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PHASE CONDITION FOR THE GROVER ALGORITHM
D.-F. Li,* X.-X. Li,f and H.-T. Huang?

For the Grover algorithm, we derive the exact formula of the norm of the amplitude in the marked state in
a sine-function form and use this formula to derive the necessary and sufficient phase condition sin A < ||
for this algorithm with arbitrary phase rotations. We show that the condition of identical rotation angles
0 = ¢, which is a special case of our condition, is a sufficient but not necessary phase condition.
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1. Introduction

Quantum algorithms standardly use two techniques: Fourier transforms [1] and amplitude amplifica-
tion. The Grover search algorithm is based on the latter. The problem addressed by the Grover algorithm
is to find a marked term (or target term in [2]) in an unsorted database of size N. To accomplish this,
a quantum computer needs O(vV/N) queries using the Grover algorithm [3]. In Grover’s original ver-
sion [3], the algorithm consists of a sequence of unitary operations on a pure state, i.e., the algorithm
is Q = —I"WI™W, where W is the Walsh-Hadamard transformation and I™ = I — 2|2)|(z|, which
inverts the amplitude in the state |z); here, Iéﬂ) and Igﬂ) invert the amplitudes in the respective initial and
marked basis states |0) and |7). To extend his original algorithm, Grover [2] replaced the Walsh-Hadamard
transformation with any quantum mechanical operation and thus obtained the quantum search algorithm
Q= —L(fr)U ~11%U, where U is any unitary operation and U~ is the adjoint (the complex conjugate of
the transpose) of U. Boyer et al. gave analytic expressions for the amplitude of the states for the original
Grover algorithm with the Walsh—Hadamard transformation and the inversion of the amplitudes and estab-
lished tight bounds on quantum searching [4]. To generalize the Grover algorithm further, we must allow
amplitudes to be rotated by arbitrary phases, not just be inverted. An example is the quantum algorithm
Q= —Ige)U’lly)U, where 6 and ¢ are the rotation angles of the amplitude phases in the respective initial
basis state |y) and marked basis state |7). Recently, several authors have contributed to general quantum
search algorithms with any unitary operations and arbitrary phase rotations [5]-[10].

For general quantum search algorithms, the following problems must be solved:
1. What is the amplitude in the marked state after k£ applications of Q7

2. What are the rotation angles in the initial and marked basis states to reach the marked state from
the initial state? This problem is called the phase condition.

3. What is the optimum number of iteration steps to find the marked state?
4. Which of the general algorithms is the most efficient?
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Our motivation for this paper is as follows. Since Grover presented the phase condition, several authors
discussed this condition. To find the marked state with certainty, Long et al. presented a matching condition:
identical rotation angles §# = ¢ [5]. Hoyer next gave the phase condition tan(6/2) = tan(¢/2)(1 — 2a) [7].
Biham et al. then used a recursive equation to study the quantum search algorithm and reported that for
different rotation angles 6 # ¢, the algorithm fails to enhance the probability of measuring a marked state
and that for the algorithm to be applicable, the two rotation angles must therefore be equal, 8§ = ¢ [9]. It
follows from the conclusion of Biham et al. that identical rotation angles 6 = ¢ is a necessary and sufficient
phase condition. At least four papers reported identical rotation angles as the phase condition [5], [8], [9]. It
then becomes an open question what the necessary and sufficient phase condition is for the Grover algorithm
with arbitrary phase rotations. In this paper, we present the phase condition sin A < |3|, which is necessary
and sufficient for finding the marked state, and thus solve the phase condition problem posed by Grover
in [2]. We also indicate that the condition of identical rotation angles § = ¢, which is a special case of our
condition, is sufficient but not necessary to find the marked state. Using the exact phase condition, we can
construct quantum algorithms with arbitrary rotations that succeed with certainty.

This paper is organized as follows. In Sec. 3, we derive the exact expression for the norm of the
amplitude in the marked state in a sine-function form. In Sec. 4, we use this exact formula to present the
necessary and sufficient phase condition for the Grover algorithm with arbitrary phase rotations. In Sec. 5,
we show that identical rotation angles § = ¢ is a sufficient but not necessary phase condition for finding
the marked state.

2. The Grover algorithm with arbitrary phase rotations

The original Grover search algorithm [3] was presented for the following search problem. In an unsorted
database containing N items, there is one item with a known property. We want to find the item (called
the marked term). To retrieve the marked term from N terms, the original Grover search algorithm repeats
the following unitary operations alternately: a phase rotation R; and an inversion about the average D.
Furthermore, Grover showed that the inversion about the average takes the form D = W RyW, where Rs is
the phase rotation matrix. Grover then presented the quantum search algorithm [2]: @ = —Iﬁﬂ)U ’1I$7T)U ,
where U is any unitary operator, |y) is the initial basis state, |7) is the marked basis state, and I =
I — 2|x)|(z|, which inverts the amplitude in the state |x). When U~ = U = W and |y) = |0), this reduces
to the original Grover search algorithm. Furthermore, Grover derived the property

) 17) . 1 =AU * 20, 17)
vllny )\ vz, 1 Utln) )’

where U, = (7|U|y) and U, = (7|U|r), which is the complex conjugate of U, (see expression (6) in [2]).
He interpreted this property as follows: @ preserves the two-dimensional vector space spanned by |v) and
U~tr).

The Grover algorithm finds the marked state |7) among N states using the amplitude amplification
technique. It starts with the initial basis state |y) and applies the operator @ O(\/N ) times. The initial
basis state |y) is then transformed to U~!|7). The last application of U to U~!|7) leads to the marked
state |7). To compute Q¥|7y), we must take into account that @ preserves the two-dimensional vector space
spanned by |v) and U~!|7. It follows from this property that Q|v) = (1 — 4|Ury|?)|7) + 2U- (U 17)).
We assume that QF|y) = aily) 4+ bi(U~![7)). We can then evaluate Q¥*1|y) = Q(Q*|)) = arQly) +
ka(U 71|T>) if we again take into account that @) preserves the two-dimensional vector space spanned by
|v) and U~|7). This property of the operator ) guarantees the success of the search algorithm.
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In 1999, Long presented the search algorithm [5]

Q=-LU'LU,  L=I1-(=e"+)M0y, L=1-(=e?+1)n)|(r].

When 6 = ¢ = n, U™} = U = W, and |y) = |0), it reduces to the Grover algorithm. Long showed
that @ preserves the two-dimensional vector space spanned by |y) and U~!|7) (see expression (4) in [5]).
In 2000, Hgyer defined the search algorithm @ = —ASy(¢)A~1S, () and proved that Q preserves the
two-dimensional vector space spanned by 1/v/a [11) and 1/v/b|to) (see expression (3) in [7]).

In [6], we introduced the search algorithm

Q=-LU'LU,  I,=I-2cos0’)|(y], I =1 —2cospe|r)|(r],

where 6 and ¢ are real. When 6 = ¢ = 0, it reduces to the Grover algorithm [2]. We showed that @
preserves the vector space spanned by |y) and U~!|7):

m \_ [a B 1)
Q(U_1|T>>_</\ 5) (U—1|T>>’

a=—1+2cosbe® —4cosbe® cos ¢ei¢|Um|2, B = 2U, cos be'?,

where

(1)

A =2cosfe’ (1 — 2cos qﬁei‘i’)U:w

§ = 2cos ge'® — 1.
After k applications of @ in this algorithm, as soon as the state U ~!|7) is attained, the next application of
U sets the state of the quantum computer to |7), the marked state.

In this paper, all discussions and derivations are based on this algorithm. The results obtained in this
paper also hold for the Grover, Hgyer, and Long et al. algorithms and for any quantum search algorithm

that preserves a two-dimensional vector space if the result depends only on «, 3, A, and 4.
3. The exact formula for the amplitude

For a quantum search algorithm @, the key problem is to determine the amplitude in the marked state
after k applications of (). In this section, we derive an exact formula for the amplitude in a sine-function
form. Let Q) = aly) + B(U7Y7)), QU™ 7)) = Alv) +6(U|7)), and Q*|v) = ax|y) + b (U~ |7)),
where aj and by, are the amplitudes in the respective initial state |y) and marked state U~|7).

In [6], we showed that by, = Orp. When 8 = 0 (cos¢ = 0), we just have |b;| = 0, and the quantum
algorithm becomes useless. We therefore assume that 3 # 0 (cos ¢ # 0).

3.1. A simpler recursive formula for the amplitude bi. The recursive formulas for a; and
by, obtained in [6] are ar+1 = (ag + Abg) and bgi1 = (Bag + 0b). We note that the recursive formulas
for aj and by contain the respective terms by and ai. We can propose a simpler recursive formula by =
Blaak—1 +Abg_1)+0br = (a+ )by + (BA—ad)br_1. Clearly, the formula for bgy; does not contain the term
ag. We can also derive a simpler recursive formula for the amplitude ag: ag+1 = (@ +9)ag + (BA— ad)ag—_1.
Here, ap, = rgr1 — 07k because bgr1 = Oris1.

Because by = [rr and 8 does not contain k, we only need to derive the exact formula for r; in a
sine-function form. We first derive the recursive formula for . After computing by = § and by = S(a+9),
we obtain 11 = 1, ro = a4+, and rgy1 = (a + 6)rg + (BA — ad)rg—1. For the Grover algorithm, r; = 1,
ro=a+1,and rp11 = (. + 1)rg — re—1.
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3.2. The expression for rg. Clearly, 22 — (o + )z + (ad — B)) is the characteristic polynomial of
the algorithm () relative to the basis. Then, detQQ = ad — A = det(—Iﬁr)U’llﬁy)U) = !@1Y) | where
and y are the real rotation angles.

Let 1441 = (21 + 22)7% — 21227k—1, Where z1 + 20 = a + § and 2120 = ad — B, i.e., z1 and 2o are the
eigenvalues of Q). We then obtain (21 — 29)rk+1 = zf“ — z§+1 (see Appendix A for the detailed derivation).
From Result 6 in Appendix B, we know that z; # 2y if cos ¢ # 0. Therefore, 71 = (281 — 2571 /(21 — 25).

Let 21 = p1e™¥t and 2o = pae™2, where p; > 0 and ps > 0. Because |z120| = 1, we have p1ps = 1. Let
p1 = p. Then ps = 1/p, 21422 = 2(cos(0 — ¢) —2|Us|? cos @ cos ) '@+ and (p?—1) sin (¢ — (0+¢)) = 0.
We note that 11 + e = 2(0 + ¢).

There are two cases.

Let p # 1. Then sin(wl — (0 + ¢)) = 0, and we obtain ¢; = 1. Let z; = pe’”. Then zo = ¥ /p,
21422 = (p+1/p)e’¥, and Results 4 and 5 in Appendix B imply that 2 < p+1/p = |a+ 6| < 2. Therefore,
p # 1 is impossible.

Let p=1, 21 = €1, and 2y = €'¥2. Then rj, = sin(kA) e!*=D00+) /sin A, where A = (11 — 12)/2.
We next compute A. Clearly,

21 + 22 = 2cos -t ;¢2 et¥rtv2)/2,

Let p = |Uyr,|. We then obtain A = arccos(cos(6 — ¢) — 2p? cos 0 cos ¢) = arccos(e "0+ tr Q), where tr Q
is the trace of @ (see Result 2 in Appendix B). Because cos ¢ # 0, we conclude that 11 # 5. Without loss
of generality, we let 1)1 > 5. Then

2
sinA =4/1— @ = \/1 — (cos( — ¢) —2p2cos6‘cos<;5)2 > 0.

3.3. The exact formula for the amplitude bg. Obviously,

b = Bry, = 2pcos ¢ e/ F=DO+E)+0) ¢in(EA) /sin A,
and for each application of the Grover algorithm, the phase of the amplitude in the marked state increases

by 0 + ¢. From the above definition of A, we then have |b;| = |5] | sin(kA)|/ sin A, where |3| = 2p| cos ¢|.

Remark 1. The formula for by holds for the Grover, Long et al.,; and Hgyer algorithms and for any
other quantum search algorithm that preserves a two-dimensional vector space.
The expression for by can be simplified for identical rotation angles § = ¢ and for the Grover algorithm.
Let |bg| = |0||sin(kA)|/sin A, where
)
5

sin A = 2p|cos¢|y/1 — p?cos? ¢.

In [5], using many transformations, the authors derived the approximate formula for the amplitude in the

A

Y1 — P = arccos{Z(l — 2p? cos? $)? — 1}7

marked state.

We consider the Grover algorithm @ = —L(f)U’llﬁﬂ)U. In this case, it is easy to see that a =
1 —4|Urs |2, B = 2Ury, A = —2U7,, and 6 = 1 and that the characteristic equation in Sec. 3.2 becomes
2?2 — (@ + 1)z + 1 = 0. We let the characteristic roots be z; = €% and zo = e~%. Then
. in(k¢)
=1-2p° b 2k = 2isin(k _ sin

COS& D, 21 ) ZSln( 5)7 Tk sinf ;

which can also be obtained using the formulas in Sec. 3.2 by letting ¥; = £ and ¥ = —£. Finally, we have
sin(k sin(k
b= BEIEE) gy = g SRR
sin & |sin|
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4. The necessary and sufficient phase condition

We deduce a necessary and sufficient phase condition to be imposed on arbitrary phase rotations in
order to find the marked state with certainty.

4.1. The necessary and sufficient phase condition sin A < |3].

Theorem. An algorithm can find the marked state with certainty, i.e., there exists a number k such
that |bg| = 1, if and only if

2
sinA =4/1— @ = \/1 — (cos(6‘—¢) —2p2cos6‘cos<;5)2 <P

Proof. If |bx| = 1, i.e., |bg| = |0] | sin(kA)|/sin A = 1 for some k, then |sin(kA)| =sin A/|3|. Clearly,
sin A/|B| < 1. Therefore, sin A < |3|. Let k, be the optimum number of iteration steps to find the marked
state with certainty. Then

1 . sinA
ko, = — arcsin

A 18

(2)

where |bg | = 1.
Conversely, if sin A < |g| and k, is given by (2), then |b,| = |3||sink,A|/sin A = 1. The proof is
complete.

The phase condition can be also written as QW < |tr Q|. The phase condition holds for the Long
et al. and Hgyer algorithms and for any other quantum search algorithm that preserves a two-dimensional
vector space.

From the general phase condition, we obtain two corollaries, whose proofs are in Appendix C. These
corollaries are convenient for verifying whether an algorithm satisfies the phase condition. We recall that

b= |UT7|-

Corollary 1. Let p < 1/2 and 6 and ¢ either lie in the same quadrant or satisfy |0 — ¢| < 7/2 and
cos@cosd < 0. Then sin A < |B|, and the algorithm can find the marked state with certainty if and only if

|0 — ¢| < arccos(2p® cos cos ¢ + /1 — dp®cos? ¢).

Corollary 2. Let 0 and ¢ either lie in the same quadrant or satisfy cosf cos ¢ < 0 and sinfsin¢ < 0.
Then sin A > |3, and the algorithm cannot find the marked state with certainty if |sin(6 — ¢)| > |3].

4.2. The optimum number of iteration steps. In the case of identical rotation angles 8 = ¢, we

can reduce the optimum number k, of iteration steps. In this case,
B arcsin /1 — p? cos? ¢
arcsin(2p| cos ¢|/1 — p? cos? (b) '

Let pcos¢ = siné. Then k, = (7 — 2£)/4€ = 7/46 — 1/2. When ¢ = 0, we have p = sin§, and k, is
just the optimum number of iteration steps for the Grover algorithm in [2]. Moreover, let p = /1/N.

Then k, = (7 — 260)/40 is the optimum number of iteration steps for the original Grover algorithm when
sin?@ = 1/N [4]. In [5], the authors obtained an approximate formula for the optimum number of iterations
for identical rotation angles. There, the authors set U, = e’“sin 3. Then sin 8 = p, which is also different

from sin & = p cos ¢.
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Let p =1/ VN, where N = 210, The exact optimum numbers of iterations are collected in Table 1.
For the original Grover algorithm, the optimum number of iterations is 24.625.
Table 1
¢ | 4n/9  b7w/12 /3 w/4 /5 /6 /8 /10 w/15
ko | 144.21 96.590 49.763 35.037 30.561 28.516 26.699 25.922 25.515

Remark 2. If the phase condition sin A < |3] is satisfied, then the optimum number of iteration steps
to find the marked state with certainty is given by (2). Taking the phase condition into account, we obtain
0 < koA = arcsin(sin A/|8|) < w/2. Hence, for 0 < kA < k,A < 7/2, we have |sin(kA)| = sin(kA) and
|br| = |B|sin(kA)/sin A. Therefore, |bg|, considered as a function of k, increases strictly monotonically as k
increases from zero to k.

5. Identical rotation angles are not necessary
In this section, we show that the condition of identical rotation angles § = ¢ is sufficient but not

necessary for finding the marked state with certainty.

5.1. Identical rotation angles condition is sufficient. Given 8 = ¢, we have

sin A = 2p| cos ¢|y/1 — p? cos? ¢

and consequently sin A/|3| = /1 — p? cos? ¢ < 1. Therefore, for § = ¢, the phase condition in Sec. 4 implies
that the quantum algorithm @ can find the marked state with certainty in all cases except I, = I, = I.

5.2. Identical rotation angles condition is not necessary. We present examples demonstrating
that the condition @ = ¢ is not necessary and that we can choose nonidentical rotation angles for finding
the marked state with certainty if these angles satisfy the phase condition in Sec. 4.

Example 1. Let ¢ = 0. Then sin A < ||, and the algorithm can find the marked state with certainty
if and only if |sin | < 2p?/|1 — 2p?|.

Indeed, the phase condition at ¢ = 0 gives

sinA V1= (1—2p?)2cos?0 <1
18l 2p -
which is equivalent to |sin 6] < 2p?/|1 — 2p?|.
For instance, for p = 0.5, ¢ = 0, and § = 7/3, we have sint/3 < 2p?/|1 — 2p?| = 1, and the phase
condition is therefore satisfied. In this case, k, = 1.

Example 2. We assume that § = 0. It is then easy to show that sin A < |3] if and only if cos® ¢ >
1/(1 + 4p*).
Examples 1 and 2 demonstrate that the condition of identical rotation angles § = ¢ is not necessary

for finding the marked state with certainty; nevertheless, identical rotation angles § = ¢ is an important
case of the phase condition.
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Appendix A

Starting from the recursive relation rp41 = (@ +0)rk + (BA — ad)rg—1, we can derive the exact formula
for by in a sine-function form. Let

Trhe1 = (21 + 22)TK — 21227k—1, (3)

where z1 + 20 = a4+ § and 2120 = —(BA — af). We note that r; = 1 and 79 = o« +§ = 21 + 22. Then

Tk41 = 21Tk + 22Tk — 2122TKk—1, and we obtain

Thil — 21Tk = 22Tk — 21227k—1 = 22(Th — 217%-1), (4)
Thil — 22Tk = 217k — 2122Tk—1 = 21(Tk — 22Tk —1). (5)
Using (4), we obtain
Thit — 217 = 22(rp — 2176—1) = 25 (rh—1 — 217%—2) = -+ = 257 (ra — z171),
and therefore
Thal — 21Tk = 2571(7&2 —z171). (6)

Analogously, taking (5) into account, we obtain

Thil — 22Tk = zfﬁl(rg — zoT1). (7)
Hence,
21Tk41 — 22Tkl = zf(rg — 29T1) — zg(rg —z217r1) =
k+1 k+1

= 2M(21 + 2 — 20) — 2K (21 4+ 20 — 21) = 28T — 2b

We note that ro = 21 + 20 and 7, = 1.
From Result 6 in Appendix B, we have z;1 # 25 if cos¢ # 0, and therefore

FrARI
Tk+1 = 7,21 o,

Appendix B
Several results are collected here. First, o, 3, A, and J in (1) can be rewritten as
a=e? — (e 4 1)(e? +1)|U %, B = (e + 1)U,
A= —e2?(e? nu;,, §=e'??.
Then we have
BA = —e(e?? +1)(e™ + 1)|U-,

ald = ei2¢ (ei% — (ei% +1)(e? + 1)|Um|2)~

1285



Result 1. ad — B\ = €2(079) (we recall that we set p = |U,|).
Result 2.

a+ 8= 4 e _ 4eosh cos pel@+o)p? —
= 2(cos(t) — &) — 2p? cos B cos )i+ =
=2((1 - 2p®) cos O cos ¢ + sinOsin g) '),

Result 3. |cos(6‘ — @) — 2p? cos f cos (b‘ < 1, and the equality holds if and only if cosf = cos ¢ = 0.

Proof. We note that cos(6 — ¢) — 2p® cos@ cos ¢ = (1 — 2p?) cos 6 cos ¢ + sinfsin ¢, and |1 — 2p?| < 1
if 0 < p < 1. If cosOcos¢p = 0, then clearly ‘(1 — 2p?) cosfcos ¢ + sinﬁsin¢| < 1. We prove that
|(1 — 2p?) cos 6 cos ¢ + sin § sin (b} < 1if cosf cos ¢ # 0. There are several cases.

Case 1.1. Let cosfcos¢ >0 and 0 < p < \/5/2 Then
0<1—2p% <1, 0 < (1 —2p*)cosfcosp < cosbcos o,

sinfsin¢ < (1 — 2p?) cosfcos ¢ + sinfsin ¢ < cos(d — ¢) < 1.
Therefore, ‘(1 — 2p?) cos 6 cos ¢ + sin O sin (b‘ < 1.
Case 1.2. Let cosfcos¢ > 0 and \/5/2 < p < 1. Then
—1<1-2p%*<0, —cosfcos¢ < (1 —2p*) cosfcosp <0,

—cos(0 + ¢) < (1 — 2p*) cos @ cos ¢ + sin Osin ¢ < sin O sin .
We also have ‘(1 — 2p?) cosf cos ¢ + sinﬁsin¢| <1
Case 2.1. Let cosfcos¢p < 0and 0 < p < \/5/2 Then
0<1—2p%<1, cosfcosd < (1 —2p®) cosfcosg < 0,

cos(f — ¢) < (1 — 2p?) cosf cos ¢ + sinfsin ¢ < sin fsin ¢.
We also have |(1 — 2p?) cos 6 cos ¢ + sin 6 sin ¢| < 1.
Case 2.2. Let y/cosfcosé < 0 and v/2/2 < p < 1. Then
—1<1-2p%*<0, 0 < (1—2p?)cosfcosp < — cosfcos ¢,

sinfsin ¢ < (1 — 2p?®) cosf cos ¢ + sin fsin < — cos( + ¢).
We also have |(1 — 2p?) cos 6 cos ¢ + sin 6 sin ¢| < 1.
Therefore, if cos 6 cos ¢ # 0, then |(1 — 2p?) cos f cos ¢ + sin @ sin (b‘ <1

We now prove the second part. If |(1 — 2p?)cosfcos¢ + sinfsing| = 1, then we obviously have
cos@cos¢ =0 and |sinfsing| = 1. Then |sinf| = |sin¢| = 1 and consequently cosd = cos ¢ = 0.

Conversely, if cosf = cos¢ = 0, then |sinf| = |sing| = 1 and |(1 — 2p?) cos6 cos ¢ + sinfsin¢| = 1.
This completes the proof.

Result 4. |o + 3| = 2|cos(6 — ¢) — 2p* cosf cos ¢| < 2, which follows trivially from Results 2 and 3.

Result 5. We assume that p > 0. Then p + 1/p > 2, and the equality holds if and only if p = 1.

Result 6. Let z; + 20 = a+ [ and 2120 = ad — BA. Then z1 # 22 if 8 # 0 (cos ¢ # 0).

Proof. We suppose that z; = 20 and z1 = 2o = pe“/’. Because |z122] = 1, we obtain p = 1 and
la+6] =2, ie., |cos(9—¢)—2p2 cos 6 cos ¢| = 1. Result 3 in Appendix B then implies that cosf = cos ¢ = 0.
This contradicts the condition that cos¢ # 0.
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Appendix C

Proof of Corollary 1. If 6§ and ¢ are in the same quadrant, then

cos(f — ¢) — 2p? cosfcos ¢ = (1 — 2p?) cos f cos ¢ + sin fsin ¢ > 0.

If |0 — ¢| < /2 and cosf cos ¢ < 0, then cos(d — ¢) > 0 and cos(f — ¢) — 2p? cosf cos ¢ > 0.
Necessity. If sin A <|f], then

\/1 — (cos(8 — ¢) — 2p? cos B cos ¢)2 <18, 1 —4p® cos® ¢ < (cos(f — ¢) — 2p” cos b cos gb)Q.

Under our conditions,

V1 —4p2cos? ¢ < |cos(f — ¢) — 2p? cos O cos ¢| = cos( — ¢) — 2p* cos O cos ¢.

Hence, |0 — ¢| < arccos(2p? cosf cos ¢ + /1 — 4p? cos? ¢ ).

Sufficiency. Clearly, cos(f — ¢) > /1 — 4p2 cos2 ¢ + 2p? cos § cos ¢. If cos(d — ¢) — 2p® cosf cos ¢ > 0,
then it follows from Result 3 in Appendix B that 4p?cos®¢ > 1 — (cos(9 — @) — 2p?cos B cos (b)z > 0.
Therefore, sin A < |3|. This completes the proof.

It was shown in [6] that if |§ — ¢| < |8, then the algorithm @ finds the marked state with certainty.
This is the first-order approximate phase condition. Below, we analyze the case where |6 — ¢| > |3].

Proof of Corollary 2. We note that if # and ¢ are in the same quadrant, then we have
1-— (005(9 — ¢) — 2p* cos f cos ¢)2 =
= sin®(0 — ¢) + 4p® cos O cos ¢((1 — p®) cos 0 cos ¢ + sin @ sin @) > sin®(6 — ¢)

under the conditions of the corollary. Therefore, if [sin(6 — ¢)| > |3/, then sin A > |3|. This completes the
proof.
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