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Abstract  

Le t  H (a) denote  the  class of  regular  funct ions  f (z)  normal ized  so t h a t  
f (0)  = 0 a n d f ' ( 0 ) =  1 and  sat isfying in the  uni t  disc E the  condi t ion 

Re  {(1 - -  ~ ) f '  (z) + ~ (1 + zf" (z)/f" (z))} :> 0 

for f ixed a. I t  is known t h a t  H(0)  is a par t icu lar  class N W  of c lose- to-convex 
un iva len t  funct ions.  The  au thors  show the  following resul ts :  Theorem 1. Le t  
f (z)eH(~).  Then  f ( z ) e N W  if  ~ <  0 and  zeE.  Theorem 2. Le t  f ( z ) e N W .  

Then  .f(z)eH(cr in l z ] = r < r a  where i) r a = ( l + 1 2 / ~ ) - l / 2 ,  ~ />0 ,  and  

ii) r a = ] /  ~ , a < 0 .  All results  are sharp. Theorem 3. I f  

f (z) = z + a2z ~ + asz 3 + . . .  is in H(a) and if# is an arbitrary complex number, 
then 

[1 + ~] la3--~a~[<(2/3)max[1,]l -+- 2~--3/2/~(1 + ~)[]. 

1. Introduction. We consider functions f ( z )  which are regular 
in the unit  disc E:  ]z] < 1 and normalized so tha t  f ( 0 ) = 0  and 
f '  (0) = 1, and we let 

I (~ , f  (z)) ~ ( 1 - -  ~ ) f '  (z) + ~ ( 1 + ( z f  # (z)/f' (z))) ,  (1) 

where a is real number. We denote by H (~) the class of functions 
satisfying R e ( I ( ~ , f ( z ) ) }  >0,  for fixed ~ and for all z e E .  I t  is 
known that  H(0) is a particular class NW of close-to-convex 
univalent functions as demonstrated by K. NosHmo [2] and 
S. W~sc] tAws~I  [4]. 

In section 2 we show tha t  every f e H ( ~ )  is in NW for ~<0.  
We are unable to determine the univalency of H (~) i f  ~ > 0. However, 
in section 3 we obtain the radius of the larges~ disc r~ such that  if 
f~IqW and z e E ,  then f eH(o: )  for [z[<r:r In section 4 some 
estimates for the coefficients of functions in H(~) are obtained. 
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2. The unlvalency of H(~). We show the following theorem 
about the univalency of the class H (~). 

Theorem 1. Let f (z) e H  (o:). Then f (z) is univalent with Re {f' (z)} > 
>0, zeE,  i f  o: <<. O (i. e. f eNW) .  

Proof. Let 

f '  (~) : p (~). (~) 

To prove Theorem 1 we need to show that  i f f e H ( ~ ) ,  ~<0,  then 
R e ( p ( ~ ) } > 0  in E. The case ~ : 0  is trivial. I f  ~ < 0 ,  then we 
assume that  Re {p (z)} > 0 in E. Hence, since by (2), p (0) = 1, then 
there exists a first r0, and 00 so that  Re{p(z )}>0  for [ z [ < r o  
and 

I~e {p (z0)} = Re  {p (r0 e~O0)} = o (3) 

where 0 < r0  < 1. The condition in (3) implies that  ~argp(z)/~O = 0 
at z ~ roe~~ Consequently, since 

~-argp(z)-----Im lnp(z) = I m  i z P ' ( Z ) l = R e l Z P ' ( z ) l  
p(z)J  [ p(z) J '  

then  Re {zp' (z)/p (z)} = 0 (~) 

at z=roe~%. We use (1), (2), (3) and (4) to get 

Thus if ~ < 0, then (5) shows that  f ~ H  (e) which is a contradiction. 
This completes the proof of Theorem 1. 

3. The radius r~. Let P denote the class of regular functions 
p (z), p (0) = 1, with positive real part, Re {p (z)} > 0, z eE. I f f e N W ,  
then there is a p(z )~P  such that  f ' ( z ) = p ( z ) .  By substitution (1) 
becomes I (o~,f(z)) = ~oe (1), zp') = (1-- e)p (z) -/- e (1 + zp'(z)]p (z)). Let 

Q ~ ( 0 = m i n  rain R e { ( 1 - - e ) p ( z ) - t - ~ ( l + z p ' ( z ) / p ( z ) ) } .  (6) 
:p~P I z l= r< l  

Hence, the problem of finding the largest r~, for fixed ~, such that  
for each f e N W  and for each z, Iz[ < r ~  we have Re{I(o~,f(z))} > 0  
is equivalent to finding the smMlest positive root of Q~(r)--0, 
where Q~ (r) is given by (6). To find r~, we make use of a theorem due 
to V. A. ZMo~owc [5]. 
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Theorem A (ZMot~ovm). Let ~[J(w, W ) =  M(w)-~ N(w) W, where 
M (w) and N (w) are defined and are finite in the half plane Re {w} > 0. 
We set 

W = ).1 (i  -~ Zl)/(t - -Z l )  + ~2 (1 + Z2)/(1 - -Z2) ,  

W = ;,t ~ zl/(t - - z t )  2 + )~ 2 z~/(1 - -  z~)~, 

where zl and ze are points on the circumference l z I = r  < t ,  ,~k>~o 
( k = l , 2 ) , ) , i + ) , . ~ : 1 .  Then the flenction T ( w , W )  can be put  in 
the form 

~ (w, w) = ;~I (w) + �89 (w2-- 1) N (w) + �89 (e 2 -  e~o) N (w) e~v, 

where (1 +z~)/(1--z~:) = a +  ~expi~p/~(k = 1,2),  

w = a + ~ o e x p i ~ t , o  (0~<~0~<~), I z l I - ~ ] z 2 f = r ,  

a --- (1 -~ r2)/(1 - - r 2 ) ,  e : 2 r/(1 ~r2) ,  exp i ~o -~ i exp [~ (~pl -~ ~2)]. 

Also for a fixed w in the circle l w ~ a }  < e, the angle 2~ in the above 
formula can ta]ce all value8 from [0, 2~], and hence 

rain Re (T(w,  W) ~ Tq (w) = 
(7) 

= Re {M (w) + ~ (w~--  1) N (w)} - -  ~ IN (w) ] (e ~ -  eo~). 

This minimum is reached when 

exp [i (2v 2 -~ axgN (w))] ~--- - -  1. (8) 

We shall need the  follo~4ng resul t :  
Lemma 1. Let 

min Re {T(w,  W)} ~ T e (w) = (9) 

= R e  { ( i  - -  ~) w + ~ + (~!~) ( w ~ - -  ~)lw} - -  (I ~ II~) ((~o~--- e ~ ) l l w  I), 

where Re (w} > 0. Then the rain ~Y~ (w) in the circle t w ~ a  I ~ ~o <<. 
is reached i) on the diameter i f  ~>~0 and re(O, 1), and ii) on the dia- 
meter i f  o~ < 0 and r e (0, ~), where 

~ =  [ f _ - - / ~ +  ~ = _ ~ : /  . (~o) 

Proof: (i) For  ~ I> 0. Le t  w ~-- a + ~ -~ i~, R ~' = I w I ~ ~ (a + ~)~ ~- 
+ V ~, where a, ~, and  e0 are defined in Theorem A. Then from (9) 
we get  

__~.  ~-z. 

t7'* 
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The above yields 

The expression in the square brackets is positive; consequently for 
each fixed ~, the nonnegative minimum of ~Q(~,~) is achieved at 
t 7 ~- 0. I t  follows that  the minimum in the circle ~2 -t- ~ ~< 02 is also 
reached on the diamenter # : 0. 

(ii) ]7o1" ~ < 0. Let  w =  R expi~0. Then (9) becomes 

~ (w)~L(R,~)=[ (1 - -~ /2 ) .R- - (~ /2 )R- l - - I a [aJcosq~-q : -~ - -{  - 

+ (l it2) (R + 

~rom (11) one can conclude only that  the minimum of L(R,q~) 
on any a r e ]7=eons t an t  inside the circle [ w ~ a l < ~  is reached 
either when ~0 ~ 0 or at the end points of this arc which are located 
on the circumference ~ = ~0. But  by  setting ~ =  ~0 in (9) we get 

L(R,~o)----- [ ( 1 - -  ~/2)/~ - -  ~/2/~- 1] cos q~ ~- 0r (12) 
where 

/ ~ 2 - - 2 a / ~ c o s ~  q- 1 ~- 0,  Re[a--q,a-{-q]. (13) 

Eliminating ~0 between (12) and (13) we get 

L (R) ---- (1/2a) [/~2 + 1] ~ (~[4a) [/~ -[- _R-l] ~ -[- ~. (14) 

We now show the minimum of L ( R )  cannot be zero in 
[ a ~ e , a +  q] if r < ~  where ~ is given by  (10). Consequently, the 
minimum of ~e(w) may vanish on the diameter ~----0, ff r < ~, 
which is our lemma. With a~ ----- ~ ~- 1, (14) yields 

L ( a - - q ) = a ~ e - J - c t ( l ~ a  ) 

and L (a --[- e) ----- a -{- e -}- a (1 - - a ) .  

Since ~ < O, a > 1 and a - - ~  > O, then L ( a - -  ~) > 0 and L (a + r :> O. 
On the other hand, from (14) we obtain 

d L ( R ) / d t l  : R /a  - -  (a/2 a) [R + R -~] [1 - -  R ~] = 0 

if _R~- [ a / ( ~ 2 ) ] � 8 9  However,  d ~ L ( t t ) / d R  9" > 0  at R----- [ ~ / ( ~ 2 ) ] L  
This shows tha t  the minimum of the continuous function L (/~), if it 
is not a t tended at an end point, it must  be at tended in (a - -~ ,  a + ~) 
~ t / / ~ -  [~/(~--2)]L Direct computations show 
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---~4a ~ a - -  2 cz -I- 2-4- (2 - -~)  --t- Vo~ ( a - -  2) 

= (ti4 a ) [ 4 : < a ~ 2 ~ - 7 -  2 + 2 l / ~ ( ~ - - 2 ) J .  

H e n c e  L([~/(~--2)39 > 0 p r o v i d e d  

a < (~ - -  l - - V ;  (~- -  2))/2 ~.  

Since a = (1 + r2)/(1 --r2),  then the above condition is equivalent 
to (10). Thus L(/7) > 0  in [a--o~,a-p-~] provided r < ~  and ~ is as 
given by (10). This completes the proof  of Lemma 1. 

The following theorem describes r~. 

Theorem 2. Let f (z) be in the class of normalized regular functions 
with Re{f'(z)} >09tbr zeE. Then feH(~)  in [z i ----r <r~ where 

i) r<<=(l+l/~)-~, ~>~o, 

ii) r~ = V-( a - ~ - V ~  ( ~ -  77)/( t - ~ )  , ~ < o. 
All results are sharp. 

Proof: In  (3) it is shown tha t  the min imum in (6) is at tained 
by a function of the form 

1-[- ze-tOl l + ze-~% 
P (z) = 41 1 - - ze -~e l  + "~ 1 - - z e - ~ '  (15) 

where 01, 02 are arbitrary real constants in [0, 2~] and where hi, 22 
are nonnegative numbers  satisfying 21 + ~2 = t. We may, therefore, 
apply (7) to (6) with p(z)-=w(z), M(w)=(1 - -~ )w(z )+~ ,  and 
N(w) = 4w  (z) to get 

rain Re {~ (w, W)} -~ ~e(w) = (9') 

= l~e {(~ --~<)w + ~ + (~<I2) (w~-- t l w ) } - - ( !  <~ 112) (e ~ . -  eo2II w I), 

Note tha t  (9') is (9) of Lemma 2. Let  w = x ~ e x p i ~ .  Then (9') 
becomes 

~,~ (w)_= L (R, ~) = ( l l ' )  

= [ 0 - -  (~<I2)) R - -  (:</2) R -  ~--I~< i a]cos ~ + ~ + (1 ~< !I2) (R + R-~) .  



262 H.S. A~-A~l~g~ and M. O. READE 

(i) Let  ~ >0 .  By Lemma 1, part  (i) the minimum of ~e(w) in 
the circle [w--a[ ~ ~ is reached on the diameter of this circle 
~----0. In view of this, put  ~----0 in (11') 

L ( R ,  O)-~ L ( R )  -~ . R - - ~ a  ~ ~. 

The minimum of L(R)  is at  the end of the diameter /~----a--Q. 
I f  we set 

Q~ (r) -- L (a - -q)  ----- a - - q - - ~ a  q- :r 

with a ---- ( 1 Jr r2)/(1 - -  r2), then the least positive root of Q~ (r) ~- 0 is 

r~ = 1/(1 q- t / ~ )  this completes our proof of part  (i) of the present 
theorem. 

(ii) Let ~ ~ O. Again Lemma 1, part  (ii) shows that  the minimum 
of ~pQ(w) is on the diameter ~0-----0 for r ~ ~, and ~ is given by  (10). 
However,  direct calculations show that  r~ ~ ~ if r~ is given by  part  
(ii) of  Theorem 2. Therefore, if  we set ~----0 in (11'), ~ 0  we get 

I(I~)-~ L(.R,O)-~ (1- -~)  / ~ - - ~ R - I  ~ ~(I ~ a), . R e [ a - - o , a  ~- o]. 

Then it follows that  

dl(R)/d.R = (1 - -~ )  ~- ~ R  -2 -~ 0 

for /~2--  ~/(g__ 1), or R----- V~/(~--  1)--R0. I t  is clear that  Ro--  

~ - V ~ / ( ~ - - l ) < l < a - k 0  but  R0 is not necessarily greater than 

a - - e .  Hence the minimum is either attained at R0-~ ]/~/(~--1) 
or at/~1 ~ a - - 0 .  For the latter case, we find 

I(R1) = ( i - - 0 ~ ) ( a - - 0 ) - -  g ( a - 0 ) - l - ~ -  ct(1 -}- a) 

does not vanish for real r. The other alternative is 

Q~(r)=- l(Ro) ----- 2]/~ (~ - -  1) -k ~(1 -k a) 

whose smallest positive zero is r~- - - - -W(1--a- -V~(g--1) ) / (1- -g) .  
Our proof of the theorem is now complete. 

We now determine the extremal functions fo(z). We remark 
that  as a consequence of (8) the minimum of (9') is reached when 
the point w([w--a[  <~) is fixed, and the chord passing through 
it and through the points a -k  ~exp~pg (k = 1, 2) is perpendicular to 
the vector exp (i~/2), where w----Rexpi~0. Taking this into account, 
as well as the fact that  the minimum of ~e (w) is realized at an end 
point of the diameter when ~>0 ,  we conclude that  p(z) of (15) 
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should be taken  in the  form p(z)=: (1-~z) / (1--z) .  Hence  for ~ > 0 ,  
the  extremal  funct ion is 

f0 (z) = - - I n  (1- -z ) - -z  

which realizes pa r t  (i) of  Theorem 2 a t  z = - - r .  For  a < 0, the  
min imum is reached a t  a point  of  the  diameter  (not an end point)  
and thus  p (z) should in this case be t aken  in the  form 

1 t ~ - z e  -~o 1 l - ~ z e  t~ 
p (z) - + 

2 1--ze-~O 2 l - - z e  ~o ' 

where 0 is given b y  the relat ion 

Ro = V ~ I ( ~ - -  1) = g e  {p (~)} = ( i - - r ~ )  (~ - -  2,'~ cos 0 + r~)-I (~6) 

and r= is given b y  (ii) of  the  Theorem 2. This shows 

f0 (z) ---- - -  [e i~ In ( 1 - -  z e- ~0) Jr e- ~o In ( 1 - -  z e ~~ -~ z]. 

4. A coefficient inequality for functions in H (~). In  this section 
we obta in  some coefficient propert ies  for funct ions in H (~). We show 
the  following theorem. 

Theorem 3. I f  f ( z ) - ~ z +  ~ a ~ z  n is in H(~) and if  # is an 
n = 2  

arbitrary complex number, then 

]l-]-a]]a3--fza~l<.w Itq:-2~--~#~ (1-}-~)]].  (17) 

Proof: I f  f(z)eH(~),  then  there exists a regular funct ion 

w(z) = ~ CnZn such tha t  lw(z)[ < t in E and 
n = l  

(1 - - ~ ) f '  (z) § ~ (1 § zf" (z)/f' (z)) = (1 § w (z))/(1 - - w  (z)). (]8) 

Now b y  expanding (18) and equat ing coefficients we have 

a2 : cl (19) 

and 3 (I + ~) a ~ - -  4 ~ a~ : 2 (c~ + c~). (20) 

We m a y  assume u r  F rom (19) and (20) we get  

I a 3 - - z a ~ [ = ( 2 / 3 1 i + ~ l ) c 2 - - ( l + 2 ~ - - ~ ( l + ~ ) ) e ~ l .  (21) 

A result  due to KEoG~ and ~[ERKES [i] shows tha t  t c2--vcl[<~ 
~< max [1, I~ I] for arbi traxy complex number  ~. We apply  this result  



264 An-Amn%z a. o. : Expressions in the Theory of the Univalent Functions 

to  the  r ight  hand  side of  (21) wi th  v -~ l -~ -2 ~ - -~ /~ (1 - [ -~ )  to  
obta in  (17). This completes  Theorem 3. 

Remarks. i) Fo r  ~---- 1, (17) reduces  to  

[a3--#a~l < m a x  [�89 I/~--- 1 I] 

which is ~ resul t  of K~OOH and  !~r [1]. 
ii) F o r  a = 0, (17) reduces  to  

[as--/*a~ I ~<max [~, t~---~ ]]- 

Corollary. I f  f(z) eH (~), then 

l a 2 ] < l  (22) 

{~ i f  - - 1  ~<~<0 
and I I + ~ I I q r  (23) 

] 1-~-2~] i f  ]1 - ] -2~]  > 1 .  

Proof: The  inequali t ies in 
(19) and  (21), respect ively.  

(22) and  (23) follow di rec t ly  f rom 
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