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Summary - -  Zusammenfassung - -  R6sum6 

Chip Formation in Anisotropic Rock. In a series of previous papers it was 
shown that the fracture of brittle materials such as rock subjected to a globally 
compressive stress field is accompanied by the formation of microdamage regions. 
Quantitative descriptions of these regions exist for isotropic materials. In the present 
paper the theory is extended to brittle materials which exhibit anisotropic fracture 
behavior due to the presence of a preferred prefracture flaw distribution. Results 
are computed for three orientations of a given flaw distribution and compared with 
some existing theoretical and experimental isotropic results. A new type of chip 
formation, not found in the isotropic case, involving multiple initiation sites, is 
predicted. 

Bruch[orm in anisotropem Gestein. In einer Serie yon Arbeiten wurde gezeigt, 
dat~ der Bruch yon spr6dem Material zu dem auch Stein geh6rt, unter Einfluf~ eines 
global kompressiven Spannungsfeldes eine Besch~idigung im Mikrobereich aufweist. 

Es gibt bisher quantitative Beschreibungen dieser Erscheinung f/it isotrope Ma- 
terialien. In der vorliegenden Arbeit wird die Theorie auf spr6de Materialien, die 
anisotropes Bruchverhalten zufolge vorhandener Risse zeigen, erweitert. Berechnun- 
gen werden fiir drei Richtungen von vorhandenen Rissen durchgeffihrt und mit 
einigen vorhandenen theoretischen und experimentellen verglichen. Mittels vieler 
Ans~itze wurde eine neue Bruchform, die im isotropen Fall nicht vorkommt, vor- 
ausgesagt. 

Formation des copeaux pour Ie cas anisotrope. Dans nne s&ie d'articles antdrieurs 
on a montr6 que la fracture des mat6riaux fragiles - -  tels que la roche sujette 
un champ d'effort globalement compressif - -  est accompagn~e de la formation des 
r6gions de microendommagement. Des descriptions quantitatives de ce r6gion, exis- 
tent pour les matdriaux isotropes. Ici la th6orie est &endue aux mat&iaux fragiles 
qni exhibent un comportement anisotrope de la fracture par suite d'une distribution 
pr~ferde des imperfections avant la fracture. Les r&ultats sont calcul& pour trois 
orientations d'une distribution donn~e des imperfections, et sont compar& avec des 
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r~sultats actuels th6oriques et expSrimentaux pour le cas isotrope. On pr~dit une 
nouvelle type de la formation des copeaux - -  pas trouv~e dans le cas isotrope - -  
que raise en jeu les sites multiples d'initiation. 

N o m e n c l a t u r e :  A1, 2, B1, 2, C1, 2, D1, ~ - -  constant coefficients in fitted curves of 
C (7),/~ (7); C (7) --Y-intercept of linear fracture envelope for material orienta- 
tion, 7; E - -  Young's modulus; K [(rl, (r2; C (7), # (7)] - -  fracture function based 
on linear envelope; K [(rl, (r2; St (y), Sc (Y)] - -  fracture function based on parabolic 
envelope; L - -  characteristic length, see Fig. 2; n, m --  exponents in fitted curves of 
C (y), # (7); P - -  characteristic line load, see Fig. 2; Px, Py - -  dimensionless traction 
components; St (y), Sc (7) - -  tensile, compressive strengths of material at orientation, 
y; ux, uy - -  dimensionless displacement components; ~1 - -  angle between x-axis 
and direction of maximum principal stress (-~r/2___ ~1-<~r/2); 7 - -  angle between 
normal to bedding plane and direction of maximum principal stress (0-<7-< ~/2); 
d - -  chip depth; y~ -- angle between x-axis and normal to bedding plane (0-< 7 ~-< ~r); 
8, 8' - -  values of Y at which C (Y), # (Y) are minimum; # (Y) - -  slope of linear 
fracture envelope for material orientation, Y; ~ - -  Poisson's ratio; 81, 2, ~1, 2 - -  prin- 
cipal, dimensionless principal stresses at a point (~1>~2); 8 - -  normal stress on a 
plane; Y - -  shear stress on a plane. 

1. Introduction 

The penetration of brittle rock by a mechanical tool can be considered 
a cyclic, two-phase process [1]. Under penetration by a wedge, for example, 
the first phase involves crushing of the material in the vicinity of the wedge 
tip. As the force on the wedge and, hence, the penetration increase, stresses 
are induced in the surrounding material which are sufficient to cause in- 
cipient fracture, fracture growth and finally a chip. Understanding this 
second (chipping) phase is of major importance in the practical problem of 
reducing the energy required to remove a unit volume of material (the 
specific energy), and is the purpose of this analysis. 

Although chip formation is a fracture problem, it is not the usual 
problem posed in linear elastic fracture mechanics. In the usual problem, 
the relationship between the macroscopic stress field (tensile for mode I) and 
finite crack geometry is determined for a given material and global geometry 
such that  the crack begins to propagate (usually unstable propagation). In 
the present problem, the material contains a distribution of microscopic 
flaws in a macroscopically compressive stress field. Although a mechanistic 
explanation can be argued [2], the relationship defining the onset of fracture 
in this situation 1, i. e., the fracture criterion, is empirical. 

Other, even more significant, differences exist. In the usual situation, 
fracture proceeds by propagation of a single crack. In the present problem, 
the macrofracture which defines the chip propagates somewhat  randomly 
through a growing damage region which is defined by the presence of 
microflaw coalescence. This region has been quantitatively defined for iso- 
tropic materials [2, 3] and verified experimentally for modelling plaster [4, 5]. 
It is the purpose of the present paper to extend this theory to anisotropic rock. 

1 Actually the onset of microflaw coalescence. 
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2. Fracture Analysis of Anisotropic Rock 

To a first approximation rock can be considered an elastic material 
filled with microcracks [6]. Due to the globally ~ compressive stress field of 
interest here, these microcracks tend to close with increasing stress. Two 
types of anisotropy are possible. The first is in the elastic stress field and 
occurs for stress values below fracture initiation. Here, it is also important 
to identify a second (lower) stress state, namely that necessary to close the 
cracks. Below this, the material may exhibit both non-linearity and aniso- 
tropy due primarily to stiffnesses which depend on both load magnitude 
and direction [6]. Above the crack closure stress state but below fracture 
initiation, where one is measuring the "intrinsic" properties of the matrix 
material, many rocks behave nearly isotropically (see, for example, Refs. 
[7, 8]). Thus, in the present analysis the assumption of elastic isotropy will 
be made. 

The presence of the closed cracks does, however, effect the fracture 
characteristics. If the cracks are randomly oriented and distributed, then the 
fracture characteristics are isotropic. If there is a preferred crack distribution, 
such as occurs, for example, in certain rocks having bedding planes a, then 
the fracture characteristics are anisotropic. This anisotropic fracture behavior 
has been studied and modeled by several authors [9--14]. The mathematical 
model to be used in the present analysis is that given by M c L a m o r e  and 
G r a y  [13]. This is an extension (more accurate fit of experimental data) of 
the variable cohesive shear strength model of J a e g e r  [10]. 

The Coulomb Mohr fracture criterion is 

I~l + n ~ = c (1) 

where r, ~ are the dimensional shear and normal stresses on an interior 
plane and C, # are constants. In the case of linear, isotropic fracture #, C 
are true constants. In the case of linear, anisotropic fracture C, # are func- 
tions of y, where y is the angle between the normal to the bedding plane 
and the maximum principal stress direction (tensile stresses positive). Fol- 
lowing [13], C,/~ can be expressed in the form 

C -- At - Bi [cos 2 (~:- 7)] n 

/~ = C i -  D~ [cos 2 (8'-~')]~ 

(2) 

where 8, 8' are the values of y where C,/~ are minimum, respectively, and 
i takes on the value 1 or 2. A1, B1, C1, D1 are curve fitted to the experimental 
data over the range 0_<y_<8,~' and A2, B2, C2, D2 over the range 
~, ~' <y<_~/2.  Exponents n, m are "anisotropy type" factors which are also 
fitted to the experimental data. Fig. 1 is such a plot for the Green River 
Shale which will be used in the present analysis. Two additional fracture 

2 Local stresses in the vicinity of crack tips are, in fact, tensile. 
a This anisotropy is of the transversely isotropic type. 
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cases are also important, namely nonlinear isotropic and nonlinear aniso- 
tropic. The nonlinear isotropic fracture analysis was developed in Ref. [2], 
while the nonlinear anisotropic is discussed in the appendix. 

Eq. (1) in terms of principal stresses is 

( 7 )  ( ~ 1  q - ~ 2 ) q - ( 1  _ { -#2  (,~,,))1/2 (0"1--0"2)  = 2 C (y) (3) 

Dimensionless stresses are defined as follows 

~i L 
GI-- p 

~2 L 
cry= p (4) 

where P, L are defined in Fig. 2. Substituting into Eq. (3) and solving for P/L: 

z c (r) (5) P/L = K [ a l ,  0"2; C (Y), # (7)] = # (7) (al  + a2) + [1 + #~ (7)]~/2 (al  - a2) 
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Fig. 1. Variation of C with respect to 7 for Green River Shale, as reproduced from 
McLamore  and Gray [13] 

ANinderung yon C in bczug auf 7 ffir den Green-River-Schiefer (nach McLamore  und 
l ray  [13] ermittelt) 

Variation de C, 6tant une fonction de 7, pour l'ardoise Green River (selon McLamore  
et Iray [13]) 
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Eq. (5) defines a fracture function K. Physically it represents the loading 
P/L necessary to initiate fracture at that point in the field [2, 3]. In terms 
of problem solution, K is utilized in the following way. There is a minimum 
value of P/L--Kmi n for which fracture is initiated at some point in the field. 

PI  / px = 0 , . 

/ Uy=COns,an[ 

A B 

C Px=O --~--~ D 
oy=o 1o, ~1 

Fig. 2. Problem Geometry 
Geometrie des Problems 
G6om&rie de problhme 

As P/L increases, fracture is initiated at surrounding points forming a grow- 
ing region of damage. Each contour shown on Figs. 3--8 represents the 
value of P/L necessary to propagate the damage to that contour. Macro- 
fracture, which forms the resultant chip, is assumed to propagate through 
this damage region following to a first approximation the minimum gra- 
dient of K [4, 5]. 

3. Numerical Results 

The specific problem geometry is that shown in Fig. 2. This geometry 
has been chosen because of experimental convenience and comparison with 
currently available analytical and experimental isotropic solutions [2--5]. 

The problem solution is in two parts. The first part is the determination 
of the prefracture stress field. This is a linear isotropic elasticity problem. 
The boundary conditions are mixed, i. e., 

p~=0 on AB, BD, DC, CA 

pu=O on BD, CA (6) 

E~u 
uv = - T -  = Uvo on AB 

uu=O on DC 

Rock Mechanics, Vol. 10/3 9 
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where px, Pu, us, uu are dimensionless traction and displacement components. 
The tractions have been nondimensionalized with respect to P/L and the 
displacements with respect to P/E. Note that the total line force P on AB 
and not the uniform displacement is the usual measured quantity. Compu- 
tation of the fracture function, Eq. (5), requires a stress field due to a unit 
P/L. Thus, uy0 represents the dimensionless displacement due to a unit P/L, 
which is unknown apriori. The difficulty is circumvented by assuming a unit 
uniform displacement, calculating the total line force by integrating the 
normal traction on AB resulting from the unit displacement, and then scaling 
the stresses to give a unit P/L, see [15]. An integral method which is partic- 
ularly convenient for this problem has been used for stress field determina- 
tion. This is outlined in detail for this problem in Ref. [15] and for brevity 
will be omitted here. 

The material used to illustrate the analysis is a type of Green River 
Shale, for which the elastic constants 4 are [8] 

E = 3.8 x 104 MPa (7) 

= 0.2 

With the principal stresses (al, o2) and principal directions, (~1, 0~1 Jr 0l:/2) 5 
known, the fracture analysis can be done. Eq. (5) is used directly to deter- 
mine the global loading P/L necessary to initiate fracture (in the sense of 
coalescence of microcracks) at a given field point. The values of C, # needed 
in Eq. (5) for this type of Green River Shale are [13] 

j73.8-29.6 [cos 2 (zr/6-y)] 6 0 <_7 <_Jr~6 
C=/60.7_16.5 [cos 2 (zr/6-y)] ~ ~r/6<_y_<Jr/2 (8) 

# = 0.589 

where the dimension of C is MPa. Note the isotropic character of #. 
Note that the angle 1, in Eq. (8) (derived from experimental data) is 

defined only in the range 0 _< y < ;r/2. To define Y, for use in Eq. (5), a global 
angle ~,o is introduced where yo is the angle measured from the x-axis to 
the normal to the bedding plane, 0 <yo<~r, see the inset of Fig. 2. In terms 
of yo and -1, )' at a given field point is 

-y~+~i, -~/2-<-y~-~I-<0 
y{7-- 0el, 0 <yG--=l _<vr/2 (9) 

Y= ~_y~+~1, ~/2_<y~-~i_<~ 

4 Actually, slight elastic anisotropy was found in Ref. [8]. Ranges of various 
E's, ~'s at zero confining pressure were 

3.77 x 104 < E < 3.85 × 104 
0.18 < • < 0.24 

5 ~1, is the angle measured from the x-axis to the direction of the maximum 
principal stress cq, -zr/2 <_ ~1 -< ~r/2. 



Chip Formation in Anisotropic Rock 131 

The fracture function K = P / L  is now computed at a selected grid of 
field points covering the suspected region of fracture initiation. Contour 

4.5L-- 

iii 
3.0L ~ MPa 

Fig. 3. Contour plot of fracture function for displacement of AB; y°=0° 
Konturkarte des Bruches fiir Verschiebung yon AB; 7~=0 ~ 

Diagramme reprdsentant la propagation des dommages produits par pouss~e de AB; 70=00 

\ 

iii 
Fig. 4. Contour plot of fracture function for uniform traction on AB; ya=0° 

Konturkarte des Bruches fiir gleichf6rmiges Ziehen an AB; ;~e=0~ 
Diagramme rcprdsentant la propagation des dommages produits par traction de AB; y°=0° 

plots of K can then be constructed by interpolation. Again, a given contour 
represents the global force level P/L necessary to propagate the damage region 
to that contour. 

9* 
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Figs. 3, 5 and 7 are contour plots for y°=O, Jr/4, ~r/2, respectively and 
for a prescribed uniform normal displacement on AB. Fracture initiates at 

Yl 

K =  450 
MPa 

Fig. 5. Contour plot of fracture function for displacement of AB; pG=45 ° 
Konturkarte des Bruches fiir Verschiebung yon AB; 7c=45 ° 

Diagramme reprfsentant la propagation des dommages produits par pouss4e de AB; ya =45 o 

'=£ 

Fig. 6. Contour plot of fracture function for uniform traction on AB; ye=45 ° 
Konturkarte des Bruches fiir gleichfSrmiges Ziehen an AB; 7 ~ =450 

Diagramme repr4sentant la propagation des dommages produits par traction de AB; y o = 450 
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the corners A, B (symmetrically for 7 ~ = 0 ,  ~z/2) in all three cases due to the 
large stress gradients there, with the initial damage propagating vertically. 

4.5L ~ ~ ~  

4.0L 

3.0L bedding plane 

Fig. 7. Contour plot of fracture function for displacement of AB; 7°=90 ° 
Konturkarte des Bruches fiir Verschiebung yon AB; 7°=900 

Diagramme reprdsentant la propagation des dommages produits par poussfe de AB; 7a=90 ° 

4 .0L~  
.oo G>'/// \ 
3 7 0 / j / /  \ 
380 - f / /  \ 
390 ~ " K .  400 \ 

plane \ 3.0L--' 
Fig. 8. Contour plot of fracture function for uniform traction on AB; 70=900 

Konturkarte des Bruches fiir gleichf6rmiges Ziehen an AB; 7~=90 ° 
Diagramme reprdsentant la propagation des dommages produits par traction de AB; 7~=90 ° 

It is important to point out that the theory is accurate only for initiation 
and initial propagation since it neglects changes in material properties which 
occur in the damage region. This initial agreement is demonstrated in the 



134 N.J. A l t i e ro  and D.L. S ika r sk ie :  

isotropic case in Ref. [5]. In an effort to provide a better estimate of the latter 
stages of damage growth, a second boundary condition was considered, 
namely a uniform normal traction on AB. This estimate is based on the initial 
damage propagating vertically, i. e., a uniform normal displacement on a rec- 
tangular geometry results in a uniform normal traction component. Figs. 4, 
6 and 8 are the results of this computation for y~=0 ,  ~/4, z~/2, respectively. 
In all figures, dashed lines represent estimated macrofracture paths. 

Estimates of fracture initiation loads, chip formation loads and chip 
depths are summarized in the table. Initiation loads for the displacement 
problems are estimated by K values at points as close to the corner as the 
numerics permit (0.25 L from the corner). Initiation begins internally in the 
uniform traction cases and loads are consistently higher than the initiation 
loads in the displacement problems. This was also the case in the isotropic 
results. The initiation load is lowest for the bedding plane vertical (y~=0) 
and for y a =  x/4 (450), initiation is asymmetric. Both results are intuitively 
correct. 

A new type of chip formation, not found in the isotropic case, is pre- 
dicted by the displacement and traction solutions for y~ = zr/4, zr/2. For these 
cases, fracture initiates at the corners. After a relatively small amount of 
damage growth, a new initiation site occurs internally. The chip is finally 
formed when the three damage regions join. Chip formation in the isotropic 
and y ~ = 0  cases occurs when the growing damage regions from both cor- 
ners join. Chip formation loads are estimated by the intersection of common 

Table 1. Numerical Results 

ya PdL PE/L A/L 
Fracture Approximate Approximate 

(Degrees) initiation load chip formation load chip depth 
(MPa) (MVa) 

0 ° Displ. 78 520 1.1 
Trac. 270 420 0.75 

450 Displ. A105 B 95 440 1.0 
Trac. 260 370 0.85 

900 Displ. 105 430 1.0 
Trac. 350 390 0.75 

damage contours. Results are similar to the isotropic results in that the trac- 
tion chip formation load estimates are lower than the displacement. A ques- 
tionably deep and skewed damage region is predicted for ya = zr/4. A refined 
theory as well as some experimental data are needed to confirm the above 
predictions. Using the isotropic experimental results [5] as a guide we can 
expect that both the predicted chip formation loads and chip depth are 
too large. 
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4. Summary 

A two dimensional, isotropic theory for the initiation and growth of 
damage regions in elastic brittle materials (rock) subjected to globally com- 
pressive stress fields has been extended to anisotropic fracture behavior. 
The specific anisotropy considered is of the "bedding plane" type, i. e., there 
is a preferred microcrack distribution parallel to the bedding plane. The 
theory defines damage as coalescence of propagating microcracks. The growth 
of this damage is described quantitatively by "fracture function" contours. 
Such contours were constructed for three cases; the bedding plane vertical 
(TG=0), at 450 (7 ~= zE4), and horizontal (7 G= ~r/2). Two different boundary 
conditions were investigated for each case. The prescribed displacement 
boundary condition provides accurate initiation and initial growth results 
while the prescribed traction boundary condition provides a better approxi- 
mation of the latter stages of fracture growth. Chip shape for all cases as 
defined by the contours appear intuitively reasonable. Experimental results, 
similar to those done in the isotropic case, are needed for confirmation of 
the theory. 

Appendix 

N o n l i n e a r ,  A n i s o t r o p i c  F r a c t u r e  Ana lys i s  

Eq. (1): 
Frl + # (~) ~ = c (y) (A-l) 

describes a linear (Coulomb-Mohr) fracture envelope for material orienta- 
tion, y. While reasonable for some rock types, such a description is not valid 
in general. F a i r h u r s t  [16] has shown that the fracture behavior of a large 
class of rocks can be better represented by a nonlinear (Mohr) fracture 
envelope of parabolic form. In Ref. [17], a fracture function is derived, based 
on such a parabolic envelope, for isotropic rock. In this appendix, the exten- 
sion to anisotropic rock is presented. 

The parabolic Mohr Envelope for anisotropic rock is: 

~2 = [m ( 7 ) - 1 ]  2 St (7) [St (7)-8] 
[ Sc (~) -I- l ] 1/2 (A-2) 

m (7)= t ~ 7 ~  

where S~ (Y), St (7) are the numerical values of the compressive and tensile 
strengths of the material at orientation, 7. 

The state of stress at a given point in the field can be represented by 
a Mohr ' s  circle in c r - r  space: 

- 

where crl, (re have been nondimensionalized as in Eq. (5). Such a circle lies 
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inside the parabolic envelope and is tangent to it under the condition [17]: 

P 
T = K  [~1, (~2; & (7), & (7)] = 

& (y) [m (y)- 1] {2 [((rl -~r~) 2 

+ [m (7) - 1] 2 ~l(;~] ~/~ 
- [m (7) - 1] (~1 + ~ )  } 

for m (7) [m (Y) - 2] ~1 + ~ < 0 

& (Y) for rn (7) [m (7) - 2] (rl + o2 _> 0 

(A-4) 

The functions St (Y), Sc (Y) can be expressed as curve fits to experimental 
data of tests run for 0_< 7-< x/2 and the analysis can proceed as in the 
linear case. 
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