2.11. NECESSARY CONDITIONS FOR INTERPOLATION BY ENTIRE FUNCTIONS*

Let p be a subharmonic function on € such that log (1 + lz1) = 0(p(2z)) and let Ap de-
note the algebra of entire functions f such that !f(z)| < Aexp (Bp(z)) for some A, B > O.

Let V denote a discrete sequence of points {ap} of { together with a sequence of positive

integers {pp} (the multiplicities of {agnl}). If {GiAp, §£#0, then V(f) denotes the sequence
{ap} of zeros of £ and p is the order of zero of f at ap.

In this situation, there are three natural problems to study.

1. Zero Set Problem. Given p, describe the sets V(f), f E:Ap

II. Interpolation Problem. If {Gn,Pa)=VcV{E) for some },}e:AP, describe all se-
quences {ip k) which are of the form
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III. Universal TInterpolation Problem. If VeV for some },fEiAP, under what condi-

tions on V is it true that for every sequence {)‘n,k}: such that |')\.n'K|$Ae:x:p(Bp(aw)) , there
exists q gE:AP , satisfying (1).

In case p(z) = p(lzl) (and satisfies some mild, technical conditions), quite good solu-
tions to problems I-III are known. This work has been carried out by Leont'ev and others
(see, e.g., [1] for a survey). However, when p is not a function of !zl, the general solu-
tions are not known.

The purpose of this note is to call attention to an interesting special case of TIIL.
Consider the case p(z) = IImzl + log (1 + !zl?). Then Ap = €', the space of all entire func-
tions of exponential type with polynomial growth on the real axis. The space €' is of spe-
cial interest because, by the Paley-Wiener—Schwartz theorem, it is the space of Fourier

transforms of distributions on R with compact support. The problems I-III are then dual
0a
to some problems about convolution operators on the space 6==C(R) (see, e.g., [1-3]).

Specifically, suppose for some € > 0, ¢ > 0, f € &', we have

()
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(P =1Im 2| + log (1+121").

(2)

Then it 1is not hard to show that (2) is a sufficient condition that V has the universal in-
terpolation property IIL. We wish to pose the converse problem.

Problem. Suppose that V « V(F) for some F, F & é', and that V is a universal inter-
polating sequence, i.e., IIT holds. TIs it true that (2) must hold for some f, f € e'(R) ?

In all the cases known to the author where the problem has answer yes, it is also true
that the range of the multiplication operator Mp:4p + Ap given by Mp(f) = Ff is closed. TIs
the fact that My has closed range necessary for a "yes" answer? (In the case Ap = e', if My
has closed range, then the problem has answer yes, as can be shown by the techniques of [4].)
However, the main interest in the problem is to find if (2) must hold with no additional
assumptions on F.
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