On a Linear Combination of Some Expressions in the Theory of the Univalent Functions

By

Hassoon S. Al-Amiri, Bowling Green, Ohio, and Maxwell O. Reade, Ann Arbar, Mich.

(Received 30 April 1974)

Abstract

Let $H(\alpha)$ denote the class of regular functions f(z) normalized so that f(0) = 0 and f'(0) = 1 and satisfying in the unit disc E the condition

$$\operatorname{Re} \{ (1 - \alpha) f'(z) + \alpha (1 + z f''(z) / f'(z)) \} > 0$$

for fixed α . It is known that H(0) is a particular class NW of close-to-convex univalent functions. The authors show the following results: Theorem 1. Let $f(z) \in H(\alpha)$. Then $f(z) \in NW$ if $\alpha \leq 0$ and $z \in E$. Theorem 2. Let $f(z) \in NW$. Then $f(z) \in H(\alpha)$ in $|z| = r < r_{\alpha}$ where i) $r_{\alpha} = (1 + \sqrt{2\alpha})^{-1/2}$, $\alpha \geq 0$, and ii) $r_{\alpha} = \sqrt{\frac{1-\alpha-\sqrt{\alpha}(\alpha-1)}{1-\alpha}}$, $\alpha < 0$. All results are sharp. Theorem 3. If $f(z) = z + a_2 z^2 + a_3 z^3 + \dots$ is in $H(\alpha)$ and if μ is an arbitrary complex number, then

 $|1 + \alpha| |a_3 - \mu a_2^2| \leq (2/3) \max[1, |1 + 2\alpha - 3/2\mu(1 + \alpha)|].$

1. Introduction. We consider functions f(z) which are regular in the unit disc E: |z| < 1 and normalized so that f(0) = 0 and f'(0) = 1, and we let

$$I(\alpha, f(z)) \equiv (1 - \alpha)f'(z) + \alpha (1 + (zf''(z)/f'(z))), \qquad (1)$$

where α is real number. We denote by $H(\alpha)$ the class of functions satisfying Re $\{I(\alpha, f(z))\} > 0$, for fixed α and for all $z \in E$. It is known that H(0) is a particular class NW of close-to-convex univalent functions as demonstrated by K. NOSHIRO [2] and S. WARSCHAWSKI [4].

In section 2 we show that every $f \in H(\alpha)$ is in NW for $\alpha \leq 0$. We are unable to determine the univalency of $H(\alpha)$ if $\alpha > 0$. However, in section 3 we obtain the radius of the largest disc r_{α} such that if $f \in NW$ and $z \in E$, then $f \in H(\alpha)$ for $|z| < r_{\alpha}$. In section 4 some estimates for the coefficients of functions in $H(\alpha)$ are obtained.

Monatshefte für Mathematik, Bd. 80/4

2. The univalency of $H(\alpha)$. We show the following theorem about the univalency of the class $H(\alpha)$.

Theorem 1. Let $f(z) \in H(\alpha)$. Then f(z) is univalent with $\operatorname{Re} \{f'(z)\} > 0$, $z \in E$, if $\alpha \leq 0$ (i. e. $f \in \operatorname{NW}$).

Proof. Let

$$f'(z) = p(z).$$
⁽²⁾

To prove Theorem 1 we need to show that if $f \in H(\alpha)$, $\alpha \leq 0$, then Re $\{p(\alpha)\} > 0$ in *E*. The case $\alpha = 0$ is trivial. If $\alpha < 0$, then we assume that Re $\{p(z)\} > 0$ in E. Hence, since by (2), p(0) = 1, then there exists a first r_0 , and θ_0 so that Re $\{p(z)\} > 0$ for $|z| < r_0$ and

$$\operatorname{Re} \{ p(z_0) \} = \operatorname{Re} \{ p(r_0 e^{i\theta_0}) \} = 0$$
(3)

where $0 < r_0 < 1$. The condition in (3) implies that $\partial \arg p(z)/\partial \theta = 0$ at $z = r_0 e^{i\theta_0}$. Consequently, since

$$\frac{\partial}{\partial \theta} \arg p(z) = \operatorname{Im} \left\{ \frac{\partial}{\partial \theta} \ln p(z) \right\} = \operatorname{Im} \left\{ iz \frac{p'(z)}{p(z)} \right\} = \operatorname{Re} \left\{ \frac{z p'(z)}{p(z)} \right\},$$

en
$$\operatorname{Re} \left\{ z p'(z) / p(z) \right\} = 0$$
(4)

 then

at $z = r_0 e^{i\theta_0}$. We use (1), (2), (3) and (4) to get

$$\operatorname{Re}\left\{I\left(\alpha,f(z_{0})\right)\right\} = \operatorname{Re}\left\{\left(1-\alpha\right)p\left(z_{0}\right)+\alpha\left(1+\frac{z_{0}p'\left(z_{0}\right)}{p\left(z_{0}\right)}\right)\right\} = \alpha .$$
 (5)

Thus if $\alpha < 0$, then (5) shows that $f \notin H(\alpha)$ which is a contradiction. This completes the proof of Theorem 1.

3. The radius r_{α} . Let P denote the class of regular functions p(z), p(0) = 1, with positive real part, Re $\{p(z)\} > 0, z \in E$. If $f \in NW$, then there is a $p(z) \in P$ such that f'(z) = p(z). By substitution (1) becomes $I(\alpha, f(z)) = \varphi_{\alpha}(p, zp') = (1-\alpha)p(z) + \alpha(1+zp'(z)/p(z))$. Let

$$Q_{\alpha}(r) = \min_{p \in P} \min_{|z| = r < 1} \operatorname{Re} \left\{ (1 - \alpha) p(z) + \alpha \left(1 + z p'(z) / p(z) \right) \right\}.$$
(6)

Hence, the problem of finding the largest r_{α} , for fixed α , such that for each $f \in NW$ and for each z, $|z| < r_{\alpha}$ we have $\operatorname{Re} \{I(\alpha, f(z))\} > 0$ is equivalent to finding the smallest positive root of $Q_{\alpha}(r) = 0$, where $Q_{\alpha}(r)$ is given by (6). To find r_{α} , we make use of a theorem due to V. A. ZMOROVIC [5]. **Theorem A** (ZMOROVIC). Let $\Psi(w, W) = M(w) + N(w)W$, where M(w) and N(w) are defined and are finite in the half plane $\operatorname{Re} \{w\} > 0$. We set

$$w = \lambda_1 (1 + z_1)/(1 - z_1) + \lambda_2 (1 + z_2)/(1 - z_2) ,$$

$$W = \lambda_1 2 z_1/(1 - z_1)^2 + \lambda_2 2 z_2/(1 - z_2)^2 ,$$

where z_1 and z_2 are points on the circumference |z| = r < 1, $\lambda_k \ge 0$ (k = 1, 2), $\lambda_1 + \lambda_2 = 1$. Then the function $\Psi(w, W)$ can be put in the form

$$\Psi(w, W) = M(w) + \frac{1}{2}(w^2 - 1)N(w) + \frac{1}{2}(\varrho^2 - \varrho_0^2)N(w)e^{2i\psi},$$

where
$$(1+z_k)/(1-z_k) = a + \varrho \exp i \psi_k (k=1,2),$$

 $w = a + \varrho_0 \exp i \psi_0 \quad (0 \le \varrho_0 \le \varrho), \quad |z_1| = |z_2| = r,$

$$a = (1 + r^2)/(1 - r^2), \quad \varrho = 2r/(1 - r^2), \quad \exp i \, \psi = i \exp \left[\frac{1}{2} (\psi_1 + \psi_2)\right].$$

Also for a fixed w in the circle $|w-a| < \varrho$, the angle 2ψ in the above formula can take all values from $[0, 2\pi]$, and hence

$$\min \operatorname{Re} \left\{ \Psi(w, W) \equiv \Psi_{\varrho}(w) = \right.$$

$$= \operatorname{Re} \left\{ M(w) + \frac{1}{2}(w^{2} - 1)N(w) \right\} - \frac{1}{2} \left| N(w) \right| \left(\varrho^{2} - \varrho_{0}^{2} \right).$$
(7)

This minimum is reached when

$$\exp\left[i\left(2\psi + \arg N\left(w\right)\right)\right] = -1.$$
(8)

We shall need the following result:

Lemma 1. Let

min Re {
$$\Psi(w, W)$$
} = $\Psi_{\varrho}(w)$ = (9)
= Re { $(1 - \alpha) w + \alpha + (\alpha/2) (w^2 - 1)/w$ } - $(|\alpha|/2) ((\varrho^2 - \varrho_0^2)/|w|)$,

where Re $\{w\} > 0$. Then the min $\Psi_{\varrho}(w)$ in the circle $|w-a| = \varrho_0 \leq \varrho$ is reached i) on the diameter if $\alpha \geq 0$ and $r \in (0,1)$, and ii) on the diameter if $\alpha < 0$ and $r \in (0, \tilde{r})$, where

$$\tilde{r} = \left(\frac{1 + \alpha + (\alpha (\alpha - 2))^{1/2}}{1 - 3\alpha + (\alpha (\alpha - 2))^{1/2}}\right)^{1/2}.$$
(10)

Proof: (i) For $\alpha \ge 0$. Let $w = a + \xi + i\eta$, $R^2 = |w|^2 = (a + \xi)^2 + \eta^2$, where a, ϱ , and ϱ_0 are defined in Theorem A. Then from (9) we get

$$\Psi_{\varrho}(w) \equiv \psi_{\varrho}(\xi,\eta) = (a+\xi) \left(1 + \frac{\alpha}{2} - \frac{\alpha}{2R^2}\right) - \frac{\alpha}{2} \cdot \frac{\varrho^2 - \xi^2 - \eta^2}{R} + \alpha.$$

The above yields

$$\partial \psi_{\varrho}(\xi,\eta)/\partial \eta = \eta \, \alpha \, R^{-4}/2 \left[2 \left(a + \xi
ight) + \left(\varrho^2 - \xi^2 - \eta^2
ight) R + 2 \, R^3
ight].$$

The expression in the square brackets is positive; consequently for each fixed ξ , the nonnegative minimum of $\psi_{\varrho}(\xi,\eta)$ is achieved at $\eta = 0$. It follows that the minimum in the circle $\xi^2 + \eta^2 \leq \varrho^2$ is also reached on the diamenter $\eta = 0$.

(ii) For $\alpha < 0$. Let $w = R \exp i \varphi$. Then (9) becomes

$$\psi_{\varrho}(w) \equiv L(R,\varphi) = \left[(1 - \alpha/2) R - (\alpha/2) R^{-1} - |\alpha| a \right] \cos \varphi + \alpha + (|\alpha|/2) (R + R^{-1}).$$
(11)

From (11) one can conclude only that the minimum of $L(R,\varphi)$ on any arc R = constant inside the circle $|w-a| \leq \varrho$ is reached either when $\varphi = 0$ or at the end points of this arc which are located on the circumference $\varrho = \varrho_0$. But by setting $\varrho = \varrho_0$ in (9) we get

$$L(R,\varphi) = \left[(1-\alpha/2) R - \alpha/2 R^{-1} \right] \cos \varphi + \alpha, \qquad (12)$$

where

 $R^2 - 2aR\cos\varphi + 1 = 0, \quad R \in [a - \varrho, a + \varrho]. \tag{13}$

Eliminating φ between (12) and (13) we get

$$L(R) = (1/2a)[R^2 + 1] - (\alpha/4a)[R + R^{-1}]^2 + \alpha.$$
 (14)

We now show the minimum of L(R) cannot be zero in $[a-\varrho, a+\varrho]$ if $r < \tilde{r}$ where \tilde{r} is given by (10). Consequently, the minimum of $\Psi_{\varrho}(w)$ may vanish on the diameter $\varphi = 0$, if $r < \tilde{r}$, which is our lemma. With $a^2 = \varrho^2 + 1$, (14) yields

and $L(a-\varrho) = a-\varrho+\alpha(1-a)$ $L(a+\varrho) = a+\varrho+\alpha(1-a).$

Since $\alpha < 0$, $\alpha > 1$ and $\alpha - \rho > 0$, then $L(\alpha - \rho) > 0$ and $L(\alpha + \rho) > 0$. On the other hand, from (14) we obtain

$$dL(R)/dR = R/a - (\alpha/2a) [R + R^{-1}][1 - R^2] = 0$$

if $R = [\alpha/(\alpha-2)]^{\frac{1}{2}}$. However, $d^2 L(R)/dR^2 > 0$ at $R = [\alpha/(\alpha-2)]^{\frac{1}{2}}$. This shows that the minimum of the continuous function L(R), if it is not attended at an end point, it must be attended in $(\alpha-\varrho, \alpha+\varrho)$ at $R = [\alpha/(\alpha-2)]^{\frac{1}{2}}$. Direct computations show

260

$$L\left(\left(\frac{\alpha}{\alpha-2}\right)^{4}\right) =$$

$$= \frac{1}{4a} \left[\left[4\alpha a - 2\alpha + 2 + 2 \right] \sqrt{\frac{\alpha}{\alpha-2}} - \alpha \left[\sqrt{\frac{\alpha-2}{\alpha}} - \alpha \right] \sqrt{\frac{\alpha}{\alpha-2}} \right]$$

$$= \frac{1}{4a} \left[4\alpha a - 2\alpha + 2 + (2-\alpha) \left[\sqrt{\frac{\alpha}{\alpha-2}} + \sqrt{\alpha(\alpha-2)} \right] \right]$$

$$= (1/4a) \left[4\alpha a - 2\alpha + 2 + 2 \sqrt{\alpha(\alpha-2)} \right].$$

Hence $L([\alpha/(\alpha-2)]^{\frac{1}{2}}) > 0$ provided

$$a < (\alpha - 1 - \sqrt{\alpha (\alpha - 2)})/2 \alpha$$
.

Since $a = (1 + r^2)/(1 - r^2)$, then the above condition is equivalent to (10). Thus L(R) > 0 in $[a - \varrho, a + \varrho]$ provided $r < \tilde{r}$ and \tilde{r} is as given by (10). This completes the proof of Lemma 1.

The following theorem describes r_{α} .

Theorem 2. Let f(z) be in the class of normalized regular functions with $\operatorname{Re} \{f'(z)\} > 0$ for $z \in E$. Then $f \in H(\alpha)$ in $|z| = r < r_{\alpha}$ where

i) $r_{\alpha} = (1 + \sqrt{2a})^{-\frac{1}{2}}, \quad \alpha \ge 0,$ ii) $r_{\alpha} = \sqrt{(1 - \alpha - \sqrt{\alpha(\alpha - 1)})/(1 - \alpha)}, \quad \alpha < 0.$

All results are sharp.

Proof: In (3) it is shown that the minimum in (6) is attained by a function of the form

$$P(z) = \lambda_1 \frac{1 + z e^{-i\theta_1}}{1 - z e^{-i\theta_1}} + \lambda_2 \frac{1 + z e^{-i\theta_2}}{1 - z e^{-i\theta_2}}, \qquad (15)$$

where θ_1 , θ_2 are arbitrary real constants in $[0, 2\pi]$ and where λ_1, λ_2 are nonnegative numbers satisfying $\lambda_1 + \lambda_2 = 1$. We may, therefore, apply (7) to (6) with p(z) = w(z), $M(w) = (1-\alpha)w(z) + \alpha$, and $N(w) = \alpha/w(z)$ to get

min Re {
$$\psi(w, W)$$
} $\equiv \psi_{\varrho}(w) =$

$$= \operatorname{Re} \{(1-\alpha)w + \alpha + (\alpha/2)(w^2 - 1/w)\} - (|\alpha|/2)(\varrho^2 - \varrho_0^2/|w|).$$
(9')

Note that (9') is (9) of Lemma 2. Let $w = R \exp i \varphi$. Then (9') becomes

$$\psi_{\varrho}(w) \equiv L(R,\varphi) = (11')$$

= [(1-(\alpha/2)) R-(\alpha/2) R^{-1} - |\alpha| a] cos \varphi + \alpha + (|\alpha|/2) (R + R^{-1}).

(i) Let $\alpha > 0$. By Lemma 1, part (i) the minimum of $\psi_{\varrho}(w)$ in the circle $|w-a| < \varrho$ is reached on the diameter of this circle $\varphi = 0$. In view of this, put $\varphi = 0$ in (11')

$$L(R,0) \equiv L(R) = R - \alpha a + \alpha.$$

The minimum of L(R) is at the end of the diameter $R = a - \varrho$. If we set

$$Q_{\alpha}(r) = L(a-\varrho) = a-\varrho-\alpha a + \alpha$$

with $a = (1 + r^2)/(1 - r^2)$, then the least positive root of $Q_{\alpha}(r) = 0$ is $r_{\alpha} = 1/(1 + \sqrt{2\alpha})$ this completes our proof of part (i) of the present theorem.

(ii) Let $\alpha < 0$. Again Lemma 1, part (ii) shows that the minimum of $\psi_{\ell}(w)$ is on the diameter $\varphi = 0$ for $r < \tilde{r}$, and \tilde{r} is given by (10). However, direct calculations show that $r_{\alpha} < \tilde{r}$ if r_{α} is given by part (ii) of Theorem 2. Therefore, if we set $\varphi = 0$ in (11'), $\alpha < 0$ we get

$$l(R) = L(R, 0) = (1 - \alpha) R - \alpha R^{-1} + \alpha (1 + \alpha), \quad R \in [a - \varrho, a + \varrho].$$

Then it follows that

$$dl(R)/dR = (1-\alpha) + \alpha R^{-2} = 0$$

for $R^2 = \alpha/(\alpha - 1)$, or $R = \sqrt{\alpha/(\alpha - 1)} \equiv R_0$. It is clear that $R_0 = \sqrt{\alpha/(\alpha - 1)} < 1 < \alpha + \rho$ but R_0 is not necessarily greater than $a - \rho$. Hence the minimum is either attained at $R_0 = \sqrt{\alpha/(\alpha - 1)}$ or at $R_1 \equiv a - \rho$. For the latter case, we find

$$l(R_1) = (1 - \alpha) (a - \varrho) - \alpha (a - \varrho)^{-1} + \alpha (1 + a)$$

does not vanish for real r. The other alternative is

$$Q_{\alpha}(r) \equiv l(R_0) = 2\sqrt{\alpha(\alpha-1)} + \alpha(1+a)$$

whose smallest positive zero is $r_{\alpha} = \sqrt{(1 - \alpha - \sqrt{\alpha(\alpha - 1)})/(1 - \alpha)}$. Our proof of the theorem is now complete.

We now determine the extremal functions $f_0(z)$. We remark that as a consequence of (8) the minimum of (9') is reached when the point $w(|w-a| < \varrho)$ is fixed, and the chord passing through it and through the points $a + \varrho \exp \psi_k$ (k = 1, 2) is perpendicular to the vector $\exp(i\varphi/2)$, where $w = R \exp i\varphi$. Taking this into account, as well as the fact that the minimum of $\psi_{\varrho}(w)$ is realized at an end point of the diameter when $\alpha \ge 0$, we conclude that p(z) of (15) should be taken in the form p(z) = (1+z)/(1-z). Hence for $\alpha \ge 0$, the extremal function is

$$f_0(z) = -\ln\left(1 - z\right) - z$$

which realizes part (i) of Theorem 2 at z = -r. For $\alpha < 0$, the minimum is reached at a point of the diameter (not an end point) and thus p(z) should in this case be taken in the form

$$p(z) = \frac{1}{2} \frac{1 + z e^{-i\theta}}{1 - z e^{-i\theta}} + \frac{1}{2} \frac{1 + z e^{i\theta}}{1 - z e^{i\theta}},$$

where θ is given by the relation

$$R_0 = \sqrt{\alpha/(\alpha - 1)} = \operatorname{Re} \left\{ p(z) \right\} = (1 - r_\alpha^2) \left(1 - 2r_\alpha \cos \theta + r_\alpha^2\right)^{-1} (16)$$

and r_{α} is given by (ii) of the Theorem 2. This shows

$$f_0(z) = -\left[e^{i\theta}\ln\left(1-z\,e^{-i\theta}\right)+e^{-i\theta}\ln\left(1-z\,e^{i\theta}\right)+z\right].$$

4. A coefficient inequality for functions in $H(\alpha)$. In this section we obtain some coefficient properties for functions in $H(\alpha)$. We show the following theorem.

Theorem 3. If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ is in $H(\alpha)$ and if μ is an arbitrary complex number, then

$$|1 + \alpha| |a_3 - \mu a_2^2| \leq \frac{2}{3} \max[1, |1 + 2\alpha - \frac{3}{2}\mu(1 + \alpha)|].$$
 (17)

Proof: If $f(z) \in H(\alpha)$, then there exists a regular function $w(z) = \sum_{n=1}^{\infty} c_n z^n$ such that |w(z)| < 1 in E and (1 - w)f'(z) + w(1 + wf''(z))f(z) = (1 + w(z))/(1 - w(z)) (18)

$$(1-\alpha)f'(z) + \alpha \left(1 + zf''(z)/f'(z)\right) = (1+w(z))/(1-w(z)).$$
(18)

Now by expanding (18) and equating coefficients we have

$$a_2 = c_1 \tag{19}$$

$$3(1 + \alpha)a_3 - 4\alpha a_2^2 = 2(c_2 + c_1^2).$$
 (20)

We may assume $\alpha \neq -1$. From (19) and (20) we get

$$|a_3 - \mu a_2^2| = (2/3 |1 + \alpha|) c_2 - (1 + 2\alpha - \frac{3}{2}\mu (1 + \alpha)) c_1^2|.$$
 (21)

A result due to KEOGH and MERKES [1] shows that $|c_2 - \nu c_1| \leq$ $\leq \max[1, |\nu|]$ for arbitrary complex number ν . We apply this result 264 AL-AMIRI a. o.: Expressions in the Theory of the Univalent Functions

to the right hand side of (21) with $\nu = 1 + 2\alpha - \frac{3}{2}\mu(1+\alpha)$ to obtain (17). This completes Theorem 3.

Remarks. i) For $\alpha = 1$, (17) reduces to

$$|a_3 - \mu a_2^2| \leq \max\left[\frac{1}{3}, |\mu - 1|\right]$$

which is a result of KEOGH and MERKES [1].

ii) For $\alpha = 0$, (17) reduces to

$$|a_3 - \mu a_2^2| \leq \max \left[\frac{2}{3}, |\mu - \frac{2}{3}|\right].$$

Corollary. If $f(z) \in H(\alpha)$, then

$$|a_2| \leqslant 1 \tag{22}$$

and

 $|1 + \alpha| |a_3| \leq \begin{cases} \frac{2}{3} & \text{if } -1 \leq \alpha \leq 0\\ \frac{2}{3} |1 + 2\alpha| & \text{if } |1 + 2\alpha| > 1 \end{cases}.$ (23)

Proof: The inequalities in (22) and (23) follow directly from (19) and (21), respectively.

References

[1] KEOGH, F. R., and E. P. MERKES: A coefficient inequality for certain classes of analytic functions. Proc. Amer. Math. Soc. 20, 8—12 (1969).

[2] NOSHIRO, K.: On the theory of schlicht functions. J. Fac. Sci. Hokkaido Univ. Ser. 1, 2, 29-155 (1934-1935).

[3] ROBERTSON, M. S.: Extremal problems for analytic functions with positive real part and applications. Trans. Amer. Math. Soc. 106, 236-253 (1963).

[4] WARSCHAWSKI, S.: On the higher derivatives at the boundary in conformal mappings. Trans. Amer. Math. Soc. 38, 310-340 (1935).

[5] ZMOROVIC, V. A.: On bounds of convexity for starlike functions of order α in the circle |z| < 1 and in the circular region 0 < |z| < 1. Amer. Math. Soc. Transl. (2) 80, 203–213 (1969).

H. S. AL-AMIRI Department of Mathematics Bowling Green, OH 43403, USA M. O. READE Department of Mathematics University of Michigan Ann Arbor, MI 48104, USA