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ON SUMS OF OVERLAPPING PRODUCTS 
OF INDEPENDENT BERNOULLI RANDOM VARIABLES

S. Csörgö1  and  W. B. Wu2 UDC  519.21

Dedicated to A. V. Skorokhod
on his 70th birthday

We find the exact distribution of an arbitrary remainder of an infinite sum of overlapping products of a
sequence of independent Bernoulli random variables. 

Results and Discussion

Let  X1,  X2, …  be independent random variables with distribution 

P X
nn ={ } =

+ −
1 1

1µ
  =  1 0− ={ }P Xn ,      n ∈ N : = { 1, 2, … }, (1)

where  µ ≥ 1  is a fixed real-valued parameter, and introduce the random variable  N : = N1 = X Xn nn +=
∞∑ 11

  along

with the remainders 

N X Xl n n
n l

:= +
=

∞

∑ 1 ,      l ∈ N,

of the infinite sum.  The random nonnegative integer  N   is well defined; in fact by the monotone convergence
theorem 

E N
n nl

n l
( ) =

+ −( ) +( )
< ∞

=

∞

∑ 1
1µ µ

and so  E Nl( ) = 1 / l  in the particular case  µ = 1,  for every  l ∈ N.  The aim of this note is to determine the distribu-

tion of  Nl  for all  l ∈ N. 

The problem of computing the distribution of  N = N1  was originally posed for the case  µ = 1  to the second-
named author by Y. S. Chow.  When the solution was obtained by the method of generating functions, which states

that if  µ = 1,  then  N  is a Poisson random variable with mean 1, P. Diaconis [1] kindly informed him that the result
was known:  Diaconis’ own proof for this result was included in unpublished notes of Michel Emery in Strasbourg

and in an unpublished dissertation by Lars-Ola Hahlin in Uppsala, and it also follows as the special case  λ = 1  for
the first coordinate of an infinite-dimensional convergence theorem in Sec. 3 of the paper by Arratia, Barbour, and
Tavare [2].  Considering the distributions 
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P X
nn ={ } =

+ −
1

1
λ

λ
  =  1 0− ={ }P Xn ,      n ∈ N, (2)

for some constant  λ > 0  instead of (1), the method in [2] is purely combinatorial, it identifies the Poisson distribu-

tion of  N  with mean  λ  as the limiting distribution of the number of cycles of size 1 in a random permutation under

the Ewens sampling formula.  This method does not appear to produce the distribution of  Nl  for  l > 1,  even for

λ = 1.  Our direct proof here does this for all  l ∈ N  and all  µ ≥ 1  for the distributions in (1), and, in this case, it is

of independent interest even for  N = N1  when  µ  = 1.  Throughout, all empty sums are understood as zero and all
empty products are understood as one. 

Theorem 1.  Let  X1, X2, …  be independent random variables with the distributions in (1) for some  µ  ≥ 1.

Then, for any  l, n ∈ N  such that  n ≥ 1,

P X X X X X kl l n n n+ + ++…+ + ={ }1 1 1   =  
j l k

n j k l

r l
j r

j l

k= + −

+ +

=
+∑ −( )

+ −( )∏
+ −



2

1
1

1

2

µ
(3)

and, hence, for all  l ∈ N,

P N kl ={ }  =  
j l k

j k l

r l
j r

j l

k= + −

∞ + +

=
+∑ −( )

+ −( )∏

+ −



2

1
1

1

2

µ
(4)

for every nonnegative integer  k ,  and the generating function of  Nl  is

E s
s

r
N

j l

j l

r l
j

l( ) = −( )
+ −( )∏= −

∞ + −

=
+∑

2

2

1
1

1µ
  =  1

1
1

1
1

2
+ −

+ −
+ −( )

+ −( ) +( )
+…s

l
s
l lµ µ µ

(5)

for all  s ∈ [ 0, 1].

Note that the first statement in (3) and formula (6) in the proof below also give the exact distribution of any
section  X Xl l+1 + … + X Xn n+1  of the series defining  N .

In the special case  µ = 1,  formulas (3), (4), and (5) take the form 

P X X X X X kl l n n n+ + ++…+ + ={ }1 1 1   =  l
j

j l

kj l k

n j k l
−( ) −( )

+( )
+ −



= + −

+ +
∑1 1

1

2

2
!

!
,

P N kl ={ }  =  l
j

j l

kj l k

j k l
−( ) −( )

+( )
+ −



= + −

∞ + +
∑1 1

1

2

2
!

!
(41)

for every nonnegative integer  k  and  

E s s
l

s
l l

s
l l l

Nl( ) = + − + −( )
+( )

+ −( )
+( ) +( )

+…1 1 1
1

1
1 2

2 3
  =  

l
s

s
jl

j

j l

−( )
−( )

−( )
−

= −

∞

∑1
1

1
1

1

!
!

(51)

for all  s ∈ [ 0, 1].  For  l = 1,  it follows from ( 41) in this particular case that  
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P N k
j

j

k

j k

j k
={ } = −( )

+( )
+





+ +

= −

∞

∑ 1
1

11

1 !
  =  1 1

1

1

1 0k j k

j k

j k! !
−( )
+ −( )

+ −

+ − =

∞

∑   =  1 1

k
e

!
−

for all  k = 1, 2, … ,  or, equivalently from (  51),  E sN( )  = e 
s

 
–

 
1,  0 ≤ s ≤ 1,  the generating function of the Poisson

distribution with mean  1.  Note the interesting fact, in this connection, that the multiplying factor

s jj
j l

−( )
= −

∞∑ 1
1 / !  of the second formula in ( 51) is the remainder of the polynomial approximation of degree  l – 2

of  e  
s – 1.  All in all, the distributions equivalently given by (4) or (5) may be looked upon as a parametric family

( µ ≥ 1,  l ∈ N )  extending the Poisson distribution with mean 1.

In the converse direction, we conjecture the following: If  X1, X2, …  are independent Bernoulli random

variables such that  P X X1 2 1={ } > 0  and the distribution of  N = N1 = X Xn nn +=
∞∑ 11

  is given by (4) with  l = 1,

for some  µ = 1,  then  E ( Xn ) = 1 / ( µ + n – 1)  for the same  µ,  for each  n ∈  N .  As a special case for  µ = 1,  this

would give a joint characterization of the standard (mean 1) Poisson and the Bernoulli distributions in (1) with  µ =
1.  The following result confirms the conjecture under the extra condition that an extended “scaled" version of the
full conclusion of Theorem 1 holds: 

Theorem 2.  Let  X1, X2, …  be independent random variables with distribution given by  P Xn ={ }1  = pn =

1 – P Xn ={ }0   for some  pn ∈ ( 0, 1),  n ∈ N,  such that the generating function of  Nl = X Xn nn l +=
∞∑ 1   is

f s E sl
Nl

, :λ( ) = ( )  =  1 1
1

1
1

2
+ −( )

+ −
+ −( )[ ]

+ −( ) +( )
λ
µ

λ
µ µ

s
l

s
l l

  +  
λ

µ µ µ
s

l l l
−( )[ ]

+ −( ) +( ) + +( )
+ …1

1 1

3
,

0 ≤ s ≤1,  for all  l ∈  N   and some  λ  > 0  and  µ ≥ 1.  Then, necessarily,  λ  = 1  and  pn = 1 / ( µ + n  – 1)  for

every  n ∈ N.

The function  fl, λ ⋅( )  here is a seemingly natural generalization of the generating function in Theorem 1 be-

cause, for the pair  ( λ, µ ) = ( 1, 1),  it reduces to  f s1, λ( )  = e sλ −( )1 ,  0 ≤ s ≤1,  the generating function of the Poisson

distribution with mean  λ  .  However, Theorem 2 excludes this parameterization by asserting that the only possible  λ
is  1.  The result in [2], stated above, suggests that a version of the conjecture above that if  X1, X2, …  are inde-

pendent Bernoulli random variables such that  P X X1 2 1={ } > 0  and the distribution of  N = N1 = X Xn nn +=
∞∑ 11

  is

Poisson with mean  λ > 0,  then  E  ( Xn ) = λ  / ( λ + n – 1)  for each  n ∈  N .  To prove the corresponding weaker

version, an analog of Theorem 2, would require the presently unavailable knowledge of the generating functions of

Nl  for all  l ∈ N  under the distributions in (2), i.e., the corresponding version of Theorem 1.  A remark on this and

related problems is placed after the proof of Theorem I below. 
Finally, we mention another problem that naturally arises and is open even for our present sequence of

independent variables  X1, X2, …  satisfying (1) with  µ = 1.  For a number  k ∈ N,  what is the distribution of  Sk : =

j n

n k
jn

X=
+

=
∞ ∏∑ 1

?  Here,  S1 = N,  of course, and so Theorem 1 answers the question for  k = 1,  but, while various

systems of recursive equations may be derived as in the proof of Theorem 1 below, we were unable to identify in

any explicit sense the distribution of even the next case, the distribution of S2 = X X Xn n nn + +=
∞∑ 1 21

. 

Proof of Theorem 1.  For all admissible values of the integers  l,  n  and  k ,  we introduce 

p k X X X X X kl n l l n n n, :( ) = +…+ + ={ }+ + +P 1 1 1 ,
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p k
r

j l

kl n
j l k

n j k l

r l
j,

* ( ) = −( )
+ −( )∏

+ −



= + −

+ +

=
+∑

2
1
1

1

2

µ

and

q k X X X X kl n l l n n, :( ) = +…+ ={ }+ +P 1 1 ,

and let us agree to understand  p kl n, ( ),  p kl n,
* ( ),  and  q kl n, ( )  as zero if  k  is negative.  Conditioning on  Xn + 2 , we

obtain 

p k
n

n
q k

n
p kl n l n l n, , ,+ ( ) = +

+ +
( ) +

+ +
−( )1 1

1
1

1
µ

µ µ

and

q k
n

n
q k

n
p kl n l n l n, , ,+ ( ) = +

+ +
( ) +

+ +
( )1 1

1
1

µ
µ µ

.

From the first of these two equations

q k
n

n
p k

n
p kl n l n l n, , ,( ) = + +

+
( ) −

+
−( )+

µ
µ µ

1 1 11 , (6)

by which the second becomes

µ
µ µ
+ +
+ +

( ) −
−( )

+ ++
+n

n
p k

p k

nl n
l n2

1

1

12
1

,
,   =  

p k

n
p k

p k

n
l n

l n
l n,

,
,( )

+ +
+ ( ) −

−( )
+ ++µ µ1

1

11 ,

or, equivalently,

p kl n, + ( )2   =  p kl n, + ( )1   +  
p k p k p k p k

n
l n l n l n l n, , , ,+ +−( ) − −( )[ ] − ( ) − ( )[ ]

+ +
1 11 1

2µ
. (7)

The crux of the argument is to come up with a reasonable conjecture from the recursion in (7) for the form of

p kl n, ( ),  which is given by  p kl n,
* ( )  above.  Having this, we now proceed to prove the desired identity  pl n, ⋅( ) ≡

pl n,
* ⋅( )  by induction, which for each  m ≥ l  produces  p kl m, + ( )2   from  pl m, + ⋅( )1   and  pl m,

* ⋅( )  for all nonnegative

integers  k .
First, for all  k = 0, 1, 2, … ,  we must consider 

p kl l, ( )  =  P X X X kl l l+ ++ ={ }1 1

and

p kl l, + ( )1   =  P X X X X X kl l l l l+ + + ++ + ={ }1 1 2 2

in a direct fashion.  Clearly,  p kl l, ( ) = 0 = p kl l,
* ( )  for all  k > 2  and  p kl l, + ( )1  = 0 = p kl l,

*
+ ( )1   for all  k > 3.  Also,
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pl l, 0( )  =  P Xl+ ={ }1 0   =  
µ
µ
+ −
+
l

l
1

  =  1 1
1

1
1

−
+ −

+
+ −( ) +( )µ µ µl l l

  =  pl l,
* 0( ),

pl l, 1( )  =  P X Xl l= ={ }+0 11,   =  
µ
µ µ
+ −
+ − +

l
l l

2
1

1   =  1
1

2
1µ µ µ+ −

−
+ −( ) +( )l l l

  =  pl l,
* 1( )

and 

pl l, 2( )  =  P X Xl l= ={ }+1 11,   =  1
1

1
µ µ+ − +l l

  =  pl l,
* 2( )

by the formula for the right-hand sides, and one can check similarly that the expressions for

pl l, + ( )1 0   =  P X Xl l+ += ={ }1 20 0,   +  P X Xl l= ={ }+0 02, ,

pl l, + ( )1 1   =  P X Xl l+ += ={ }1 20 1,   +  P X X Xl l l= = ={ }+ +1 1 01 2, , ,

pl l, + ( )1 2   =  P X X Xl l l= = ={ }+ +0 1 11 2, , ,

and

pl l, + ( )1 3   =  P X X Xl l l= = ={ }+ +1 1 11 2, ,

also agree with  pl l,
*

+ ( )1 0 ,  pl l,
*

+ ( )1 1 ,  pl l,
*

+ ( )1 2 ,  and  pl l,
*

+ ( )1 3 ,  respectively.  Thus, we have  pl n, ⋅( ) = pl n,
* ⋅( )  for

n = l, l + 1.

We now assume that  p kl m, ( ) = p kl m,
* ( )  and  p kl m, + ( )1  = p kl m,

*
+ ( )1   for all  k = 0, 1, 2, …  for some integer

m ≥ l .  Then, by (7) and this induction hypothesis,

p kl m, + ( )2   =  p kl m,
*

+ ( )1   +  
p k p k p k p k

m
l m l m l m l m,
*

,
*

,
*

,
*

+ +−( ) − −( )[ ] − ( ) − ( )[ ]
+ +

1 11 1

2µ
 

=  p kl m,
*

+ ( )1   +  1
2µ + +m

−( )
+ −( )∏

+ −
−





 +

+ −











+ +

=
+
1

1

3

1

3
2

m k l

r l
m r

m l

k

m l

kµ
  

=  p kl m,
*

+ ( )1   +  −( )
+ −( )∏

+ −





+ + +

=
+
1

1

42

3

m k l

r l
m r

m l

kµ
  

=  
j l k

m j k l

r l
j r

j l

k= + −

+ + +

=
+∑ −( )

+ −( )∏
+ −



2

2

1
1

1

2

µ
  =  p kl m,

*
+ ( )2

for all  k = 0, 1, 2, … .  This proves the first statement in (3).

Since  Xn + 1  converges in probability to zero as  n → ∞,  the second statement in (4) follows directly from the

first one.  Finally, from (4),

E SNl( )  =  
k

k
ls N k

=

∞

∑ ={ }
0

P   =  
k

ks
=

∞

∑
0 j l k

j k l

r l
j r

j l

k= + −

∞ + +

=
+∑ −( )

+ −( )∏
+ −



2

1
1

1

2

µ
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=  
j l k

j l
k

j k l

r l
js

r

j l

k= −

∞

=

+ − + +

=
+∑ ∑ −( )

+ −( )∏
+ −



2 0

2

1
1

1

2

µ
  

=  
j l

j l

r l
j

k

j l
k

r

j l

k
s

= −

∞ +

=
+

=

+ −

∑ ∑−( )
+ −( )∏

+ −



 −( )

2
1

0

2
1

1

2

µ
  

=  
j l

j l

r l
j

j l

r
s

= −

∞ + −

=
+

+ −∑ −( )
+ −( )∏

−( )
2

2

1
21

1
1

µ
  =  

j l r l
j

j l

r
s

= −

∞

=
+

+ −∑ + −( )∏
−( )

2
1

21
1

1
µ

for all  s ∈ [ 0, 1),  which proves the third statement in (5). 

Remark.  For any probabilities

pn  =  P Xn ={ }1   =  1 0− ={ }P Xn  ∈ [ 0, 1],      n ∈ N,

the first part of the proof gives the general recursion

p kl n, + ( )2   =  p kl n, + ( )1   +  p p k p p p kn l n n n l n+ + + + +−( ) − −( ) −( )[ ]3 1 2 3 11 1 1, ,   

–  p p k p p p kn l n n n l n+ + + + +( ) − −( ) ( )[ ]3 1 2 3 11, ,

for all  n ≥ l  and  k = 0, 1, 2, … ,  as an extension of (7).  So, we see that Theorem 1 is about an “easy” case where
the common value  pn + 3 = pn + 2 ( 1 – pn + 3 )  can be factored out from the two differences, which happens if and only

if  pn + 3 = pn + 2 / ( 1 + pn + 2 )  for every  n ≥ l  and the starting values of  pl  and  pl + 1  make it possible to piece the

induction together.  It would be of interest to know whether in a “difficult" case where  pn + 3 ≠ pn + 2 / ( 1 + pn + 2 )  for

some or all  n ≥ l  it is still possible to derive a closed solution of the recursive formula.  The most prominent

concrete example of this would be when  pn = λ µ α/ + −( )n 1 ,  n ∈ N,  for some parameters  α, λ > 0  and  µ λ α≥ 1/ ,

when 

p kl n, + ( )2   =  p kl n, + ( )1   +  λ
µ

µ λ
µα

α

α+ +( )
−( ) − + +( ) −

+ +( )
−( )





+n
p k

n

n
p kl n l n2

1
2

1
11, ,   

–  λ
µ

µ λ
µα

α

α+ +( )
( ) − + +( ) −

+ +( )
( )





+n
p k

n

n
p kl n l n2

2
11, ,

for  n ≥ l  and  k = 0, 1, 2, … ,  as a special generalization of (7).  This recursion is what one ought to solve in order to

obtain an extension of (3).  Even for  α = 1,  the ensuing results would generalize those in Theorem 1, i.e., the case

α = 1 = λ  ,  or for a class of distributions containing the family in (2) for  µ = λ  . 

Proof of Theorem 2.  For integers  m  ≥ l ≥ 1,  we set  Nl, m : = X Xn nn l

m
+=∑ 1  ≥ 0.  Since  N Nl m l, ↑   almost

surely as  m →  ∞ ,  by the monotone convergence theorem we have  E  ( Nl ) = lim ,m l mE N→∞ ( )  and  E Nl
2( ) =

lim ,m l mE N→∞ ( )2 .  Since, with prime denoting left-hand-side derivative, 
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E ( Nl )  =  ′ ( )fl, λ 1   =  λ
µ + −l 1

and

E Nl
2( )   =  ′′ ( )fl, λ 1   +  ′ ( )fl, λ 1   =  2

1

2λ
µ µ+ −( ) +( )l l

  +  λ
µ + −l 1

for all  l ∈ N,  the equations 

λ
µ + −l 1

  =  E ( Nl )  =  lim ,m l mE N
→∞ ( )  =  p pn n

n l
+

=

∞

∑ 1

and

E Nl
2( )   =  lim ,m l mE N

→∞ ( )2   =  E X Xn n
n l

+
=

∞

∑
















1

2

  

=  E X Xn n
n l

2
1

2
+

=

∞
( )∑   +  2 1

2
2E X X Xn n n

n l
+ +

=

∞
( )∑   +  2

2
1 1

j n
n n j j

n l
E X X X X

= +

∞

+ +
=

∞

∑∑ ( )  

=  p pn n
n l

+
=

∞

∑ 1   +  2 1 2p p pn n n
n l

+ +
=

∞

∑   +  2
2

1 1
j n

n n j j
n l

p p p p
= +

∞

+ +
=

∞

∑∑

imply 

p pl l+1   =  p pn n
n l

+
=

∞

∑ 1   –  p pn n
n l

+
= +

∞

∑ 1
1

  =  λ
µ + −l 1

  –  λ
µ + l

  =  λ
µ µ+ −( ) +( )l l1

and 

2 1 2p p pn n n
n l

+ +
=

∞

∑   +  2 p pn n
n l

+
=

∞

∑ 1
λ

µ + +n 1
  =  2

1

2λ
µ µ+ −( ) +( )l l

for every  l ∈ N.  The latter equations in turn imply 

p p pl l l+ +1 2  +  p pl l+1
λ

µ + −l 1
  =  λ

µ µ

2

1+ −( ) +( )l l
  –  λ

µ µ

2

1+ +( ) +( )l l
  =  2

1 1

2λ
µ µ µ+ −( ) +( ) + +( )l l l

,

which, combined with the former equations, yields 

pl  =  1

1 2p pl l+ +

2
1 1 1

2

1
λ

µ µ µ
λ

µ+ −( ) +( ) + +( )
−

+ +




+l l l

p p
ll l   

=  
µ µ

λ
+( ) + +( )l l 1 λ

µ µ µ

2

1 1+ −( ) +( ) + +( )l l l
  =  λ

µ + −l 1
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for all  l ∈ N.  Finally, confronting this with the first set of equations, we get  λ2 = ( µ + l – 1) ( µ + l ) p pl l+1 = λ  .

Hence,  λ = 1  necessarily, and so  pl = 1 / ( µ + l – 1)  for all  l ∈ N.
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