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Abstract. The three-dimensional Schr/Sdinger equation inverse scattering problem with a non- 
spherically-symmetric potential is related to the filtering problem of computing the linear least- 
squares estimate of the three-dimensional random field on the surface of a sphere from noisy 
observations inside the sphere. The relation consists of associating an estimation problem with the 
inverse scattering problem, and vice-versa. This association allows equations and quantities for one 
problem to be given interpretations in terms of the other problem. A new fast algorithm is obtained 
for the estimation of random fields using this association. The present work is an extension of the 
connections between estimation and inverse scattering already known to exist for stationary random 
processes and one-dimensional scattering potentials, and isotropic random fields and radial scattering 
potentials. 
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1. Introduction 

The objective of this paper is to demonstrate that the problems of inverse 
scattering and linear least-squares estimation are closely connected. This con- 
nection is well established for one-dimensional inverse scattering problems and 
stationary random processes [1--4]. A connection between two-dimensional in- 
verse scattering problems with a radial scattering potential (i.e., one which varies 
only with radial distance from the origin) and isotropic random field estimation, 
has been noted in [5] and [24]. The present paper extends this connection to 
the more general case of three-dimensional inverse scattering with a nonspheric- 
ally symmetric potential, and three-dimensional random field estimation. 

The significance of such a connection is three-fold. First, it sets up a cross- 
fertilization between techniques known for these problems, so that methods 
applied to one problem can now be applied to the other. Second, it enhances the 
understanding of each problem, since equations in one domain can be given 
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interpretations in the other domain. Several examples of this are given in Section 
4. This is particularly important for the general three-dimensional inverse scat- 
tering problem, which is still not well understood. Finally, it allows a new fast 
algorithm for the estimation of random fields to be developed from existing fast 
algorithms [6, 7] for three-dimensional inverse scattering. This is done in Section 
5. 

The specifics of the connection are as follows. The inverse scattering problem 
for the three-dimensional Schr6dinger equation with a nonspherically symmetric 
potential has been treated in [8-11] and [19-20]. The solution procedure consists 
of solving either a generalized Gel'fand-Levitan integral equation (Equation 
(2.17) below) or a generalized Marchenko integral equation (Equation (2.11) 
below) for the scattered field, and then recovering the potential from the scatter- 
ed field using a so-called miracle equation [9] (Equation (2.13) below). We show 
that the generalized Gel'fand-Levitan equation is equivalent to a three-dimen- 
sional Wiener-Hopf integral equation, which computes the linear least-squares 
filter for estimating a three-dimensional random field on the surface of a sphere, 
from noisy observations inside and on the sphere. 

Conversely, starting with this estimation problem, with the covariance function 
of the random field required to have special structure (Equation (3.4) below), we 
associate with it a Schr6dinger equation. The potential for this equation may be 
nonlocal; if the covariance has additional structure, the potential is local, and an 
inverse scattering problem can be associated with the estimation problem. It 
should be noted that the characterization of admissible scattering data associated 
with a local potential (i.e., for which the miracle equation holds) is still an open 
problem in inverse scattering theory. The solution to this problem may well be 
found by considering it in an estimation context. 

The paper is organized as follows. In Section 2, some three-dimensional 
inverse scattering theory is briefly reviewed, and a random field least-squares 
estimation problem is associated with the generalized Gel'fand-Levitan pro- 
cedure of [8] and [19-20]. Section 3 begins with the random field least-squares 
estimation problem, in which the covariance function has structure, and asso- 
ciates with it a Schrfdinger equation with a possibly nonlocal potential; if the 
covariance has some additional structure, the potential is local. In this case, an 
inverse scattering problem is associated with the estimation problem. Section 4 
provides interpretations of quantities and equations, including generalized Krein 
functions and the regular solution, whitening filters and Jost function, pre- 
whitening and far-field behavior, and matched filtering and the inverse Born 
approximation. Each of these connects an estimation concept with an inverse 
scattering concept. Section 5 develops a new fast algorithm for computing the 
least-squares filter for estimating a random field, using existing fast inverse 
scattering algorithms. Section 6 concludes by summarizing the paper and noting 
directions for future research. 
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2. Three-Dimensional Inverse Scattering 

In this section, we briefly review some pertinent facts and equations of inverse 
scattering theory for the Schr6dinger equation in three dimensions with a 
nonspherically symmetric potential. Most of this material first appeared in [8]; it 
is also covered in [7, 10, 11, 19, 20]. We then associate an estimation problem 
with this inverse scattering problem. 

2.1. REVIEW OF THREE-DIMENSIONAL INVERSE SCATTERING THEORY 

The following inverse scattering problem is considered. The wave field u(x, k) 
satisfies the Schr6dinger equation 

( a +  k 2 -  V(x))u(x, k) = O, (2.1) 

where x e R 3 and the scattering potential V(x) is real-valued, smooth, and has 
compact support. It is also assumed that V(x) does not induce bound states; a 
sufficient condition for this is for V(x) to be nonnegative. Two different sets of 
boundary conditions are specified, resulting in two different solutions. 

Scattering Solution. The scattering solution ~(x, k, e~) has the boundary condition 

~b(x, k, e,) = e- 'ke'  x + (e-'kM~l/4~rlx[)A(k, e~, ei)+ O(Ix[ -2) as Ixl ~ 

where the scattering amplitude A(k,  e~, e~) is defined as 

A(k,  e~, ei)= - I  eike` y V(y)~b(y, k, e~)dy 

(2.2) 

(2.3) 

and e~ and e~ are unit vectors. In the time domain, this corresponds to an incident 
impulsive plane wave in the direction e~ being used to probe the potential, and 
being scattered in all directions. The scattering amplitude specifies the far-field 
behavior of the wave field, and constitutes the scattering data. 

Regular Solution. The regular solution ~b(x, k, ei) is defined as being the solution 
to (2.1) that is an entire analytic function of k and is of exponential order Ixl. It 
should be noted that, subject to mild assumptions [20], this solution generically 
exists and 4~(x, k, e~)- e -ik~,x is square-integrable in k. Using the Paley-Wiener 
theorem, the inverse Fourier transform 4~(x, t, ei) = ~-1{4~(x, k, ei)} has support 
in t on the interval [-Ixl, Ixl]. Thus, it has the Povsner-Levitan representation 

f lxl 
d~(x, k, e~) = e -i~,'x - m(x, t, el) e -ik' dt (2.4) 

a-lxl 

so that re(x, t, e~) is the nonimpulsive part of 4~(x, t, el). 
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Jost Operator. The regular and scattering solutions are related by a Jost operator 
J(k). This is an operator on the space L2(S 2) (S 2 is the unit sphere) with kernel 
J(k, el, e2). Specifically, 

qb(x, k, ei) = Is 2 ~b(x, k, es)J(k, es, el) des, (2.5a) 

~(x, k, ei) = Is2 ~(x, k, es)J-l(k, es, el) des, (2.5b) 

where J-J is the inverse Jost operator. Both J(k) and J- l(k)  are analytic in the 
lower half-plane, which corresponds to causality in the time domain. 

From [8], the Jost operator satisfies 

J( -  k) = OS(k)J(k) O (2.6) 

where S(k) is the scattering operator with kernel 

S( k, el, e2)= 8 ( e l -  e2)+ ( k /2 7ri) A( k, e~ , e2) (2.7) 

and Q is the operator such that QA(k, e l ,  e2) = A(k, - e l ,  e2). The one-dimen- 
sional versions of (2.6) and (2.7) may be found in [12]. For the one-dimensional 
problem, the scattering and Jost operators become the scattering and Jost 
matrices, relating scattering solutions for e~ being the +x directions. 

Orthonormality. It is well known [8, 11] that in the absence of bound states the 
scattering solutions {~(x, k, e~)} from a complete set. Thus they are orthonormal, 
in that 

(21r)-3 2 ~b(x, k, e)~b*(y, k, e)k 2 de dk = 8(x - y). (2.8) 

It follows that the solutions {~b(x, k, e~)} are orthonormal with respect to the 
positive definite spectral function (jHj)-l,  i.e., 

(21r)-3 ~o ~s2 ~s2 ~s q~(x, k, e1)j-l(k, el, e3)J-l(k, e3, e2)* × 

× ~b*(y, k, e2)k 2 de1 de2 de3 dk = ~(x - y). (2.9) 

The orthonormality of the solutions {~b(x, k, e~)} with respect to ( jHj)-I  was 
used in [10] to interpret three-dimensional inverse scattering as an ortho- 
gonalization procedure. It will be shown to have an interpretation as the 
orthonormality of the innovations in an estimation problem. 

2.2. INTEGRAL EQUATIONS 

Generalized Marchenko Procedure. The inverse scattering problem is solved as 
follows. Given far-field scattering data in the form of the scattering amplitude 
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A(k ,  e~, el) compute 

G(t, e~, el, x) = -(271") -2 I~_ e ik('-(e~-e,)" X)ikA(k, e~, ei) 

and then solve the generalized Marchenko integral equation 

L IoI  v(x, t, ei) = G(t, e~, el, x) des + 
2 2 

271 

(2.10) 

G(t + z, e', el, x)v(x,  t , - e ' )  de' d~" 

(2.11) 

for the delayed scattered field 

v(x, t, el) = ~b(x, t -  el" x, e~) - ~ ( t -  el" x). (2.12) 

The scattering potential V(x) is then recovered from the delayed scattered field 
v(x, t, ei) using the miracle equation [8-11] 

V(x) = 2ei" ~Tv(x, t = 0, el). (2.13) 

Note that the right side of (2.13) must be independent of the directon of 
incidence ei. This is the 'miracle' [8], and it imposes a constraint on possible 
~(x, k, e) and, hence, on possible scattering amplitudes A(k ,  e~, ei). Since the 
scattering data A(k ,  e~, e~) has five degrees of freedom and the potential V(x) 
generating it has only three degrees of freedom, this constraint is not surprising. 
There is no known simple test to determine which functions A(k ,  es, e~) result in 
a miraculous solution ~b(x, k, e~). 

Generalized Gerfand-Levi tan Procedure. As an alternative to the above pro- 
cedure we may do the following. First, obtain the inverse Jost operator kernel 
J- l (k ,  el, e2) from the scattering data A(k ,  e~, ei) by solving the integral equation 

IoL L(t, e s , e i ) = G ( t , - e ~ , e ~ , O ) +  L ( r , - e ~ , e ' ) G ( t + e ' , e i , O ) d e ' d r ,  
2 

(2.14) 

where G(t, el, e2, x) is defined in (2.10). Although (2.14) looks like (2.11), note 
that (2.14) need only be solved for x = 0, whereas (2.11) must be solved for all x. 
We then have 

I; J- l (k ,  el, e2) = 1 + L(t, el, e2) e -ik' dt. (2.15) 

Equations (2.14) and (2.15) implement (2.6) with the constraint that J- l (k)  be 
causal in the time domain. 

Following [20], let 

Mlxl(t, el, e2)= ~ - l ~ [ ( j , j ) - i -  tS(e~- e2)]IIixL(t, k, e~-  e2)} (2.16) 

be the inverse spatial Fourier transform of the perturbation of the spectral 
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function away from its free-space representation. Here Rlxl ( t  , k, e l -  ez) is a 
spatial filter in k(e l -  e2) that rejects Ix[ < t. Equation (2.16) is equivalent to 
Equation (6.11) of [20], which involves a partial Radon transform [20]. Then the 
nonimpulsive part m(x, t, ei) of the regular solution ~(x, t, ei) may be obtained by 
solving the generalized Gel'fand-Levitan integral equation 

t, el) = f~2 Mlxl(t + es" x, es, rn(x~ ei) des 

_ f flxl re(x, T, es)Ml~l(t + z, es, e,) d rdes .  (2.17) 
Js z j__lxl 

An incorrect generalized Gel'fand-Levitan equation was first given in [8]; the 
corrected equation (2.17) was given in [20]. 

The potential is then recovered from the miracle equation for the regular 
solution 

V(x) = 2ei" V[m(x, t = e,. x ÷, e,) - re(x, t = ei" x-, ei)]. (2.18) 

Note that since the regular solution has support in t in the interval [-Ixl, Ixl], the 
potential V(x) is found from the lump in the gradient of the regular solution at 
t = e i  • x .  

Although the generalized Gel'fand-Levitan procedure requires that the in- 
tegral equation (2.14) be solved in addition to (2.17), it should be noted that 
(2.17) has only a finite range of integration, while the generalized Marchenko 
equation (2.11) has an infinite range of integration. Simpler derivations of the 
generalized Marchenko equation are given in [7] and [11], using a generalized 
Radon transform and a representation theorem, respectively. A simpler deriva- 
tion of the generalized Gel'fand-Levitan equation is given in [10], using an 
orthogonalization argument. 

2.3. CONNECTION WITH ESTIMATION OF RANDOM FIELDS 

We now show that the solution of an inverse scattering problem using the 
generalized Gel'fand-Levitan procedure is equivalent to solving a random field 
linear least-squares estimation problem. This is accomplished by transforming the 
integral equation (2.17) into a three-dimensional Wiener-Hopf integral equation, 
with a positive definite covariance function. Since both equations are expressions 
of orthogonality, this transformation is not surprising. 

The mechanism for the transformation is the Radon transform 

= t(v, e) = f f(x)8(~'- e. x) dx, (2.19a) ~{f(x)} 
JR 3 

~ - l { f ( ' r , e ) } = f ( x ) = ~  s ~ ~o 02~(~''e)0~.2 8(~ ' -e .x )dzde .  (2.19b) 

A good treatment of the Radon transform is [13]. 
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Define 

-h (x ,  y) = ~,__,y{ th(x, k, e , ) -  e - 'u,  ' }  = ~__, ,{m(x,  t, e,)} (2.20) 

where the projection-slice property ~:x = ~ [13] of the Radon transform has 
been used in the second equality. Since m(x, t, e~) has support  in t on the interval 
[-Ixl,  Ixl], h(x, y) has support inside the sphere lyl ~< Ixl, as long as m(x, t, e,) 
satisfies some mild conditions [13]. (In fact, the triangularity of h(x, y) has been 
established generically in [20].) Note that we also have 

~b(x, k, ei) - - - -  e--ike,-x _ _  I h(x, y) e-'k~,, y dy = ,%--,k~,{8(X -- y) -- h(x, y)}. 

(2.21) 

Taking the partial inverse Radon transform ([20], p. 601) of the generalized 
Gel ' fand-Levitan Equation (2.17) and using the projection-slice property results 
in [20] 

= I h(x, z)k(z, y) dz,  Irl Ixl. (2.22) k(x, y) h(x, y) + ~l~lxb 

Here 

k(x, y) = (2tr) -3 ~ ~ M(k, el, e2) e -~k~e~ .x-e~. y~k 2 de1 de2 dk,  (2.23) 

where M(k, el, e2) = (( juj ) - i  _ ~(e~ - e2))(k, e~, e2) is the kernel of the pertur- 
bation of the spectral function away from its free-space value. 

Equation (2.22) also appears in [8] and [10] in the course of deriving general- 
ized Gel ' fand-Levitan integral equations. However,  these latter equations require 
that the regular solution ~(x, t, e~) have support in t in the interval 
[-e~- x, e~ • x], and the existence of such a solution cannot be guaranteed. Also, 
(2.23) is a much cleaner version of the Gel ' fand-Levitan equation, since it avoids 
the partial Radon transform used in [20]. Here we recognize it as a three- 
dimensional Wiener-Hopf equation for computing the linear least-squares filter 
h(x, y) that estimates a random field from noisy observations inside and on the 
sphere lyl ~< Ixl. 

The Filtering Problem. More specifically, let 

w(x) = z(x)+ v(x) (2.24) 

with x e R 3 be some noisy observations of a zero-mean real-valued random field 
z(x) having covariance 

E[z(x)z(y)] = k(x, y). (2.25) 

The noise field v(x) is a zero-mean white noise field with unit intensity 

E[v(x)v(y)] = 8(x - y) (2.26) 
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and it is uncorrelated with the field z(x). Let h(x, y) be the linear least-squares 
filter for estimating z(x) on the surface of a sphere of radius Ixl from observations 
{w(y):IYl-< Ixl] inside and on the sphere, so that 

~.(x) = [ h(x, y)w(y) dy. (2.27) 
:1 yl~lxl 

Then, by the orthogonality principle of Wiener filtering, the filter h(x, y) satisfies 
the Wiener-Hopf equation (2.22). 

It has been demonstrated that the construction of the regular solution 
to(x, k, ei) from the inverse Jost function J-~(k, el, e2) is the same problem as 
that of constructing the optimal filter h(x, y) from the covariance function 
k(x, y). The association is given explicitly by Equation (2.20), relating t0(x, k, e~) 
and h(x, y), and Equation (2.23) relating J-'(k, ea, e2) and k(x, y). A similar 
association for the one-dimensional case was given in [12]. The only difference is 
that in the estimation problem the filter h(x, y) is the desired quantity, while in 
the inverse scattering problem the regular solution to(x, k, ei) is only an inter- 
mediate quantity for computing the potential V(x). In Section 5 it will be shown 
that the potential V(x) completely characterizes the filter h(x, y), just as the 
reflection coefficients in the Levinson algorithm in one dimension completely 
characterize the forward and backward prediction filters. 

Structure of the Covariance Function. Note from (2.23) that 

E[w(x)w(y)] = ~ ( x -  y) + k(x, y) 
-, -, n -, , e2)~(]kd 2 -  Ik212). (2.28) = ~k,,,--,x ~k2~2--,y{(J J) (k , ,  e, 

This shows that 6(x - y) + k(x, y) is indeed a positive definite function, as it must 
be for the estimation problem to be well defined. However, it also shows that the 
2-dimensional Fourier transform of k(x, y) is zero except for the on-shell values 
for which [kl[ = [k21. This structure in the wavenumber domain implies that the 
covariance function k(x, y) has structure, in that 

(Ax -- Ar)k(x, y) = 0, (2.29) 

where A, is the Laplacian with respect to x. This property is a direct generaliza- 
tion of the displacement properties 

(0~z 00-~2) k(x, y) = 0, (2.30a) 

[ ( ~ + l  ° - - ] - ( L + l  a7-]~ k(r, s )=0 ,  (2.30b) 
t kOr" kOs" Os/ Or/ s 

which were imposed in [4] and [5], respectively, on the covariance functions of 
one-dimensional and isotropic random fields, respectively. Both of these proper- 
ties resulted in an inverse scattering interpretation being associated with an 
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estimation problem in [4, 5, 24]. The implications of the structure (2.29) are 
discussed in Section 3 below. 

3. Three-Dimensional Random Field Estimation 

In this section, we go the other way. Starting with a random field estimation 
problem, we associate with this problem an inverse scattering problem. However, 
the potential associated with this problem may be nonlocal. The problem of 
determining necessary and sufficient conditions for the covariance function 
k(x, y) to guarantee a local potential is related to the problem of determining 
admissible scattering data for a local potential, and is still unsolved. The miracle 
Equation (2.18) links these two problems. 

3.1. THE FILTERING PROBLEM 

The estimation problem considered is a filtering problem of computing the linear 
least-squares estimate of a zero-mean real-valued random field z(x) on the 
surface of a sphere of radius Ixl, from noisy observations 

w(x) = z(x) + v(x) (3.1) 

inside and on the sphere. As before, v(x) is a zero-mean real-valued white noise 
field with covariance 

E[v(x)v(y)] = g(x - y) (3.2) 

while z(x) is uncorrelated with v(x) and has covariance function 

E[z(x)z(y)] = k(x, y) (3.3) 

where the function k(x, y) is positive definite and has the generalized displace- 
ment property 

(A x -- Ay)k(x, y) = 0. (3.4) 

The structure of k(x, y) implied by (3.4) reduces the number of degrees of 
freedom in the function k(x, y) from six to five. This is still a far more general 
case than the case of a homogeneous random field having covariance k ( x -  y) 
(three degrees of freedom) treated in [14], or the case of an isotropic random field 
having covariance k(Ix- Yl) (one degree of freedom) treated in [5]. Note that 
both homogeneous and isotropic random fields are included as special cases of 
the property (3.4). 

The estimate zT(x) of z(x) has the form 

i(x) = f h(x, y)w(y) dy. (3.5) Jb yl~txl 

By the orthogonality principle the filter h(x, y) is determined by the three- 
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dimensional Wiener-Hopf integral equation 

k(x, y) = h(x, y) + f h(x, z)k(z, y) dz, lYl ~< Ixl. (3.6) 
al zl~lxl 

Without loss of generality, we define h(x, y) = 0 for lyl > Ixl. 
Applying the operator (Ax- Ay) to the integral Equation (3.6) and using the 

generalized displacement property (3.4), Green's theorem, and the unicity of 
solution to (3.6) when k(x, y) is positive definite yields, after some algebra (see 
[14]), 

(Ax-  Ay)h(x, y )=  fs2 Vt(x, e)h(lxle, y) de, (3,7) 

where the nonlocal filter potential Vt(x, e) is defined as 

2 d 
Vi(x, e ) -  ixl=dlxl Ixl2h(x, Ixle). (3.8) 

3.2. CONNECTION WITH INVERSE SCATTERING 

Define 

re(x, t, ei) = - ~ y--,~,e,{h(x, y)}. (3.9) 

Then a Radon transform of (3.7) taking y into t and e~ yields 

A--~-~ re(x, t, e,)= 2 Vt(x' e)m([xle' t, e,)de (3.10) 

which is the inverse Fourier transform of a Schr6dinger equation with a nonlocal 
potential Vt(x , e). Note that the interaction at x is determined by the field 
re(y, t, ei) at all {lyl--Ixl}, i.e., on the surface of the sphere of radius [xl. The 
inverse scattering problem for this particular type of non-local potential is 
considered in [21-23]. 

It is not surprising that the potential is nonlocal. Since k(x, y) has five degrees 
of freedom, the set of potentials that characterize it must also have five degrees 
of freedom. A local potential Vt(x ) only has three degrees of freedom, whereas 
the nonlocal potential Vt(x, e) has five, as required. Also note that nonlocal 
potentials do not arise in the one-dimensional and isotropic cases considered in 
[4] and [5], since in these cases the distribution over extreme points (endpoints of 
an interval, or surface of a sphere) cannot arise due to symmetry. For the 
homogeneous case considered in [14], this symmetry no longer holds, and the 
potential is nonlocal. 

The structure (3.4) of k(x, y) implies that its double Fourier transform is zero 
except for its on-shell values. More specifically, 
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~,--.k,e, ~y~k.¢~{6(X - y) + k(x, y)} = M(k, e,, e2)8(lk,I 2 -Ikzl z) (3.11) 

for some function M(k, el, e2). Equation (3.11) should be compared to (2.23). 
The covariance function 8(x - y) + k(x, y) is positive definite. We assume that 

its spectral density M(k, e~, e2) can be spectrally factored into 

M(k, e,, e2) = ~s2 J-l(k '  e,, e3)J-l(k, e2, e3)* de3, (3.12) 

where J-t(k,  el, e2) is analytic in k in the lower half-plane and has the form 
(2.15). It is evident that J-l(k,  el, e2) plays the same role in (3.12) as the kernel 
of the inverse Jost operator played in (2.16). 

The association of an inverse scattering problem with the random field estima- 
tion problem specified by Equations (3.1)-(3.6) proceeds as follows. Given the 
covariance function k(x, y) satisfying (3.4), compute its double Fourier transform 
(3.11) and perform the spectral factorization (3.12), yielding the inverse Jost 
operator J-l(k). Then use Equation (2.6) (modified for J- l(k) instead of J(k)) to 
synthesize a scattering amplitude A(k, es, ei) using (2.7). The smooth part 
re(x, t, ei) of the regular solution to this inverse scattering problem is minus the 
Radon transform of the filter h(x, y). 

The major difference between the association made here and that made in 
Section 2 is that in Section 2 we started with an inverse scattering problem with a 
local potential V(x) and associated with it an estimation problem in which the 
covariance function k(x, y) was derived from the scattering data, so that k(x, y) 
was restricted to functions that, in addition to satisfying (2.29), gave rise to local 
potentials only. In Section 3, this entire process is reversed. This shows the 
equivalence of the inverse scattering problem with a local potential with estima- 
tion problems in which the covariance, in addition to satisfying (3.4), has 
additional structure resulting in a local filtering potential Vt(x ). This additional 
structure seems to be related to the structure required of the scattering amplitude 
in order to give rise to a local scattering potential. 

4. Innovations Processes and Inverse Scattering 

In this section details of the connection between inverse scattering and estimation 
are explored by attaching estimation interpretations to inverse scattering quan- 
tities and equations, and vice-versa. 

4.1. GENERALIZED KREIN FUNCTIONS AND THE REGULAR SOLUTION 

Recall the relation (2.21) between the regular solution and the optimal filter: 

4~(x, k, e,) = ~r--,ke,{6(X -- y) -- h(x, y)}. (4.1) 

Note that the filter 6(x - y ) -  h(x, y) applied to the data {w(y):ly I ~< Ixl} results in 
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a white noise field {i(x)}: 

i(x) = f (6(x - y) - h(x, y)) w(y) dy. (4.2) 
aL yl~lxl 

The field {i(x)} is white since all of the information in the data {w(y): ly I ~< Ixl} 
relevant to estimating z(x) has been subtracted out of it. The field {i(x)} is also 
causal and causally invertible, where causality is defined in increasing Ixl, with 
equal ordering of all points on the surface of a sphere of any radius. The white 
field {i(x)} can be recursively undone back into the observations in decreasing Ixl 
(this would require the solution of simultaneous equations over the surface of the 
sphere, which could be done in principle). Hence, {i(x)} is an innovations field. 

This shows that the regular solution is the Fourier transform of the innovations 
filter. Thus the regular solution is a direct generalization of the Krein functions 
[16], which are the Fourier transforms of the innovation filters for the one- 
dimensional problem [1]. The only difference is that in the present problem the 
Fourier transform is three-dimensional. 

In the two-dimensional isotropic case treated in [5], the solutions y(r, A) to the 
associated radial inverse scattering problem were the Hankel transforms of the 
innovations filters. The Hankel transform appeared in [5] since the two-dimen- 
sional Fourier transform of an isotropic function becomes a Hankel transform. 
The appearance of extra transforms is not surprising; in the one-dimensional 
discrete problem the Szego polynomials are the z-transforms of the innovations 
filters, while in the present problem the regular solution in the time domain is the 
Radon transform of the innovations filter (see (3.17)). Indeed, the Hankel and 
Radon transforms both have the interpretation of performing a decomposition 
into plane waves, for an evident scattering interpretation. 

A Kolmogorov isometry can also be identified between linear combinations of 
the observations {w(x)} and of the functions e -ike,'x. The inner product for the 
random processes is the usual expectation-of-product, while the inner product for 
the functions is with respect to the spectral function (JnJ)-l(k, e~, e2). Using this 
isometry, the regular solutions ~b(x, k, ei) can be identified with the innovations 
field {i(x)} using (4.1). It is then evident that the orthonormality (2.9) of the 
regular solutions th(x, k, ei) with respect to the spectral function 
(JHJ)-~(k, el,e2) is equivalent to a statement of orthonormality of the in- 
novations fields {i(x)} of the associated estimation problem. A similar result was 
noted for the one-dimensional problem in [4], and for the two-dimensional 
isotropic problem in [5]. 

4.2. WHITENING AND MODELLING FILTERS AND JOST OPERATORS 

Since (JnJ)-l(k, e~, e2) is the spectral density of the observations {w(x)} (see 
(3.11) and (3.12)), the Jost operator J(k) can be interpreted as a whitening filter 
for {w(x)}, and the inverse Jost operator J-~(k) can be interpreted as a modelling 
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filter for {w(x)}. This follows since the Jost operator kernel J(k, et, e2) and the 
inverse Jost operator kernel J-l(k,  el, e2) are both analytic in the lower half- 
plane, so that the computation of the kernels from the covariance function 
k(x, y) is equivalent to solving a spectral factorization problem. Specifically, we 
associate with {w(x)} the whitened random field {v(x)} obtained from {w(x)} using 
the invertible (but not causal) transformation with J-l(k,  el, e2) as its kernel. 

More specifically, let {~,(k, e)} and {~,(~-, e)} be the formal Fourier and Radon 
transforms of {w(x)}, and define the whitened field {~(k, e)} defined from 
{ff,(k, e)} by 

P(k, el) = Is'- J(k, el, e2)~b(k, ez) de2. (4.3) 

In the Radon transform domain (4.3) corresponds to passing {ff(~', e)} through a 
filter 

~('r2' e2) = L-" f J( 'rI-T2"el 'e2)~(Th'e')d'rlde'  (4.4) 

where 

• ] ( T I -  '/'2, el, e2)=  ,~-l,~-l{k2J(k, e~, ez)6(lkll 2 -  Ik212)} (4.5) 

and Parseval's theorem has been used twice. Note that J (~ ' l -  rz, el, e2) is zero 
for ~'1 - r2 < 0 by the analyticity of J(k, ej, e2) in the lower half-plane. This shows 
that the whitening takes place in increasing Ir[. However,  the double inverse 
Radon transform J(x, y) = ~-l~7]~-l{J( ' r , -  'r2, e,,  e2)} is not causal in I x] --]y[, so 
the transformation (4.3) is not causal. Thus J(k, et, e2) is not an innovations 
filter, although it is a whitening filter. 

The scattering solution to(x, k, ei) to the inverse scattering problem can now be 
given an estimation interpretation. Recall that the regular solution 4~(x, k, ei) is 
the Fourier transform of the innovations filter. Equations (2.5) relating t0(x, k, e~) 
and 4,(x, k, e~) can now be interpreted as cascades of two filters. Specifically, 

to(X, k, e2) = IS 2 ¢~(X, k, eOJ-I( k, el, e2) del (2.5b) 

can now be interpreted as the cascade of a modelling filter J - t (k )  and an 
innovations filter 4~(x, k, el), where both filters are of course specified in the 
wavenumber domain. This is illustrated in Figure l a. 

Figure 1 and (2.5b) show that the action of ~(x, k, era) is to transform the 
whitened observations field {~(k, e)} into the innovations field {~(k, e)}. Of 
course, both fields are white, so that the filter to(x, k, el) should not affect power 
spectral densities; this interprets the orthonormality (2.8) of the to(x, k, e0. Also, 
if we start with the observations field {w(x)}, whiten it with the filter J(k, el, e2), 
and then process it with the filter q4x, k, e0,  the end result should be the 
innovations field {i(x)}. The overall eftect of the cascade of J(k, e~, e2) and 
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Fig. la. Depiction of Equation (2.5a). w= 
observation field, v=whitened observation 
field, i -- innovations field. 

Fig. lb. Depiction of Equation (2.5b). w= 
observation field, v=whitened observation 
field, i = innovations field. 

~btx, k, e~) is the same as application of the innovations filter 4~(x, k, el), which 
interprets (2.5a). This is illustrated in Figure lb. 

The one-dimensional version of (2.6), which defines the Jost operator,  ap- 
peared in an estimation context as Equation (2.151) of [17], with the inverse 
spectral factor J(k,  el,  e2) interpreted as a whitening filter. A similar equation 
appeared in [12]. 

4.3. PRE-WHITENING INTERPRETATION FOR LARGE Ix[ 

There  is no pre-whitening approach to solving the Wiener -Hopf  Equation (3.6), 
since the observations {w(y):lyl~< Ixl} are given over  a compact region for a 
given Ixl. Heuristically, the field does not have the infinite past required for such 
an approach, since the innovations filter in general does not have compact  
support. However,  it is interesting to note that in the limit Ixl ~ w, corresponding 
to an infinite sphere of observations, a pre-whitening interpretation can be 
attached to the limiting solution of (3.6). 

The problem is still the filtering problem of estimating {z(x)} on the surface of 
a sphere of observations of radius Ix]. In the limit as Ixl ~ ~, the filter ~b(x, k, e~) 
becomes e -ike~'x (see (2.2)), and using (2.5a) yields 

d~(x. k, e2)= Is~_ qt(x. k. e,)J( k, e, ,  e2) de, ~- Is. J( k, el, e2) e -ik~' " x del 

(4.6) 

and an inverse Fourier transform with respect to ke2 gives 

h(x, y)~- ~ ( x -  y ) -  f f - ' ~ - ' { J ( k ,  e, ,  e2),~(Ik,I 2 -  Ikz[2)} 

= ~ - l Y t - l { K ( z l  -- ~'2, el, ez)}. (4.7) 

where K(t, e~, e2) is the causal function defined from J(k,  e~, e2) in the same way 
that L(t, el, ez) was defined from J- t (k ,  el, ez) in (2.15). This can be interpreted 
as pre-whitening the observation field with K(t, el,  e2), after which the optimal 
filter is just ~5(x - y). Note that an infinite sphere of observations is necessary to 
constitute an infinite 'past' in Ixl. The one-dimensional version of (4.6) appeared 
as Equation (2.156) of [17] and in [26]. 



LINEAR LEAST-SQUARES ESTIMATION OF RANDOM FIELDS 281 

4.4. MATCHED FILTER AND THE INVERSE BORN APPROXIMATION 

The Born approximation is a single-scattering approximation in which the 
scattered field is assumed to arise solely from interactions of the incident plane 
wave with the scattering potential. In other words, multiple scattering events are 
ignored; interactions between the scattered field and the potential are neglected. 
The  Born approximation is made by neglecting the scattered field under the 
integral in the integral equation version of the Schrodinger equation (the Lipp- 
man-Schwinger equation; see [6-11]). The  inverse Born approximation, which to 
first order  is equivalent to the Born approximation, is made by neglecting the 
scattered field in the integral Equations (2.11) and (2.17). An estimation inter- 
pretation of the inverse Born approximation is now made. 

Neglecting the scattered field in the generalized Gel ' fand-Levitan Equation 
(2.17) amounts to neglecting the double integral term, since this term is 
dominated by the first term. This leaves 

re(x, t, ei) = Is'- Mlxl(t + es " x, es, e~) des (4.8) 

and an inverse partial Radon transform and some algebra results in 

h(x, y ) =  k(x, y), (4.9) 

which is also the first term in an iteration solution of (3.6). 
Equation (4.9) states that a first approximation to the optimal filter is simply to 

use the covariance function k(x, y). This matched filter solution seems reason- 
able, since the stronger the correlation between z(x) and z(y), the more useful an 
observation at y will be to estimation at x. But this is simply weighting each 
observation as though there are no other observations; there is no joint use of 
observations. This is analogous to reconstructing a scattering potential by treat- 
ing every instant of the scattered field separately, without recognizing that the 
field at one moment may be influenced by the field at an earlier moment being 
scattered again, and that this can be helpful in reconstructing the potential. 

4.5. MEAN-SQUARE ERROR AND THE SCATTERING POTENTIAL 

The potential Vr(x, e) can be interpreted for e = x/Ixl as twice the rate of 
decrease of the normalized mean-square error  in the outward radial direction. To 
see this, let e(x) = z(x) - ~(x) and note that 

E[e2(x)] = E[z(x)e(x)] = k(x, x ) - f  h(x, z )k(z ,  x ) d z  = h(x, x), (4.10) 
JI zl~lxl 

where the orthogonality principle and (3.5) have been used. Then  the definition 
(3.8) of Vr(x, e) gives the desired result. A similar observation was made in [4] 
and [5] for the one-dimensional and two-dimensional isotropic cases. Note that 
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even for a distributed potential, only the local weight matters in computing the 
mean-square error at a point. 

5. Fast Algorithms tor Inverse Scattering and Estimation 

In this section the relation between these problems is used to derive a new fast 
algorithm for the estimation problem from existing fast algorithms for inverse 
scattering. The new algorithm is much faster computationally than the algorithm 
of [14]. 

5.1. REVIEW OF EXISTING FAST ALGORITHM 

In [14] a fast algorithm for computing the optimal filter h(x, y) for estimating a 
homogeneous random field on the surface of a sphere was derived. This al- 
gorithm was obtained by writing the Laplacian as 

a 2 2 ~ 
ax = T x  ~ + - - + A E " x  3x (5.1) 

where 

1 0 /sin 0 ~ \ 4  ( ~ _ ~ )  1 0 2 
x 2 s in~ 00 x z sin E ~b c3q~ 2 (5.2) 

is the transverse radial Laplacian operator in spherical coordinates. Here and in 
the sequel, we use x to represent both position x and its magnitude Ix[; the choice 
will be obvious from context. Equation (3.7) may then be written as 

o 2 
\3x 2 x O x , - ( ~ y E + 2 ~ y ) }  h(x'y)  

= (A~ - a ~ ) h ( x ,  y) + Js 2 V(x,  e)h([xle, y) de = H(x, y), (5.3) 

which in turn can be written as the coupled system of first-order equations 

(0+0) 
~ Ixllylh(x, y) = IxllYlO(x, y), (5.4a) 

~ - ~  IxllylO(x, y )=  [x[[y[H(x, y), (5"4b) 

where Q(x, y) is an auxiliary quantity defined in (5.4a) and H(x, y) is defined in 
(5.3). Note that (3.8) now becomes 

V(x, e) = - 2O(x, Ixl e). (5.5) 

The basic idea of the algorithm of [14] was to propagate Equations (5.4) 
recursively in Ix I and lyl for {[yl ~< Ixl}. If h(x, y), Q(x, y), and H(x, y) are known 
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on the surface of a sphere of radius IXol and for all {lYl <~ [Xol}, then they can be 
propagated to the surface of a sphere of radius Ixol + A and all {lyl Ixol + A}. The 
recursion patterns for h(x, y) and Q(x, y) are illustrated in Figures 2a and b; 
H(x, y) is then computed from h(x, y) using (5.3). It can be seen from Figures 2 
that the two missing values at each recursion are h(x, 0) and Q(x, Ixle)= 
-V(x,  e)/2. The former missing value is determined in [14] by splitting the 
estimation problem up into even and odd problems; this was also done for the 
simpler problems treated in [4] and [5]. 

Note that the optimal filters h(x, y) are indeed completely specified by the 
potential V(x, e), just as the optimal forwards and backwards filters in the 
Levinson algorithm are completely specified by the reflection coefficients. In- 
deed, in the one-dimensional and isotropic cases this algorithm can easily be 
transformed into the Levinson algorithm (see [4] and [5]); however, there seem to 
be no multi-dimensional counterpart to the reflection coefficients. 

Nonetheless, this algorithm can be considered to be a generalized, three- 
dimensional split Levinson algorithm. This follows since the split Levinson 
algorithm recursively computes the regular solution to the discrete Schrtdinger 
equation in one dimension, just as the present algorithm recursively computes the 
regular solution in three dimensions. 

This algorithm is much faster computationally than solving a discretized 
version of (3.6) by Gaussian elimination: If each spatial coordinate is discretized 
to N values, the reduction in computation is from O(N 12) to O(N8). This is due 
to the fact that the algorithm is taking advantage of the structure (3.4) of the 
covariance function k(x, y), just as the Levinson algorithm takes advantage of 
the Toeplitz structure of the autocovariance of a stationary random process. 

Ivl 
h(j~o IuI) 

5 
I=ol 

h(l=oi + a, IVl) 

/ ~'~slope -I 

l=,,I + Z~ ~-I=1 

Q(l=ol, l_yJ) Q(l=ol + a,l~l) 

1"".SlOlOe = I 

= I=I l=ol l"of + 

Fig. 2a. Recursion pattern for updating 
h(x, y) in the fast algorithm of [14] for com- 
puting h(x, y). 

Fig. 2b. Recursion pattern for updating 
Q(x, y) in the fast algorithm of [14] for com- 
puting h(x, y). 
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Compare the reduction of computation O(N 12) to O(N s) to the reduction in 
computation O(N 3) to O(N 2) attained by the Levinson algorithm. 

The problem with this algorithm lies in the computation of the boundary value 
Q(x, Ixle). in [4, 5, 14], this boundary value is computed using the integral 
equation (3.6) and all of the other values of h(x, y) and Q(x, y) at a given Ixl. 
This is a large, non-parallelizable computation that accounts for a significant 
amount of the total computation required by the algorithm. The corresponding 
computation in the one-dimensional Levinson algorithm accounts for roughly 
one-third of all the computation required by the algorithm. It would be extremely 
desirable to avoid this computation. 

5.2. A NEW FAST ALGORITHM FOR THE FILTERING PROBLEM 

We now consider the more general filtering problem posed at the beginning of 
Section 3. The random field z(x) is no longer required to be homogeneous; its 
covariance function need only satisfy (3.4) and give rise to a local potential V(x). 
It is possible to derive fast algorithms for the general case of a nonlocal potential, 
but these algorithms are more complex [21, 25]. Although the recursions of the 
algorithm of [14] apply to this more general problem, there is no way to initialize 
them. The new algorithm avoids this problem. 

The identification of an inverse scattering problem with this estimation prob- 
lem, derived in Section 3, makes it possible to derive a new fast algorithm that 
avoids the computation of V(x) using (3.6). It also avoids splitting the estimation 
problem into even and odd parts, as required by the Levinson-like algorithms of 
[4, 5, 14]. This new algorithm can be considered to be a generalized split Schur or 
split fast Cholesky algorithm; a similar approach was used for the one-dimen- 
sional case in [1] and [2]. The potential V(x) is obtained directly from the Schur 
variables, and then the filters h(x, y) are computed from the potentials using 
(5.4). 

The splitting into even and odd problems is avoided by the equivalent 
operation of extending the range of the recursions (5.4) to -Ixl-< lyl -< Ixl, in the 
sense of [yle = ( - l y l ) ( - e ) .  This saves no computation but simplifies the book- 
keeping in the algorithm. 

The Scattered Field u(x, t, el) Initialized Using L(t, el, e2). Recall that the regular 
solutions ~b(x, k, ei) are related to the filters h(x, y) by a Radon transform. 
Indeed, the action of the Radon transform is to map the interior {lyl-< Ixl} of the 
sphere of radius Ixl to the interval -Ixl-< Ixl. Therefore the regular solutions 
should not be of much help. The key idea is to use the scattering solutions 
~(x, k, el) rather than the regular solutions. 

The two solutions are related by (2.5b), which we repeat here as 

~k(x, k, e:) = fs 2 4~(x, k, eOJ-l(k, e~, e2) de1. (5.6) 



LINEAR LEAST-SQUARES ESTIMATION OF RANDOM FIELDS 285 

From (2.4), the regular solution ,h(x, k, e~) equals one at the origin. Therefore,  
setting x = 0 in (5.6) results in 

~b(0, k, e2) = f J- l (k ,  el, e2) de1. (5.7) 
Js 2 

Define the scattered field u(x, t, e~) in the time domain as 

u(x, t, e , )=  ~kl,{~b(x, k, e i ) - e  -'k~, .x}. (5.8) 

An inverse Fourier transform of (5.7) along with (5.8) and (2.15) then yields 

U(0, t, e2) = f L(t, el,  e2) de1, (5.9) 
Js 2 

where L(t,  el,  e2) is the smooth part of the inverse Fourier transform of 
J- l (k ,  el,  e2), as defined in (2.15). 

Equation (5.9) shows that the scattered field at the origin for all angles of 
incidence e2 is determined by the spectral factor J-~(k, el,  e2). This is used to 
initialize the new algorithm at the origin x = 0. Note also that 

ff-l{~b(x, k, ei)} = 8 ( t -  ei " x) + u(x, t, ei), (5.10) 

which shows that u(x, t, e~) is indeed the scattered field resulting from a probing 
plane wave in the direction ei. Hence u(x, t, el) = 0 for t < e~ - x by time caus- 
ality. 

In [6] a fast algorithm that reconstructs a scattering potential V(x) from 
knowledge of the solution ~b(x, k, e~) on a plane is given. This algorithm is a 
generalized split Schur or split fast Cholesky algorithm, rather than a generalized 
split Levinson algorithm; hence it avoids the computation of V(x) from an 
integral equation. This algorithm cannot be used as is for the estimation problem, 
since the initial data is now specified only at the origin x = 0. However ,  we can 
revise the derivation of the algorithm of [6] as follows. 

Derivation of  the Algorithm. Both the regular and scattering solutions satisfy the 
Schr6dinger Equation (2.1). Its inverse temporal Fourier transform has the same 
form as (3.14), except that the potential V(x) is now assumed to be local. Writing 
this as a coupled set of first-order equations similar to (5.4), and substituting 
(5.10) results in 

Ixlu(x, t, e,) ---IxlP(x, t, ei), (5.1 la) 

~ x -  IxlP(x, t, ei) = IxlN(x, t, e,), (5.11b) 

V(x) = - 2 P ( x ,  t = el" x, el), (5.11c) 

where P(x,  t, el) is an auxiliary quantity defined in (5.11a) and N(x, t, ei) is 
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Fig. 3a. Recursion pattern for updating 
u(x, t, e~) in the fast algorithm for computing 
V(x). 
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Fig. 3b. Recursion pattern for updating 
P(x, t, e~) in the fast algorithm for computing 
V(x). 

defined by (compare with (5.3)) 

N(x, t, ei) = ( V ( x ) -  Aff)u(x, t, ei). (5.12) 

Equations (5.11) are similar in form to (5.4), but the quantities being pro- 
pagated are different and have different support. The recursion patterns are 
illustrated in Figures 3a and b. The important point is that now V(x )=  
- 2 P ( x ,  t = e i . x ,  e~) is computed during the recursions, rather than afterwards 
using an integral equation. This saves a considerable amount of computation and 
allows the algorithm to be parallelized almost completely. Note that u(0, t, e~) for 
all t/> 0 and e~ suffices to initialize the algorithm. 

It is interesting to note that u(x, t, ei) has support in t on [e~ • x, 0c], but the 
algorithm only computes it for t >i [xl. This is no problem; we are not interested in 
u(x, t, ei), only V(x), which can be recovered for each x using (5.11c) with 

e, = x / I x l .  

The physical interpretation of (5.11c) is quite interesting. This equation states 
that the jump in the scattered field at the wave front can, by causality, be due 
only to the value of the scattering potential at that point on the wave front. This 
allows the scattered field to be propagated recursively, reconstructing the poten- 
tial on the wave front as it advances. By interpreting the estimation problem as 
an inverse scattering problem, we can use time causality to derive a simpler fast 
algorithm. 

5.3. SUMMARY OF THE ALGORITHM 

Initialization. Compute  J- l (k)  by a spectral factorization (2.23) of k(x, y). 
Compute u(0, t, ei) using (5.9). 

Recursions. Propagate (5.11) in increasing Ix] for all t ~  > Ix[, yielding V(x) from 
(5.11c) using e~ = x/lx I. Recursion patterns are shown in Figures 3. 
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Fig. 4a. Recursion pattern for updating Fig. 4b. Recursion pattern for updating 
h(x, y) in the fast algorithm for computing Q(x, y) in the fast algorithm for computing 
h(x, y). h(x, y). 

Using V(x) computed using (5.11), and in parallel with (5.11), propagate (5.4) 
in increasing Ixl and for all -Ixl ~< lyl ~< Ixl, yielding h(x, y). Here 

h(x, y) = h(x, lyle) = h(x, ( - ly])(-e))  

and similarly for O(x, y). These are consistent, since h(x, y) is extended so as to 
be a Radon transform. The missing values are O(x, lx[e)=-W(x)/2 and 
h(x, (-Ixl)e)--h(x, Ixl(-e)). Recursion patterns are shown in Figures 4a and b. 

Comments. The most computationally intensive step is the spectral factorization 
(2.23), although in some problems J - l (k )  may be known from the process giving 
rise to the random field z(x). The recursions (5.4) and (5.11) can be propagated 
in parallel, since the only purpose of (5.11) is to compute the potential V(x) to be 
used in (5.4) (this idea was proposed for the one-dimensional case in [18]). Note 
that the recursions for each point on the surface of the sphere may be performed 
in parallel as well. These recursions may be propagated in increasing Ixl 
indefinitely; however, if there is a desired stopping radius Ix I = T, then (5.11) 
need only be computed for 2 T ~  > ]Yl ~ Ix] (see Figures 3). The scattering inter- 
pretation of this is that the scattered field for 0 ~< t ~< 2 T determines the scattering 
potential (for unit wave speed) out to a distance T. 

6 .  C o n c l u s i o n  

The Schr6dinger equation inverse scattering problem with a nonspherically 
symmetric potential has been shown to he closely related to the linear least- 
squares estimation problem for a random field on the surface of a sphere of noisy 
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observations. The relation consists of identifying each problem with a problem of 
the other type. This work extends results [5] for radial inverse scattering and 
isotropic random fields to a much more difficult and general case. 

Two interesting features of this relation are the generalized displacement 
property satisfied by the covariance function of the random field, and the 
introduction of nonlocal scattering potentials. This latter feature does not appear 
in the simpler cases treated previously. In Section 4 interpretations were attached 
to a wide variety of quantities and equations. These added to the relation 
between the two problems by interpreting concepts in one problem in terms of 
the other problem. 

The connection between the two problems resulted in a new fast algorithm for 
the random fields estimation problem that is both more general and com- 
putationally simpler than a previous fast algorithm for this problem. The al- 
gorithm was developed by interpreting the estimation problem as an inverse 
scattering problem, and applying a modification of a fast algorithm developed in 
[6] for inverse scattering. 

Several issues need to be addressed. The major issue is the characterization of 
the set of covariance functions that give rise to only local potentials, which is 
similar to and closely related to the problem of characterizing admissible scatter- 
ing data. The latter problem is unsolved; the present work has possibly supplied a 
new angle of approach. Other issues include simple ways of implementing the 
transverse Laplacian computation in the algorithm, an estimation interpretation 
of the generalized Marchenko integral equation (in terms of innovations), and 
some way to initialize the algorithm without performing a spectral factorization. 
The latter two issues are linked, since the generalized Marchenko procedure uses 
the scattering amplitude directly, without requiring computation of the Jost 
operator. 

Acknowledgements 

The author would like to express his gratitude to the referees for their careful 
readings of the first version of this paper. Their comments have resulted in an 
improved and mathematically tighter paper. 

References 

1. Dewilde, P., Fokkema, J. T., and Widya, I.: Inverse scattering and linear prediction, the time 
continuous case, in M. Hazewinkel and J. C. Willems (eds.), Stochastic Systems: The Mathematics 
of Filtering and Identification and Applications, D. Reidel, Dordrecht, 1981, pp. 351-382. 

2. Dewilde, P. and Dym, H.: Schur recursions, error formulas, and convergence of rational 
estimators for stationary stochastic sequences, IEEE Trans. Inform. Theory 1T-27 (1981), 
446-461. 

3. Okabe, Y.: On a wave equation associated with prediction errors for a stationary Gaussian 
process, in G. Kallianpur (ed.), Theory and Applications of Random Fields, Springer-Verlag, New 
York, 1983, pp. 214-226. 



LINEAR LEAST-SQUARES ESTIMATION OF RANDOM FIELDS 289 

4. Levy, B. C. and Tsitsiklis, J. N.: Linear estimation of stationary stochastic processes, vibrating 
strings, and inverse scattering, Tech. Report #LIDS-P-1155, Laboratory for Information and 
Decision Systems, MIT, 1982. 

5. Levy, B. C. and Tsitsiklis, J. N.: A fast algorithm for linear estimation of two-dimensional 
isotropic random fields, IEEE Trans. Inform. Theory IT-31 (1985), 635-644. 

6. JYagle, A. E. and Levy, B. C.: Layer stripping solutions of multi-dimensional inverse scattering 
problems, J. Math. Phys. 27 (1986), 1701-1710. 

7. Yagle, A. E.: Differential and integral methods for multi-dimensional inverse scattering prob- 
lems, J. Math. Phys. 27 (1986), 2584-2591. 

8. Newton, R. G.: Inverse scattering. II. Three dimensions, J. Math. Phys. 21 (1980), 1698-1715. 
9. Morawetz, C. S.: A formulation for higher dimensional inverse problems for the wave equation, 

Comput. Math. Applic. 7 (1981), 319-331. 
10. Yagle, A. E.: Multi-dimensional inverse scattering: an orthogonalization formulation, J. Math. 

Phys. 28 (1987), 1481-1491. 
11. Rose, J. H., Cheney, M., and DeFacio, B.: The connection between time and frequency domain 

three-dimensional inverse scattering methods, J. Math. Phys. 25 (1984), 2995-3000. 
12. Carroll, R.: The integral equations of inverse scattering theory and the underlying trans- 

mutations, Proc. Conf. Partial Differential Equations and Applied Mathematics, Oakland Uni- 
versity, May 17, 1986. 

13. Deans, S. R.: The Radon Transform and Some of its Applications, Wiley, New York, 1983. 
14. Yagle, A. E.: A fast algorithm for linear estimation of three-dimensional homogeneous anisotro- 

pic random fields, Proc. IEEE Int'l Conf. on Acoustics, Speech, Sig. Proc., Dallas, TX, April 
6-9, 1987. 

15. Rose, J. H., Cheney, M., and DeFacio, B.: Determination of the wave field from scattering data, 
Phys. Rev. Lett. 57 (1986), 783-786. 

16. Krein, M. G.: The continuous analogues of theorems on polynomials orthogonal on the unit 
circle, Dokl. Akad. Nauk SSSR 104 (1955), 637-640. 

17. Yagle, A. E.: Layer stripping solutions of inverse seismic problems, PhD thesis, Dept. of 
Electrical Engineering and Computer Science, MIT, January 1985. 

18. Gohberg, I. and Koitracht, I.: Numerical solutions of integral equations, fast algorithms, and the 
Krein-Sobolev equations, preprint, Weizmann Institute of Science, Rehovot 76100, Israel, 1983. 

19. Newton, R. G.: Inverse scattering. III. Three dimensions, continued, J. Math. Phys. 22 (1981), 
2191-2200. 

20. Newton, R. G.: Inverse scattering. IV. Three dimensions: generalized Marchenko construction 
with bound states, and generalized Gel'fand-Levitan equations, J. Math. Phys. 23 (1982), 
594-604. 

21. Yagle, A. E.: Differential and integral methods for three-dimensional inverse scattering problems 
with a non-local potential, Inverse Problems 4 (1988), 549-566. 

22. Kay, I. and Moses, H. E.: A simple verification of the Gel'fand-Levitan equation for the 
three-dimensional scattering problem, Comm. Pure Appl. Math. 14 (1961), 435-445. 

23. Kay, I. and Moses, H. E.: The determination of the scattering potential from the spectral measure 
function. V. The Gel'fand-Levitan equation for the three-dimensional scattering problem, Nuovo 
Cimento 22, 689-705 (1961). 

24. Carroll, R.: Transmutation Theory and Applications, North-Holland, Amsterdam, 1985. 
25. Yagle, A. E.: Generalized Levinson and fast Cholesky algorithms for three-dimensional random 

field estimation problems, Proc. IEEE lnt'! Conf. on Acousacs, Speech, Sig. Proc., New York, 
NY, April 11-14, 1988. 

26. Yagle, A. E. and Levy, B. C.: The Schur algorithm and its applications, Acta Appl. Math. 3 
(1985), 255-284. 


