are sometimes

called "spherical tensors," For example,
11
C = - —_— - (x + i
11 JE - ( y)
1
ClO = — 2 (1-15)

Ciz = (x - iy)

B

Syl

and r = (x,y,z) is an T type vector with respect to L.

1.2 TENSOR-PRODUCT AND SCALAR PRODUCT OF TWO TENSORS
There is a general method of constructing irreducible tensors of higher
(lower) ranks from two irreducible tensors analogous to the vector-coupling

k;
method. Iet the two tensors be qu(Al) and Tzi(A2> where A; and Ao indicate
1

that the two tensors do not necessarily act on the same part of the system.
Then | . K . . .
T (A1) x T 2(A2) o= }:T Y(Ay) T 2(A1) T 2(A2) < kigikego [KQ >

g1 OF= o=

Q
qi10=2 (1.14)

k k .
. z To(he) Tg7 ) (Ae) < kaarkeQ-au[KQ >

i

where < qulkgqglKQ > 1is the wvector-coupling coefficient and vanishes unless
k1 - ko| < K< k1 + ko, (this condition will be denoted as A(kikoK) hereafter),

and Q = q1 + g2. Thus from two tensors of rank k; and ko, we can build up



irreducible tensors of rank ranging from |k; - ko| to k; + ko.

In a particular

case, when k; = ko = k, it is possible to have K = O = Q corresponding to con-

traction of tensors, i.e.

(0]
(A1) x TE(Ag)

ZTE(Al) Tlfq(A2)< kqkg [00 >

© q

q

since < kgkq|00> = (—l)k-q (2k +1) 772,

let us define the scalar product of tensors Tg(Al) and Tg(Ag) as

™(a;)

k

: (e}
« T (As) = (-1)k(2k +1)1/2 Tk(Al) p'e Tk(Ag% = Z(-l)qu(A
(0]
o}

Examples of tensor product and scalar product:

A.

Consider the spin-orbit interaction energy AL * S.

From Eq. (1.11)
1

LX = \—/-—— (L-l - L+l)3 Ly = \/E (L-l + L+1)3 L, = Lo

2

similarly for Sy, Sy, and 5,. We have then
AS*L = N-81 L_y -S_; Ly + 85 Lg)

A Z(-l)q Sq Lg
q

which is the scalar prodﬁct of SH and L,.

Consider the nuclear-electron dipole-dipole interaction

3(8 - R
E-—=

(-1) (e + 1) 72 Z(-l)%ﬁ(Al)Tlf

)T

(A2)
q

k
-q

(1.15)

(a2) -

(1.16)

where IH is a rank one tensor; therefore the expression in the bracket

must be a rank one tensor too. We can construct it from a rank one



“1.3

tensor S|, and rank two tensor C$2)(§), i.e.

1 N (2) . ,
X (Q) = zx}qu CQ_q(r) <lg2Qq-qlig>
q— ’
3(S.r)r
~q

by evaluating the‘Z—component (Q = 0) of both sides, one can determine

the constant A to be JEB: Therefore

-aj{:(-l)“ I, X

I
-a,v7ﬂ5§g1(-1)“ 1,54 2)

2
) -H-q
MyQ

Hne

. (1.17)
(r) < 1g2-p-q1 p >

€

C. Another important example of the scalar product is given by the addition

theorem of spherical hammonics, which says

4
b o\ m
Py(cos 6.,) = Z (-1 v, (6,6) Yyx(e,02)
) 12 57 + 1 '\~ I\ o
m=-{
in terms of Cypy, we have
4
PI(COS 612) = Ez (-1)™ Cgm(ei¢i)cgm(92¢2) (1.18)
m=-4

which is just the scalar product of Cyp(1) and Cpy(2) .

DOUBLE TENSORS (TWO-SIDED TENSORS) (See Wigner, p. 273)

When an operator in the Hamiltonian is made up of a sum of one-electron

operators, each of which is the product of operators acting on spin part and

orbital part of the wave function respectively, it is convenient to introduce

the concept of double tensor. The definition of a double tensor operator has

an intimate connection with the separability of the unitary operator Or into

the spin part and the space part. In Pauli's theory of electron spin, the one

10



electron wave function is assumed to be a product of a space part and a spin part.
Consequently, it is possible to split OR into product of two unitary and mutually
commuting operators PR and QR acting on orbital part and spin part of the wave

function respectively (Wigner, section 20), namely

O = PRAR = GRPR (1.19)
and —
PR |oSMgIVy, > = ‘24 |osMgIM} > D}(,[i)ML(R) (1.20)
L
O (s)
ag lostgny, > = Z lasgnrg, > By, 1 (R) (1.21)

=

(See Appendix A).
With this understanding, we can define a double tensor TP yhich is of degree
q with regard to Qg and of degree p with regard to Pg and irreducible with re-

gard to each of them, i.e.

. % (q)
g T R = ZT%?H Dyiy (R) (1.22)
-V'
p_pdP p=1 ' 9P D(p> (R) (1.23)
RV R _ZW' b'u . &
0

With respect to O, the TP i5 not irreducible but transforms according to the

() .z p®)

direct product of D and D

@t Y gar Y
Og Tvu 0 = Z Tv,“, DV,V(R) D '(R) (1.24)

V'}J.'
However, one can form a linear combination of Tgﬁ using vector-coupling coeffi-

K
cient to get an irreducible tensor TQ analogous to the tensor product mentioned

in Section 1.2 (Wigner, p. 284), namely

K i
Ty = Z T%E<qvpp|KQ> o (1.25)

VyH

11



It is evident that the simplest example of T%E is just the product T%(s)TE(z).

A more familiar one is the spin-orbit coupling energy‘of n equivalent elec-

trons:

n n

1) 8 - 45) = 1)) (8, (0,(0)

i=1 i:JlV

= t) (1) s (1.26)
where
T, Sy(1)8_,(1)
is]

i
L\/_l;j
c-’.
<
<}~
.
*

1.4 WIGNER-ECKART THEOREM (See Appendix B)
The first simplification in calculation of matrix elements of tensor opera-
tors comes from application of the well-known theorem (Edmonds, p. 75) which

states that if':

(7)

(1) state |adM > rotates irredicibly according to D

(1)

(2) state ]a'J{M' > rotates irredicibly according to D

(k)

k
(3) Tq rotates irreducibly according to D

: k
then the matrix element of Tq between the two states can be separated into product

of two factors: a vector-coupling coefficient which specifies the angular de-
pendence (M, g and M') of the matrix element, and a reduced matrix which depends

on the magnitude of J, J', k and the physical nature of the operator Tg, namely

*¥It is easy to see that when & one-electron operator tk(i) is an irreducible
tensor of rank k, the sum of such operators over any finite number of electrons
is also an irredicuble tensor of the same rank. The similar thing holds for one
electron double tensors.

12



where

< oJM I Tk I a'JM' > = < J'M'k |JM >@_|l.ﬂw (l 27)
q = q (27 + 1)1 2 .
J-M [T k J'
= (-1) <ﬁ . M,)(aJ||Tk|la'J') (1.28)

(see Appendix B)

-J+M

(Q k J'> _ < J'M'kg|IM > (1)

MqM/) (27 +1)/2

is the symmetrized V-C coefficient or the 3-j symbol of Wigner.

The following points about the theorem should be noted:

A.

O denotes all the necessary quantum number besides J and M to specify
completely the state. It can be, for example, the principal quantum
number, L, S, parity and seniority number. ’
The selection rules are built in the V-C coefficient, i.e., the matrix
element is zero unless A(JkJ') and M = q + M' and the parities satisfy
the relation Ty Ty Tp = 1.

The reduced (or double bar) matrix element is not a matrix element in
the real sense. It is essentially defined by Eq. (1.27) or Eq. (1.28);
the symbol in it merely indicates the dependence of its value on them.
When Tg does not act on the spin (or space) part of the wave function,

k

-1
that is, when [Qg, Tg] = [QR s Tq] = 0 , we have

k -1 k -1 p-1 k -1 k (k)
OR Tq O = PR Ty QR P = PRTg PR = Ty Dgig (1.29)
ql

that is, we have wave functions in the SE, L2, Sz’ L, representation
which rotate irreducibly with respect to PR and QR separately,
Pr |oSMgIMp > = loSMaIM! > (L) (R) (1.30)
R [0SMgIM, > = st > Dy :
M'y,

15



, (8)
Qg loSMgIMy > = Z |osMo Iy, > DMS,MS(R) (1.31)

MS
and we have the W-E theorem for T§(2) which act on space part only,

k T
< osvgniy, | Ty(2) | 'S ML'M >

L-M L kL' k 1
= (1) 7F (B-;E am (0SL|[T™(2) fl SL') Bgg1BMgMd (1.32)

(notice that the reduced matric element
is Mg and Md independent)

and similarly for Tz(l) we have
k i
< OSMaIM (1) |a'S'MAL'M' >

Mg [S_ k8
- (=) <M“g 9 Ms'> (081 || (1) Jo's L) rp M . (1.33)

E. Equation (1.27) shows that for two tensors of the same rank k, their

matrix elements between states of same QJ are proportional:*

<a1ML|T§(2)]a1Mi > (az|T(2) o)
< omig [uX(2) omat > (oL[lu*(2) [lox.)

(for nonvenishing denominators)

1, g = u(p =0, 1, -1).

the special case is when k

Tl-]l = I‘Clu(f)
Up = Ly
then
IS oLl|lrC1 [laL
< OIMp, |rCyp(T) |O¢I_Mi > = EO&L - ;L) ) < ocIMLlLuloﬂ.Mi > ,

*Note: It is necessary that (oL|LllL) %0, but (oLfLfor') = 0 for L FL'.

1k



From Eq. (1.11) and (1.13) this becomes

1l . (aLllrCy |lor.) - 1

< OIMy | * == + D> < oMy | ¥ = :
Ll T b ket > = Gy < ol T (e sty ey >
(aL rCl“ozL)

< QIMLI Z IGI.MI: > (CXLHLHGL)

< oIMy, Ly jozvy >

Thus

< oMy | x | oLy > B < oMy Ly ol >

<omy |y | omg > = B < oLy |Lyfomhy, >

<oamp| z | oMy > = B < alMy L, oy > (1.34)

where B = (QL[rCy ol.) which is constant for a fixed 25*1 L term. Equation (1.34)
(oL[Lfloz)

is sometimes called the operator equivalence by the spin resonance worker, which
says that in calculating the matrix element of x, y, z and their powers between
states of a fixed st L term (usually the ground terms of the paramagnetic ion)
one can replace them by the corresponding powers of the angular momentum operators,
provided that one pays proper attention to the non-commuting property of angular

momentum operators. (See Bleaney and Stevens ).

1.5 MATRIX ELEMENTS OF SPIN~FREE OPERATORS Tg(?)

¢ m5(2), 6g] = [Th(2), 1 = O
wd Koo\ -1 K K (k)
- -1
0gTq(2)0R™ = PRT(2)Pg™" = ZTQ,Dq'q(R) '

ql

A 2 2 .
. In87, L, SZ, L, representation.
a2)] = 0 = I8, T

. - 2)] there are no non-diagonal matrix

Since [82, T
elements with respect to S° and S,+ So by Eq. (1.32) the W-E theorem

< aSMSLML|T§(2) s gL M >

= Bas dugyg (-1)"7T (ik L‘)(aSLnTkna's'm . (1.32)

M1, q M
15



The fact that the reduced matrix element is independent of Mg is shown
in Appendix B.
B. In 82, 17, J%, J, representation.
< aSLIM | Ti(e) | 's'LTM >
= Bggr < OSLIM | Tl(;(z) | a'stmiam >

since

OR |oSLaM > = Z |aSTaM ! >DB§I‘?&(R)

Ml
By the W-E theorem Eq. (1.28)

<osLM | Tg(2) | a's'Tiam >

(1.35)

J k J' k ! 1 ! !
Baq (ﬁ . M,> (osLI|r™(2) flers L' g ) (-1)J-M

In (Edmonds, 7.1.8), it is shown that the reduced matrix in Eq. (1.35)
is related to that of Eq. (1.32) by

(oSLI|T*(2) fa'sLa )

= V(23+1)(27'+1) W (JSKL';L3") (oSL|T™(2) [o'sT.") (1.36)
\ JLS |
= (<) om0 ) S g x (_aSLIITk(z)Ha'SL'}
(1.37)

JLS
where L' J'k is the 6-j symbol of Wigner which is related to the

Racah coefficient by

TLS | _ o JHHTHL .
{} PN (-1) W(JLI'L' 5 Sk) (1.38)

(See Appendix C).
Equations (1.32), (1.35), and (1.37) show that the evaluation of matrix
elements of a spin-free operator in both 2, 1%, §,, L, and S?, 12, 3%, J,
representations are reduced to the évaluation of single reduced matrix element

(oSL[T¥(2) Ja'sL).

16



Similarly, when Tg(l) is space-free, the analogous equation to Equ. (1.37)

is K
(oSLI|IT (1) oe's LI ")

- <-1)J'+S+L+kf(2J+1)(2J'+1){§;{I§,§(06LIITK(1)ila'S'L> (1.39)

-

1.6 MATRIX ELEMENTS OF TENSOR PRODUCT OF TWO COMMUTING TENSORS

k }ﬁ k, Ko ‘
™ = ) T"1 T % < kjqikeqo [K4 > (1.14)
Q /,7d1 Qe Q
and
k k
Tt 1] =0, [T2,8] =0
qi” - qa2" —
(1.40)
ki o1 LS ki (ki)
T 0 = QT T R
OrTq,°R RTq, % Qi qiql( )
a1
ko _(k
oRTkaoR"l = PRTksz"l = z T2 D(,?)(R)
2 dz , de %el2
as
Og |oSLIM > = losT.aM > L) (R)
RI™ Dy .
Ml
2 2
InS , L, J2, JZ representation, the W-E theorem gives
< oSLIM | Tg ot 'SILIT M >
- ()M @L@i.) (o8I o's 111 ") (1.27)

On the other hand (Edmonds, 7.1.5) shows that

< aSLIM | Tg | a's'L g >

| SLJ
(-1)? ™M (1%};;,)\/(2K+1)(2J+1)(2J'+1) ST (ozSLHTlek?Ha's'L') (1.41)
kakok)

where the last factor is the 9-j symbol of Wigner. (see Appepdix C). Comparison

of Eq. (1.27) and (1.41) shows that

[sLo
(ocSLJHTkat'S'L'J') = N (2k+1)(2J+1)(23'+1)§S'L'J"
klkgK“
x  (osLr*e s L) (1.42)

17



where k K
(eSLlTFrT*e o 1) = Z (@S s ) (@ f2ernt) . (1.43)

1

a

1.7 MATRIX ELEMENTS OF SCALAR PRODUCT OF TWO COMMUTING TENSORS

In Eq. (1.27) of the last section, if we put K =0 = Q, k; = ko = k,

JM / '
()M god

< oSIM|T a's'LIIm > =
o \M 0 M

> (oSLI|Tfla's L1 )

But from Eq. (1.15)

To = (-1)%(2k41) l/z}ﬂ1 -1) qu
q

and further [from Appendix C (C-7)]

JoJ J-M “1/o
< = (-1 (2J+1) 817118 . 1.4k
(M 5 M'> (-1) JJ MM (1.44)
Therefore
< aSLIM| > 2) |a's'L g™ >

-1f2

= (-1)‘k(2k+1)1/2(2J+1) 8778y (OSLI TS L ar)  (1.45)

Now from Eq. (1.42),

(oSLI|T°|la's 'L T) = (ocSLHTthHa'S'L') X
fSLJ AL
(23+1) ys'1'g}
kkO J
where
(éLJ (_l)J+L+S +k (éLJ W o
\S'LYIy = L'S'k .
kao J(2J+1)<gk+1)l j
[Appendix C (Eq. C-19)]
Therefore

(oSLI|IT°|lec'S 'L T)
J+L+S '+k 1 -1/ 'éLJ 1
= (-1) (2d+1) /2(2k+1) /2 L'S'k|

x  (oSLlr*Tfors L) . (1.457)
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Substituting Eq. (1.47) into Eq. (1.45), we get finally:

K
< oSLIM|T(1) -+ TN(2) |a's LT M! >

J+L+S!' |SLJ

k k 1 171
Sl (LT (1) - (@) fars L) (1.48)

aJJISMMt(-l)

sty K , K
8578y (-1)7 L'S'I}E (e8|t (1) fe"s ) @"L|T (2) la'L') -
a_”

Equation (1.48) is the matrix element of two commuting operators in the §° I2,
J2, J, representation. It reduces to the same type of reduced matrix element

appeared in (1.43). The matrix is diagonal in J° and J, because it is a tensor

of rank zero, scalar.

1.8 MATRIX ELEMENTS OF DOUBLE TENSORS

2

A, In 82, L, S5, L, representation.

By the definition of a double tensor operator in Section 1.3, together

with the W-E theorem in the form as in Section 1.4, D, we easily see that

< ocSMSIML]T%E| Q'S ML'M! >

- L'
(-1)" M G%L i ML’) (osMgL 1% lor's gL )

Mg [S a8
(-1 (MSV Msv> (o [1%° s 1.1y '

Hence
< OSMgIMy | T%E | arsimgLmy >

) (_l)S'MS+L‘ML <% q S') <E p L'> QJSLHqu“a'S'L')_ (1.49)

M! M!
MSVS ML}J.L

B. In SZ, L2, J, J, representation.

As we have mentioned in Section 1,3, we can construct an irreducible

‘ K
tensor TQ by (1.25)
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K _ ap > v
Ty = }: Ton < aved | KQ (1.25)

Therefore by W-E theorem

<oSLM | Tg | a's'Lam >

J-M/J K J' K
(-1) (MQM'> (aSLI|T |le's' 113 ")
analogous to Eq. (1.42), (see Trees, 1951)
(aSLI|IS o5 113 1)
SLJ
= V(2k1)(23+1) (23'+1) s 8'L' 3 (osL T s ') (1.50)
Pk

Here we have a reduced matrix element (aSLHquHa'S'L') instead of
ki ko .

(oSL|IT T 2(2)e'S'L') as in Eq. (1.Lk2).

In fact the latter is the special case of the former, as was mentioned

in the last paragraph of Section 1.3. Also analogous to Eq. (1.48), we

have H
<ocSLJM|Z pp | a'S'LIIM >

rvg [s1.0
- () {L‘S } (SLIT®Pla's 'L )8y by - (1.51)

Thus in all cases we have shown that the evaluation of matrices reduces
to the evaluation of two types of reduced matrix elements, namely

(LI oS 1) and (aSL|T?P|j's L"),
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PART IT

2.1 EVALUATION OF THE REDUCED MATRIX EIEMENT (oSL|T®"|a's'L') and (aSLHTkHa'S'L')

In Part I, we have reduced the problem of evaluation of matrix elements of':
(1) spin-free (or space-free) tensor operators; (2) tensor product and scalar
product of two commuting tensors; and (3) double tensors between wave functions
of equivalent electrons in both LSJM and LSMIMg representation to essehtially
the problem of evaluating two types of reduced matrix elements written above.
In this section, our task is to reduce them further into one-electron integrals
using Racah's method of constructing wave functions for equivalent electrons.

It is shown in Racah's paper (Racah III) that the vector-coupling formula
does not lead to antisymmetric wave functions for equivalent electrons. How-
ever, suitable linear combinations of wvector-coupled eigenfunctions would pro-
duce desired antisymmetric eigenfunctions. Racah called the coefficients of
linear combination "coefficients of fractional parentage."

Suppose we know an antisymmetric eigenfunction for the et configuration:
|ln"l alslMlelMLl > . We want to get an eigenfunction for configuration
ln:IanSMsLML > by adding one electron Ip. Therefqre use the vector-coupling
formula:

I/ln'l(allel)/znocsL >2 |27 08 1Mg, LaMy ;> s s, > [Blumg, > x

< SiMg symg ) | SMg > < LaMp, gmyg | M > (2.1)

However Eq. (2.1) is not antisymmetric with respect to the interchange of

nth electron with the rest of n-1 electrons. In order to get an antisymmetric
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th

eigenfunction including the n™* electron, a further linear combination of Eq.

(2.1) using coefficient of fractional parentage has to be used, namely:

| LPosM Iy, > = z |77

15,13

018111 ) £,08L > < zn"l(allel)zaSLl}znocSL >, (2.2)

The fractional parentage coefficient < ln'l(alSlLl)/laSL& £°0SL > in which the
parent term is indicated by bracket, is tabulated in Racah III for p™ and ar
configurations.
Now using Eq. (2.1) and (2.2), let us calculate the matrix element
= n ap n
I = < FosMglMp| T | #%'s gLy > (2.3)

in which Tn%ﬁ is made up of one electron operator:
n

p P th—p(i) . (2.4)

yp v
i=1

Since electrons are equivalent, the matrix element of every term in Eq. (2.4)

is equal, i.e. n
I = Z < znOLSMsIMLIt%ﬁ(i)|£noc'S’Ms'L'MIL >
i=]1
n
= n<4 OzSMSIML|t%E(n) |zna|s:MéLi > .

Here we purposely retain the nth term in the sum.

Now substituting Eq. (2.2) for the wave functions, we have

I = nz < ,enOéSLﬂ.en-l(allel)ﬂaSL >
Q15111
QoSalo

< ,en-l(O!lSlLl )lantSL |‘t%‘8(n) ,gn'l(agssz)znalS ILI >

x < zn*l(agsng)za's'L'l}zna's'L' >
Again using Eq. (2.1) and notice
< 2% 8,Ms, | zn-l%SZMS2> = 8010285, 5,5, Msp (2.5)
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- -1
< APopLoMy, |87 oelaMy > = 8030281 10Ny Mr, (2.6)

we obtain

I = nz< £osL {Ezn'l(allel)ﬂaSL > < g2 (08111 )4Q'S 'L [}zna's'L* >

Q15111

g ap,. '

X Z< SMg ISlMSlSn‘msn >< LMLlLlMLlEnmgn >< Bsnmsnﬂnmznltv“(ﬂ) |55nmsnf'nmkn>
Mg ML,
it
MenMsn
m m 1 ' 1

Dy < gMg sgmg [S'MY > < LaMp gem) [LUMY > (2.7)

From now on we can drop the subscript n for the n-th electron and write (fol-

lowing Slater, II, p. 156)

a(ﬂnaSL;OtlSlLl) = < ﬂnCﬁL ﬁzn'l(allel)mSL > ° (208)

Further, for the one electron integral, we can use the W-E theorem in the form

of Eq. (1.49), i.e.,

S-m -m ,
< pomgtmy [t8P |psmimy > = (1) oHETA(s a8\ (A D LN (8ss][t8P|lpss)
S wE mgvmd | \mg Mg

(Bs4[t?P|Bs£)

< smiqv |smg > < fmypu|dmy >

V(2s+1)(24+1)
Therefore Eq. (2.7) becomes
qap
I = ni o (FPoSL; 0,811 Ja( £Pa'S 'L 8Ly ) (B2l [Bst)
V(Zs+1)(24+1)

@151L1

Z,‘ < 81Ms Sl |SMg > < smiqv [smg> < SiMg_ sm] |s'Ml >

Mg, MLy
i g
g
m,m) < LlMlemﬂLML > < zm/'zppumﬂ > < LlMleMle'Mi > (2.9)

The last summation in Eq. (2.9) can be done using the formula for product of

three V-C coefficients [Appendix C(Eq. C.13)].

23



1
§;< JimpJemo [Jiomp > < Jismipjsms | m > < Jomo Jamg | Joames >

nmp

Mo \ . .

meg = V2j12+1) (2J2a+1) W(J1i2ddssdradia) < Jamijzsm-my[jm >
(2.10)

and get
1 ! 1 V‘
< SlMSlsmSISMS >< smsqv}smS > < S1Mg, smg | s Mg > x
1
Mg, mgmg ML, MMy

< LMy, fmg 1M, > < zml‘apulﬂmz > < LiMp My [L'M] >

+ '+
= (-1 S487+5, J(2s+1)(28'+1) W(SsS's;S19) < S'Mlqv[SMg >

x (-1)PHE T (24 (21 7+1) W(LLL' £5L0p) < L'M{puIMp > °
(2.11)

Substituting back to Eq. (2.9), we finally obtain

I=n (2S'+]_)(2L'+J)> a(znocSL;ocllel)a(znoc'S'L';allel)(Bsz;ﬂtqpl]@s!)
voerd
o151,

(_l)q+s+S'+Slw(

(-0)P (L g10p) < Lpulmey, > - (2.12)

SsS's;S1q) < S'Miqv[SMg >

While from Eq. (1.49) we have another expression for I, i.e.
(osL[T#Plla's ‘L")
V(28+1)(2L+1)

(1.49)

I = <S'Miqv[sMg > < L'Mpu|liy, >

Hence the comparison of Eq. (2.12) and (1.49) gives the reduced matrix element

(osLIrPllos L) as

(aSLHT(rllp“oz'S'L’) = nv(28+1)(28'+1)(2L+1) (2L +1) (B%.zlltqp”%z)

L
Q+=+3'+S pHi+L'+L;
X za(EgﬁL;allel)a(Z&'S'L’;allel)(-l) 2 Y1)

allel 1..1

w(s§'§;slq)w(LzL.'z;Llp) . (2.13)

ap

Since the special case of T, when q = 0, p = k is

n
Tnk = Ztk(i) . (2.14)



We easily get the reduced matrix element for this spin-free (or space-free)

operator by the same procedure:

(oﬁLllTﬁ(e)llafs'L') = 8ggn v (2L+1)(2L'+1)

_ '
x> (-1 moar 080T )a (40 S 'L 50e ST )

Q15111 (2'15)
W(LAL' £;10k) (B2]£5(2) ps)

and

(aSLHTE(l)“Oé'S'L’) = 81 nV(25+1)(28+1)

N k45145, 0
x Z(—l) 2 a(£"08L;0181L1 )a( £ 'S 'L ;00811 )
Q15111
1,1 10K o\ pal
W(s3s '558k) (B3l (1) 65 ) (2.16)

Equations (2.13), (2.15) and (2.16) formally contain the final results we obtain
for the task we set forth in this section. The one-electron reduced matrix ele-
ments in them can be evaluated by an ordinary method. It depends, of course, on
the specific nature of the operator.

For the convenience of numerical tabulafion, Racah (II,III) defined the so-
called unit double tensor operator V9P and the unit tensor operator U(k). As
can be seen from Eq. (2.1%) and (2.15), if we divide through both sides by the

respective one-electron reduced matrices, we obtain:

. T3P . QHDHEHIAS 4L
(£°08L|| ———5—— ll£°'s'T") = nV(28+1)(28'+1)(2L+1)(2L'+1)(-1)
(ext s [EL)
TS
xZ(-l) * la(/&nosL;allel)a(zna's'L';allel)
Q19111
11 .
x W(858'3;81q W(LAL' 43 11p) (2.13)
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(4PasL e
oSt CIE@IRD I
= g nv (A (eLa) (1)

Lo (4P08L;018101 )a (470 S L jan8, Ly JW(LAL £310k) . (2.15")

Q15811

Notice that the right hand sides of the formulas do not contain the specific
nature of operators T%P and Ték)(z) but only depend on their rank and the con-
figuration zn‘ Therefore one can tabulate the value of them for various n, q,

p and k thus define:

q . 'qb:

‘ ) ‘_'V (2.13a)
(85211 % ez ’
and (k)
Ty (2) su(k)(ea) . (2.15a)

k
(BLlt™(2)I#)
We list some values for the one-electron reduced matrices below for the

latter references (Edmonds, p. 76):

(B2llellee) = N o(s+1)(24+1) (2.15b)
(Hley) - £ (2.160)
(ealc™pe) LDWMH)€§£> : (2.15¢)

2.2 RECURSION FORMULA

So far our consideration has been confined to operators of the form

, Tﬁ = ;g:tk(i) and qu }: qp(i . But whenvwe have the tensor

s i=1
interaction the operator of which contains,coordinate of two electrons such as
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the.spin-spin interaction or the electrostatic interaction, then evaluation of
the general formulas for the reduced matrix element becomes very complicated.

In this case, it is perhaps more convenient to use the recursion formula by which
we derive all the matrix elements of d™ configurations starting from the knowl-
edge of a@ configuration.

Our tensor operator is of the form:
n

P - thp(ij) (2.17)
i>
I = < sMosugvg [1° | £Mors gn ) >
Since all the electrons are equivalent, each term in Eq. (2.17) contributes
the equal amount to the matrix element. If we now remove one electron, the value
of the matrix element will become ﬁlag)ﬁitmmasthe original one (since there is
?lﬁn(n-l) terms in Eq. (2.17), therefore

2

n ap | n
I = K TSIV, IM! >
PRosMgIMy [T 7 4708 ML M)

n-2 S

We substitute Eq. (2.2) for the wave function on both sides and get

: n
I = E%E a(£4%8L;018111 )a(£ a'S'L ;0282L12)

alglil < 4P (38110 ) 4SL|TRE L [ 47 (0Sele ) fnS 'L > -
Qovolo ; (5.18)

Then use Eq. (2.1) to get the explicit dependence of wave functions on the
n-th (removed) electron to evaluate the matrix element in Eq. (2.18), and re-

member Eq. (2.11), and Eq. (2.13), ve get
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(osL |t " s L)
n

v

1
L+S=-f-=+p+
= (-1) I-5tpra —I-IE [(28+1)(2L+1)(25'+1)(2L'+1) ] x .
n_
Lot+S2
}:(—l) a(4%8L 18111 )a(£f's 'L ;02821 ) x
015111
ClgSng

- -1 ' 1
< P78y Ln 19 (167 MapSale > W(818828'55 a)W(IallaL';4p)

2.3 MATRIX EIEMENTS OF EIECTROSTATIC INTERACTION

The operator under consideration is:

He,g = ”rij . (2.20)

1>

It is evident that

Ogp Be.s. OR~ = Ho g, ' (2.21)
Therefore both in SLJIM and SMgIMj representations He g, is diagonal. However,
if the state is not completely characterized by the angular momentum quantuﬁ
numbers only, it can have a non-diagonal element between other qu;ntum numbers

(1ike @). Since
< a"oSLaM|H,  [d%o'sLaM >

- Z< SMgTMy, | M > < aPaSMgIMy |Hy o, |a 0 SMYIMY > < SMLM{ |aM >

MgMr,

tM! o
MSML (2.22)

Consider n 0
1 1 1
< d aSMgIMy |He g, |d o' SMIIMY >

Equation (2.21) shows that He g, is scalar with respect to Qg and PR respectively.

Therefore we have by W-E theorem
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< Q"oSMgIMy |Be g, [d"a SMATI >

S-Mg /s 08 . «
(-1)°7% (Ms—o Mé)(dnasIMLll‘He.S_lldna'SLMi)

- (est1)"M2 Mg (a%os1My (B, g lla"0 sy )

and LM, /L 0L
= ()TE (= (a"0SMgL[He .. a"0 SMYL)
M7, O M]'_,v
2w (@P0sMGLIE, g [l L)
= (2L+1) My, (4 0SMgL|Hg g, [ld 0r'SMY
or 1
< aoSMgIMy |Hg . |dnoz'SMS"IM£ > = [(es+1)(21+1)] / 25MsMs'5MLMIL
: (2.23)
x (a"oSL[E, o la%'sL)
Substituting Bq. (2.23) into Eq. (2.22)
< d"oSLM|E, g, |d"a'SLoM >
-1
= Z< SMgIMy, |JM > < SMoIMp |JM > [(28+1)(2L+1)] /2(dno¢SLHHe.s.|ldna'SL)
MaM -1 2, n i
S _ [(ese1)(er+1)]T (d oSl g [la"orsL) (2.2k)

Equations (2.23) and (2.24) show that the term values in both LSJM and IMpSMg
representations are exactly the same. This is just the familiar result that
the term values are characterized only by S and L values and & which, in the
case of dn configuration, is just the "seniérity number" v (see Racad III).

It is quite easy to see\that the operator Hy g, is a particular case of
the operator considered in Section 2.2. Therefore, the value of matrix elements
for A" configurations in general can be obtainea from the recursion formula
(2.18). 1In this speéial case, the same procedure as used in deriving (2.18)

yields
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< a"0SMgIMy e 5. [a%a'SMgIMy, > = < dPoSLOM|He g, [d%a’SLOM >
= [(gs+1)(2L+l)]_l/g(dnoSLHHg.S.Hdnoz'SL)

n ' . n-1 -1,
= ng a(dnaSL;allel)a(dna'SL;aiSlLl) < gt la181L1|He,S,|dn 1allel >
: ‘ 2.
N (2.25)
S]_Ll

2
Since the < dZQSL| — |d2aSL > can be calculated by an ordinary method
T2

and the result is well known (Racah III):

TABLE I

'S'L! lS 3 1 3 1
h g 2P 5D SF 2G

'3 A+14B+T7C
2P L mTB |
2D A-3B+2C

3 A-8B
L A+4B+2C

Table I, together with Eq. (2.25) can be used to obtain all the matrix ele-
ments of d% configurations. Constants A, B, and C in the table, called Racah's

parameters, are related to the Slater integral by

4
A = F, - boF, = F°-1-?-9-
B o= Fp-SF = g (9FF-5FY) (2.26)
C = B = ‘65—55'4

It should be noted that in Table I the coefficients of A in every matrix

element are the same. Therefore, in discussing the relative term values (as in
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the cagse of optical absorption spectra) only two parameters, B and C, need be
considered. Further, the recursion formula (2.25) shows also that the relative
term values in all 4" configurations can be characterized by two parameters,

B and C. alone.

2.4 MATRIX ELEMENTS OF CRYSTALLINE FIELD POTENTIAL

The crystalline field potential can be expressed as
n
Voor., = zzcquk Yieq (€5 %5 ) (2.27)
i=1 k '

For the d-electron in the crystalliné field of one of the 32-point groups,

k < k4 and actually k can take two values, 2 and 4 only. Therefore, our basic

matrix element is n x 0
< d%asLIM Crar ¥, (8101)]d a'S'L'I™M > and
kg™ “kq T

i=1

n
n k n 1QIMIT M ! 8
< d osMgIMy, | ) Cgqr Yy, (83¢1) |a s Mg M > (2.28)

1=1

If we notice K
g tq(2) (acts on space part of wave
function only)

n
Then (k)

Z cqukykq(eicbi) = an (2) = z tiq(e) (2.29)
i=1 i=1

We have shown in Part I that both matrix elements in (2.28) can be reduced
to the problem of evaluating one-reduced matrix element.
(dnozSLHTr(lk) (2)]ld"'s L")
and we further showed that this reduced matrix element is given by Eq. (2.15),

i.e.
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(d%SLHTfl(z)lldna's'L') = 8gqr N (2L41)(2L'41) x

Nkl : “
Z(-l-)k A Lla(anéSL;Otllel)a(ané'S'L'}OC]_S]_L]_) X
15111

w(LzL'z;le)(leltk(z)HB/z) © (2.15)
The summation over 315:L1 is extended to all common parent terms for terms
oSL and ¢'S'L’
Now our problem is to evaluate the one-glectron matrix element

(82]e%(2) [Bs) .

k k
tq(2) = Cygr Yigq
(B2ls5]l8) = (Blleygr™lIB) (2l¥igg 12) ' (2.30)
But
; [2KFL ()
(ellrlle) = (-1)7\ 5~ (24+1) (O 0 O> (2.31)
[see (2.15¢) and (1.12)]
(B.“qur“B) = qu < I'k >5d ’
We have .
2k £
(B4l6 l82) = Ckq < o >5d(-1)ﬂ Eﬁl (g/g+1)<o 0 o) , (2.32)
For example, for k = 4, £ =2
4)0, SUC
(pelic*)p2) = Cap < r* A T ¥ . (2.3)
where Dg = Ca0 ihf}ﬁ? 24 is the cubic crystalline field parameter.

We have from (2.15')

(dnaSLHUIEf)(Q)Hdnoc’S'L’ )

= Bgqr n |(2L+1)(2L'+1) Za(dnozSL;allel)a(dna'S'L',alle) X

15111
L|+Ll (2°5L|')

(-1) W(LeL'2;Lik)
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(¢) (4) ,
u, ‘(@) = Z u; ' (2) (2.34")
i=1
(4)
(4) t (2) . . 1" .
and Ui (2) = - ‘ . This is called the "one-electron unit tensor
(eells () (2) [s2)
n . (4) -
operator" by Racah (Racah III), since (B2[U; "(2)[p2) = 1.

For the actual calculation of the matrix elements crystalline field potential,
it is convenient to tabulate Eq. (2.34) for k = 2; L and n=2, 3, 4, 5. We have
done this for n =2, 5, k = 2, 4.* The table for n = 2, 5-and k=2 is taken
from Slater II. |

As an actual application of this method in the crystalline field calcula-
tions and the usage of the table for (dnaSLHUik)(Q)”dnd'S’L') in Appendix D,
let us calculate, for example, the matrix element:

I = < a6 Ty, Vo p, [8%F9T,, >
with 5

) Caor* [fa (1) + A2 (Taa (1) + g (1)]
i=1

<

Q

Fj
1

= Tg + 4|2 (5 + T%)

14

We have (Griffith, Appendix)
1 5 5 -
IdS%G4r4l>=\J=2 lds=§, Ms,L =L, M =k > |d,5 =§, MS,L=u,ML=u>}

= q%g (044 - 047)

8%4F4 G, > = [a%s = g,Ms L=3,M=0> = b

Therefore

*See Appendix D.
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L
< &>*6* Ve g, [ a > = 53(%4"%ZWCJ.Wmﬂ

(¢44IT§|4>30) = (047 |T8[0a0) = (¢44|TZ|¢30) = (047|T%[030) = 0

since M # g + M' so the V-C coefficient vanishes in the W-E theorem. Thus

I = \I% \{ﬁ- [(044 T4 |030) - (043|T% [055) ]
/L_F 54 |ma 454wy _ [+ 4 3) 554 454'
J_{(u )d Gir*{la>*F) <uuo>(d Gl fla F)j
out FNRNCY — _ (4) ».
™ = (peft*lp2)u’ ' = 3(T0Da U'(2) by Eq. (2.33)
ol () l>r) - ﬁl |
| from Appendix D.
I o N
and - <LL L O> = <h ) O> = - m (frqm Rotenberg).

Hence, _5_ T\ / )
I = -\jé'é‘ 5'\[7_0 DQ{: 2% <\E>:\3—_——W%—].T>} = 2\‘-5— ]

2.5 MATRIX EIEMENT OF THE SPIN-ORBIT INTERACTION

For the 4" configuration the Hg o, is given by

n
Hy o, = %'de s(i).4(1)

1 .
ll

W=-1

where T;;“ = Zs_u(i)ﬁu(i) as in Eq. (1.26). Therefore, from Eg. (1.51)

we have in the representation ldnoSLJM >,
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Cars'L I >

I = < d"oSLM|Es.0.

H
]

< dnaSLJMlxsdzgj(-l)u RIS
v

1}

1
855 By (1) +J{§'é'i}(dnaSLHx3dTﬁlHdna'S'L'). (2.36)

We see that Hg, o, is diagonal with respect to I and J,+ The J dependence

- +S '+
of the matrix element is given by the factor (-1)L S J{égé,i} . Especially,

for the diagonal element (L' =L, §' =S, J' =J, M' = M), we have

{é L J}(_I)S+L+J ) J(J+1) - S(8+1) - L(L+1) (2.37)

Ls1 2[8(S+1)(28+1)L(L+1) (2L+1) /2
in which the factor J(J+1) - S(8+1) - L(I+1) is just the J dependence which
gives rise to the .Lande interval.rule. The reduced matrix element

(oSL|NagTHe'S'L') is given by Eq. (3.13):

L 451+l
(a"0SL|hagThli%e's'L') = n A(25+1)(2S'+1)(2L+1)(2L'+1) (-1)7 X
5141
(1) a(d"osL;a81L)a(d% s 'L ;0081 11) % (2.13)
Q15111

x w(s% s'% ;Sll)W(LeL'Q;Lll)(B% ¢ rsatrllp % 0) .

We again notice that the factor besides (Béﬂﬂkadﬁuﬂﬁéz) is independent
of the nature of the double tensor T1! Therefore, we call it
\E§(deSIJW4mdna'S'L‘) as in Eq. (2.1%a), i.e.,

(a0SL[raaTHla%rs 1Y) = (ancSLHVllHdnoz'S'L')r\E .
1 i (2.38)
(B2 [raat(B20)
2 2
‘ n n ' 2 5 ..
The matrix (d aSLHV”ﬂd Q'S'L') is tabulated for & and d in Appendix D. We

have to evaluate
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@%MW”@M@%M; , since t%= 54

(52l og?HIELe) ElsIR) (412 (B )

But since

(Sl = BRI (2.15D)
we have
(B%z“ksdtuﬂﬁéﬂ) = "Xéd‘{g Ve(s+1)(24+1) = “Xéd,{ﬂg
(aPoSL[pogT™a s L) = g N30 (a%sL|v"ll°ers'Tt) . (2.39)
Hence, for d™ configurations
< a%SLIM|Hg o, [da's L M >

- L'+ [s 1 7l .
= Tad PO 83 B (-1) 'S'lj ("os|[ja"ars L) . (2.40)

In some cases, one is interested in the matrix element in the lanSMsLML >
representation. Using Eq. (1.49) we obtain

_ ‘
= < a%osMgIMy, [N 21 )M gty g e My >
I d"osMg LIBdZ( )“Twl S 'MgL'M}

)
;Xady (-1)" < aTosugIiy T2 [a%a's ML M) >
- -MS+L -Mp, (s 18 L'\ (a%SL a0 s 1T )
I = hag
Mg M4 MLH )
- |
-Ms+L—ML 51 s'> T 110
- 5 a% flghyrg i -
haq 30 (a"osL|fvHja"ers L) (-1 Z (Msumé e )
vl
(2.40")

using Eq. (2.39) for (d“osL|lYa"a's'L").
Both (2.40) and (2.40') show that spin-orbit interaction depends on one

parameter hag only.
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2.6 MATRIX ELEMENT OF THE SPIN-SPIN INTERACTION

H;Js - 'aarig [3(s1 - ry5)(sy » 2345) - (85 - 85) rf;] (2.41)

where aZ = e/mc, can be converted into a standard form using tensor product

analogous to example given in Eq. (1.17)
HS g = -32 {xs} {Rxﬁ} (2.42)

where -5
.2

Thus

which is the scalar product of two second rank tensors each of which contains
two indices i1j. This is the form we discussed in Section 2.2 in which we de-
rived the recursion formula.

First from Eq. (1.51), we have

< d"oSLIM|Hg g |d"a's'TIIM >

. I+s'+J S L J 22 . :
= 8558 (-1) ﬂ,s,g (a"osL|T (;J)Ildna's'L) - (1.51)

-

The J dependence is again contained in the 6-j symbol. For the diagonal element,

we have for the J dependence

. 2
(-1)“8”{S - J} - Jes-2)i(ere): g 2 [3K(K+1) - LL(L+1)S(S+1) ]

Ls2 (28+3) 1 (2L+3) !

where K = J(J+1) - L(L+1) - S(s+1).
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The reduced matrix element in Eq. (1.51) can be evaluated by the recursion

formula (2.19):

L+5-1 1/2
(a"osLr, 2 a"ars'Lr) = (-1)7 2 -EE [(25+1)(25'+1)(2L+1)(2L'+1) ] X
n=-
LotS2  p n n-1 22 ,.n-1
(-1) a(d 0SL;n 8111 )a(d 'S 'L 5028212 ) (47 "0 81l [ITL7, &7 0eS2la)  x
18:1L 1
o;s;L; W(S18828 "3 52)W(L1LLaL ' 522) . (2.19)

The matrix elements of d° configuration was calculated by Marvin. He ob-

tained for the non-vanishing elements in 4 the following:

°F3 ,°F3 = - GM, +228 M
%y, %P1 = 1b M+ 168 M
1/2
3 3 1k
Fa , %P (2—5> (2h M, - 312 M)
where
2 [} (o]
M= M) = o jf L 82(2)RE(b)drydrs
° ' b yJ r3
o}
0 o )
%2 r
My = M(ab) = e jf — R3(a)R3(b)dridrs
\ \ r
O O

Starting from these values, (d°0SL|T5 (1j)[a°a'S'L') can be found. Then
the recursion formula (2,19) is used to get reduced matrix elements for all dn
'configurations. This work was done by Trees (Treeé, 1951). He found that non-
vanishing matrix elements exist only between states with the same seniority
number, and the values of the (dHQSLHTﬁgnd?a'S'L') are fully defined if
o =v, 8, L are given, i.e.

(dnvSLHTi?Hdnv’S'L') = 8, (" wsLr2[a"s 1)
For the calculations of 210 elements for all ten configurations in dn one needs
only to evaluate 48 (dvaLHTizndva‘L') due to above relation. These 48 elements
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are tabulated in Trees' paper (1951).

2.7 MATRIX ELEMENTS OF NUCLEAR-ELECTRON MAGNETIC INTERACTION (Trees, 1953)

The nuclear-electron magnetic interactions contain three terms:

1
HI,S’ HI,S i.e.

HI:ﬂ’

n n
H = H + H - \ b + ) I 28 31‘i(£‘1'§i) . 0
noe.o = fry tHLs. = ) agledy el 98 - =0 4t
i=1 i=1 '
nl
By g = Hi g = ;{, agl-S;, (n' = no. of uppaired S-electrons); £ =
L] . ’ — —
i=
where - 1
= Rofa (;ﬁ < =
az (o) ‘mp> r% gI
oy = O RoPa? mﬁ\lw(w e
S 3 o \m I
1
As we have seen in Section 1.2, B,
ri(ri Si (2) (1) (1)
.S_i - 3_1(_1 _l) = ﬁa [§iXCi ] = Ki

2
r{

/
all three terms HI,g, Hr 4, HI,S have the same form
. )

which is a scalar product of two first rank tensors. The matrix element of it

in representation |d"0ed, @I, FMp > is given by Eq. (1.L8).

< a"0, 3,001,y |T - Z_,Yl @l d ' 0T, F M >
i

- F+I+J'[I 1 FW
SFF'gMEMF("l) LIJ'I aIIH_I_Ha:I'I)(dnozeJH Zvi]]dnozéJ')

1}

L J
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v ' JIF U
srprduglty (1) 0 AT(TeL)(2141) |y J,ll. (dnaeJHZVinnae'J'), (2.43)
1
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Consider first the diagonal element (J = J). The F dependence of the first

order energy is contained in the factor

(_l)F+I+J{? I é} _ _F(F+1) - J(J+1) - I(I+1) [Appendix C
1J1 2 [1(1+1)(21+1)3(3+1) (20+1) 1Y% * (mq. ¢.15)]

For the evaluation of the reduced matrix (dnaeJH}:YinnaéJ‘) we have the fol-

lowing three cases:

A By o= L) aghy = Lo) W

ot 2]
Y o= s - e,z (2)
i i

= 8, Qz(z+l)(2z+1) U(l)(z)
= a,e '\{B_OU(:L)(E)

Therefore by Eq. (1.37)

(d“aeJIIZVilldnaéJ'> - a0 (dostalu' ) (2) s 1)

1

J+S+L1+1 JLSl, n 1
= 8,30 (-1) 4(2J+1)(2J'+1){;'J'é}(d aSLHU( )(Q)Hdna'S'L')’
The reduced matrix element of the unit operator UK(E) can be evaluated

easily by observing that

-1/2 L

f (u=-1,0,1)

[2(4+1)(28+1) ]

is a unit operator, for which

n '1/2 n
< dosMgIMy | [£(£+1)(22+1)] © Lold o'S'MgL'My, >

72

1]

Ban 1058 'L Mr, [£(£+1) (24+1

L1L'
(-1)t M (MLOMI)(dnocSL]|U<l)(2)Hdno¢'S'L') . (2.4h)
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Since

(-0t Gj ; b171> = ML (Appendix 0=T) " .
L) n(me)(ena) (2.45)

Substituting Eq. (2.45) into Eq. (2.4k4), we obtain

L(L+1)(2L+1)
81 Qa1 dr | = AEH =/
001285 L \[ﬂ(hl)(ézﬂ)

(@ostv™ (@) s )

5040&'588 xaLL'

I,S 1 'Zasﬁi = 1 Z‘ll

i

5 Glgt™ ) = g v

dwﬂﬂﬁﬁ (2.46)
30

e
i
]

>
<
e
n
o)
[@)]
>
jon
'—l-
I

Therefore

CLE DR ALETD
A

= ag \E(dnaeJHU(l)(l) [CAAD

= ag ,\g(dnoﬁLJ“U(l)(l)Hdna'S'L'J') by Eq. (1.39)
= &g \;i(-l)J,+S+L+l\f(2J+l)(2J'+1){§,g.i}(dnaSLHU(l?(l)Hdnoa'S'L')
(2.47)
again, analogous to Eq. (2.46) we have
(@osr o ()RS ) = 5 Bagibyp, |EHLUESH)
ooy 088 1BLL L(%+1)(1+1) (2.18)

Substituting Eq. (2.48) into Eq. (2.47), we have finally:

n n '
(@71 ) ¥, Ja"aga)
i

= sw.sss.sLL'as(-l)J L (o541 ) (20741) (2541) (541)8 ] {i,g Ii} (2.49
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r

sriri - ) \"
C. fir,s = 1 '?'% 8y - =~z (=1 )Y
! 1

o
1

>
1<
e
I

i \]'16 azz [§_i y Cig)](l)
i

n n ,
(&) 7, leog)
i

- \10 aﬂ(dnaSLJHz [8; x Cf)](l)Hdnavs'LvJ.)

1

s 13 o
= - \[ﬁaﬁ \[(2+1)(2J+1)(2J'+1) "g'ﬁ'g' (a"asL|| sicig)lldna's'l,')
11 21 :
by Eq. (1.42)
§3810§2) T e
i
knowing (2) I y
(ellc* ™ le) = (-1)"(24+1) (g 0 o)
we have
@),y _ _ |esr1)(2041)
(e™1a) = A(24-1) (24+3)
= - i:j for 4 =2
(2" Z\li ”dnoée‘J' )
; sLJ| ,
= 1o\|3\f(2J+1)(2J'+1) 5113 ¢ (a"esL|vE lde s L) (2.50)
1 12 1y

where the last factor is given by Eq. (2.13), and the numerical values for &2

and ds are given in Appendix D.

0.8 MATRIX EIEMENTS OF NUCLEAR-EIECTRON QUADRUPOLE INTERACTION (Trees, 1953)
The electrostatic interaction between a nucleus with z protons and n

equivalent electrons is given by

L2



ji ji &8y
Ei - Epl

HI,e =
i=] p=l
r. A
= eje P p (cos 6:..)
- "p 7771 7y ip
i
i,p,4

In this expansion, £ = O term is the electrostatic interaction between point

changes, £ = 1 term the dipole interaction and £ = 2 term the quadrupole inter-

action. Thus r2
Hy = }:elep ;—%-Pa(cos eip)
ip 1
™ ra
= zzJeiep ;g— C( )(el¢1) C(i?(6p¢p) by Eq. (1.18)
ip *
ENCIING
wherse es (o
V(Z) - ;% C( )(ei¢i)
i
(2) o 2 (3)
Q = }:eprpc (6p¢p)
D

We are interested in the matrix element in the representation IGéSLJ,apI,FMF >,

i.e.
< aeJ,apI,FMF|HQ|ae'J',apI,F'MF‘. >

= < oceJ,oapI,FMFW(g) : Q(Z)lae'J;apI,F'MF' >

. sFF,sMFMﬁ(-1>F+I+J'{§ §,§} (eI o7 ) (T o) -
| (2.51)

using Eq. (1.48) for the matrix element of scalar product of two commuting
tensors.
For the diagonal element (J = J'), the F dependence of the matrix element
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is contained in the factor

(_1>F+I+J{5 I %} - 3K(K-1) - LJ(J+1)1(1+1)
1de 2[(29-1)3(J+1) (23+1 ) (2J+3 ) (2T-1)I(I+1) (21+1) (21+3) ]i/2

where
K = J(J+1) + I(I+1) - F(F+1)

The reduced matrix elements in Eq. (2.51) can be evaluated as follows:
A (aalv®eran)

_ n 7 s (2))n .
= e(@os1a] ) r]7c; la"arsnar)

_._._J

= e<3 OSLJHEZ Ha'S'L'J')

EN (£”0(2)Hﬂ)(dndSLJHU(Z)(E)Hdna'S'L‘J')

1
d .
JLS
1
= e < 3; > ’z(“l)(”’ﬂ)(-l)‘”S+L +24 (2J+1) J’+1){L'J‘%}
r3 (24-1)(24+3)

<dnocSLHU(2)Hdna‘s'L'> by Eg. (1.37)

= - %9 e < f; > (-1)J+S+LrNk2J+1)(2J'+1) {ng'%} (a OfSLHU ®) (2)fa"ars L)
Y d .
(2.52)
5. (optle™®foyn)

Since — (2)

) 2 o i
consider the matrix element of Qé ) between states [a®1M1‘> with M7 =

L



7AN

Q
Le]

—

L]
CP/\

\V]

<

H

\%

l

- & 2 _ .2
- < ozplllz(sz rp) IOLPII >
p

T21 (2)
= (’f 5 1) (Tl flerpT) (2.53)
where
121 II2 I(21-1) . .
<f° I) ) (I fo) i \I(21+5)(2I+1)(I+1) (Appendix ILI-7"")
Define

Q = < ozple-z (5z§ - r%)loszI >
P

Then Bq. (2.53) becomes

n | @

[ 1(e1) (2)
@ = \](21+5)(21+1)(I+1) (51la™ e T)

Therefore

il - QEREUE)

Equations (2.51), (2.52), and (2.54) combine to give finally

< dndeJ,apI,FMF IHQldnaéJ;apI,F'MBg >

PHI+THI4SHL'HL €% [0 1 >N] (23+1) (23 '+1) (21+3) (2T+1 ) (T+1)
a

=8 IS 18 -1
FF '“MpMp ss(-1) > \7 "8 1(21-1)

X {}T ;g}{iiz} (a” SL.IIU(Z)(E)IIdna'SL') (2.55)

where the last factor is given in Eq. (2.15) and its numerical values tabulated

in Appendix D.
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APPENDIX A

- ROTATION OF COORDINATE SYSTEM AND ROTATION OF FIELD

Consider a point P in space which is described by a coordinate (x,y,z) or

I

or a vector r in a coordinate system S. If we perform a rotation R(cfy) of
the coordinate system, where (ofy) denote the Euler angles, then in the new
coordinate system S" the point P is described by a coordinate (x",y",z",) or a

vector r" which is comnected to the original unprimed one by a rotation matrix

RaB'y : "

where Raﬁy is a product of three successive rotation matrices about (a) z-axis

by 7, (b) y-axis by B, and (c) z-axis by a .

RaB7 = DZ n(a)Dy,f(B)Dz(')’)
//Cos o sin o O\ /fos B O -sin B /cos 7y siny O
= |-sinacos @O0 }{ O 1 0 -sin y cos y 5) (A.2)
0 0 1/\einp 0 cos B/ \ © 0 1

It can be shown also that the same Raab

y would be obtained if one rotates,

instead of the coordinate system, the point P successively about (a) the z-axis

by @, (b) the y-axis by B, and (c) the z-axis by 7 (Edmonds, 1.3), i.e.

T



(B)Dg ) (A.3)
Therefore, we may consider r" as either the same vector op expressed in the new
coordinate system S" or a new rotated vector 0Q in the old coordingte system S,
and in each case (x",y",z") and (x,y,z) are connected by Rogy 88 1n Eq. (A.1).
Next, consider a scalar field V(P) for which there is a definite value for
each space point P. Suppose in coordinate system S the scalar field is expressed
by a function W(g), then in the rotated coordinate system the field is in general
expressed by a different function W’(g'). Suppose that r and r' correspond to

the same point P in space, that is, they are connected by a rotation matrix

R

apy 88 in Eq. (A.1), i.e.

r' = RaByﬁ . (A.1)
Then by the definition of a scalar field, one must have

Vi) = vp) e
Equation (A.l) together with Eq. (A.4), then, expresses the transformation law
of a scalar field under coordinate rotations.

- However, we may consider Eg. (A.1) and (A.4) from a different point of
view. The difference in functional form of V' and ¥ allow us to imagine that
associated with the rotation of coordinate system R(aﬁy)lone has an operator
PR which, upon acting on the function V, converté it into V', i.e. PR¥ = ¥'.

Then Eq. (A.4) can be written as

PR¥(zr') = ¥(z) (A.5)
or PRW'(ROLB'}'E) = W(I_')
or PR¥(r) = ‘J/(R(;;yl_‘) : (4.5)

Equation (A.5) effectively defines the operational effect of PR on V¥(r), é.g.
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replace r by R™: It is shown in Wigner, p. 106, that operator PR is unitary

oBy~
and linear, and further, for two suécessive rotations, R and S, one has
P = Pg - PR R | (A.6)

Now, as we have mentioned earlier, Eq. (A.6) can be interpreted equivalently
as rotating the field point P about the fixed axes of the coordinate system S in
a reverse order. This interpretation, togéther with Eq. (A.5), allows us to
picture the process as "rotation of the field." 1In this picture, (A.l) states
that R(dBy) we rotate the point P(x,y,z) to a point Q(x',y',z') in the same
coordinate system S and Eq. (A.5) says that then the value of the rotated func-
tion PRV evaluated at the new point Q is equal to the value of original function
¥ evaluated at old point P.::

Next, suppose we have a spinor field W( l/ = -1/2, 1/2). Then associated

with every rotation R(gBy) there is a unitary, linear operator OR such that the

transformation law is given by:

ogu(xtl - ZD&'{Z)(RN(R&BY— e (A7)

Tl
Careful inspection of Eq. (A.7) reveals that OR can be decomposed into a product

of two operators PR and QR such that each of them operate on space part and spin

part of the spinor field, respectively, e.g.

Orp = PReR (A.8)

PRw@)Xi/E = W(R&By_ x2/2 (A.9)

R Z SRARITI S (4.10)
Tl

Wigner (p. 223) showed that both PR and Qg are linear, unitary and further,

they commute, i.e.
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Prag = QgPr - ' (A.11)
This separation of OR into PR and QR is possible only when the wave funcﬁionuﬁv
is separable into product of space part and spin part which is the basic assump-
tion of the Pauli spin theory.

In atomic problems, one is interested in a spinor field of the type

n _1/e
Wﬂm(E)XT

the transformation properties of which is given by

ogf, (2 = r) (= e
(1f2)  1/e
- ) @G () Dy R

that is, the one-electron eigenfunctions transform irreducibly under Pp and Qg
separately, but not irreducibly under Og. One can take a linear combination of

these one-electron functions (with same n and £) to get an eigenfunction of L2,

2 .
L,, 5, Sg, [aSMSLML > which transforms irreducibly under PR and QR, respectively,
i.e o (L)
Pp lozSMSIML' > = Z DM’M (R)IoaSMSIMIL > (A.13)
" L'L
L
Pp [0SMgIM, > = -_—‘D(S) (R) |ooM IM > (A.1L)
R q T, . = MM Q SLM.L . .1
g 8

It is easily seen that IaSMSLML > does not transform irreducibly under Og
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(s)

L
but according to the product representation D( )(R) - D" '(R). However, one

can form linear combinations of IaSMSLML > by the help of the V-C coefficient
and obtain eigenfunctions of L2, SZ, J2, J, which rotate irreducibly under OR’

ie.
losLM > = z loSMgTM, > < M LMy [JM >
MgMr,

(A.15)
O [oSLM > = y DISI{&(RHOLSLJM' >

vt
k .
Lastly, for an operator Tq which acts on the field WT(E), by requiring the

invariance of the sealar product under the coordinate rotations we have

k
(V,T0) = (Og¥, OTy0)

k
0 0., T 0°1 0,0).
(0¥, OgT O+ Og

But we know under rotations
V- ORW ; 0> OR¢

k
Therefore, under the rotation, the operator Tq

K ik -l
OrT" 0 .
Tq -> YR qR

must transform according to
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- APPENDIX B

PROOF OF THE WIGNER-ECKART THEOREM

The validity of this theoremdepehds essentially only on the rotational
. : k
properties of the wave function !aJM > and of the operator Tq.

Write w%J = |aM > in the following. One assumes

a _ e (3)
ORWM = Z\VM' DM'M(R) (B'l)
M|
and —
ORI 05 = > T ®g) . (B.2)
q Ly 4g'aq
q
k. aJ k a! 1
Since < adM|T |a'd'™M' > = (& T By ) is just a number, it is invariant
q T

under rotation, i.e.

aJ k alJc

aJ . kT
(og¥y, 0T ")

aJ k 1 a'J!

(k)(R)D(J ) < aJm]Ti,!a'J’m' > by (II-1) and (II-2)

i
~]
J
*
=3
=
=1

a'qg T m'M
m,q'm'

The product of two representations can be decomposed into sum of irreducible

representations by the V-C coefficient (Edmonds, L.3.1), i.e.

k+J '
(k) (J') \ ? : 1T ! Al 1 P 1 YR !
qumH%MJR) =) <'kq'd'm'|N,q'+m' > < N,q+M' [kqJ'M > Dyt 4, 4 M
| N=|k-J" | (:3)
Thus
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= z <kq'J'm'|N,q'+m' > < N,q+M' |kqJ'M' >
N mg 'm'
(W)

<onme jargm > pXT)D" (B.L)
q'+m',q+M'

Integrate both sides of Eq (B.4) with respect to all rotations R(opy), i.e.

f / doz[ sin BdB/ dy (o,B,7 Euler angles)

We have

[Id.R = Z Z < kq'J'm' 'N’ql+m' > < N"'q;i-'Mi'“L}g‘qJ,’;M;';f>f< aJM|qu{' IO"J'M' >
- N mq'm' '
) ()

mM q1+m|,q+Ml d'R * (B'5)

J
But from the orthogonality properties of D( )’s , we have

o

*(J)_(m) 8x
\/‘DmM Dq_"i'm',q-l'M'dR = Bm,qv_'_mr 6M,q+M' SJ,N gj’:]? | (B.6)

and o
’ fIdR = 81 I . (B.7)

From Eq. (B.5), (B.6), and (B.7), we obtain

I = ZZ < kq'd'm'|N,q'+m' > < N,qM' [kqd 'M! >'<aJmqu,|a'J'm' >
. .

mg'm L
?J»ﬁ\ﬁﬁm,q'+m'5M,q+M'

2J+1

1

| | 8y
<kq'd'm'|Jq M > < IM|kqd'M' > < oJgm' |TX Jargimt > MagHd!
q

2J+1
qlm1 .
< J'M'kq |IM > k
v (2-J+<11§1/2 Z (_ﬁﬁm < J'm'kq' |Jq’+m' > < odJg'+m! ITq, [O!'J'm' >

qlm'

k 1 1
< J'M'kq |[IM > —-Lm—(a‘(jgﬂ? Jz)
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where

(o [[r™[ja'3 ") L

Z k
— < J'm'k'g!' "4m' > < aJg'+m!' T Oﬁ'J' r>

q|m|
is independent of M, M' and q.

k
Tt may be remarked that this theorem holds whenever Tq rotates like Eqg.

(B.2). Therefore, even if Tg is a one-electron operator and [aJM > is a many-

electron wave function, the theorem is also true.
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APPENDIX C

DEFINITIONS AND PROPERTIES OF 3-j, 6-j, and 9-j SYMBOLS
1. 3= SYMBOL

a. Definition:

Jr 2 J (1)
1 Je - ; _

" Giia C dimdemelim > C.1
<ml mo m> y23 +1 . Jimida 2Y|J ( )
b. Properties: o

51 d2 3 A(J1323)
(1) (l 2 = 0 unless mtmptm = O (c.2)
T T 1 Jitjetd = integer

(2) Even permutations of columns leave the numerical value unchanged, i.e.

(Jl Ja Js) (Jz Ja jl) _ (s d1 dz2 (c.3)
my ImMp Mgz Mo Mz My mng My Mz,
s
0dd permutation is equivalent to multiplication by (-1)°% 92793
(-1)d1tdatis (jl Ja J's) _ ,(J'a J1 Js\ (jl Ja Ja) _ [Js d2 31
mp mg Mg Nz M2 My

m; Mo m3 M2 My M3
(3) Simultaneous change of signs of m's multiplies the numerical value by
(-1)d1%d2tds 4 e,

(jl J2 js\ _ (_1)51"‘32'*'33 (21 Ja is) (c.b)
my Mz M3 m1 Mz Ma
(4) Orthogonality properties:
. Ji d2 J\ [J1 d2 3\ . o
§:(2J+1) (;1 mo m> (mi ms m) = Bmymy Smomy - (©5)
J,m
Jid2 3\ (Jr 32 3 | 8(jided) s..
Z (ml Mo m> (ml Mo my) = 2j+l BJJY 6mm' (C-6)
mino

where 8(Jjij2j) =1 if A(Jrj2j) and zero otherwise.

(5) Specialized formulas:

31.d2 O\ Jirmy, . a1f2
(ml me O) = (23:41) 831d2 Omit (c.7)
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(J_J_l\) = (-],)J'M M (c.7")
\J(J+1)(2J+1)

(J 52> - ()™ A2 - J(J+1) ()
MM O [(20+3) (J+1) (20+1)3(27-1) ]1/2
~ 1
i1 Jo 1/2 =TJ)!
(58 o ﬁ _ (1)-9/2|(atde=ds) tiatds-de) t (Jotia=ia ) (57)
| T Nt (-1t (2932 (2-30)!
2 2 2
if jl+j2+j3=J—even
(c.8)
= 0 if j1 + Ja + Ja=Jd =o0dd

2. 6-j SYMBOL

a. Definition:
The 6-j symbol is defined in terms of the recoupling coefficient of three
angular momenta, ji, Jz, and js and is in turn expressible as a sum of products

of four V-C coefficients, i.e.
J1 . Jde 312'\ Jitdetistd .. . e o . s s Vs
{Js J ’stj = (-1) ° E(2J12+l>(2J23+1)’]~ <(j1d2)d12,d3,9 J1,(J2ia)ias I>

Jitjatjatd

, -1/2
= (-1) [(2§12%1)(2J23+1) ] X
z< Jamy Joma | J1omatme > <§12m1 +mz JaM-my -m2 M > x

mimg

< Jomp jaM-my -z | JosM-my > < Jimijes M-my [JM > (c.9)
or in terms of 3-j symbol, a more symmetrical expression:

J1 2 Js ® ja4Bmamy _ (_l)J1+J2+J3+Ml+M2+M3(Jl J2 Js\
J1 Jo Jof 2§3 + 1 | My Mo g
MiMoMg co - (c.10)

mmo
(Jz I3 11\ (Js pe} 32) Jid2 38
- {Mz Mz m1/\Ma My Mg /\my mz mg
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Relation to Racah coefficient:

6-3 symbol is identical to the Racah coefficient within & phase factor:

1 Je Ji2 Jitiotdtis . . e .
{ } = -l)Jl JatItds W(j1jadia; Jrizdas) (c.11)

ja I Jes|
b. Properties:
(1) Symmetry properties:
(a) 6-3 symbol is invariant under any permutation of the columns.
(b) 6-j symbol is invariant against ihterchange‘ofbthe upper and lower
arguments in each of any two columns. For example:
{Jl Jo Js} ] {jl Js Js}
Ja Js Je Ja J2 Js
(a) and (b) together consist of twenty-four operations which leave 6-3

symbol invariant.

(c) J1 de J . .
?i 52 z: = 0 unless A(jideds), A(J1bols),A(813243),0(L1402]3)

(2) Two important relations between 3-j and 6-j symbols.

(a)

(_1)32+J2-m1-M1'Jl J2 {9 da Jz J1\ (234+1) J1 Je Js N J1 Je J2 (js J2 d1
“\mp Mo Mg/\Mg mo M1/ — | J3 J1 J2 Jaf © \mypmoma/\ms Mo M3
Ja '

(c.12)
(b) , _
(v l)Jl+J2+J8+Ml+M2+M3 (jl J2 d3 J1 Je ‘J3 d1 Jd2 Ja
B m; Mo Mg M; mo Mg My ﬁg ma
M1 MoMs '
(jl Ja J3\ |1 Je Js (C.13)
my mg mg) 1 J2 Ja
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(3) Orthogonality property.

‘ . i J1 J2 J'|[s de Jrl _
};(2J+1)(2J'*l) Ja da 3 [P de 3 T B3N (C.1k)
j |
J1 J= J'
that is \(25+1) (23'+1) 4 3. 3 fomms a real orthogonal
3 J4

matrix, with rows and columns rebelled by j and j' respectively.

(4) Two particular values of the 6-j symbol.

J 5 %} = (-)9L () - s(s+1) - L(L+1)

IR 2 [5(5+1) (28+1)L(L+1) (21+1) /2

, : . (c.15)
{? s1 (-1)975*L 3X(X-1) - 4s(5+1)L(L+1)
2Lsf 12

2[S(5+1)(28-1)(25+1)(28+3)L(1+1) (2L-1) (2141 ) (2L+3) ]

where X = S(S+1){+ L(IL+1) - J(J+1) (C.16)

3. 9-j SYMBOL
a. Definition:
The 9¥j symbol is defined in terms of the recoupling coefficient of four

angular momenta:

Ji Je jl;\ afe
Ja Ja Jasap = [2312+1)(2Jsa+1)(2513*1)(2J24+1)] X
| J1ajead \f

: (c.17)
< (J1d2)drz, (Jada)dsa,d[(J1ds)daa, (J2da)dae,d >

or in terms of 653 symbols.

Jlél o . . . . . . . .
. 2K Ji1 J21 J31i| |di2 J22 Jaz2 [Jls J23 Jd33
= -1 2K+1 . . . . . .
Jas }; (-7 ) {;32 Jas K ;}{le K Jzé}[K Ji1 312}
Jssj K : U

(c.18)

or in terms of %-j symbols,
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J1 J2 Ji2 . .. ..
i 3a Jas (Jls Joa J) - }Z (51 Ja le)(Js Ja J3a4 (Jl Ja Jis
- Miz Moy M my mg Mio /\mz my Mag/\my mz Mis

J1adoad
1824 mymomstily
myoMag (€.19)
X(Jlg daa J '
Mio Mag M
b. Properties: Ji1 Jiz Jas

Jo1 Jeo Jea

Look upo . . . 1
upon j31 jaz Jas as a matrix.

(1) odad permﬁtation of rows or columns produces sign change of
(-1)jll+j12+j15*32l+322+j23+331+j32+333 _

(2) Even permutation or a transposition (with respect to both diagonals)
leaves the symbol unchanged.

(3) Special value of the 9-j symbol.

b+c+e+f
_abe (-l) ]

abe :
del = ——m—— . (c.20)
; £ 0 V(2r+1)ter) {d ¢ f} “
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APPENDIX D

NUMERICAL TABLES FOR: (dnaSLHU(K)Hdna'S’L'), k=24 n=2,5

AND (dMogSL|vik[a"a's'L'), n =2,k, k =1,
TABLE D-1%*
(a%as|u'®) (2) Jearr s )
a'S'L 3 EN 1 1 1
aSL o F o F oD 2 G 08
3 V6 2
F — = 6 0 0 0
2 5 5 {~
3 2 1
J P : 3 5 {21 0 0 0
1 22 1215 2.0
2 D 0 0 7 35 515
1 12 3
5 0 0 0 5 \o 7 2 0
1 o —
oS 0 0 5'“5 0 0

*Taken from Slater II, Appendix 26.
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TABLE D-2

(f%ﬂw$4%2W5awu9)

1

QST 3 1 1
osL o F oD o G 0%
3 11
o e 0 0 0
3 p 2
2 "5 0 0 0
2 7 1
1, 0 110 1 [1h3 2
2 7 TA5 (5
1 2 |
S 0 0 = 0
0 B
TABIE D-3%
(deSLHU(2>(2)”d5a'S'L’)
a'S'L 6 n n n
S P F
aSL 5 3 p) D 3
6
5 S 0 0 0 0
4
5 G 0 0 0 - 3Tk
T
u . & |
5 P 0 0 : 0
! =
D = —
5 ° E 0 5 55
h F 0 8 0
3 0 B—S\E

*Taken from Slater II, Appendix 26
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TABLE D-k

(aSasL|[u*(2) lasars L")

Q'sL! 6 ¢ L n L n
0SL 5 5 ¢ 3 F 5D 3 F
6S 0 0 0 0 0
5
b 0 0 -J2 0 - | =
: 11
LLP
; 0 A 0 0 0
uD 0 0 0 0 —:—L-O-
5 7
“ 0 = 0 0 0
3 7 i
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0 0 0 0 0 0 0 0 .H.mmm 0 0 mm
0 0 0 0 0 Lz 0 Lre 0 0 0 at

¢ ITiT 4
0 0 0 m.% 0 0 m.m_,.m- 0 Hmw_,.ﬁ- alwam 0 nm
o o AF o go- Hw- o 9z o o & al
0 0 0 Wm- o, 0 bw_,m- ) ;WM_, mmm 0 QM
o Yz o L o o - o HE A2 o xS
0 0 “2 o b@m Hlm.—,- 0 m.ﬁm. o o f2- mm
0 W%w- 0 Mm 0 0 pmm.- 0 @.mm- mm- 0 om
.MT . Hlmﬁ:ﬂﬁ- o W HM_HM- 0 @:NH- 0 0 mm- om
0 0 0 Wm 0 0 Hm.m. 0 mm.m- mam 0 HM

(+Ti 80P (2) 0| TSOP)

sH-a TFIdVL
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TABLE D-5%

(a%sLV*P[a%a's L) p = 1,2

V" yla
2 Pl {0575 3/5
Z B g d 0 6/5
ST ; G - 3{10/10 -3{k2/14
oF | . {30/5 4 {105 /35
SN {30/5 -BJEKVio
Z P> ; D - \105/10 -3{5/10
3paTs /5 .
257 0 |
2 67 ;'G 0 0
; G~ ; D 0 0
; b= ; D 0 0
; D~ é‘s 0 0

*Owing to the limited space, the following two tables are presented in a different
form. Matrix components are zero for transitions omitted from the table. _Wheh there
are two signs in front of the numerical value, the lower one refers to the component

taken in the opposite order.** These two tables are taken from Slater II, Appendix

26.

*¥The relation (d%oSL|VP%|a"a's'L!) = (1)
the table. 68
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LS-L ,S (a'a's 'L [vPY||d%sL) holds for all



TABLE D-6

(aSasL|ViP|aSa's'L') p = 1,2

Vn | , Vvl2

0 + \l?
\]'5' 0

0 - 330/1

0 - b3/

0 F \2730/35
- J110/5 0
+\[15/5 0

0 £ \3/7

0 \105/5
0 2{15/1
0 -{10/5

+ 2{675 | 0
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TABLE
D-6 (Cont)

12

Fu V"
575 F
Y 2 O V
5F—>51H
-2
| | \10/5
5F+§G
e
2
| | 385/35
5F~>§G
-9
| ~ 35/35
5F*2 |
5F
N2 O |
F >
| ) t7/5
u + \21/
EF*Q |
.lD
| - 2\105/ |
| 2 ,d5ﬁs
3¥ 30D
0
y 2 O
5 F >
5 D -
J210/
B 35
5F+2 N
> 4P | |
u 0
+ 111k,
| | 1k /35
5D—>hP .
| h \15/7
5D+2 21/3
5 G |
u 0
5D->2F
5 £ 1330/
3
_ 30/35
0
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TABLE D-6 (Cont)

- 1J30/15

- 2\105/15

{105/15

+ \[390/10

t %{105/35
35/5

tL/5

- 2{10/5

0

x2/5

- [858/22

T1



TABLE D-6 (Cont)

Vn Vl2
2 —
I+5G 0 4 (30,080/385
2
I+3H 0 - {2,002/70
o F 6\77/35
H>, G 0
2
H> g G + 2{10/5 0
2
H"BF 0 -2\%/35
2 i
H> g F 0 0
2
G>5G 0 3\53/70
2
G>5G - :\]165/10 0
2
G> 3 ¥ 0 F 335/70
2
G~> g F E 3{15/10 0
2
G->1D 0 0
2
G+ 3D 0 -6\‘l§/7
2
G+5 D 0 0
5 ‘
G~>5G 0 2523/154
2
G> 5 F + (5_?/10’ 0

T2



TABIE D-6 (Cont):

V" Ty
G~ 0 ¥ (1,155/70
G > 0 0
G+ 0 - 2\165/35
F -+ 0 - 11/10
P - BT/6 0
F -+ F 2‘1’1[5'5'/15 0
F > 0 e ,2J—2i_0/55
F > ¥ 4 [30/15 0
F > 0 - 4[1h/35
F -+ 0 - 3/2
P> + 2[3/3 0
F - 0 + 2J21/7
F -+ 0 0
D+ 0 | {6/2

- {2/16 | 0
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TABIE D-6 (Concl)

V" vi2
+ J105/15 0
0 - [6/1k
B/3 0
0 FL35/35
0 0
o 3(6/14
% [30/30 0
0 - 2(210/35
0 - 19{1k/70
+ 230/15 0
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