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The quasi-equilibrium assumption is often used to simplify the analysis of reaction diffusion problems,
including those that arise in drug dissolution and ionization processes. This approximation often makes
the governing equations tractable, and analytical solutions may then be obtained. However, the
application of the quasi-equilibrium assumption may lead to simplified solutions that (1) are apparently
inconsistent with stated boundary conditions and (2) have a physical interpretation that is different
from those of the original problem statement. Herein we discuss these two issues as they arise in the
modeling of drug dissolution processes. In spite of the different conceptualizations, the concentration
profiles and dissolution fluxes obtained from the full and approximate solutions converge as the
reaction response times exceed those of diffusion, thus supporting the applicability of the quasi-
equilibrium assumption for ionized drug dissolution processes.
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INTRODUCTION

The application of simplifying kinetic assumptions is
quite frequent. The two most commonly used simplifying
assumptions are the quasi-equilibrium assumption and the
quasi-steady-state assumption. Both are applied to spatially
homogeneous and heterogeneous systems. The ramifications
of using these assumptions and the parameter values under
which they are applicable are not always apparent. For in-
stance, the applicability of these assumptions to the classical
Michaelis-Menten reaction mechanism has been extensively
studied over most of this century (e.g., see review in Ref. 1).
The parameter regions of the applicability for this mecha-
nism have recently been mapped out using scaling and com-
parative time constant analysis (2,3).

Recently, similar concerns have risen in the pharmaceu-
tical literature over the applicability of the quasi-equilibrium
assumption to the modeling of dissolution of drugs (4,5).
Intuitive arguments against its use state that the physically
realistic boundary conditions are violated. Mathematically,
imposition of quasi-equilibrium assumptions reduces the
number of degrees of freedom in the model equations. Some
variables that were independent in the original problem
statement become dependent on other variables through the
quasi-equilibrium relationships. The dependent variables
that are eliminated by the use of the simplifying assumptions
typically are those that maybe considered fast relative to
some other variables that move slowly and/or are experi-
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mentally measurable. Since one cannot impose an indepen-
dent boundary condition on a dependent variable, this pro-
cedure leads to a corresponding reduction in the number of
independent boundary conditions necessary to solve the
problem. Frequently, the simplified solution is inconsistent
with the original problem statement or physical intuition. We
first use a familiar example from enzyme kinetics to illustrate
the main points and then show how analogous issues arise
when one uses the quasi-equilibrium assumption for solving
mathematical models of the drug dissolution process.

AN EXAMPLE FROM ENZYME KINETICS

Michaelis-Menten Kinetics. The simplest enzymatic re-
action mechanism, first proposed by Henri in 1903 (6) but
named after Michaelis and Menten (7), is

K
S+E=X—->E+ P 1)
(s) @ k-1 (x) ®

where a substrate S binds reversibly to the enzyme E to form
the intermediate X, which can break down to give the prod-
uct P and regenerate the enzyme. There are four chemical
species in this mechanism which are constrained by two
mass balances

ep=¢e +x and S =8S+x+p 2

and consequently, there are two degrees of freedom. The
lowercase letters represent the concentration of the chemical
species denoted by the corresponding uppercase letter.

The two independent variables that are traditionally
used are the substrate (s) and the intermediate complex (x)
concentrations. The reaction dynamics are described by two
differential equations:
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A typical concentration profile is sketched in Fig. 1, where
the solid lines represent the solution of the full model. The
substrate decays in time, whereas the intermediate complex
initially rises rapidly and then decays. The initial rise of x
typically is fast, leading to the use of simplifying Kinetic
assumptions.

The more commonly used quasi-steady-state assump-
tion assumes that the transients of x are fast and relaxing
them, dx/dt = 0, results in
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)
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where K, = (k_, + k,)/k, is the well-known Michaelis con-
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Fig. 1. Concentration profiles for the Michaelis-Menten reaction
mechanism. Solid line, full solution; dashed line, solution after ap-
plying the steady-state assumption. (A) The concentration profile
for the substance s. (B) The concentration profile for the intermediate
complex concentration x.
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stant. The important ramification is that x is no longer an
independent variable and is calculated based on s. Substitut-
ing x., into the differential equation for the substrate, Eq.
(3), gives the well-known Michaelis—-Menten rate law

Q _ —keos

dt Ku+s ©

The time profiles resulting from the reduced model are
sketched by the dashed lines in Fig. 1. The important differ-
ence between the full and the reduced solution is that x no
longer is zero at time zero but is immediately in a quasi-
steady state with respect to s. Hence x has a finite value at
time zero [x, = eys¢/(K,, + $¢)] Which is in direct contra-
diction with the physically realistic initial condition of x, =
0. Further, the initial rate of change of x has changed from
being positive for the full solution to being negative for the
reduced solution.

The violation of the initial condition by the reduced so-
lution is clear in this example. Since the reduced solution for
x is obtained directly from s we cannot impose independent
initial conditions for x. It should be pointed out that the
initial dynamics of the reaction are, in many cases, not im-
portant, and although the simplified solution has a different
initial condition, it leads to a good approximation to the con-
centration profile for the longer time span of interest. Similar
arguments apply for the use of the quasi-equilibrium assump-
tion (2,3) and the parameter combinations under which they
are applicable have been described (2,3).

This familiar and readily understandable example is in-
tended to serve as an illustration. Parallel issues arise when
one uses the quasi-equilibrium assumption for the simplifi-
cation of mathematical descriptions of drug dissolution pro-
cesses.

MODELING DRUG DISSOLUTION

We now consider the situation where dissolution and
subsequent reaction occurs. An analytical solution exists,
for both the full and the simplified model, when the dissolu-
tion of compound A is followed by a conversion to com-
pound B by a reversible reaction as

Agolia = Aaq = Baq’ r= k(CA - KCB)

where r represents the rate of the reaction. This example
might be taken to represent the dissolution of an acidic drug
molecule into a medium that is well buffered, with B repre-
senting the ionized form.

Model Equations. Using a film model with Fick’s law of
diffusion in slab geometry, the differential equations describ-
ing this system are as follows.

(a) For compound A,

d*c
Dr—7 =r = KCa ~ KCp) ™)

(b) For compound B

d’c
Dy 7 = —r = —k(Cx - KCp) ®)

where C, and Cy are the concentrations of A and B, D, and
Dy, are the respective diffusion coefficients, x is the coordi-
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nate measured from the surface, k is the reaction rate con-
stant, and K is the equilibrium constant with K = (C,/Cg)eq-

Boundary Conditions. When a compound dissolves into
water it must cross the phase boundary between the solid
phase and the aqueous phase in which it will be dissolved.
For drugs which are in the free acid or free base form in the
solid state, any dissociation will occur subsequent to hydra-
tion. Regardless of the chemical kinetics involved and their
rates, the ionized species are created after the molecules
have left the solid phase. The flux of ionized drug must
therefore be zero at the interface, while the flux of the dis-
solving molecule that crosses the phase boundary is
nonzero.*

Based on these observations we state the following
boundary conditions.

(a) At the surface, x = 0,

Ca = Ca; )

which is the intrinsic solubility of A. Since B, the product, is
ionized it cannot penetrate the solid drug and we have

dc
s _,

dx (10

(b) At the bulk edge of the diffusion layer, x = 3§,

Ca =CaL and Cp = CpL 1

which are the values in the bulk. In most cases these values
are zero (sink conditions). To simplify the ensuing mathe-
matical expressions we take C,; and Cg; to be zero (sink
conditions).

Full Solution. The solution of the differential equations
with the boundary conditions specified results in the follow-
ing concentration profile for C, (11):

Cr = — 4 —Cai
A7 1+ (v/¢K)tanh(e)
1 + (y/¢K)tanh
+ cosh(d2) [1 -3 +((7y/d<;>11<())tal:1h(((z>z))] Ca (12)
and
Co — (1 — 2)CailK
® 7 1+ (/K)tanh(¢)
1 + (v/éK)tanh(dz)| Cai
- cosh(®d) [‘ R (v/ch)tanh(d))] B
where z = x/d is a dimensionless coordinate, y = Dg/D,,

and ¢ is the Thiele modulus defined as
$? = k8%(y + K)Dy, (14)

The Dissolution Flux. The dissolution flux of A is ob-
tained from

4 An analogous situation occurs when a molecule in the gaseous
state dissolves in a liquid—a situation of which numerous treat-
ments are found in the gas/liquid dissolution (absorption) literature
(8-10). Even if the ionized species could penetrate the solid, the
rate of diffusion would be five to seven orders of magnitude slower
in the solid than the liquid, making the flux into the solid negligible.
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Dag v+ K
o 0 ““[tanh(¢)/d] + K

1s5)
while Jg is zero. At this point we note that the flux of A is

equal to the total rate of dissolution since the flux of B at the
surface is zero:

dCa dCr dCg
() a5
dx x=0 dx dx x=0
- _p, (%) _ J
Alax )y 77 (16)

where we define the ‘‘dynamic total concentration’ of A as
Cr = C, + vCp.

QUASI-EQUILIBRIUM ASSUMPTION

The set of equations described above can be solved in
terms of total concentrations. Combining Eqgs. (7) and (8) we
get

d(Ca + yCg) _

Da dx?

a7

Integration and evaluation of the constants of integra-
tion using the boundary conditions Ct = C,; + yCp; at the
surface and Eq. (11) lead to

CT = (1 - Z)CTi or CA + 'YCB (1 - Z)(CAI + ’YCBi)

(18)
Now we assume that A and B are always at equilibrium, i.e.,
Cs = CA/K (19)

We may now obtain the concentration profile for A by using
Eq. (19) in Eq. (18):

K
Ca=(1 —2)Cqs = <'y n K) Cri

and Cg can be calculated from the equilibrium relationship.
The dissolution fluxes of A and B are simply given by

20

Da
Yy Cai

D
T = and Jg = —8’3%% @1

while the total rate of dissolution, obtained from Eq. (18), is

Dy Y
5 <1 + K) Cai
This quasi equilibrium solution, of course, assumes that
the reaction is infinitely fast, hence no rate constants (¢)
appear in the solution. A comparison of the results from full
and approximate solutions can be made only in the limiting
case of infinitely large reaction rate constants. However, an
important difference is immediately seen irrespective of the
rate constant. The difference of course is that the rate of
dissolution of B is now finite. This result is in direct con-
tradiction with the original problem statement and is a con-

Jr
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sequence of imposing the quasi-equilibrium assumption.
Since Cg has been eliminated as an independent variable—it
depends now directly on C, through Eq. (199—we can no
longer impose an independent boundary condition on Cg,
hence the solution obtained under the quasi-equilibrium as-
sumption is inconsistent with the original problem state-
ment.

This limitation of quasi-equilibrium assumption is inev-
itable, as this approach does not have an independent eval-
uation of concentration profiles for individual species.
Rather, the total concentration profile is evaluated first.
Then the equilibrium is assumed to relate the total concen-
tration to the individual ones (5). Hence, we cannot recover
the independent boundary condition assigned for B when it
was an independent variable. Once B becomes dependent,
its behavior at the boundary, or the boundary conditions,
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Fig. 2. (A) Concentration profiles for B in the boundary layer, for
sink conditions, K = 1, and y = 1. The full solution is represented
by the solid line, and the quasi-steady-state assumption solution by
the dashed line. (B) The dissolution flux (open squares) and the
concentration of B at the solid surface (filled squares) as a function
of rate constant. The values are normalized to the quasi-equilibrium
solution.
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Fig. 3. Dissolution fluxes. The total rate of dissolution is repre-
sented by the dashed line, the rate of dissolution of A is represented
by the solid line, and the rate of dissolution of B is represented by
the dotted line.

also becomes dependent, and obviously the independent and
dependent boundary conditions do not match.

COMPUTER SIMULATIONS

We have seen that the quasi-equilibrium assumption
leads to a nonzero flux of B at the solid/liquid interface, in
apparent contradiction to the original problem statement.
Now let us examine solutions from full and quasi-equilibrium
assumption approaches in predicting the dissolution fluxes
and the concentration profiles in the boundary layer.

Figure 2A illustrates the concentration profile of B in the
boundary layer for sink conditions with K = 1,y = 1, pre-
dicted from the full model. The concentration of B is nor-
malized to the concentration of A. The profiles from full and
quasi-equilibrium assumption solutions differ at slow reac-
tion rates (low ¢). However, the concentration profiles for B
approach the approximate solution obtained under the quasi-
equilibrium assumption as ¢ increases. Figure 2B shows the
concentration of B at the interface and the total dissolution
flux as a function of the reaction rate constant. These values
are normalized using the quasi-equilibrium assumption solu-
tion and we see that both values approach those obtained
from the quasi-equilibrium assumption solution at high rate
constants. Hence it is apparent from Fig. 2 that although the
discrepancy arises in the boundary condition for Cg, the
quasi-equilibrium solution closely approximates the full so-
lution under the condition that ¢ > 1.

The dissolution rate of B (directly proportional to the
slope of the concentration profile at the interface) is always
zero for the full solution, as dictated by the boundary con-
ditions, Eq. (4). The slope for the quasi-equilibrium solution
is, however, not zero, even though the concentration pro-
files converge as ¢ becomes large. The rates of dissolution
for A and B are thus discontinuous in the instantaneous re-
action rate limit (¢ — ). The estimated total rates of disso-
lution for both the full and the approximate solutions,
though, are numerically the same under these limiting
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condition.® The solutions for the individual and total fluxes
are shown in Fig. 3. This figure also illustrates the disconti-
nuity in the limit ¢ — .

If one considered only the solution obtained after im-
posing the quasi-equilibrium assumption, one would arrive
at the physical interpretation that component B is actually
crossing the solid/liquid interface. The analogous interpreta-
tion in the Michaelis-Menten example would be that there is
a finite concentration of the intermediate substrate—enzyme
complex at time zero. These misleading physical interpreta-
tions result from examining the solutions after the simplify-
ing assumptions have been imposed. The appropriate point
to establish the physical interpretation is in the initial state-
ment of the problem. Regardless of the altered physical in-
terpretation, the approximate solutions give the correct nu-
merical values under the appropriate conditions (in the drug
ionization example, when ¢ is large).

* This convergence is in fact clear if one notes that tanh(é)/d — 0 as
¢ — =; thus Eq. (15) becomes Eq. (22), and Eq. (12) becomes Eq.
(20).
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