Let p be a subharmonic function on \mathbb{C} such that $\log(1+|z|) = 0(p(z))$ and let A_p denote the algebra of entire functions f such that $|f(z)| \leq A \exp(Bp(z))$ for some A, B > 0. Let V denote a discrete sequence of points $\{a_n\}$ of \mathbb{C} together with a sequence of positive integers $\{p_n\}$ (the multiplicities of $\{a_n\}$). If $\{a_n\}$ of zeros of f and p is the order of zero of f at a_n .

In this situation, there are three natural problems to study.

I. Zero Set Problem. Given p, describe the sets V(f), $f \in A_p$

II. Interpolation Problem. If $\{\alpha_n, \rho_n\} = V \subset V(f)$ for some $f, f \in A_\rho$, describe all sequences $\{\lambda_n, k\}$ which are of the form

$$\lambda_{n,\kappa} = \frac{q^{(\kappa)}(a_n)}{\kappa!}, 0 \le \kappa \le \rho_n, n=1,2,...\text{for some } q, q \in A_\rho. \tag{1}$$

III. Universal Interpolation Problem. If $V\subset V(f)$ for some $f,f\in A_p$, under what conditions on V is it true that for every sequence $\{\lambda_{n,k}\}$, such that $|\lambda_{n,k}|\leqslant A\exp(\beta\rho(a_n))$, there exists q, $q\in A_p$, satisfying (1).

In case p(z) = p(|z|) (and satisfies some mild, technical conditions), quite good solutions to problems I-III are known. This work has been carried out by Leont'ev and others (see, e.g., [1] for a survey). However, when p is not a function of |z|, the general solutions are not known.

The purpose of this note is to call attention to an interesting special case of III. Consider the case $p(z) = |\operatorname{Im} z| + \log(1 + |z|^2)$. Then $A_p = \hat{\epsilon}'$, the space of all entire functions of exponential type with polynomial growth on the real axis. The space $\hat{\epsilon}'$ is of special interest because, by the Paley-Wiener-Schwartz theorem, it is the space of Fourier transforms of distributions on R with compact support. The problems I-III are then dual to some problems about convolution operators on the space $E = C^{\bullet}(R)$ (see, e.g., [1-3]).

Specifically, suppose for some $\varepsilon > 0$, c > 0, $f \in \hat{\varepsilon}'$, we have

$$V = \{a_{n}, \rho_{n}\} \subset V(f), \text{ where } \frac{|f|(\rho_{n})|}{|\rho_{n}|} \ge \varepsilon \exp\left(-\frac{\rho(a_{n})}{\rho_{n}}\right)$$

$$\left(\rho(z) = |\operatorname{Im} z| + \log\left(|f| + |z|^{2}\right)\right). \tag{2}$$

Then it is not hard to show that (2) is a sufficient condition that V has the universal interpolation property III. We wish to pose the converse problem.

<u>Problem.</u> Suppose that $V \subset V(F)$ for some $F, F \in \hat{\epsilon}'$, and that V is a universal interpolating sequence, i.e., III holds. Is it true that (2) must hold for some $f, f \in \hat{\epsilon}'(R)$?

In all the cases known to the author where the problem has answer yes, it is also true that the range of the multiplication operator $M_F:A_p\to A_p$ given by $M_F(f)=Ff$ is closed. Is the fact that M_F has closed range necessary for a "yes" answer? (In the case $A_p=\hat{\epsilon}'$, if M_F has closed range, then the problem has answer yes, as can be shown by the techniques of [4].) However, the main interest in the problem is to find if (2) must hold with no additional assumptions on F.

^{*}B. A. TAYLOR. Mathematics Department, University of Michigan, Ann Arbor, Michigan 48109.

LITERATURE CITED

- 1. A. F. Leont'ev, "On properties of sequences of linear aggregates that converge in a region in which the system of functions generating the linear aggregates is not complete," Usp. Mat. Nauk, 11, No. 5, 26-37 (1956).
- 2. L. Ehrenpreis, Fourier Analysis in Several Complex Variables, Wiley-Interscience, New York (1970).
- 3. V. P. Palamodov, Linear Differential Operators with Constant Coefficients, Springer-Verlag, New York (1970).
- 4. L. Ehrenpreis and P. Malliavin, "Invertible operators and interpolation in AU spaces," J. Math. Pure Appl., 13, 165-182 (1974).
- J. Math. Pure Appl., 13, 165-182 (1974).
 A. I. Borisevich and G. P. Lapin, "On the interpolation of entire functions," Sib. Mat. Zh., 9, No. 3, 522-529 (1968).