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I
INTRODUCTION

A new type of array consisting of elements arranged in a triangular
lattice is studied in this report. The array has radiation characteristics
similar to those of a tapered array but does not require tapered excitation.

A phased array of an arbitrary triangular lattice configuration is
formulated using the vector model. It is applied to a special case of an
isosceles triangular array.

The directivity of the array is derived and expressed in a compact
form, whereby its enumeration becomes a routine procedure for any total
number of elements. A general method of evaluating the mutual coupling
terms involving two inclined short dipoles is developed.

Numerical results are presented and discussed as regards the
radiation patterns and directivities of an isosceles triangular lattice
array with its varying parameters such as the spacings between the
adjacent elements and rows of elements, the phasings of the elements,

and the size of the array.
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RADIATION INTENSITY OF A TRIANGULAR LATTICE
ARRAY OF DIPOLES

Let a planar triangular array of dipoles be situated in the x-y plane as
shown in Fig. 1. The elements are identified by the lattice points spanned by

the two base vectors, a_ and 3 . The (m,n)'th dipole is located in the lattice

by a vector ?mn=m51+n'a%2 drawi from the origin, where m,n are integers not
exluding zero. The base vectors 51 and 52 are not necessarily equal or or-
thogonal, and are not, in general, of unit magnitudes. Since '51 axis is
made to coincide with the x-axis, it can be shown that

3 a8

> A A (1)

a2=azcosB x+azsinB y

where B is the angle that '52 makes with 'a'.l. Hence, the lattice vector can

also be expressed as

-e _ A . A
rmn—(malmazcos B)x +na2s1nB \ (2)

The phase of the (m,n)'th element with respect to that of the elements

at the origin is 6
mn

=mé_+
6mn m61 n62 (3)

where 61 is the phase of any element relative to its immediate neighbor along

the axis defined by the base vector 51 and 6 9 is defined similarly with res-

pect to 5’2 .
The contribution of (m,n)'th dipole in the array to the far field is
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FIG.1l: TRIANGULAR LATTICE ARRAY
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g

= e —— sin@ 2] (4)
mn mn

where Amn is the excitation amplitude of the element, R, is the distance

A
from the element to the point of observation, and sin6 0 mn 18 the radiation
vector of the dipole with respect to its own dipole moment. In terms of the

spherical coordinates, the individual field can be expressed as

i%mn e—ij jkr,,cos (¢—¢mn)sin9 A

oo on R e sinf 0 - (5)

The resultant field intensity is obtained by summing over the entire array

. N-1 N-m-1 . . .
N e—JkR ibpn  Jkrmpcos(@-Pn,)sing
E= z A e e
R mn
m=o n=o A
sin6 6 -, (6)

where N is the number of the elements along 51 or 52 .

ment of amplitudes, spacing and phase in (6) a radiation pattern of almost

By proper adjust-

any desired form can be obtained.

We shall consider only the case where all current amplitudes are the
same and the base vectors 51, a 9 define an isosceles triangular arrangement.
Since a1=a2 =a, it is found convenient to rotate the x-y plane counterclockwise
about the z-axis through an angle a such that the new y' axis bisects the
angle BO as shown in Fig. 2. In terms of the x'-y' plane,

3 =
le

39

A, A,
acosa X' +asinay

3

acos (@+f )?{' +a sin(a + )9',. (™
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and

™ id A

= -+ = + -+ 1

ron ma1 na, {ma cosa+na cos(a+f )}x ©
*{ma sina +na sin(a+f )}9' .

Let the distance of separation between two adjacent elements in a row
be d, and the distance of separation between two adjacent rows of elements
be h. It follows that

i~ - - g A (] Av s
rmn—(m n)( 5 )X' +(m+n) (h) ' , (9)
and d,2 2, .2 y2
- [tm-n2 @ ]
v [ Hmm®m?] (10)

In addition, if 6 l=6 =6, then the phase of the (m,n)'th element becomes

2
6mn=(m+n)6 ] (11)

The fact that m+n is a constant for the elements in the same row makes the
array progressively phased between adjacent rows.
In this report we consider only the case where the dipole moments are

parallel to the x'-axis. The resultant field in (6) then becomes

. N-1 N-m-1
R -jkR .
E-A © sing b E E oI (min)6
R pPp
m=0 n=o0

ejkrm_n cos(p-Pmy)sin 6 ’ (12)

s\ S
where ep is the angle between p and R .

In each of the complex phase factors, we note that
rmcos(¢—¢mn) =rmncos¢nmcos¢+rmnsm¢mnsm¢

and from (9) and (10),

_ d
008 ¢mn— (m-n) r

5 mns1n¢mn=(m+n)h .
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Hence,

(mn)s jkry, ncos(P-P,,)sin6
e e

. o g . . d .
=e](m+n) { kh s1n¢sm9+6} e](m—n)k 5 cosfsind . (13)
In order to steer the main beam to any particular direction, say (¢0, 60),
we can set

6= -kh sin¢osin9 o

and (12) can be rewritten as

- e kR N-1 N-m-] j(m+n)kh{sin¢sin9—sin¢osin00}
E=A smG 6 e

Ppp

m=o n=o

(m
= kd cosfsing

X e . (14)
The radiation intensity or the power per unit solid angle is obtained as

follows: N-1 N-m-1 N-1 N-m-1

U(e,¢)=§%§ﬁ-f«3*=2—z—sm9 z z z 2

i mem oy 3] HEmnos BB Frasy 05

sind .

(15)
the asterisk denotes the complex conjugate of the quantity.
It is noted that the factor involving the multiple summations is propor-
tional to the radiation intensity of the isotropic sources of the like configura-

tions.
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THE MAXIMUM NOMINAL DIRECTIVITY

In terms of the radiation intensity function, U(6, ¢), the directivity

function can be deinfed by the relation

(G, )= U(e , (16)

av

_ 1 )
av_ y f f U(6, P)sinodody . (17
0 0

When the elements are uniformly excited and progressively phased, we shall

where

speak of the directivity of such an array as the nominal directivity. In the

sequel, we shall discuss only the maximum directivity, or

Umax
(6 ¢)— . (18)
av
Henceforth, we shall call this quantity the maximum nominal directivity or
simply the directivity.
From Eq. (15)
N-1 N-m-1 N-1 N-m'-1
wpws’s §F Y Y Slmmremls
p
m=0 n=o m'=o n'=o

jkirmncos(¢—¢nm)—rm,ﬁcos(¢—¢m,n,\& sind
e

=sin26 z z Z 2 (m m')+(n—n')}6

jk {[rmn cos - rm'n,cos¢m,na cosf+ [rmnsm¢mn'rm'n' Sm¢m'n']
e

sin}sing . (19)
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It is readily seen that

(rmncos¢mn—,rm,n'cos¢m,n,)cos¢+(r sm¢mn o n,sm¢m, ,)sinf
= [(m—n) g -(m'-n") g]cos¢+ [(m+n)h-—(m'+n')h] sin¢
= [(_m—m')—(n—nﬂ (2—1 cosf+ [(m—m')-l(n—n'ﬂ h sing .
Put
m-m'=p, n-n' =q, (20)
then
d .
rmncos(¢—¢mn)—rm,n,cos(¢—¢m,n,) = (p-q) 5 cos@Hp+qg)h sinf
=qucos (- ¢pq) s (21)
where
2
_ 2 ,d.2
D [6-0® (§ e h:]v (22)
and
_ (p-9)(d/2)
cos¢pq Dog (23)
Hence
92 iptq)é jkquCOS(¢-¢pq)Sin9
U(6, P)~sin Gp z 2 qu e e (24)
b q
and

JPta)é

av fo(G ¢)d9 z 2Pq 4T

cos (¢—¢pq)sm9

Pq

sin epe dQ (25)

Q
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where p,q run through all the meaningful combinations of m-m', and n-n'
respectively. qu is a constant depending on m, m', n, and n' that result in
the same p and q. The detailed discussion of qu will be taken up in a later
section,

Let us use the following notation,
ikD cos(gli—;ép )sin6
1 ¥ pq q 2
= — i d . 2
qu(D) i f e sin Gp Q (26)
Q

This is an integral which involves a pair of dipoles.

Before we evaluate this integral, let us consider first the following pro-

cedure.

THE INTEGRAL INVOLVING TWO INCLINED DIPOLES

N A
Let L be a unit vector along the array axis of a pair of dipoles, and P
A A
indicates the orientation of each dipole. Now let us construct LxP axis which
A A
is, of course, perpendicular to both P and L. Let us further construct £
such that
A A A A AR A AA A AA
X =(Lx P)xL = P(L* L)-L(P- L)=P-Lcos v
A A A A
Thus x, Lx P, L form a set of orthornormal base vectors (see Fig. 3).
A A A A
From Fig.3, P+R=cosg. Since P is in the % and T plane, thus it

can be expressed as

A . A A
P=sinyx+cosyL,

10
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FIG.3;: GEOMETRY OF TWO INCLINED SHORT DIPOLES.
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and

>

A AN A A
=sinfcos( X +singsinf(L x P)+cos6L
B+ R=sin ysindcosf+cos ycoso .
Therefore

A
sin26p=1—(f{o P)2=1— cos27c0s20+§ sin20sin2 vy cosf

+sin2'y sin%6 cosz¢] .

It can be readily shown that the exponent in (26) is transformed to kqucosG in

the new system of coordinates.

Thus
jkD_ cos6
P (D)= L sinze e P4 g
pq 4w p
Q
9 1 ]kD cose
= —f E. -cos 7cos 9-§s1n ysin 9] sin6do
0
1 ikD
j X
=.21.f E—(coszy)xz—(%sinzy)(l—xzﬂe pd dx
-1
or

in(kD
P (D)=% {El—cos 2v)+ (1*80032'2)/) Sn(lliD Dt)l)
ol (kqu) bq

cos(kD )
-(1-3cos24) d

(kD)

The following is a list of some special cases, where x = kD .

1. For parallel dipoles, v = 7 /2, we have

P(X) (l—-—) sinx + COosSX )
X X X

2. For two colinear dipoles, v, =0,
P(x)=2 {sm3x _ cosx} ,

X X

12
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3. v=230°
P(x——[l+ 5 | sinx _cosx]
X
4, v=60°
cosx
) I 4 ==2
P@x)=7 [._.3 ) X X ]
5. 6 = 450
1 1 | sinx cosx
PR=; (It =) = -3
6. Forx=0

It is of interest to note that for a pair of isotropic point sources P is simply
sinx/ X . The method used here in evaluating qu bypasses the necessity of

integrating Eq. (26) using spherical Bessel functions (Papas, 1965).

EVALUATION OF THE DIRECTIVITY

From Eq. (24) it is seen that
1 2
~ E— N(N+1)}
Thus the directivity of the triangular array can be written as
[5 (N+1)]
U T T n

In order to evaluate the double sum in the expression of the directivity of

the array, we find it convenient to construct the following matrices.

13
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1. From eq. (20), we see that p, q vary from-(N-1) to (N-1). However,
not all the combinations of p and q are present because of the triangular arrangement.
For those combinations that are present, there are often more than one term with
the like (p, q) pair. The following is the (p, @) matrix of 10 elements with N = 4 which
is the number of elements along 51 or 32 axis. The entries in the matrix represent
the total number of the pairs of elements with the same p, q indices. They are

determined by the following formula,

B = 1

bq - T (N - [e]) (N -fe| +1),

where |e| is determined as follows:

a. If p, q are of like sign, then setle| = \p+q\ ,
0 is considered either positive or negative.
b. If p, q are of unlike sign, set |€| equal to the larger of the two magnitudes.

c. If qu is non positive, then set it to zero.

pN{3 2 -1 0o 1 2 3
-3 11 1 1
-2 1 3 3 3 1
-1 1 3 6 6 3 1

0 1 3 6 10 6 3 1

1 1 3 6 6 3 1

2 1 3 3 3 1

3 11 1 1

14
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2. Equally of importance in the directivity calculation is the determination
of the distances between pairs of dipoles. Again use is made of the (p, q) matrix.
Superimposed on the matrix we construct two axes using the two diagonals of the
matrix. The principle diagonal is labelled as h-axis representing the distance of
separation between rows of dipole elements, and the other as d/ 2 - axis, half the
distance between adjacent dipole elements. They are scaled as shown in the matrix.
The entries in this matrix represent the multiples of h and d/2 that are needed to

compute qu 's (eq.(22) ). For clarity we omit from it the (0, 0) element and a few

others along the diagonals.

P N =3 =2 -1 0 1 2 | 2 d/2

N G | G | @s) 5-<°

-2 S G e | @, 3,,‘*’ (1,5)
-1 3,1 | (2,00 | (1,0 1,,2.’ Ty | e

Of (3:3) | (2,2) | (1,1) ::Oijjl- (1,1) | (2,2) (3,3)

1 @n | a3 o) | | 2 50

L Low | @ | eo | eu | oy

31 0,6 | (1,8 | (0 | (3,3) | 6~

h

In the expression for qu (D), the term cos 2 ¥ can be shown to depend

on the distances of separations of a pair of dipole elements. In fact, the following

relation holds,

2 2
(bg) - (ah)

2 2
(bS) +(ah)

cos 2y =

15
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where (a, b) is the ordered pair in the entry in the above matrix.

3. To complete the picture, the (p,q) matrix us used again to indicate
the phase relations, which are simply the algebraic sum of p and q times 3.

The double sum becomes

3 3
it 1 _
z 2 e 5 (N- [el Y(N-tel +1) qu
p=-3  q=-3
1 ’ “iota)s 1, _
- 5 NOHD P + 2 Ze 50N- leh)(8- lel 41

p q

2 " Qi) 1
N(N+1)-3-+z Ze 3 (8- leh) (- lel 4D

p q

L
2

where the prime indicates all the p,q combinations with the exception of (0, 0).

VI

NUMERICAL RESULTS

Numerical results of the radiation patterns and directivities of the tri-
angular lattice array are presented here for both the isotropic and the short
dipole cases. They are done for the case where the main beam is directed at
6=90° and $=90°.

Both the E- and H-planes are included in the computation, however, the
discussion will be made only in connection with the E-plane pattern. Tables
1 through 3 summarize the numerical results as shown in Figs. 4 through 9, with
varying paramdeters d (element spacing), h (row spacing) and N (total number of

elements in the array).

16
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It is seen from Table 1 for the isotropic case that the beam angle decreases
as the spacing between elements increases. At d=0.2A, the beam angle decreases
significantly as the spacing between rows of elements increases. Nevertheless, no
discernible changes are observed as h changes at other d's. As compared with
the isotropic case, little difference is noticed in the beam angles in the dipole
case (Table 2). We are thus led to believe this is purely a characteristic of the
triangular lattice arrangement. It is also observed as expected that the beam
angle becomes smaller as the number of elements increases.

The radiation patterns for both the isotropic and the dipole cases are sym-
metric with respect to the x-axis at h=0 and 0.5X. This is so because of the
progressive phasing selected for the successive rows of elements. For the
row spacing between 0 and 0.5), the patterns are more directed toward one
side. The back lobe levels, which are relative the most prominent among the
minor lobes, are identical for both cases considered (Table 3). It also shows
that they are smaller at h = 0.2 and 0.3X at all element spacings.

The side lobes in the isotropic case begin to emerge at ¢=0° at smaller
row spacings when the element spacings are small, and at relatively larger
row spacing when the element spacings are large. However, the use of dipoles
as a radiation source completely eliminates this undesirable effect, and also
puts a severe limit on the other side lobes as to render them almost negligible.

Also shown in the tables are the effects of the increasing sizes on the
beam angles and the back lobe levels. The larger the size of the array, the
smaller the beam angle and the back lobe levels.

The directivity for both the isotropic and the dipole cases is improved as
the row spacing increases up to a certain point, then it is tapered off for further
increase in the row spacings (Figs. 10a-10d). It reaches a maximum in the
neighborhood of h=0. 4X for d's between 0,2 and 0.6)X. Further increase in the
element spacing shifts the maximum in the decreasing h direction; for instance,

it is at about h=0. 35\ for d=0. 8\ and at h=0. 2 for d=1.0X in the isotropic case.

17
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TABLE 1: BEAM ANGLES FOR THE ISOTROPIC CASE OF TEN

ELEMENTS.
d/x
(Degrees)

h/) 2 .4 .6 .8 L0

0 94 44 29 22 17
.1 92 44 28 22 17
.2 86 44 28 22 17
.3 78 44 28 22 17
.4 74 43 28 22 17
.o 68 42 28 22 17

TABLE 2: BEAM ANGLES OF DIPOLE CASE OF 10, 15, 21 ELEMENTS
ATh/x=0.2, 0.3, 0.4.

N
(Degrees)
d/x 10 15 o1
0.4 40 32 27
0.6 28 22 19
0.8 20 17 15

TABLE 3: BACK LOBE LEVELS OF BOTH THE ISOTROPIC AND THE
DIPOLE CASES AT d/x =0.4, 0.6, 0.8.

Ny
h/x 10 15 51
0.2 . 069098 .030710  .029274
0.3 . 069098 030710  .029274
0.4 . 180902 .080401  .054626

18
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FIG. 4a: The radiation patterns of the triangular lattice arrays with d/\ = 0.4,
h/X = 0.3, E-plane pattern of a 10-element isotropic array.
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Fig.4b: The Radiation Patterns of the Triangular Lattice Arrays
with d/x=0. 4, h/x=0.3, E- and H-plane Patterns of a
15-element Short Dipole Array.
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FIG. 4c: The Radiation Pattern of the Triangular Lattice Arrays with
d/x=0.4, h/x=0. 3, E-plane (inside curve) and H-plane (outside
curve) Patterns of a 10-element Short Dipole Array.
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FIG. 4d: The radiation patterns of the triangular lattice arrays with
d/x = 0.4, h/x =0.3, E- and H-plane patterns of a 21-element
short dipole array.
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FIG. 5a: The radiation patterns of the triangular lattice array with d/x = 0.4,
h/X = 0.4, E-plane pattern of a 10-element isotropic array.
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FIG. 5b: The radiation patterns of the triangular lattice array with d/x = 0.4,
h/XA = 0.4, E-plane (inside curve) and H-plane (outside curve) patterns
of a 10-element short dipole array.
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FIG. 5c: The radiation patterns of the triangular lattice array with d/x = 0.4,
h/Xx = 0.4, E- and H-plane patterns of a 15-element short dipole array.
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FIG. 5d: The radiation patterns of the triangular lattice array with d/\ = 0.4,
h/A = 0.4, E- and H-plane patterns of a 21-element short dipole array.
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FIG. 6a: The radiation patterns of the triangular lattice arrays with d/x = 0.8,
h/Xx = 0.3, E-plane pattern of a 10-element isotropic array.
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FIG. 6b: The radiation patterns of the triangular lattice arrays with d/A = 0.6,
h/X = 0.3, E-plane pattern of a 10-element short dipole array.
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FIG. 6c: The radiation patterns of the triangular lattice arrays with d/Xx = 0.6,
h/X = 0.3, E-plane pattern of a 15-element short dipole array.
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FIG. 6d: The radiation patterns of the triangular lattice arrays with d/x = 0.6,
h/\ = 0.3, E-plane pattern of a 21-element short dipole array.
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FIG. 7a: The radiation patterns of the triangular lattice arrays with d/X = 0.6,
h/X = 0.4, E-plane pattern of a 10-element isotropic array.
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FIG. 7b: The radiation patterns of the triangular lattice arrays with d/x = 0. 6,
h/Xx = 0.4, E-plane pattern of a 10-element short dipole array.
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FIG. 7Tc: The radiation patterns of the triangular lattice arrays with d/X = 0.6,
h/X = 0.4, E-plane pattern of a 15-element short dipole array.
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FIG. 7d: The radiation patterns of the triangular lattice arrays with d/x = 0.6,
h/\ = 0.4, E-plane pattern of a 21-element short dipole array.
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FIG. 8a: The radiation patterns of the triangular lattice arrays with d/x = 0. 8,
h/) = 0.3, E-plane pattern of a 10-element isotropic array.
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FIG. 8b: The radiation patterns of the triangular lattice arrays with d/x = 0.8,
h/Xx = 0.3, E-plane pattern of a 10-element short dipole array
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FIG. 8c: The radiation patterns of the triangular lattice arrays with d/\ = 0.8,
h/X = 0.3, E-plane pattern of a 15-element short dipole array.
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FIG. 8d: The radiation patterns of the triangular lattice arrays with d/x = 0.8,
h/X = 0.3, E-plane pattern of a 21-element short dipole array.
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FIG. 9a: The radiation patterns of the triangular lattice arrays with d/x = 0.8,
h/) = 0.4, E-plane pattern of a 10-element isotropic array.
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FIG. 9b: The radiation patterns of the triangular lattice arrays with d/X = 0.8,
h/X\ = 0.4, E-plane pattern of a 10-element short dipole array.

40



FIG. 9c: The radiation patterns of the triangular lattice arrays with d/x = 0. 8,
h/)\ = 0.4, E-plane pattern of a 15-element short dipole array.
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FIG. 9d: The radiation patterns of the triangular lattice arrays with d/x = 0.8,
h/Xx = 0.4, E-plane pattern of a 21-element short dipole array.
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As a function of d the directivity seems to reach a maximum in the
neighborhood of d=0. 9A. This is also observed in the linear arrays (Tai, 1964).
The directivity of the dipole case is in general higher than that of the isotropic
case. In either case, they are numerically greater than the number of elements

in the array.

VII

CONCLUSION

Because of the symmetry involved in the structure of the array, the H-
plane pattern is found to depend only on the row spacing. It is much broader
than the E-plane pattern. The E-plane patterns indicate that the main beam
becomes sharper at the expenses of the emerging side lobes and back lobes as
the element spacing becomes larger. The tapering effect which is inherent in
the triangular lattice configuration is rather evident.

The maximum nominal directivity seems to occur at the row spacing
about 0.35)X and the element spacing about 0. 9A. This latter criterion (d=0.9))
is also observed in the linear arrays.

In this report the numerical examples are presented only for the case where
6 =-kh, or the main beam is directed at 60=900 and o=90°. Under this case,
the back lobe levels of the dipole case are the same as in the isotropic case.

As a sequel of this study, it would be interesting to extend the present

work to the following:
1) The beam steering properties of the triangular lattice arrays.

2) The size of the back lobe as a function of the steering angle.

3) The rhombic array which is simply a juxtaposition of two triangular
lattice structures.

4) The lattice structures on curved surfaces, such as on a section of a
cone, or a section of a sphere.

5) Three-dimensional triangular array, such as pyramids or tetrahedra.
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