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Abstract. Singular perturbation methods, such as the method of multiple scales and the method of
matched asymptotic expansions, give series in a small paramelech are asymptotic but (usually)
divergent. In this survey, we use a plethora of examples to illustrate the cause of the divergence, and
explain how this knowledge can be exploited to generate a ‘hyperasymptotic’ approximation. This
adds a second asymptotic expansion, with different scaling assumptions about the size of various
terms in the problem, to achieve a minimum error much smaller than the best possible with the
original asymptotic series. (This rescale-and-add process can be repeated further.) Weakly nonlocal
solitary waves are used as an illustration.
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“Divergent series are the invention of the devil, and it is shameful to base on
them any demonstration whatsoever.”

Niels Hendrik Abel, 1828
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1. Introduction

Divergent asymptotic series are important in almost all branches of physical sci-
ence and engineering. Feynman diagrams (particle physics), Rayleigh—Schrédinger
perturbation series (quantum chemistry), boundary layer theory and the derivation
of soliton equations (fluid mechanics) and even numerical algorithms like the ‘Non-
linear Galerkin’ method [66, 196] are examples. Unfortunately, classic texts like
van Dyke [297], Nayfeh [229] and Bender and Orszag [19], which are very good
on themechanicof divergent series, largely ignore two important questions. First,
why do some series diverge for all nonzenaheres is the perturbation parameter?
And how can one break the ‘Error Barrier’ when the error of an optimally-truncated
series is too large to be useful?

This review offers answers. The roots of hyperasymptotic theory go back a cen-
tury, and the particular example of the Stieltjes function has been well understood
for many decades as described in the books of Olver [249] and Dingle [118]. Un-
fortunately, these ideas have percolated only slowly into the community of derivers
and users of asymptotic series.

I myself am a sinner. | have happily applied the method of multiple scales for
twenty years [67]. Nevertheless, | no more understood the reason why some series
diverge than why my son is lefthanded.

In this review, we shall concentrate on teaching by examples. To make the argu-
ments accessible to a wide readership, we shall omit proofs. Instead, we will dis-
cuss the key ideas using the same tools of elementary calculus which are sufficient
to derive divergent series.

In the next section, we begin with a brief catalogue of physics, chemistry and
engineering problems where key parts of the answer lie ‘beyond all orders’ in the
standard asymptotic expansion because these featuresmreentially smalin
1/e wheres « 1 is the perturbation parameter. The emerging field of ‘exponential
asymptotics’ is not a branch of pure mathematics in pursuit of beauty (though some
of the ideasare aesthetically charming) but a matter of bloody and unyielding
engineering necessity.

In Section 3, we review some concepts that are already scattered in the text-
books: Poincaré’s definition of asymptoticity, optimal truncation and minimum
error, Carrier’s Rule, and four heuristics for predicting divergence: the Exponential
Reciprocal Rule, Van Dyke’s Principle of Multiple Scales, Dyson’s Change-of-
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EXPONENTIAL ASYMPTOTICS

Table I. Nonsoliton exponentially small phenomena

Phenomena Field

References

Dendritic crystal growth Condensed matter

Viscous fingering
(Saffman—Taylor problem)

Fluid dynamics

Reaction-diffusion
systems

Diffusion and merger
of fronts

on an exponentially
long time scale

Superoscillations in
Fourier integrals,
quantum billiards,
Gaussian beams

Classical
physics

Rapidly-forced
pendulum

Resonant sloshing Fluid mechanics

in a tank

Fluid mechanics,
Space plasmas

Laminar flow
in a porous pipe

Fluid mechanics,
Boundary layer

Jeffrey—Hamel flow

stagnation points
Shocks in nozzle Fluid mechanics

Slow viscous flow past Fluid mechanics

circle, sphere

Log-and-power series

Applied mathematics,
guantum mechanics,
electromagnetic waves

(log and power series)

Fluids, electrostatic

Kessler, Koplik and Levine [163]
Kruskal and Segur [171, 172]
Byatt-Smith [86]

Shraiman [276]
Combesaital. [103]
Hong and Langer [146]

Tanveer [288, 289]

Carr [92], Hale [137],
Carr and Pego [93]
Fusco and Hale [130]
Laforgue and O’Malley

[173-176]

Berry [31, 32]

Chang [94]
Scheurig al. [275]

Byatt-Smith and Davie [88, 89]

Berman [23], Robinson [272],
Terrill [290, 291],
Terrill and Thomas [292],
Grundy and Allen [135]

Bulakh [85]

Adamson and Richey [2]

Proudman and Pearson [264],
Chester and Breach [98]
Skinner [283]
Kropinski, Ward and Keller [170]

Ward, Henshaw
and Keller [308]
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Table |. Nonsoliton exponentially small phenomena (continued)

Phenomena Field

References

Log-and-power series Elliptic PDE on

domains with small holes

Equatorial Kelvin wave
instability

Meteorology,

oceanography
Error: Midpoint rule Numerical analysis

Radiation leakage from a
fiber optics waveguide

Nonlinear optics

Particle channeling Condensed matter

in crystals physics
Island-trapped Oceanography
water waves

Chaos onset: Physics

Hamiltonian systems

Separation of separatrices  Dynamical systems

Lange and Weinitschke [179]

Boyd and Christidis [74, 75]
Boyd and Natarov [76]

Hildebrand [143]

Kath and Kriegsmann [162],
Paris and Wood [258]
Liu and Wood [183]

Dumas [119, 120]

Lozano and Meyer [185],
Meyer [210]

Holmes, Marsden
and Scheurle [145]

Hakim and Mallick [136]

Slow manifold Meteorology Lorenz and
in geophysical fluids Krishnamurthy [184],
Oceanography Boyd [65, 66]

Nonlinear oscillators Physics Hu [149]

ODE resonances Various Ackerberg and O’Malley [1]
Grasman and Matkowsky [133]
MacGillivray [191]

French ducks (‘canards’)  Various MacGillivray, Liu

and Kazarinoff [192]

Sign Argument, and the Principle of Nonuniform Smallness. In later sections,
we illustrate hyperasymptotic perturbation theory, which allows us to partially
overcome the evils of divergence, through three examples: the Stieltjes function
(Sections 4 and 5), a linear inhomogeneous differentiation equation (Section 6),
and a weakly nonlocal solitary wave (Section 7).

Lastly, in Section 8 we present an overview of hyperasymptotic methods in
general. We use the Pokrovskii—Khalathikov—Kruskal-Segur (PKKS) method for
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EXPONENTIAL ASYMPTOTICS

Table Il. Selected examples of exponentially small quantum phenomena

Phenomena

References

Energy of a quantum
double well ¢, etc.)

Imaginary part of eigenvalue
of a metastable

quantum species:

Stark effect

(external electric field)

Im(E): Cubic anharmonicity
Im(E): Quadratic Zeeman effect
(external magnetic field)

Transition probability,
two-state quantum system
(exponentially small in
speed of variations)

Width of stability bands
for Hill's equation

Above-the-barrier
scattering

Fréman [128]
Cizeket al.[100]
Harrell [140—-142]

Oppenheimer [255],
Reinhardt [269],

Hinton and Shaw [144],
Benassit al.[18]

Alvarez [6]
Cizek and Vrscay [101]

Berry and Lim [42]

Weinstein and Keller
[313, 314]

Pokrovskii
and Khalatnikov [262]
Hu and Kruskal [150—152]

Anosov-perturbed cat map: semiclassical asymptotics Boasman and Keating [46]

Table Ill. Weakly nonlocal solitary waves

Species Field

References

Capillary-gravity Oceanography,
water waves marine engineering

»* Breather Particle physics

Pomestial. [263]

Hunter and Scheurle [153]
Boyd [62]
Benilov, Grimshaw
and Kuznetsova [22]
Grimshaw and Joshi [134]
Diaset al.[114]

Segur and Kruskal [278]
Boyd [58]
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Table Ill. Weakly nonlocal solitary waves (continued)

Species

Field

References

Fluxons, DNA helix
modons in
magnetic shear

Klein—Gordon
envelope solitons

Various

Higher latitudinal

mode Rossby waves

Higher vertical
mode internal
gravity waves

Perturbed
sine—Gordon

Nonlinear Schrédinger
eg., cubic dispersion

Self-induced
transparency egs.:
envelope solitons

Internal waves:
stratified layer
between 2 constant
density layers

Lee waves

Pseudospectra of
matrices

Physics
plasma physics

Electrical
engineering

Review article

Oceanography

Oceanography,
marine
engineering

Physics

Nonlinear optics

Nonlinear optics

Oceanography,
marine
engineering

Oceanography

Applied math.,
fluid mechanics

Malomed [195]
Meiss and Horton [201]

Boyd [67]
Kivshar and Malomed [167]
Kivshar and Malomed [168]

Boyd [56, 57]

Akylas and Grimshaw [4]

Malomed [194]

Wai, Chen and Lee [307]

Branis, Martin and Birman [84]
Martin and Branis [197]

Vanden-Broeck and Turner [299]

Yang and Akylas [325]

Reddy, Schmid and Henningson [267]
Reichel and Trefethen [268]

‘above-the-barrier’ quantum scattering (Section 14) and ‘resurgence’ for the analy-
sis of Stokes’ phenomenon (Section 12) to give the flavor of these new ideas. (We
warn the reader: ‘beyond all orders’ perturbation theory has become sufficiently
developed that it is impossible, short of a book, to even summarize all the useful
strategies.) The final section is a summary with pointers to further reading.
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EXPONENTIAL ASYMPTOTICS 7

2. The Necessity of Computing Exponentially Small Terms

Even the best toolmaker cannot wring five-figure accuracy out of the machining to-
lerances.. This is how | come to find nearly all computations to more than three
significant figures embarrassing. It's not a criticism of computer science because there
is a direct analogy in asymptotic expansions. | find them plain embarrassing as a failure
of realistic judgment.

| was led to contemplate a heretical question: are higher approximations than the first
justifiable? My experience indicates yes, but rarely. All differential equations are im-
perfect models and | would be embarrassed to publish a second approximation without
convincing justification that the quality of the model validates it.

Solutions as an end in themselves are pure mathematics; do we really need to know
them to eight significant decimals?

Richard E. Meyer (1992) [218]

Meyers’ tart comment illuminates a fundamental limitation of hyperasymptotic
perturbation theory: for many engineering and physics applications, a single term
of an asymptotic series is sufficient. When more than one is needed, this usually
means that the small parameteis not really small. Hyperasymptotic methods
depend, as much as conventional perturbation theory, on the true and genuine
smallness ot and so cannot help. Numerical algorithms are usually necessary
whene ~ O(1), either numerical or analytic [63].

And so, the first question of any adventure in hyperasymptotics is a question
that patriotric Americans were supposed to ask themselves during wartime gas-
rationing: ‘Is this trip necessary?’ The point of this review is that there is an
amazing variety of problems where the tigmecessary.

Table | is a collection of miscellaneous problems from a variety of fields, es-
pecially fluid mechanics, where exponential smallness is crucial. Tables Il and IlI
are restricted selections limited to two areas where ‘beyond all orders’ calculations
have been especially common: quantum mechanics and the weakly nonlocal soli-
tary waves. The common thread is that for all these problems, some aspect of the
physics isexponentially smalin 1/¢ wheree is the perturbation parameter. Since
exp(—q/e) whereg is a constant cannot be approximated as a power series in
all its derivatives are zero at= 0 — such exponentially small effects are invisible
to ane power series. Such ‘beyond all orders’ features are like mathematical stealth
aircraft, flying unseen by the radar of conventional asymptotics.

There are several reasons why such apparently tiny and insignificant features are
important. In quantum chemistry and physics, for example, perturbations such as an
external electric field may destabilize molecules. Mathematically, the eigenFalue
of the Schrddinger equation acquires an imaginary part which is typically exponen-
tially small in 1/e. Nevertheless, this ting(E) is important because it completely
controls the lifetime of the molecule. J. R. Oppenheimer [255] showed that in the
presence of an external electric field of strengtihydrogen atoms disassociated
on a timescale which is inversely proportionalI6E) = (4/3¢) exp(—2/(3¢))
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8 JOHN P. BOYD

and that electrons can be similarly sprung from metals. (This observation was the
basis for the development of the scanning tunneling microscope by Binnig and

Rohrer half a century later.) Only a few months after Oppenheimer’s 1928 article,

G. Gamow and Condon and Gurney showed that this ‘tunnelling’ explained the ra-

dioactive decay of unstable nuclei and particles, again on a timescale exponentially
small in the reciprocal of the perturbation parameter.

Similarly, weakly nonlocal solitary waves do not decay to zergxas— oo
but to small, quasi-sinusoidal oscillations that fill all of space. For the species
listed in Table Ill, the amplitude of the ‘radiation coefficient’is proportional
to exp(—q/¢) for someqg. When the appropriate wave equations are given a spa-
tially localized initial condition, the resulting coherent structure slowly decays by
radiation on a timescale inversely proportionakito

For other problems, exponential smallness may hold the key to the very exis-
tence of solutions. For example, the melt interface between a solid and liquid is
unstable, breaking up into dendritic fingers. Ivantsev (1947) develped a theory that
successfully explained the parabolic shape of the fingers. However, experiments
showed that the fingers also had a definite width. Attempts to predict this width by
a power series in the surface tensiofailed miserably, even when carried to high
order. Eventually, it was realized that the instability is controlled by factors that
lay beyond all orders ia. Kruskal and Segur [171, 172] showed that the complex-
plane matched asymptotics method of Pokrovskii and Khalatnikov [262] could be
applied to a simple model of crystal growth. In so doing, they not only resolved a
forty-year old conundrum, but also furnished one of the (multiple) triggers for the
resurgence in exponential asymptotics.

Even earlier, the flow of laminar fluid through a pipe or channel with porous
walls had been shown to depend on exponential smallness. This nonlinear flow is
not unique; rather there atero solutions which differ only through terms which
are exponentially small in the Reynolds nhumber R, which is the reciprocal of the
perturbation parameter. As early as 1969, Terrill [292, 291] had diagnosed the
illness and analytically determined the exponentially-small, mode-splitting terms
[272, 135]

Similarly, the interactions between the electrostatic fields of atoms cause split-
ting of molecular spectra. The prototype is the quantum mechanical ‘double well’,
such as the,” ion. The eigenvalues of the Schrddinger equation come in pairs,
each pair close to the energy of an orbital of the hydrogen atom. The difference
between each pair is exponentially small in the internuclear separation.

Lastly, Stokes’ phenomenon in asymptotic expansions, which requires one ex-
ponential times a power seriesdrin regions of the complex-plane, butwo ex-
ponentials in other sectors, can only be smoothed and fully understood by looking
at exponentially small terms.

In the physical sciences, smallness is relative. We can no more automatically
assume an effect is negligible because it is proportional t6-exfe) than a mother
can regard her baby as insignificant because it is only sixty centimeters long.
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EXPONENTIAL ASYMPTOTICS 9

3. Definitions and Heuristics

DEFINITION 1 (Asymptoticity). A power series igasymptotido a function f (¢)
if, for fixed N andsufficiently smalk [19]

N
‘f(s) =Y ajel
j=0

where Q) is the usual ‘Landau gauge’ symbol that denotes that the quantity to the
left of the asymptotic equality is bounded in absolute value by a constant times the
function inside the parentheses on the right.

~ O, (1)

This formal definition, due to Poincaré, tells us what happens in the limitthat
tends to O for fixedv. Unfortunately, the more interesting limitéfixed, N — oc.
A series may be asymptotic, and yet diverge in the sense that for sufficientlyjlarge
the terms increase with increasing

However, convergence may be over-rated as expressed by the following amus-
ing heuristic.

PROPOSITION 1 (Carrier's Rule)Divergent series converge faster than conver-
gent series because they don't have to converge.

What George F. Carrier meant by this bit of apparent jabberwocky is that the
leading term in a divergent series is often a very good approximation even when
the ‘small’ parametet is not particularly small. This is illustrated through many
numerical comparisons in [19]. In contrast, it is quite unusual for an ordinary
convergent power series to be accurate whenO(1).

The vice of divergence is that for fixed the error in a divergent series will
reach, as more terms are addeds atependent minimum. The error then increases
without bound as the number of terms tends to infinity. The standard empirical
strategy for achieving this minimum error is the following.

DEFINITION 2 (Optimal Truncation Rule). For a given the minimum error in
an asymptotic series issuallyachieved by truncating the series so as to retain the
smallesterm in the series, discarding all terms of higher degree.

The imprecise adjective ‘usually’ indicates that this rule is empirical, not some-
thing that has been rigorously proved to apply to all asymptotic series. (Indeed, itis
easy to contrive counter-examples.) Nevertheless, the Optimal Truncation Rule is
very useful in practice. It can be rigorously justified for some classes of asymptotic
series [158, 241, 169, 106, 107, 285].

To replace the lengthy, jaw-breaking phrase ‘optimally-truncated asymptotic
series’, Berry and Howls coined a neologism [35, 30] which is rapidly gaining
popularity: ‘superasymptotic’. A more compelling reason for new jargon is that
the standard definition of asymptoticity (Definition 1 above) is a statement about
powersof ¢, but the error in an optimally-truncated divergent series is usually an
exponentiafunction of the reciprocal of.
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10 JOHN P. BOYD

1/8

179

e=1/10

11

esH12

107} :
W13

10°} W14
10—6 5 =1/15
0 5 10 15 20

N (perturbation order)

[ i i i |
1 6 16 21

11
1/¢
Figure 1. Solid curves: absolute error in the approximation of the Stieltjes function up to
and including thevth term. Dashed-and-circles: theoretical error in the optimally-truncated
or ‘superasymptotic’ approximatiomNopﬁmum(g) ~ (7r/(2,s))1/2 exp(—1/e) versus Ye. The
horizontal axis is perturbative ordaf for the actual errors and/a for the theoretical error.

DEFINITION 3 (Superasymptotic). Aoptimally-truncatedasymptotic series is a
‘superasymptoti@pproximation. The error iypically O(exp(—q/¢)) whereg >

0 is a constant anglis the small parameter of the asymptotic series. The degree
of the highest term retained in the optimal truncation is proportionaf4o 1

Figure 1 illustrates the errors in the asymptotic series for the Stieltjes function
(defined in the next section) as a function Mffor fifteen different values of.

For eache, the error dips to a minimum & ~ 1/¢ as the perturbation orde¥
increases. The minimum error for eabhis the ‘superasymptotic’ error.

Also shown is the theoretical prediction that the minimum error for a givisn
(m/(2¢))Y/? exp(—1/¢) where Nopimun(€) ~ 1/¢ — 1. For this example, both the
exponential factor and the proportionality constant will be derived in Section 5.

The definition of ‘superasymptotic’ makes a claim about the exponential depen-
dence of the error which is easily falsified. Merely by redefining the perturbation
parameter, we could, for example, make the minimum error be proportional to the
exponential of 1e¥ wherey is arbitrary. Modulo such trivial rescalings, however,
the superasymptotic error is indeed exponential/inftr a wide range of divergent
series [30, 72].

The emerging art of ‘exponential asymptotics’ or ‘beyond-all-orders’ pertur-
bation theory has made it possible to improve upon optimal truncation of an as-
ymptotic series, and calculate quantities ‘below the radar screen’, so to speak,
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EXPONENTIAL ASYMPTOTICS 11

of the superasymptotic approximation. It will not do to describe these algorithms
as the calculation of exponentially small quantities since the superasymptotic ap-
proximation, too, has an accuracy which is O(exp/e) for some constang.
Consequently, Berry and Howls coined another term to label schemes that are
better than mere truncation of a power series:in

DEFINITION 4. A hyperasymptoti@pproximation is one that achieves higher
accuracy than a superasymptotic approximation by adding one or more terms of a
secondasymptotic series, with different scaling assumptions, to the optimal trunca-
tion of the original asymptotic expansion [30]. (With another rescaling, this process
can be iterated by adding terms of a third asymptotic series, and so on.)

All of the methods described below are *hyperasymptotic’ in this sense although
in the process of understanding them, we shall acquire a deeper understanding of
the mathematical crimes and genius that underlie asymptotic expansions and the
superasymptotic approximation.

But when does a series diverge? Since all derivatives af-ekfx) vanish at the
origin, this function has only the trivial and useless power series expansion whose
coefficients areall zeros

exp(—q/e) ~ 0+ 0e + 0+ - - 2)

for any positive constant. This observation implies the first of our four heuristics
about the nonconvergence of apower series.

PROPOSITION 2 (Exponential Reciprocal Ruldf. a function f(¢) contains a
term which is arexponentiafunction of thereciprocalof ¢, then a power series in
¢ will not converge tof (e).

We must use phrase ‘not converge to’ rather than the stronger ‘diverge’ because
of the possibility of a function like

h(e) =1+ ¢+ exp(—1/e). 3

The power series of(e) will convergefor all |¢e] < 1, but it converges to a
numberdifferentfrom the true value ok (¢) for all ¢ excepte = 0.

Fortunately, this situation — a convergent series for a function that contains
a term exponentially small in/, and therefordnvisible to the power series —
seems to be rare in applications. (The author would be interested in learning of
exceptions.)

Milton van Dyke, a fluid dynamicist, offered another useful heuristic in his slim
book on perturbation methods [297]:

PROPOSITION 3 (Principle of Multiple Scalespivergence should be expected
when the solution depends on two independent length scales.
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12 JOHN P. BOYD

We shall illustrate this rule later.

The physicist Freeman Dyson [122] published a note which has been widely
invoked in both quantum field theory and quantum mechanics for more than forty
years [164 — 166, 43 —45]. However, with appropriate changes of jargon, the argu-
ment applies outside the realm of the quantum, too. Terminological note: a ‘bound
state’ is a spatially localized eigenfunction associated with a discrete, negative
eigenvalue of the stationary Schrodinger equation and the ‘coupling constant’ is
the perturbation parameter which multiplies the potential energy perturbation.

PROPOSITION 4 (Dyson Change-of-Sign Argumerifthere are no bound states
for negativevalues of the coupling constanf then a perturbation series for the
bound states will diverge even for> O.

A simple example is the one-dimensional anharmonic quantum oscillator, whose
bound states are the eigenfunctions of the stationary Schroédinger equation:

Yor + {E - x2 - 8X4}W =0. (4)

Whene > 0, Equation (4) has a countable infinity of bound states with pos-
itive eigenvaluesE (the energy); each eigenfunction decays exponentially with
increasing|x|. However, the quartic perturbation will grow faster with than

the unperturbed potential energy term, which is quadratic.ift follows that
whene is negative, the perturbation will reverse the sign of the potential energy at
x = +1/(—¢)¥/2. Because of this, the wave equation has no bound states{d,

that is, no eigenfunctions which decay exponentially withfor all sufficiently
large|x|.

Consequently, the perturbation series cannot converge to a bound state for nega-
tive ¢, be it ever so small in magnitude, because there is no bound state to converge
to. If this nonconvergence is divergence (as opposed to convergence to an unphys-
ical answer), then the divergence must occur for all nonzero positita, since
the domain of convergence of a power series is alwalys: p for some positivep
as reviewed in elementary calculus texts.

This argument is not completely rigorous because the perturbation series could
in principle converge for negative to somethingother than a bound state. Nev-
ertheless, the Change-of-Sign Argument has been reliable in quantum mechan-
ics [164].

Implicit in the very notion of a ‘small perturbation’ is the idea that the term
proportional tee is indeed small compared to the rest of the equation. For the anhar-
monic oscillator, however, this assumption always breaks dowjxfos 1/]¢|/2.
Similarly, in high Reynolds number fluid flows, the viscosity is a small perturbation
everywhere except in thin layers next to boundaries, where it brings the velocity to
zero (‘no slip’ boundary condition) at the wall. This and other examples suggests
our fourth heuristic:
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EXPONENTIAL ASYMPTOTICS 13

PROPOSITION 5 (Principle of Nonuniform Smallnesspivergence should be
expected when the perturbation is not small, even for arbitrarily smat some
regions of space.

When the perturbation is not smathywhereof course, it is impossible to apply
perturbation theory. When the perturbation is smalformlyin space, the power
series usually has a finite radius of convergence. Asymptotic-but-divergent is the
usual spoor of a problem where the perturbation is small-but-not-everywhere.

We warn that these heuristics are just that, and not theorems. Counterexamples
to some are known, and probably can be constructed for all. In practice, though,
these empirical predictors of divergence are quite useful.

Pure mathematics is the art of the provable, but applied mathematics is the de-
scription of what happens. These heuristics illustrate the gulf between these realms.
The domain of a theorem is bounded by extremes, even if unlikely. Heuristics are
descriptions of what is probable, not the full range of what is possible.

For example, the simplex method of linear programming can converge very
slowly because (it can be proven) the algorithm could visit every one of the millions
and millions of vertices that bound the feasible region for a large problem. The
reason that Dantzig’s algorithm has been widely used for half a century is that in
practice, the simplex method finds an acceptable solution after visiting only a tiny
fraction of the vertices.

Similarly, Hotellier proved in 1944 that (in the worst case) the roundoff error
in Gaussian elimination could be'4imes machine epsilon wher® is the size
of the matrix, implying that a matrix of dimension larger than 50 is insoluble on a
machine with sixteen decimal places of precision. What happens in practice is that
the matrices generated by applications can usually be solved evernivkeh000
[294]. The exceptions arise mostly because the underlying problem is genuinely
singular, and not because of the perversities of roundoff error.

In a similar spirit, we offer not theorems but experience.

4. Optimal Truncation and Superasymptotics for the Stieltjes Function

The firstillustration is the Stieltjes function, which, with a change of variable, is the
‘exponential integral’ which is important in radiative transfer and other branches
of science and engineering. This integral-depending-on-a-parameter is defined by

*° exp(—1)
S(e) = dr. 5
©=[ P a ©
The geometric series identity, valid for arbitrary integér
1 N ) (—St)NJrl
1+er 2 (o0 + + et ©
j=0
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14 JOHN P. BOYD

allows an exact alternative definition of the Stieltjes function, valid for any fiviite

N oo
S) = Y=o’ [ expnrldh + Exe), ™
j=0 0
where
[ exp(—t)(—er)N L
Ey(e) = fo o d. 8)

The integrals in (3) are special cases of the integral definition df'theaction
and so can be performed explicitly to give

N
S(e) = Y (=1 jle/ + En(e). ©)

j=0

Equations (5)—(9) arexact If the integralE y (¢) is neglected, then the summa-
tion is the first(N + 1) terms of an asymptotic series. Both Van Dyke’s principle
and Dyson’s argument forecast that this series is divergent.

The exponential exp-¢) varies on a length scale off© where Q) is the usual
‘Landau gauge’ or ‘order-of-magnitude’ symbol. In contrast, the denominator de-
pends or¢ only aset, that is, varies on a ‘slow’ length scale which ig10g).
Dependence on two independent scales, 4.and ¢¢), is van Dyke’s ‘Mark of
Divergence’.

Whene¢ is negative, the integrand of the Stieltjes functiorsiisgular on the
integration interval because of the simple pole at —1/¢. This strongly (and
correctly) suggests thal(¢) is not analytic ak = 0 as analyzed in detail in [19].
Just as for Dyson’s quantum problems, the radius of convergence efptbeer
series must be zero.

A deeper reason for the divergence of theeries is that Taylor-expanding
1/(1 + et) in the integrand of the Stieltjes function is an act of inspired stupidity.
The inspiration is that an integral which cannot be evaluated in simple closed form
is converted to a power series with explicit, analytic coefficients. The stupidity is
that the domain of convergence of the geometric series is

[t] < 1/e (10)

because of the simple pole of L + ¢t) atr = —1/¢. Unfortunately, the domain
of integration is semi-infinite. It follows that the Taylor expansion is usegbnd
its interval of validity. The price for this mathematical crime is divergence.

The reason that the asymptotic series is useful anyway is because the integrand
is exponentially smalin the region where the expansion of(1 + ¢t) is diver-
gent. Split the integral into two parts, one on the interval where the denominator
expansion is convergent, the other where it is not, as

S(&) = Scon(&) + Saiv(e), (11)
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EXPONENTIAL ASYMPTOTICS 15

where
Ve exp(—1) < exp(—1)
S = dr, Sqi = dr. 12
con(€) /O 11 er div(€) /1/8 1+ et ( )

Since exp—r)/(1 + et) is bounded from above by e&ptr)/2 for allt > 1/¢, it
follows that

exp(—1/e
Saiv(€) < D(T/) (13)
Thus, one can approximate the Stieltjes function as
S(e) &~ Scon(e) + O(exp(—1/¢)). (14)

The magnitude of that part of the Stieltjes function which is inaccesible to a
convergent expansion of/ (1 + ¢r) is proportional to exp-1/¢). This suggests
that the best one can hope to wring from the asymptotic series is an error no smaller
than the order-of-magnitude 6f;,(¢), that is, O(exp—1/¢)).

5. Hyperasymptotics for the Stieltjes Function

It is possible to break the superasymptotic constraint to obtain a more accurate
‘hyperasymptotic’ approximation by inspecting the error integiaige), which

are illustrated in Figure 2 for a particular valuesfThe crucial point is that the
maximunof theintegrandshifts tolarger andlarger ¢ asN increases. Whe <

2, the peak (fore = 1/3) is still within the convergence disk of the geometric
series. For largeN, however, the maximum of the integrand occurs for- 1,

that is, forr > 1/¢. (Ignoring the slowly varying denominatoy @ + r), one can
show by differentiating exp-1)V** that the maximum occurs at= 1/(N + 1).)
When(N + 1) > 1/&, the geometric series diverges in the very region where the
integrand ofE y has most of its amplitude. Continuing the asymptotic expansion to
larger N will merely accumulate further error.

The key to a hyperasymptotic approximation is to use the information that the
error integral is peaked at= 1/¢. Just as asymptotic series can be derived by
several different methods, similarly ‘hyperasymptotics’ is not a single algorithm,
but rather a family of siblings. Their common theme is to appersg¢@ndas-
ymptotic series, based on different scaling assumptions, to the ‘superasymptotic’
approximation.

One strategy is to expand the denominator of the error intdgyg)|,.,,.(¢) in
powers of(t — 1/¢) insteadr. In other words, expand the integrand about the point
where it is peaked (WheN = Nopimur(€) ~ 1/¢ — 1). The key identity is

1 1
1+et  2{1+i(et — 1)
1 X/ 1\F
— 52 (-5) v (15)
k=0

ACAP1276.tex; 7/05/1999; 9:15; p.15



16 JOHN P. BOYD
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0 0 0
0 1 2 0 1 2 0 1 2
T T T
Figure 2. The integrands of the first six error integrals for the Stieltjes function,
Eg, Eq, ..., Ex for e = 1/3, plotted as functions of the ‘slow’ variabfe = ¢z.

N
Ste) = Y (=D jlel +
j=0

1M oo 1—et\*
+§Z / exp(—r)(—gr)”“(T) dr + Hyum(e), (16)
k=070

where the hyperasymptotic error integral is

00 _ M+1
Hyy(e) = %/0 e:)L(T_ ei) (—et)NH(—%) (et — DM dkr, 17)

A crucial point is that the integrand of each term in the hyperasymptotic sum-
mation is exp—¢) multiplied by a polynomial ire. This means that the (NM)th
hyperasympotic expansion is jusiveighted sunof the first(N + M + 1) terms
of the original divergent series. The change of variable made by switching from
(er) to (et — 1) is equivalent to the ‘Euler sum-acceleration’ method, an ancient
and well-understood method for improving the convergence of slowly convergent
or divergent series.

Let

aj = (—s)jj!, (18)
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[1/e-1]
Superasymptotic
0

where[m] denotes the integer nearestfor any quantitym and where the upper
limit on the sum is

Noptimum(€) = 1/e — 1. (20)
Then the Euler acceleration theory [318, 70] shows

Hyperasymptotic__ oSuperasymptotic 1
S =Sy

+ San+1,
2 +
Hyperasymptotic__ oSuperasymptotic 3
S1 =Sy + Z0N+1 + 79N+2:
Hyperasymptotic__ oSuperasymptotic 7 1 1
S, =Sy + gan+1t+ Sans2 + ganss. (21)

The lowest order hyperasymptotic approximation estimates the error in the su-
perasymptotic approximation as roughly one-laff; or explicitly

Ey ~ (/2D (N + 1M [e~ 1/(N + 1))

N \/Zexp<_}) [e = 1/(N + D). (22)
2¢ £

This confirms the claim, made earlier, that the superasymptotic error is an expo-
nential function of Ye.

Figure 3 illustrates the improvement possible by using the Euler transform. A
minimum error still exists; Euler acceleration does not eliminate the divergence.
However, the minimum error is roughly squared, that is, twice as many digits of
accuracy can be achieved for a give[273, 274, 249, 77].

However, a hyperasymptotic series can also be generated by a completely dif-
ferent rationale. Figure 4 shows how the integrand of the error intégrahanges
with e whenN = Nopimum(¢): the integrand becomesrrowerandnarrower. This
narrowness can be exploited by Taylor-expanding the denominator of the integrand
in powers of 1— ez, which is equivalent to the Euler acceleration of the regular
asymptotic series as already noted. However, the narrowness of the integrand also
implies that one may make approximations in tiunerator too.

Qualitatively, the numerator resembles a Gaussian centered=0ri/¢. The
heart of the ‘steepest descent’ method for evaluating integrals is to (i) rewrite the
rapidly varying part of the integral as an exponential (ii) make a change of variable
so that this exponential is equal to the Gaussian functiori-exys) and expand
dz /dz, multiplied by the slowly varying part of the integral (herg(1+ ¢z(z),
in powers ofz. Since this method is described in Section 11 below, the details
will be omitted here. The lowest order is identical with the lowest order Euler
approximation.
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Figure 3. Stieltjes function withe = 1/10. Solid-withx's: Absolute value of the absolute
error in the partial sum of the asymptotic series, up to and inclugdjnghere; is the abscissa.
Dashed-with-circles: The result of Euler acceleration. The terms up to and including the opti-
mum order, her&Vopt(e) = 9, are unweighted. Terms of degrge> Nopt are multiplied by
the appropriate Euler weight factors as described in the text. The circle gbovib is thus
the sum of nine unweighted and six Euler-weighted terms.
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Figure 4. Integrand of the integraENopﬂmum(e), which is the error in the regular asymptotic
series truncated at théth term, as a function of' = ¢r for e = 1/5, 1/10, 1/20, 1/40, 1/80
in order of increasing narrowness.
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EXPONENTIAL ASYMPTOTICS 19

W. G. C. Boyd (no relation) has developed systematic methods for integrals that
are Stieltjes functions, a class that includes the Stieltjes function as a special case
[77—-80]. The simpler treatment described here is based on Olver's monograph
[249] and forty-year old articles by Rosser [273, 274].

6. A Linear Differential Equation

Our second example is the linear problem
ezuxx —u= —f(X) (23)

on the infinite intervalk € [—o0, co] subject to the conditions that both(x)|,
|f(x)] — 0as|x| — oo where the subscripts denote second differentiation with
respect tor, f(x) is a known forcing function, ana(x) is the unknown. This prob-
lem is a prototype for boundary layers in the sense that the term multiplying the
highest derivative formally vanishes in the limit— 0, but it has been simplified
further by omitting boundaries. The divergence, howevenoiseliminated when
the boundaries are.

At first, this linear boundary value problem seems very different from the Stiel-
tjes integral. However, Equation (23) is solved without approximation by the Fourier
integral

* Fk) .
M(X) = '/;OO m equk)C) dk, (24)
whereF (k) is the Fourier transform of the forcing function:
1 o
Fk) = 2—/ f(x) exp(—ikx) dx. (25)
T —0o0

The Fourier integral (24) is very similar in form to the Stieltjes function. To
be sure, the range of integration is now infinite rather than semi-infinite and the
exponential has a complex argument. The similarity is crucial, however: for both
the Stieljes integral and the Fourier integral, expanding the denominator of the
integrand in powers of generates an asymptotic series. In both cases, the series
is divergent because the expansion of the denominator has only a finite radius of
convergence whereas the range of integration is unbounded.

The asymptotic solution to (23) may be derived by either of two routes. One is
to expand 1(1+ &2 k?) as a series in and then recall that the product B{k) with
(—k?) is the transform of the second derivative fofx) for any f (x). The second
route is to use the method of multiple scales. If we assume that the saltiopn
varies only on the same ‘slow’ @) length scale ag'(x), and not on the ‘fast’
O(1/¢) scale of the homogeneous solutions of the differential equation, then the
second derivative may be neglected to lowest order to give the solution~
f(x). This is called the ‘outer’ solution in the language of matched asymptotic
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20 JOHN P. BOYD

expansions. Expanding(x) as a series of even powers ©ofand continuing this
reasoning to higher order gives

0 dsz
u(x) ~ &2 - (26)

This differential equation seems to have little connection to our previous exam-
ple, but this is a mirage. For the special case

fx) = (27)

1+ x2

the Fourier transformf (k) = 2exp(—|k|). Using the partial fraction expansion
1/(1+ %3 = (1/2){1/(1 — iek) + 1/(1+ ick)}, one can show that the solution

to (23) is
1 S ie e ie +
1+ix 1+ix 1+ix

1_1l-x{5<—1i€ix)+5<1i8,~x)}a (28)

where S(¢) is the Stieltjes function. Ak = 0, the solution simplifies ta(0) =
2{S(@ie) + S(—ie)}. The odd powers of cancel, but the even powers reinforce to
give

u(x;e) =

_l’_

u(0) ~ 4> " 2)N-1)/e¥. (29)

j=0

There is nothing special about the Lorentzian functionxoz 0), however.
As explained at greater length in [61] and [69], the exponential decay of a Fourier
transform with wavenumbek is generic if f(x) is free of singularities for real
x. The factorial growth of the power series coefficients wittexplicit in (29), is
typical of the general multiple scale series (26) foralbr most forcing functions
).

To obtain the optimal truncation, apply the identity1+ z) = le.\’:o(—z)f +
(—z2)N*1/(1 + 7) for all z and any positive integeN to the integral (24) with
z = £2k? to obtain, without approximation,

N i oo
U= Zgzdz'/f + (_1)N+182(N+1) kZ(NH)F(k)
- j=0 cbx?/ o 1+ &2k?

expikx) dk. (30)

The Nth order asymptotic approximation is to neglect the integral. For large
the error integral in Equation (30) can be approximatedly evaluated by steepest
descent (Section 11 below). The optimal truncation is obtained by chodssm
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as to minimize this error integral for a givenlt is not possible to proceed further
without specific information about the transfofgk). If, however, one knows that

F (k) ~ Aexp(—ulk]) aslk| - oo (31)

for some positive constapt where denotes factors that vaajgebraicallyrather
than exponentially with wavenumber, then independemt ¢fo lowest order), the
optimal truncation as estimated by steepest descent is

Nop(®) ~ 2= =1 e <1 (32)

and the error in the ‘superasymptotic’ approximation is

Nopt dzj

u(x;s)—X:z-:2 T
Jj=0 e/

<A exp( - ﬁ), e <1, (33)
&

where A’ denotes factors that vary algebraically withi.e., slowly compared to
the exponential, in the limit of smadl.

In textbooks on perturbation theory, the differential equation (23) is most com-
monly used to illustrate the method of matched asymptotic expansions. The mul-
tiple scales series (26) is the interior or ‘outer’ solution. To satisfy the boundary
conditions

u(-=1) =u@) =0 (34)

it is necessary to add ‘inner’ solutions which are functions of the ‘fast’ variable
X = x/e. For (23), the exact solution is

u(x;e) =u,(x;e) +aexp(—[x + 1]/e) + bexp([x — 1]/¢), (35)

whereu ,(x; ¢), the particular solution, is the solution to the same problem on the
infinite interval, already described above, and

—u,(=1;e) +e ¥ u,(Le)

1— exp(—4/e) ’
b —u,(1; 8) + e ¥u,(—1; 8). (36)
1—exp(—4/¢)

The ‘inner’ expansion is just the perturbative approximation to the exponentials in
(35). The matched asymptotics solution is completed by matching the inner and
outer expansions together, term-by-term.

It is important to note that for the finite domain € [—1, 1], it is perfectly
reasonable to choose a function ligex) = x*/(1 + x?), which is unbounded
as|x| — oo and therefore lacks a well-behaved Fourier transform. However, the
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hyperasymptotic method can be extended to such cases by defining the fyfiction
in the Fourier integral to be

1
fx) = g(x)é{erf(k[x —2)) —erf(A[x + 2])}. (37)

If the constanth is large, the multiplier ofg differs from 1 by an exponentially
small amount on the interval € [—1, 1] so thatf = g on the finite domain.

The modified functionf, unlike g, decays exponentially withx| as|x| — oo S0

that it has a well-behaved Fourier transform. We can therefore proceed exactly as
before with f used to generate the ‘outer’ approximation in the form of a Fourier
transform. For example, for the particular cgse x*/(14+x?), the poles at = +i

imply that F (k) decays as exp-|k|) so that the optimal truncation and error bound
are the same as for the Lorentzian forcirfg= 4/(1 + x2).

Since asymptotic matching is needed only because of the boundaries (and bound-
ary layers), itis natural to assume that the inner expansion is the villain, responsible
for the divergence of the matched asymptotic expansions. This is only half-true. In
the perturbative scheme,

a~ —u,(—1;¢); b~ —uyl;e) (38)

to all orders ine with an error which is O(exp-2/¢)). The boundary layers have
indeed enforced a minimum error below which the ordinary perturbative scheme
cannot go, but it depends on the separation between the boundaries. Here, the
boundary-layer-induced error is only teguareof the minimum error in the power
series fon, (x; ) when f(x) = 4/(1+ x?).

The outer solution is a greater villain. Even without boundaries, the multiple
scales series is divergent.

7. Weakly Nonlocal Solitary Waves

In general, the divergence of series in perturbation theory (while a good approximation
is given by a few initial terms) is usually related to the fact that we are looking for an
object which does not exist. If we try to fit a phenomenon to a scheme which actually
contradicts the essential features of the phenomenon, then it is not surprising that our
series diverge.

V. I. Arnold (1937-) [7, p. 395]

Solitary waves, which are spatially localized nonlinear disturbances that prop-
agate without change in shape or form, have been important in a wide range of
science and engineering disciplines. Such diverse phenomena as the Great Red
Spot of Jupiter, Gulf Stream rings in the ocean, neural impulses, vibrations in
polymer lattices, and perhaps even the elementary particles of physics have been
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Figure 5. Schematic of a weakly nonlocal solitary wave or a forced wave of similar shape.
The amplitude of the ‘wings’ is the ‘radiation coefficieint; which is exponentially small in
1/e compared to the amplitude of the‘core’.

identified, at least tentatively, as solitary waves; in ten years, most of our phone and
data communications may be through exchange of envelope solitary waves in fiber
optics.

Classic examples of solitary waves decay exponentially fast away from the
peak of the disturbance. In the last few years, as reviewed in the author’'s book
[72] and also [56], it has become clear that solitary waves which flunk the decay
condition are equally important. Such ‘weakly nonlocal’ solitary waves decay not
to zero, but to an oscillation of amplitude the ‘radiation coefficient’ (Figure 5).

The amplitude of these oscillations is important because it determines the radiative
lifetime of the disturbance.

The complication is that for many nonlocal solitary waves, the radiation coeffi-
cienta is an exponential function of/t wheree is a small parameter proportional
to the amplitude of the maximum of the solitary wave. This implies that an ordinary
asymptotic series in powers of

— must fail to converge to the solution,

— must tell us nothing about whether the solitary waves are classical or weakly
nonlocal,

— must be useless for computing
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However, itis possible to compute the radiation coefficient throudtyperasymp-
totic approximation [68, 72].

A full treatment of a weakly nonlocal soliton is too complicated for an intro-
duction to hyperasymptotics, but it is possible to give the flavor of the subject
through the closely-related inhomogeneous ordinary differential equation studied
by Akylas and Yang [5]

&%u,, +u — 2u® = sech(x). (39)

To lowest order ire, the second derivative is negligible compared: tgust as

in our previous example, and the quadratic term is also small so that

u(x) ~ sech(x). (40)

By assuming:(x) may be expanded as a power series in even powerssoibsti-
tuting the result into the differential equation and matching powers one finds

oo j+1
u(x) ~ Y ePuy, wj =) ajmsech”. (41)
/20 m=1

When this series is truncated to finite ordgr< N, all terms in the truncation
decay exponentially with:| and therefore so does the approximatidn In reality,
the exact solution decays to an oscillation, just as in Figure 5. The ‘wings’ are
invisible to the multiple scales/amplitude expansion because the ampditade
the wings is an exponential function of<l

Boyd shows [68] [with notational differences from this review] that the residual
eguation which must be solved at each order is

Uni1 = r@™), (42)

wherer u") = —{e?u? +u" —e?u™)?>—sech(x)} is the ‘residual function’ of the
solution up to and includingvth order. When the orde¥ = Noptimum ~ —1/2 +

7 /(4e), the Fourier transform of the residual is peaked at wavenurnberl/e.

In other words, when the series is truncated at optimal order, the neglected second
derivative is just as important as,,; in consistently computing the correction at
next order. The hyperasymptotic approximation is to replace Equation (42) by

e2Un 10x +unir =) (43)

forall N > Noptimum

The good news is that theonlinearterm in the original forced-KdV equation
is still negligible on the left-hand side of the perturbation equations at each order
(though it appears in the residual on the right-hand side). The bad news is that
the equation we must solve to compute the hyperasymptotic corrections, although
linear, does not admit a closed form solution except in the form of an integral which
cannot generally be evaluated analytically:

2u 1 (x) = / 1RN7(22exp(ikx) dk, (44)
o l—¢
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whereRy (k) is the Fourier transform of the residual of thNeh order perturbative
approximation.

The Euler expansion cannot help; a weighted sum of the terms of the origi-
nal asymptotic series must decay exponentially withand therefore will miss
the oscillatory wings. The integrand in Equation (44) is nemgular on the in-
tegration interva) rather than off it as for the Stieltjes function. Indeed, when
N ~ Nopimun(€), the numerator of the integrand is largestkat= 1/¢, precisely
where the denominator is singular! No simple change in the center of the Taylor
expansion of the denominator factot(1 — £2k?) will help here.

Fortunately, it is possible tpartially solve Equation (43) in the sense that we
can analytically determine the amplitude of the radiation coefficieBoyd [68]
shows thatv is just the Fourier transform of the residual at the points of singular-
ity. The result is an approximation te(¢) with relative error Qe?). This can be
extrapolated to the limi¢ — O to obtain

1.558823+ O(£2)
= 5 exp

a(e)

- 1), e <1, (45)
2¢

As for the Stieltjes integral, several different hyperasymptotic methods are avail-
able for weakly nonlocal solitary waves and related problems. The most widely
used is to match asymptotic expansions near the singularities of the solitary wave
on the imaginary axis. Originally developed by Pokrovskii and Khalatnikov [262]
for ‘above-the-barrier’ quantum scattering (WKB theory in the absence of a turning
point), it was first applied to nonlinear problems by Kruskal and Segur [278, 172].
The book by Boyd [72] reviews a wide number of applications and improvements
to the PKKS method.

Akylas and Yang [5, 323 —325, 327] apply multiple scales perturbation theory
in wavenumber space after a Fourier transformation. Chapman, King and Adams
[96], Costin [104, 105] and Costin and Kruskal [106, 107], Ecalle [123] have all
shown that related but distinct methods can also be applied to nonlinear differential
equations.

8. Overview of Hyperasymptotic Methods
Hyperasymptotic methods include the following:

(1) (Second) Asymptotic Approximation of Error Integral or Residual Equation
for Superasymptotic Approximation

(2) Isolation Strategies, or Rewriting the Problem so the Exponentially Small
Thing is the Only Thing

(3) Resurgence Schemes or Resummation of Late Terms

(4) Complex-Plane Matching of Asymptotic Expansions

(5) Special Numerical Algorithms, especially Spectral Methods

(6) Sequence Acceleration including Padé and Hermite—Padé Approximants

(7) Hybrid Numerical/Analytical Perturbative Schemes
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The labels are suggestive rather than mutually exclusive. As shown amusingly
in Nayfeh [229], the same asymptotic approximation can often be generated by
any of half a dozen different methods with seemingly very dissimilar strategies.
Thus, the Euler summation gives the exact same sequence of approximations, when
applied to the Stieltjes function, as making a power series expansion in the error
integral for the superasymptotic approximation.

In the next few sections,we shall briefly discuss each of these general strategies
in turn.

9. Isolation of Exponential Smallness

Long before the present surge of interest in exploring the world of the exponentially
small, some important problems were successfully solved without benefit of any of
the strategies of modern hyperasymptotics. The key idsaligtion in the region
of interest (perhaps after a transformation or rearrangement of the problem), the
exponentially small quantity is the only quantity so that it is not swamped by other
terms proportional to powers of

A guantum mechanical example is the ‘WKB’, ‘phase-integral’ or ‘Liouville—
Green’ calculation of ‘Below-the-Barrier Wave Transmission’. The goal is to solve
the stationary Schrodinger equation

Yix + (K2 = V(ex)ly =0 (46)

subject to the boundary conditions of (i) an incoming wave from the left of unit
amplitude and (ii) zero wave incoming from the right:

Yo~ expikx) + e exp(—ikx), x — —oc;
¥~ Bexpikx), x — oo. 47

The goal is to compute the amplitudes of the reflected and transmitted waves,
and 8, respectively. Ifk? < maxV (ex)), however, is exponentially small in

1/¢ for fixed k, and« differs from unity by an exponentially small amount also.
Nevertheless, this problem was solved in the 1920’s as reviewed in Nayfeh [229]
and Bender and Orszag [19].

The crucial point is that on the right side of the potential barrier, the exponen-
tially small transmitted wave is the entire wavefunction. There is no ambiguity: far
to the right, the WKB approximation must approximate a transmitted, rightgoing
wave and nothing else. This, in an analysis too widely published to be repeated
here, allows the analytical determination®through standard WKB or matched
asymptotics expansions.

In contrast, standard WKB is quite impotent for determining the difference
between the amplitude of the reflected wave and one because the large reflected
wave swamps the exponentially small correction. Howeyés, easily foundndi-
rectly by combining the known values of the incoming and transmitted waves with
conservation of energy. Similarly, WKB gives a good approximation to the bound
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Figure 6. Schematic of the Berman—Terrill-Robinson problem. Fluid in the channel flows to
the right, driven partly by fluid pumped in through the porous wall. Only half of the channel
is shown because the flow is symmetric with respect to the midline of channel (dashed).

states and eigenvalues of a potential well: where the wavefunction is exponentially
small (for large|x|), there is no competition from terms that are larger.

A nonlinear example is the ‘Berman—Terrill-Robinson’ or ‘BTR’ problem, which
is interesting in both fluid mechanics and plasma physics [135, 154, 108, 193,
186, 109]. In its mechanical engineering application, the goal is to calculate the
steady flow in a pipe or channel with porous walls through which fluid is sucked
or pumped at a constant uniform veloci. Berman [23] showed that for both
the pipe and channel, the problem could be reduced to a nondimensional, ordinary
differential equation which in the channel case is

efyyy + fF — ffyy = a2, (48)

whereq« is the eigenparameter which must be computed along With). The
boundary conditions are

f=1 fr() =0, f© =0, frv(0) =0. (49)

The small parameter is = 1/R whereR is the usual hydrodynamics ‘Reynolds
number’ (very large in most applications). Symmetry with respect to the midline
of the channel (a¥ = 0) is assumed.

By matching asymptotic expansions, boundary layer to inviscid interior (Fig-
ure 6), one can easily compute a solution in powees tfnfortunately, the numer-
ical work of Terrill and Thomas [292] showed that there are actualtysolutions
for the circular pipe for all Reynolds numbers for which solutions exist. Terrill
correctly deduced that the two modes differed by teemyonentially smalin the
Reynolds number (or equivalently, ind) and analytically derived them in 1973
[291], quite independently of all other work on hyperasymptotics.
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The early numerical work on the porous channel was even more confusing
[265], finding one or two solutions where there are actually three. Robinson re-
solved these uncertainties in a 1976 article that combined careful numerical work
with the analytical calculation of the exponentially small terms which are the sole
difference between the two physically interesting solutions.

The reason that the exponential terms could be calculated without radical new
technology is that the solution in the inviscid region (‘outer’ solution) is linear in
Y plus terms exponentially small in

f(Y)~a(8)Y+y(e){—32+Y3}+---, (50)
— :t} i l/4ex } ex i
o = xg(zr) e(=3) el -5 ) -
5 253, _ .

(Note that because of the sign, there aréwo solutions fory, reflecting the ex-
ponentially small splitting of a single solution (in a pure power series expansion)
into the dual modes found numerically.) It follows that by making the almost trivial
change-of-variable

g=f—aY (52)

we can recast the problem so that the ‘outer’ approximation is proportional to
exp(—1/(4e)). Systematic matching of the ‘inner’ (boundary layer) and ‘outer’
flows gives the exponentially small corrections in the boundary layer, too, even
though there are nonexponential terms in this region.

Other fluid mechanics cases are discussed in Notes 10 and 11 of the 1975
edition of Van Dyke’s book [298]. Bulakh [85] as early as 1964 included expo-
nentially small terms in the boundary-layer solution to converging flow between
plane walls and showed that such terms will also arise at higher order in flows
with stagnation points. Adamson and Richey [2] found that for transonic flow with
shock waves through a nozzle, exponentially small terms are as essential as for the
BTR problem.

Happily, there is a widely-applicable strategy for isolating exponential small-
ness which is the theme of the next section. The key idea is that the optimal
truncation of thee power series is always available to rewrite the problem in
terms of a new unknown which is thdifferencebetween the originak(x; ¢)
and the optimally-truncated series. Because this differéiiges) is exponen-
tially small in 1/¢, we can determine it without fear of being swamped by larger
terms.
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10. Darboux’s Principle and Resurgence

Evidently, the determination of the remainder [beyond the superasymptotic approxi-
mation] entails the evaluation of several transcendental functions. In other words, the
calculation of the correction can be more formidable than that of the original asymp-
totic expansion. One is reminded of the dictum, sometimes asserted in physics, that
getting an extra decimal place demands 100 times the effort expended on the previous
one. Fortunately, the multiplying factor is not so huge in our case but it is perforce
appreciable.

D. S. Jones (1990) [155, p. 261]

Jones’ mildly pessimistic remarks are still true: hyperasymptotics is more work
than superasymptotics and one does have to evaluate additional transcendentals.
However, Dingle showed in a series of articles in the late fifties and early sixties,
collected in his 1973 book, that there is a suprising universality to hyperasymptot-
ics: a quartet of generic transcendentals suffices to cover almost all cases. The key
to his thinking, refined and developed by Berry and Howls, Olver and many others,
is the following.

DEFINITION 5. (Darboux’s Principle). One may derive an asymptotic expansion
in degreej for the coefficientsz; of a series solely from knowledge of tlsin-
gularities of the function f (z) that the series represents. This principle applies to
power series [110, 111, 123, 82, 83], Fourier, Legendre and Chebyshev series [55],
and divergent power series [118].

‘Singularity’ is a collective terms for poles, branch points and other points
where a complex functiofi(z) ceases to be an analytic function 0flf f(z) is
singular, on the same Riemann sheet as the origin, at the set of pojhtshen
the radius of convergence of the power seriesffar) is p = min|z;|, as proven
in most introductory calculus courses. Darboux showed that if the convergence-
limiting singularity was such thaf (z) = (z — z.)"g(z) whereg(z) is nonsingu-
lar at the convergence-limiting singularity, then the power series coefficients are
asymptotically (ifj # integer)

a; ~ j 7714 OL/))). (53)

Asymptotics-from-singularities can be extended to logarithms and other singulari-
ties, too. As reviewed in [55], one can derive similar asymptotic approximations to
the coefficients of Fourier, Chebyshev, Legendre and other orthogonal expansions
from knowledge of the singularities gf(z).
Dingle [116, 117] realized in the late 50’s that Darboux’s Principle applies

to divergent series, too. If one makes an asymptotic expansion by performing a
power series expansion inside an integral and then integrating term-by-term, the
coefficients of the divergent expansion will be simply those of the power series
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in the integration variable multiplied by the effect — usually a factorial — of the
term-by-term integration. For example, consider the class of functions

f(e) = /OOO exp(—1)® (et) dt, (54)
where®(z) has the power series
P(z) = ibjzj (55)
=0
then
fe) ~ iajej; a; = jb;. (56)
j=0

Because the coefficients of the divergent serig$ ére merely those of the power
series ofd, multiplied by j!, it follows that the asymptotic behavior of the coef-
ficients of the divergent series must be controlled by the singularities(of as
surely as those of the power seriesdoitself. In particular, thesingularity of the
integrand which is closest to= 0 must determine the leading order of the coef-
ficients of the divergent expansiorhis implies that allf (¢) that have a function
®(z) with a convergence-limiting singularity of a given type (pole, square root,
etc.) and a given strength (the constant multiplying the singularity) at a given point
z. Will have coefficients that asymptote to a common form, even if the functions in
this class are wildly different otherwise.

EXAMPLE. The ‘double Stieltjes’ function
SD(e) = S(e) + S(e/2), (57)

whereS(¢) is the Stieltjes function described earlier. The asymptotic series is

> . . 1
SD(S)NZOaje-’; aj=(—1)"j!{1+ Z} (58)
J=
The integrand ofS(¢) is singular atr = —1/¢ while that of S(¢/2) is singular

twice as far away at= —2/¢. In the braces in Equations (58), the first and nearer
singularity contributes the one while the rapidly decaying facy@ tomes from
the more distant pole of the integrand, thatSg¢¢ /2). The crucial point is that in
the limit j — oo, the coefficients of the divergent series for the double Stieltjes
function asymptote to those of the ordinary Stieltjes function.

As explained above, the optimal truncation of thgower series for the Stieltjes
function is to stop atv = [1/¢], that is, at the integer closest to the reciprocal
of ¢; the error in the resulting ‘superasymptotic’ approximation is proportional to
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exp(—1/¢). The dominance of the asymptotic coefficients of the double Stieltjes
function by the pole at = —1/¢ implies that all these conclusions should apply to
the optimal truncation of the divergent expansionS$@»(¢), too:

Nopt

SD(e) ~ 3 ajel + o(,/n/(zg) exp(—l/s)); Nopt(e) = [1/e],  (59)
=0

where the factor in front of the exponential is justified in [19]. More important, if
we add the error integral for Stieljes function to tNigy(¢)-term truncation of the
series for the double Stieltjes function, we should obtain an improved approxima-
tion. Since the first neglected term in the series3bBX¢) differs from that included

in the Stieltjes error integral by a relative error of8¥), the best we can hope for

is to improve upon the superasymptotic approximation by a factor” pfatich,
becauseVyp ~ 1/¢, can be rewritten as exp log(2)/¢). Thus,

N
SD(e) ~ ) " a;e’ + Ex(e) + O(exp(—{1+ log(2)}/¢));
Jj=0
N(e) = [1/e], (60)

whereEy (¢) is the error integral for the Stieltjes function defined by Equation (8).
Figure 7 shows that the error estimate in Equation (60) is accurate.

If the location of the second-worst singularity is known — that is, the pole or
branch point of the integrand which is closerste= 0 than all others except the
one which asymptotically dominates — one can do better. Since the second pole of
SD(¢) is at twice the distance of the first, if we add the nékcontributions of
the second singularity onlpnly to the approximation of Equation (60), the result
should be as accurate as the optimal truncation of a series derived from the second
singularity (i.e.,S(e/2) for this example), that is, have an error proportional to

exp(—2/¢):
N . 2N i >
SD(g) ~ Zaje-’ + En(e) + Z (—1)‘/2—].,8‘/ + O{ exp( — g) } (61)

Jj=0 J=N+1

Figure 7 confirms this. (Howls [147] and Olde Daalhuis [241] have developed im-
proved hyperasymptotic schemes with smaller errors, but for expository purposes,
we have described the simplest approach.)

A key ingredient in Dingle’s strategy is Borel summation. Under certain condi-
tions [318], a divergent series can be summed by the integral ¢f-exmultipied
by a function® (¢¢) which is defined to be that function whose power series has
the coefficients of the divergent series divided thyThat is to say, the integral in
(54) is the Borel sum of the power series for the functiofi(e) on the left in the
same equation. (We are again reminded of the interplay between different strate-
gies in hyperasymptotics; a series acceleration method, which is a hyperasymptotic
method in its own right when combined with Padé approximatio® @Gf) ['Padé—
Borel’ method [315, 316]], is also a key justification for a different and sometimes
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~10|
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Figure 7. Double Stieltjes function: errors in three approximation&: Errors in opti-
mally-truncated asymptotic series (the ‘superasymptotic’ approximation. Pluses: Superasymp-
totic approximant plus the ‘terminant’. Circles: Approximation defined by Equation (55).

Solid curves: Predicted errors, which are respectively the following — @Gap(—1/¢),
(middle) g exp(—1.693/¢), (bottom)q exp(—2/¢) whereg(e) = (r/(2¢)) /2.

more powerful hyperasymptotic scheme.) Dingle’s twist is that he applies Borel
summation only to thdate terms in the asymptotic series. The first few terms

in the sum forSD(¢) are very different from those of the Stieltjes function; the
only way to obtain the right answer is to sum these leading terms directly without
tricks. Dingle’s key observation is that tlete terms, meaning those neglected in
the optimal truncation, are essentially the same as those for the ordinary Stieltjes
function. Thus, the error integrdy (¢) for onefunction, S(¢), provides a hyper-
asymptotic approximation to an entictassof functions, namely all those of the
form of Equation (54) for which the convergence-limiting singularitydak) is a
simple pole at = —1.

It might seem as if we would have to repeat the analysis for each different
species of singularity — one family of error integrals when the singularity is a simple
pole, another when the dominant singularity ®fis a logarithm and so on. In
reality, Dingle shows that for a very wide range of asymptotic expansions, both
from integral representations, the WKB method, and so on, the coefficients are
asymptotically of the form

T(G+1-
o~ -y =Lr (62)
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for some constantg, p andg. The error integral for the Stieltjes function is almost
the theory of everything.

In the next three sections, we describe how Dingle’s theory has been extended
to the method of steepest descent and the mystery of Stokes phenomenon. A couple
of historical, semantic, and notational grace notes are needed first, however.

The first is that the work of Dingle and others is couched not in terms of the
error integralsE y (¢) but rather in terms of the following:

DEFINITION 6 (Terminant). A functionTy (¢) is a terminant if it is used to
weight theNth term in an asymptotic series so as to approximate the exact sum.

The reason for working with terminants instead of errors is mostly historical.
Stieltjes [286] showed that for an alternating series, one could considerably im-
prove accuracy for both convergent and divergent series merely by multiplying
the last retained term by a weight factor of 1/2. Airey developed an early (1937)
hyperasymptotic method, restricted to alternating series for which the general term
is known, which computed an improveN-dependent replacement for Stieltjes’

1/2 [3]. Later studies have generally followed this convention. However, terminants
are sometimes more convenient than error integrals as in the smoothing of Stokes
phenomenon.

The second comment is that Dingle found it helpful to define four canonical (ap-
proximate) terminants instead of one. One reason is that the Stieltjes error integral,
and the equivalent terminant, have poles on the negative real axis away from the
integration interval, which is the positive real axis. Stokes phenomenon happens
when the poles coincide with integration interval, which makes it convenient to
define a second terminant. Dingle’s fundamental pair are

_ 1 < exp(—)t"
An(1l/e) = T+ D /0 dt—lJr vt (63)

1 p f"o texp(—t)t’”
'm+1 Jo 1— et

whereP denotes the Cauchy Principal Value of the integral. These two fission into
two more because many expansions proceed in power$ m@ither thare itself,
which makes it convenient to define terminants for even powets loik I1,, and

I,,.

Furthermore, newer classes of problems have required additional terminants, as
illustrated in Delabaere and Pham [113]. When the hyperasymptotic process is iter-
ated so as to add additional terms, with different scalings, one needs generalizations
of the Dingle terminants called ‘hyperterminants’. Olde Daalhuis [240, 242] has
given algorithms for the numerical computation of terminants and hyperterminants.
The need for these generalizations, however, should not obscure the fundamental

An(1/e) = , (64)
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unity of the idea of adding error integrals or terminants that matcld¢imeinant
singularity to convert a superasymptotic approximation into a hyperasymptotic
approximation.

There is a close parallel between Dingle’s universal terminants for asymptotic
series and the universal error envelopes for Chebyshev and Fourier spectral meth-
ods which were derived by Boyd [55, 59]. For example, Boyd found that the error
envelope was always a linear combination of the same two meromorphic functions
(the ‘Lorentzian’ and ‘serpentine’ functions, defined in [59]), regardless of whether
the function being interpolated was entire, meromorphic, or had logarithmic sin-
gularities. Even whery (x) is nonanalytic but infinitely differentiable at a point
on the expansion interval, and thus has only a divergent power series about that
point, the error envelope is the sum of these two functions. The reason for the
similarity is that Darboux’s Principle applies to Fourier and Chebyshev series, too.
Asymptotically, functions that are very dissimilar in their first few terms resemble
each other more and more closely in the late terms. One or two terminants can
encapsulate the error for very different classes of functions, even ones whose late
coefficients are decaying, because of the magic of Taylor expansions with respect
to degree.

11. Steepest Descents

The resultant series is asymptotic, rather than convergent, because the range of integra-
tion extends beyond the circle of convergence of [the power series of the metric factor],
the radius of this circle being fixed by the zero @f/dlz in the complexw-plane lying

closest to the origin.

R. B. Dingle [118, p. 111], with translation of notation into the symbols used
in the section below.

The method of steepest descent is commonly applied to evaluate the integral

I1(2) = /exp(zqs(t))dt (65)

in the limit |z] — oo. As described in standard texts [19], the ‘saddle points’ or
‘stationary points’ §} play a crucial role where these are defined as the roots of
the first derivative of the ‘phase function'(r):

dp

The path of integration is deformed so as to pass through one or more saddle points.
The next step is to identify thdominantsaddle point, which is the onen the
deformed contour of integratiofor which 9i(¢ (¢,)) is largest. Restricting, to the
dominant saddle point, one then makes the exact change-of-variable

w=+/o(t;) —¢(1) (67)
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so that the integral becomes

I1(z) = / exp(—zwz)c?—;(w) dw. (68)

The final steps are (i) extend the integration interval to the entirewesatis and

(i) expand the ‘metric factor’ d/dw in powers ofw and integrate term-by-term

to obtain an exponential factor multiplied by an inverse power series in the large
parametet. (By settinge = 1/z, this series is similar — and similarly divergent —

to thee power series explored earlier.) We omit details and generalizations because
the mechanics are so widely described in the literature [19, 319].

Unfortunately the standard texts hide the fact that the asymptotic expansion
is based on the same mathematical atrocity as the divergent series for the Stieltjes
function: employing a power series in the integration variable withite radius of
convergence under integration overiafinite interval. Hyperasymptotics is greatly
simplified by the following.

THEOREM 1 (Singularities of the Steepest Descent Metric Functidian inte-
gral of the form of Equatioif65) is transformed by the mapping Equati(8¥) into
the integral overw, Equation(68), then the metric factotz /dw has branch points
of the form

d  gw)
W= A T (69)

whereg(w) and z(w) are analytic atw = w;. All such pointsw, are the images
of the saddle pointg, under the mappinguv(z); conversely, the metric factor is
singular at all pointsw,; which are images of saddle points exceptifoe= 0. The
metric factor may also be singular with singularities of more complicated type at
pointsw which are images of points where the ‘phase factioi) is singular.
Proof. The first step is to differentiate the definition of the mapping Equation
(67) to obtain
dw 1 do dr w
d 29, — o) o = 2d¢/dt' (70)
This shows that the metric factor can be singular only atuthienages of those
pointsr in the original integration variable where ¢)¢) is singular or (ii) saddle
points where by the very definition of a saddle poirt/d: = 0 and the denomina-
tor of the right-hand side of Equation (70) is zero. This is really just a restatement
of the implicit function of elementary calculus, which states thatif/dr is non-
zero at a point, then the inverse functiofw) exists and is analytic at that point
and its derivative d/dw = 1/(dw/dr). The pointw = 0 is exceptional because the
numerator of the right-hand side) cancels the zero in the denominator.
To obtain an expression for tw in the neighborhood of a saddle point, we
expandw(¢) about the saddle point= z,. The constantv, can be moved to the
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left side of the equation and the linear term is zero becaus&ldis zero at the
saddle point. Taking the square root gives

2

w
VW —ws = (t — 1) >z

It follows that d/dw is proportional to 1.,/w — w, near the saddle point, which
demonstrates the theorem.

Denote the image-of-a-saddle-point of smallest absolute valua.fay The
coefficientsb; of the power series of the integrand will then asymptote, for suffi-
ciently high degreg, to those of a constant timeg.Jw — wmin; the contributions
of the singularities that are more remote in the compleplane will decrease
exponentially fast withj compared to the contribution of the square root branch
point atw = wnin. Applying the binomial theorem to compute the power series
coefficients of the square root singularity and then integrating term-by-term shows
that the coefficients; of the asymptotic series for the integral itself will asymptote
for largej to

TG +1/2)
1 |wmin|j+l/2 ,

t){1+ 0@ —1,)}. (71)

(72)

where the constanj is proportional tog(wmin) in the theorem. Dingle [118, p.
457], gives the basic terminant (with some changes in notation)

Tn ~ goAn-1(=F) + ga2An_2(=F) + qaAy_3(—F) + - - -, (73)

where theg,; are functions of Dingle’s ‘chief singulan#, which in our notation
is

F = zwﬁqm (74)
andgz; ~ O(F/). This situation is more complicated than for the double Stieltjes
function in that we have seriesof terminants, rather than a single terminant. (Each
term of the expansion ofddw in half-integral powers ofv — wnn, Will generate its

own contribution to the terminant series.) The underlying ideas remain simple even
though the algebraic complexity rapidly leaves one muttering: ‘Thank heavens for
Maple! [and similar symbolic manipulation languages like Mathematica, Reduce

and so on]. O

12. Stokes Phenomenon

about the present titleDivergent Serigs now colourless, there hung an aroma of
paradox and audacity.

Sir John E. Littlewood (1885-1977) [139]
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Stokes line

 J

Figure 8. Stokes Lines (Monotonic Growth/Decay) and anti-Stokes Lines (Pure Oscillation)
for the Airy Functions Ai and Bi. The shaded regions show the transition zone for the Stokes’
multiplier of Ai, that is, the regions where it varies from 1 to 0 as an error function. The
positive real axis is a Stokes Line for Bi but not Ai. The shaded regions narrow for |lgrge
because for the Airy function, the width of the transition zone, expressed in terms of the angle
6 = arg(z), decays ag|3/4.

Stokes phenomenon has contributed much to the ‘aroma of paradox and audac-
ity’ of asymptotic series. It is easiest to explain by example.

The Airy function Ai(z) asymptotes for large positive to the product of a
decaying exponential with a series in inverse powets/8f For negative reaj, the
Airy function is real and oscillatory; approximated by the product of a cosine with a
inverse power series plus a sine with a different inverse power series. However, the
multiplier of the leading inverse power, the cosine, is the sutwofexponentials.

If we track the asymptotic approximation for fix¢d asé = arg(z) varies from O
to 7z, one exponential must somehow metamorphosize into two.

The classical analysis hinges on two species of curves in the comypliexe:
‘Stokes lines’, where the exponentials grow or decay without oscillations, and
‘anti-Stokes’ lines where the exponentials oscillate without change in amptitude.
(Figure 8.) Stokes’ own interpretation is that the coefficient of the ‘recessive’ (de-
caying) exponential jumps discontinuously on the Stokes line (fanAat argz) =
+27/3), that is, where this exponential is smallest relative to the ‘dominant’ expo-
nential that grows ag| increases along the Stokes line. As the negative real axis
(an anti-Stokes line) is approached, the two exponentials become more and more
similar until finally both are purely oscillatory with coefficients of equal magnitude
on the anti-Stokes line itself.

* We employ the convention of Heading, Dingle, Olver, and Berry, but other authors such as
Bender and Orszag reverse the meaning of ‘Stokes’ and ‘anti-Stokes'.
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0= 7/3

Figure 9. Steepest descent paths of integration in the complex plane of the original integration
variabler for four different values of. The two saddle points are marked by black discs. The
contours of log| exp(z3/2i{t+t3/3})|) are also shown. F@ér = n [negative reat-axis, lower

left panel], the integration contour comes from larga the upper right quadrant, returns to
infinity along the negative-axis, and then returns to pass through the right saddle point and
depart to infinity via the lower right-quadrant.

The annoying and unsatisfactory part of this discontinuous jump is that the
Airy function itself is an entire function, completely free of all jumps, infinities
and pathologies of all kinds except [at = oco. Sir Michael Berry has recently
smoothed this ‘Victorian discontinuity’, to quote from one of his papers, by com-
bining Dingle’s ideas with the standard and long-known asymptotic approximation
to an integral when the saddle point and a pole nearly coincide. To understand
Berry’s jump-free hyperasymptotics, we need some preliminaries.

First, let us represent the solution by an integral which can be approximated by
the method of steepest descent for larg@Berry’s smoothing is equally applicable
to WKB approximations to differential equations and a wide variety of other as-
ymptotics, but steepest descent is the most convenient for explaining the concepts.)

The integral representation for the Airy function is

1/2
Ai(z) = % exp(z¥?{i(t +3/3)}) o, (75)
¢
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Figure 10. A surface plot of log| exp(z3/2¢)|) for the Airy integral for argz) = 27/3, that

is, on the Stokes line. The steepest descent path is marked by the heavy solid line; the disks
denote the two saddle pointsat= =+i. The surface has been truncated at the vertical axis
limits for graphical clarity.

where C is a contour that originates at infinity at an angle(arg= (5/6)7r —
(1/2) arg(z) and returns to infinity at afg) = (1/6)7 — (1/2) arg(z).

Figure 9 shows the steepest descent paths of integration for the Airy integral
representation. As explained in the preceding section, the easiest way to generate
the coefficients of the asymptotic series is to begin with a change-of-coordinate to
a new integration variable. To illustrate the key topological ideas, however, it is
perhaps more illuminating to illustrate the steepest descent path inplaee as
we have done in the figure. In either plane, the path of integration is deformed so
as to pass through a saddle point, and then curve so that at each goithie path,

I(zp (1)) = I(zp(t)). This condition that the phase of the integrand matches
that of the saddle point ensures that the magnitude of the integrand decreases as
steeply as possible from its local maximum, i.e., that the curve is really is a path of
‘steepest descent’.

As a student, | was much puzzled because my texts and teachers expended a
lot of energy on determining the exact shape of the steepest descent contour even
though it does not appeexplicitlyin the answer, even at higher order! The steepest
descent path is actually important only fimpological reasons: it is essential to
know whichsaddle points lie on the path, but the shape of the contour is otherwise
irrelevant.

For the Airy function, for example, there are two saddle points far bilt only
one is on the contour for large positize As the argument of varies, however,
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the steepest descent paths in th@r w) planes must vary also. For somgthe
steepest descent path through one saddle point must collide with the other; this
happens precisely on the Stokes lines.

As shown in Figure 9, the Stokes lines are a change inabelogyof steepest
descent paths: a single saddle point on the contour on one side of the Stokes line,
two saddle points on the other side of the Stokes line and on the Stokes line itself.
Thus, Berry’s title for one of his articles, ‘Smoothing a Victorian discontinuity’, is
a bit misleading since the discontinuity is not removed toologicalsense. The
jump is, however, smoothetmerically

Parenthetically, note that at the Stokes line itself (@rg= 27/3 for Ai(z)),
the steepest descent path descends from one saddle point directly to another saddle
point, then makes a right angle turn and then continues to descend monotonically
from the second saddle point (Figure 10). For(arg- 27 /3, the steepest descent
contour from one saddle point does not runs off to infinity parallel to the negative
imaginary axis. To be continuous and still terminateaéxp(irr /6), however, the
contour must return and pass through the second saddle point. (Al argr, the
contributions of both saddle points are equal.

The properties of Stokes lines may be summarized as follows:

(1) There are TWO saddle points on the steepest descent integration path in the
t-plane.

(2) I{z(p(ty) — ¢(t-)} = 0 wherer, andr_ are the two saddle points on the
steepest descent contour and whgte is the steepest descent phase function
defined by Equation (65).

(3) The terminants for the series each have a simpleqrdllee reahw-axis, which
is the integration interval after the usual steepest descent change of variable,
the poles being at the saddle point which contributes the ‘recessive’ saddle
point.

(4) The terms; of the asymptotic inverse power series are, for sufficiently large
degreey, all of the same sign.

When there is a discontinuity in asymptotic form, the first three properties are each
equivalent definitions of a ‘Stokes line’.

The proofs of these assertions and also generalizations of Stokes phenomenon
to solutions of nonlinear differential equations and so on are given by the theory
of ‘resurgence’. Ecalle [123] invented ‘resurgence’ [123] and the formalism of the
‘alien calculus’ and ‘multisummability’. This has been extended by a group that
includes Voros, Pham, Sternin, Shatalov, Delabaere, and others too numerous to
list. The monograph by Sternin and Shatalov [285] and the collection of articles
edited by Braaksma [83] are good summaries. (Berry, who was visiting Pham when
he developed his smoothing scheme, was strongly influenced by Ecalle’s three-
volume book and the follow-up work of the ‘French school’.) The alien calculus
and multisummability theory are very general but accordingly also very abstract.
Berry and Howls, Olde Daalhuis and Olver, Costin, Kruskal, Hu and others have
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developed simplified variants of resurgence and applied them to concrete problems
in special functions and physics.

As shown by the sheer length of the Table IV, which is a selected bibliography of
works on resurgence and Stokes phenomenon, it is quite unfeasible to summarize
this powerful theory here. (Prof. Ecalle’s pioneering treatise is in three volumes!)
Still, one can give a little of the flavor of resurgence.

One key concept is what one might call ‘saddle point democracy’. Instead of
focusing in quickly on one or two dominant saddle points (on the steepest descent
path), resurgence treats all saddle points on an equal footing. One may define an
integral passing through an arbitrary saddle point; the coefficients of the steep-
est descent expansion about that point encodes the expansions about all the other
saddle points. Furthermore, the late terms in the asymptotic expansion about a dom-
inant saddle point can be expressed in terms of the early terms of a subdominant
series, and vice-versa. The reason is that the late terms in the expansion about the
dominant saddle point are controlled, via Darboux’s Principle, by the singularities
created by the other saddle points.

13. Smoothing Stokes Phenomenon: Asymptotics of the Terminant

Having these new techniques [hyperasymptotics], | would like to hear from anybody
who needs the Airy function to twenty decimals, but am not expecting an early call.

Berry (1991) [30, p. 2]

Berry’'s amusing comment is a frank admission that the smoothing of the discon-
tinuity along a Stokes line is not a matter of great arithmurgical significance. The
term that changes dramatically in the neighborhood of the Stokes line is exponen-
tially small compared to the sum of the asymptotic series. However, the smoothing
does provide deep insights into the interlocking systems of caverns — interlocking
systems of expansions about different saddle points and branch points — that lie
beneath the surface of asymptotic approximations.

The numerical smoothing of the discontinuity along a Stokes lines is based on
the following ideas which will be explained below:

(1) The exponentially small Stokes multiplige can beisolatedby subtracting
the optimal truncation of the standard asymptotic seriesffa) from it so
that the multiplier is no smaller than the other terms left after the subtraction.

(2) The subdominant saddle point, the one whose Stokes multiplier is to change,
lies directly on the steepest descent path leading down from the dominant
saddle point when or ¢ is on the Stokes line.

(3) When the asymptotic approximation ff(z) is optimally truncated, the saddle
point of the integral representation of Dingle’s terminant will coincide with the
subdominant saddle point and therefore with the pole of the integrand.

(4) The method of steepest descent, applied to the integrand détimenant
replaces the integrand’s sharp peak at its saddle point with a Gaussian function,
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Table IV. Theory of Stokes phenomenon and resurgence

Description Special functions References
Fundamental theory Ecalle [123]
Quantum eigenproblems Anharmonic oscillator ~ Voros [301—303, 305, 306]

generalized zeta funcs.

Critical phenomena Zinn-Justin
(monograph) [328]

Erfc smoothing of Dawson’s integral, Bi Berry (1989a) [24]
Stokes phenomenon Airy function Ai Berry (1989b) [25]
Various integrals Jones [155-157]

Olver [250], McLeod [200]

Hyperasymptotics Berry and Howls [35]
Diffraction catastrophes, Berry and Howls [36]
Waves near Stokes lines Berry [26]

Adiabatic quantum transitions Berry [27]

3 (eigenvalue) Airy function Wood

exponentially small and Paris [322, 321, 259]
2d order ODEs Hanson [138]
Hyperasymptotics with saddles Berry and Howls [37]
Infinitely many Stokes smoothings Gamma function Berry [28]
Superfactorial series Berry [29]

Uniform hyperasymptotics Generalized Olver [251]

with error bounds exponential integral

Uniform exponentially-improved Confluent Olver [252]
asymptotics with Hypergeometric functions

error bounds

Transcendentally small reflection 2d order ODEs Gingold and Hu [132]
Multisummability Martinet and Ramis [198]
Confluent hypergeometric Olde Daalhuis [237],
Olver [253]
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Table IV. Theory of Stokes phenomenon and resurgence (continued)

Description Special functions References

Stokes phenomenon: Paris [256, 257]
Mellin—Barnes integral
and high-order ODEs

Exponential asymptotics Gamma function Paris and Wood [259]
Smoothing Stokes discontinuities

Coalescing saddles Berry and Howls [38]
Brief (4 pg.) review Berry and Howils [39]
Superadiabatic renormalization Berry and Lim [42]
ODEs Fifth-order KdV Eq. Tovbis [293]

Steepest descent: Error bounds W. Boyd [78]
Stokes phenomenon Olde Daalhuis [238]

and hyperasymptotics

Ecalle ‘alien calculus’ REVIEW (in French)  Candelpergkéal.[90]
Overlapping Stokes smoothings Berry and Howls [40]
Quantum billiards Berry and Howils [41]
Ecalle theory REVIEW Delabaere [112]

Weyl expansion [148]

Reduction of theories Philosophy of science  Berry [33]

Stokes phenomenon W. Boyd [77]

and Stieltjes transforms
Coefficients of ODEs Olver [254]

ODEs: irregular singularities Olde Daalhuis
and Olver [244, 245, 247]

Steepest descent Gamma function W. Boyd [79]

Higher order ODEs Olde Daalhuis [239, 241]
Murphy and Wood [228]
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Table IV. Theory of Stokes phenomenon and resurgence (continued)

Description Special functions  References

Matched asymptotics Olde Daalhasal.[243]
and Stokes phenomenon

Stokes multipliers: Olde Daalhuis

Linear ODEs and Olver (1995b) [246]
Multisummability Balser [12—-17, 81]
Quantum resurgence Voros [304]
Riemann-Siegel expansion Zeta function Berry [34]

ODEs Dunster [121]

Brief reviews Paris and Wood [260, 320]
Multidimensional integrals Howls [147]

Steepest descent ODEs W. Boyd [80]
Multisummability; Gevrey separation Ramis and Schafke [266]
Quantum eigenproblem Quartic oscillator  Delabaere and Pham [113]
Re-expansion of remainders Integrals Byatt-Smith [87]

thereby reducing the asymptotics of the terminant to that of a Gaussian divided
by a simple pole at the origin.

(5) If we allow the small parameteror the equivalent large parameter= 1/¢,
to move a little wayé off the Stokes line, the terminant integral becomes
the Fourier transform of a Gaussian divided by a pole at (or very near) the
maximum of the Gaussian.

(6) The Fourier transform of a Gaussian divided by a pole is that of the integral of
the Fourier transform of the Gaussian, which is the error function erf.

To illustrate these ideas, define the ‘singulafitvia

F=3{z(p(ty) — (1)}, (76)

wherer, andr_ are the two saddle points on the steepest descent contour and
where thez; are the coefficients of the inverse power series. (The real part of the
difference betweeng () at the two points is zero along a Stokes line, and this
can be used to define a Stokes line.) The singulant is proportional to some positive
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power of the large parameteso that the inverse power seriegioan be expressed
as inverse powers df.
The Stokes multipliet may then balefinedoy

Nopt(2)
f(@) ~expzo(ty))y04+(2) Z ajF_"'J“’S_1 +iMo_(z)exp(—=F) ¢, (77)

j=0
where Nop denotes the optimal truncation of the asymptotic series for a given
o+(z) are slowly varying factors of (usually proportional to @owerof z rather
than an exponential)3 depends on the class of asymptotic approximation, and
the coefficients have been scaled so that= 1 by absorbing factors inte.. if
necessary. (For steepest descent as discussedfhete]l, but other values do
occur when the integral involves a contribution from an endpoint of integration
interval or certain other classes of asymptotics [25].) This definition is equivalent
to

eX[XF) Nopt(F) '
M= —i {f(z) exp(—z¢ (1)) — o4 (2) Z a; F‘"*ﬂ_l}. (78)

o(z) =

Replacingf (z) exp(—z¢ (z4.)) by the infinite asymptotic series and subtracting

M~—iexp(F)“+(Z){ 3 a.,-F_jJ“ﬂ}. (79)

I~ (Z) J=Nopt(F)+1

Note F is real and positive on the Stokes line.

The next step is to sum the series for the Stokes multiplier via Borel summation.
The follow-up is crucial: instead of employing the exact power series coefficients
a; inthe Borel sum, we use the asymptotic approximation to thejn-asoco. This
is legitimate since onlyate terms, i.e., those fof > Non(F), appear in the sum.
This approximates the Stokes multiplier in terms of Dingle’s singular terminant
An(F).

To illustrate this general strategy, we shall return to the specific example of the
Airy function, which has the asymptotic approximation

1
Nea

Ai(z) ~ 774 (E_ +iME,)}, (80)

where

_ eXpE(2/3)2¥%) S~ (1 +5/6)T'(n + 1/6)
== I(5/6)I'(1/6) ~  Th+DEFF"

(81)

The Stokes’ multiplietm is zero when ar@r) = 0 and is unity when ar@) = .
Dingle’s singulant is defined by

4
F = —§Z3/2 (82)
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which as always is the difference between the arguments of the two exponentials
in the asymptotic approximation. Note the sign conventibris negative when
and¢ are real and positive.

If the coefficients of the asymptotic series fBr, which is the dominant ex-
poninant exponential near the Stokes line atarg= (2/3)x, are denoted by,
then the argument given above implies that

M~ —i exp(F){ Z a.,-Fj} (83)
J=Nopt(F)+1
[ele] 1 .
~ — — (i —=—1D'F/
zexp(F){' > (= DIF } (84)
J=Nopt(F)+1
i 1
~ - F(1—t))tVor—— dr. 85
5 | e e (85)

In the second line, we have replaced theby their asymptotic approximation as

Jj — oo [derived through the large degree asymptotics of the gamma functions
plus the identityl" (1/6)I" (5/6) = 2r]. The third line was derived from the second

by taking the Borel sum of the series, which happens to be an integral with an
integrand that can be written down explicitly. We can check that the integral is
correct by expanding the integrand abeut= 0 and then integrating term-by-
term. The integral is, with a change in integration variable, proportional to Dingle’s
singular terminant.

The integral is not completely specified until one makes a choice about how to
deal with the pole on the path of the integration. Since we know that for the Airy
function, Stokes’ multiplier must increase from 0 for real, positite 1 for real,
negativez, the proper choice is to indent the path of integratimovethe pole.

The integral is also not fully determined until the optimal truncatiyy; has
been identified. However, the coefficients asymptotic seriegfqrwhich is the
multiplier of the exponential which is dominant near the Stokes linézarg-

2 /3, are asympotically factorials, just the same as for the Stieltjes function (Equa-
tion (81)). This implies that our earlier analysis fSte) applies here, too, to
suggest

WhenF is real and positive, that is, wheris on the Stokes line, the factor
X = exp(F(L— 1)tV = exp{F (1 — t) + Noptlog(#)} (87)

has its maximum at = 1, which coincides with the singularity of the factgf(1—

t) which is rest of integrand for the Stokes multiplier. This coincidence of the
saddle point with the pole requires only a slight modification of standard descent
to approximateM near the Stokes line. Wong [319, p. 356—360] gives a good
discussion, attributing the original analysis to van der Waerden [296].
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The key idea is to expand the factpias a power series abaut= 1, rather than
the saddle point, which is slightly shifted away fran= 1 when3(F) # 0. Let
T =t — 1andF = F; + i Fin,. Furthermore, since the integral is strongly peaked
aboutT = 0, the lower limit of integration has been extended from= —1 to
—o0. The Stokes multiplier is approximately

M= — h ex | Fn T 1F2T2 ! dr (88)
=T o - p 1 Fim 5 T
where terms of @I'®) in the exponential have been neglected.

This approximation is just the Fourier transform of a Gaussian function
(exp(—(1/2) F2T), divided byiT. The identity

—i > 1 1 1 X
lim — —ik —a’k? dk = = + Zerf = 89
BILnOZT[/OOeXp( ikx) exp(—a )(k+i5) 2—|-2er (2a> (89)

shows that the Stokes multiplier is

1 1 Fim
M==+Zerf =) 90
273 («/ZFr) (%0)

Figure 11 shows that this approximation is very accurate.

The error function does not cover all cases; Chapman [95] has shown that other
smoothing functions are needed in some circumstances. However, the comple-
mentary error function does remove the ‘Victorian discontinuity’ of Stokes for a
remarkably wide class of functions.

14. Matched Asymptotic Expansions in the Complex Plane: The PKKS
Method

In ‘above-the-barrier’ quantum scattering, there are no turning points where the
coefficient of the undifferentiated term in the Schrédinger equation is zero except at
complex values of the spatial coordinate. When there are real-valued turning points,
it was discovered in the 1920s that the scattering — including the exponentially
small transmission through the barrier — can be computed by means of the so-called
turning point connection formulas. (The transmission coefficient can be calculated
without heroics because the exponentially small transmitted wave vghbke so-
lution on the far side of the barrier, isolating it from terms proportional to powers of
¢ as noted earlier.) Later, it was shown that the connection formulas are really just
a special case of the method of matched asymptotic expansions [229, 20, 21]. The
solution in the neighborhood of the turning point can be expressed (to lowest order)
in terms of the Airy function Ai. This is matched to standard WKB approximations
which describe the solution everywhere else.

For ‘above-the-barrier’ scattering, however, what is one to do? Pokrovskii and
Khalatnikov [262] had a flash of insight: actually, thame turning points, but only
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Stokes multiplier, approximated by terminant
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Figure 11. Solid: contours of the integral approximating the Stokes multiplier for the Airy
function. Dashed: contours of the error function approximation to this integral. The solid
and dashed contours are almost indistinguishable, which is a graphical demonstration that
the steepest descent approximation to the integral is very accurate.

for complexx. In the vicinity of these off-the-real-axis turning points, the reflected
wave isnot small, so the usual connection formulas apply with only minor modifi-
cations. The amplitude of the reflected wave decays exponentialiyxas— 0 so
that, on the reat-axis, the reflection coefficient is exponentially small jfz lthe
inverse width of the barrier.

Kruskal and Segur [171, 172, 278] showed that matching expansions at off-
the-real-axis critical points was a powerful method for nonlinear problems, too.
Their first application resolved a forty year old conundrum in the formation of
multi-branched fingers (‘dendrites’) on a solid-liquid interface. The unique length
scale observed in the laboratory is imposed by surface tension. However, the scale-
selecting effect lies ‘beyond all orders’ in a power series expansion in the sur-
face tension parameter. Their method, which we shall henceforth call the ‘PKKS’
[Pokrovskii-Khalatnikov—Kruskal-Segur] scheme for short, has been widely used
for weakly nonlocal solitary waves (Table III).

To illustrate the PKKS method, we shall apply it to the linear problem:

Uy +u = f(ex), (91)
* Pokrovskii relates an amusing story: when he presented his work to the Nobel laureate, Lev

Landau, the great man thought he and Khalatnikov were crazy! He eventually changed his mind
[261].
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where f (x) will be restricted to functions that (i) decay exponentiallyds— oo
on and near the real axis and (ii) have a complex conjugate pair of double poles at
x = =i as the singularities nearest the real axis and (iii) are symmetric with respect
tox = 0, thatis,f(x) = f(—x). This seems like a rather special and restrictive
problem. However, as Dingle observed long ago, every simple example is a master-
key to an entire class of problems, as we shall show. This linear problem is identical
to that solved earlier, Equation (26), except for the sign of the undifferentiated term
in u.

We shall impose the boundary condition that

u~ asin(|x|) as|x| - oo (92)

for some constant which will be determined as part of the solution. This excludes
the homogeneous solutions 6 and cosx) so as to yield a unique solution. (Note
the absolute value bars inside the argument of the sine function in the boundary
condition.)

The PKKS method has the following steps:

(1) Identify the singularities or critical points which are nearest thexreatis.

(2) Define an ‘inner’ problem, that is, a perturbative scheme which is valid in the
neighborhood of one of these critical points, using a complex coordinate
whose origin is at the critical point.

(3) Asymptotically solve the ‘inner’ problem as| — oo, that is, compute the
‘outer limit of the inner solution’.

(4) Sum the divergent outer limit of the inner problem by Borel summation or
otherwise determine the connection formula, that is, the magnitude and phase
of the discontinuity along the Stokes line radiating from the critical point to
the realx-axis.

(5) Match the outer limit of the inner solution to the inner limit of the outer
expansion.

(6) Continue the matched outer expansion back to thexr@axis to compute the
(exponentially small) magnitude of the Stokes jump for neal

The domains of the ‘inner’ and 'outer’ regions are illustrated in Figure 12.
Step one has already been accomplished by the specification of the problem: the
relevant critical points are the double polesf@x) atx = +i /e where the change
of variable fromx to ex has reduced the residues tted The shifted coordinate
(for matching in the upper half-plane) is

y=x—ife. (93)

Step two pivots on the observation that in the vicinity of its double pole, it is a
legitimate approximation to replacé(ex) by the singular term only, even though
this is a poor approximation everywhere except near the pole. The inner problem
is then

Uy, +U=1/y* U =¢é%. (94)
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Figure 12. (a) [Upper left corner] Schematic of complexplane wherey is the shifted co-
ordinate. (The real axis in the original coordinatés the arrow at the bottom.) The location
of the double pole (ay = 0) is the large solid dot at top. The ‘matching’ region, shaped
like a half annulus, is where both the inner and outer solutions are valid, allowing them to
be matched. (b) [Upper right corner] The compleplane where is the integration variable
for the Borel-logarithm function, B@). The four large black discs show the location of the
logarithmic singularity of the integrand for four different values of(ayg The branch cut
(cross-hatched lines) goesits for all cases. As ar@) increases, the location of the branch
cut rotates clockwise. For arg) < —m/2, the branch cut crosses the realxis as shown in
the lower right half diagram. (c) [Bottom half of the figure]. Both left and right panels illustrate
the path of integration in the complexplane (heavy, patterned curves) and the branch cuts
for the logarithm of the integrand (cross-hatched lines). The left diagram shows the situation
when ardgy) = —n /4, or any other point such that the branch point is in the upper half of
thet-plane: the branch cut does not cross the real axis. Whem)arg —r /2 [right, bottom
diagram], the integration path must be deformed below thetraals to avoid crossing the
branch cut. The integration around the branch cut adds an additional contribution.

Step three, computing an outer expansion for the inner problem, is obtained by
an inverse power series in

* (=1)it2j — 1)
U~ )y(zjj %, (95)

j=1
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For the inner problem to be sensible| « 1/¢. For the inverse power series to be
an accurate approximation to the inner solution, we must have> 1. It follows
that the inverse power series is a good approximation only in the annulus

1<yl K e (96)

It is fair to dub this annulus the ‘matching region’ because it will turn out that
the inner limit of the outer expansion will also be legitimate in this annulus. How-
ever, ‘annulus’ is a slightly misleading label because Equation (96) ignores Stokes
phenomenon, which will limit the validity of Equation (95) to a sector of the
annulus.

To sort out Stokes phenomenon, itis helpful to sum the divergent series by Borel
summation. For this simple case, the Borel transform can be written in closed form
to give, without approximation,

UO) = (1/2Bo(y);  Bo(y) = / exp(—1) log(L + 2/y2 dr.  (97)
0

The integrand is logarithmically singular at= +iy. As the argument of varies
from 0 to —x, that is, through a semicircle in the lower half of theolane, the
singularity initially in the upper half of the-plane rotates clockwise through a
semicircle in the right half of the-plane to exchange places with the other branch
point. As ardy) passes through-7/2, that is, through the negative imaginary
y-axis, the branch points of the ‘Borel-logarithm’ function 8® are forced to
cross the real-axis. To avoid discontinuously redefining the branch points of the
logarithm in the integrand, the path of integration must be deformed to pass below
the reals-axis (in the right halt-plane). This gives an extra contribution which is
the Stokes jump for this function with the negative imagingigxis as the Stokes
line. One finds

Bo(y) — Bo(—y) = 2mi exp(—iy). (98)

The positive and negative reglaxis are the anti-Stokes lines for 89.
The outer expansion is the same as the multiple scales series for Equation (26)
except for alternating signs. The final result on the reakis is

d?/
b4 5 A f
—S—exp(——> E (-1 /dX2/ x =0,

2
— exp(——) + Z( 1)/ % Xzf/ x <0,

where the outer expansion has been written in terms of derivativggeaf) =
f(X) with respect to the ‘slow’ variabl& = ex to explicitly, rather than implic-
itly, display the dependence of thiéh term ons?/.
Extrapolating back to the real axis reduces the magnitude of the jump by
exp(—x,/e) = exp(—1/e) wherex, /¢ is simply the distance of the singularity from

u(x) ~ (99)
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the realx-axis. Note that the exponential dependence @ncontrolledentirely by
x,/¢; the strength of the residue and the type of singularity (simple pole, double
pole or logarithm) only alters factors that vary as powers of slower.

We chose this particular example because the theory of Pomeau, Ramani and
Grammaticos [263] for the Fifth-Order Korteweg—deVries equation, later extended
to higher order by Grimshaw and Joshi [134], is very similar. In particular, the
dominant singularities — in their case, of the lowest order approximation to the
solitary wave — are also double poles on the imaginary axis. It is also true that the
outer limit of the inner solution is the Borel-logarithm function, ®Bp [to lowest
order]. Consequently, the lowest order theory for thiglinear eigenvalugrob-
lem is almost identical to that for thisyear, inhomogeneougroblem. The major
difference is that the nonlinearity multiplies B9 by a constant which can only be
determined numerically by extrapolating the recurrence relation. The early terms
of the series in inverse powers ofin the matching region is strongly affected by
the nonlinearity, but the coefficienésymptotdo those of Bgy), another triumph
of Dingle’s maxim: Always look at the late terms where a whole class of problems
asymptote to the same, common form.

As noted by a reviewer, the integral for Bo can be integrated by parts to express
it as the sum of two Dingle terminants, and the connection formulae can then be
evaluated through residues. This alternative derivation of the same answer empha-
sizes the remarkable universality of hyperasymptotics; again and again, one keeps
falling over the same small set of terminants.

Table lll records many successes for the PKKS method, but it is a curious
success. It is @eneraltruth that theexponentialdependence on is controlled
entirely byx,, the distance from the relevant singularities or critical points to the
real axis. This is usually almost trivial to determine. Roughly 90% of the work
of the PKKS method is in determining the ‘prefactor’, that is, the product of a
constant timesalgebraicfactors ofe, such as logarithms and powers, which multi-
plies the exponential. Not only is the determination of the prefactor (comparatively)
arduous, but the final step of determining the overall multiplicative constant must
always be done numerically. Pomeau, Ramani and Grammaticos and later workers
such as Akylas and Yang [5] and Boyd [68] have simplified the numerical bit
to extrapolating a sequence derived from a recurrence, a task much easier than
directly solving a differential equation. However, the fact that the PKKS method is
an analytical method that is not entirely analytic gives much ground to alternatives
such as spectral methods which are discussed later.

15. Snares and Worries: Remote but Dominant Saddle Points, Ghosts,
Interval-Extension and Sensitivity

There are, so to speak, in the mathematical country, precipices and pit-shafts down
which it would be possible to fall, but that need not deter us from walking about.

Lewis F. Richardson (1925)
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More subtle perils in deriving even the lowest order correctly also lurk. Balian,
Parisi and Voros [11] describe an integral where the convergence is controlled by
a saddle point at = 2, but the error is dominated by the exponentially larger
contributions of another saddle pointrat 3. Their function is

I(z) = / N exp(—z{36:* — 20r® + 3t*}) dr. (100)

For largez, the integrand is steeply peaked about the dominant saddle poiat @t
(Figure 13). The contributions of the other two saddle points will be proportional
to the integrand evaluated at these saddle points:

exp(—zo (t = 2)) = exp(—32), exp(—z¢(t = 3)) = exp(—27z). (101)

Because the saddle pointszat= 2 controls convergence, the smallest term in the
asymptotic series for a givenwill be O(exp(—32;)), so we would expect this to

be the magnitude of the error in the optimally-truncated series in inverse powers
of z. In reality, the superasymptotic error is dominated by the contribution of the
saddle point at = 3, which is Qexp(—27z)) and therefore larger than the smallest
term in the optimally-truncated series byep(5z)).

One of the charms of resurgence theory is that during the early stages, all saddle
points are treated equally. This ‘saddle point democracy’ is valuable in detecting
such pathologies, and correctly retaining the contributions of all the important sad-
dle points. Still, if the asymptotic series is derived not from an integral but directly
from a differential equation so that no information is available but the coefficients
of the series, it would be easy to be fooled, and assume that the magnitude of the
smallest retained term was a genuine estimate of the superasymptotic error.

Fortunately, it appears that this is rare in practice. The applied mathematical
landscape is littered with deep sinkholes which fortunately have an area of measure
zero. The Balian—Parisi—Voros example was contrived by its authors rather than
derived from a real application. However, related difficulties are not contrived.

For the so-calle@* breather problem [278, 58], the convergence of the diver-
gent series is controlled by the constant in the Fourier series with an expected
minimum error of Qexp(—v/27/(2¢))). However, the far field radiation has a
magnitudex which has been shown to be(@&p(—+/67/(2¢))). Thus, after the
g-power series has been truncated at optimal order and subtracted from the solu-
tion, the correction is still exponentially large érrelative to the weakly nonlocal
radiation. Complex-plane matched asymptotics is not inconvenienced [278], but
the hyperasymptotic method of Boyd [67] would likely fail.

Another danger is illustrated by the function

f(e) = S(e) + exp(—(1/2)/e), (102)

whereS(¢) is the Stieltjes function. The asymptotic expansion for this function is
thesameas for the Stieljes function; because éx\91/2)/¢) and all its derivatives
vanish ase — oo, this function makes no contribution to the divergent power
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Figure 13. The integrand of the example of Balian, Parisi and Voros(-€x¥p. The dominant
saddle point is at = 0. The secondary peak (saddle pointj at 2 controls the asymptotic
form of the coefficients of the asymptotic series; because of it, the series/thw donverges
only for |lw| < |w(t = 2)|. However, the contribution of the more distant saddle point
atr = 3 dominates the error. The terms of the power series/inréach a minimum at
roughly exg—z¢ (r = 2)), but the error in the optimally-truncated series is exponentially
large compared to this minimum term, being roughly @xgp (t = 3)).

series off (¢). It follows that if we manipulate the power series in the usual way,
we arrive at a superasymptotic approximation which, from the size of the smallest
term, has an erroapparentlyof O(exp(—1/¢). Adding a Dingle terminant gives

a hyperasymptotic approximation of even smaller error — more fool we! Because
we are approximating’ (¢) (at best!) by the Stieltjes functiofi(¢), the error is
actually the magnitude of the second term — exponentially larger thar-é&xp).

Quick to defend the honor of hyperasymptotics, a reviewer argued that this is
merely a problem of definition. An engineer’s answer: a wrong answer is never
just a matter of definition, but rather a good reason to lie awake at night, and retain
a lawyer.

Weakly nonlocal solitary waves are a nontrivial example of phenomena with ex-
ponentially small ‘ghosts’: the solitons can be expanded in nontrivial power series
in e, but the amplituder of the sinusoidal oscillations of the soliton for large is
proportional to exp—p/¢) for some constant. The terms in the power series are,
in the simplest cases, powers of seoh) and therefore each term individually de-
cays exponentially fast 48| — oo. It follows that standard acceleration methods
must fail because reweighting the terms of the power series still gives nothing at
infinity, and thus misses the far field oscillations completely. The Dingle terminants

ACAP1276.tex; 7/05/1999; 9:15; p.54



EXPONENTIAL ASYMPTOTICS 55

method, which is based on the asymptotics of the power series coefficients, has
never been successfully applied to this sort of problem either.

Fortunately, the PKKS method, spectral algorithms, the spectral space asymp-
totics of Akylas and Yang [5, 325, 326] and the hyperasymptotic scheme of Boyd
[68] all work well for nonlocal solitary waves. Nevertheless, the failure of some
alternative schemes for this class of problems because the quantity of interest is
invisible to the power series are vivid reminders of the truism: Fear and caution are
healthy character traits in an applied mathematician!

Another pitfall is extending the interval of integration to infinity. For exam-
ple, the Bessel functiolfiy(z) has a representation that is an integral ovéiniée
interval:

4

Io(2) = % exp(z) exp(z[cogr) — 1]) dr. (103)

Without approximation, we can make the change of variablé 2 1 — cog¢) to
obtain

Io(2) = = ' 2 1
o(z) = ; exp(z) 9 exp(—&w )m dw. (104)

The usual procedure is to expand the/IL — w? as a power series, extend the
interval of integration tav € [—o0, oc], and integrate term-by-term to obtain the
expansion given in most references:

1/2 1, ,
Io(z) ~ eXIXZ)(Zn_—Z> {1 + =Tt ==t } (105)

The sole reason for the divergence of this series is the extension of the interval.
If we expand and integrate term-by-term on the original intesvak [—1, 1],
the result is a series thabnverges- albeit rather slowly because the radius of
convergence of the power series under the integrand is just equal to the limit of
integration so that the terms of the integrated series decrease oniit55/®) for
the coefficient of 1z/ in the series. Why, then, is interval-extension so ubiquitous
in asymptotics?

The answer is two-fold. First, the terms of the series are greatly simplified at the
price of divergence. The one-term approximation is simplified from an error func-
tion to a Gaussian, for example, and the higher order terms of the convergent series
become more and more complicated; to the same order as above, the convergent
series is

lo(z) = %eXD(z){,/ZLZ erf(v2z) +

\/i erf(v2z)  lexp(=22)
W2 Teez T4
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3
+ oegea( — 12VEexp(-20) — 16Y 2 exp(—20) +

+3V2r erf(V22)) } (106)

The second reason is that because the convergent series is only slowly convergent,
it is far from obvious that the error can be reduced much below the superas-
ymptotic limit unless one uses a very large number of terms in the convergent
series. It is more practical to restrigtto such large values that the superasymp-
totic approximation is acceptably accurate, and use the ordinary Taylor series for
smallerz.

Another snare is that exponentially small quantities, when paired with a non-
trivial powers, are often extremely sensitive to small changes in parameters. For
example, the solution of the differential equation equation

Uy, + u = sechex) + 2 Yd(e)(2n — 1)! sech’ (ex) (107)

asymptotes to a sinusoidal oscillation with an amplitude), which is an expo-
nential function of Xe. One can choose an(D functiond(e) such thatx(e) is
zero. And yet ife = 1/10 andn = 3, the second term in the forcing is more than a
thousand times smaller than the first!

The moral is that in physical applications, it is not sufficient merely to calcu-
late the exponentially small effects. One must also look at how small perturba-
tions of the idealized problem might drastically change the exponentially small
contributions.

16. Asymptotics as Hyperasymptotics for Chebyshev, Fourier and Other
Spectral Methods

One important but neglected area of asymptotics is humerical analysis, specifi-
cally, approximations to the error as a function of the grid spagir(@r other
discretization parameters). For the familiar numerical integration scheme known
as the trapezoidal rule, for example, which is defined by

1 11 1 Mt
IE/O g(y)dy ~ Eﬂ{ég(o)'i‘ég(l)-i-;g(M)}s (108)
where the grid spacing is
h=1/M, (109)

the Euler—Maclaurin sum formula gives the following asymptotic series for the
error [143]

N

. By . .
I—T~=>" n¥ —(2;;;! [e¥ V) — g¥V0)} + Ey, (110)

j=1
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where theB,; are the Bernoulli numbers and the error is

Ban 2
Ev = _h2N+27 (2N+2) 111
N 2N + 2 (é) (111)

with & a point somewhere on the interval [0, 1].

Elementary numerical analysis courses usually stop with the observation that
since the leading term is proportional/té, the trapezoidal rule is a ‘second order’
method. However, the series in powersho€ontains hidden depths. First, if the
rule is applied twice with different grid spacingsand Z, one can take a weighted
difference ofT (k) andT (2h) such that the quadratic terms cancel in (110):

AT (h) — T (2h)
3

This improved integration scheme is ‘Simpson’s Rule’. This strategy can be iter-
ated to obtain methods of progressively higher accuracy and complexity not only
for quadrature schemes, but for finite difference approximations, too. The general-
ization to arbitrary order is known as ‘Richardson extrapolation’ [270, 271] or to
use his own term, ‘deferred approach to the limit'.

Second, if the integrang(x) is aperiodic function, theng?—%(1) = g%~1(0)
to all ordersj, and the error expansion reduces to the trivial one:

~ I + O(h™Y. (112)

I ~T+0h?>+0n*+0n®+ ... (113)

Within the Poincaré asymptotic framework, this suggests the trapezoidal rule is
exact for all periodic functions — Wrong!

The integral ofg(x) is proportional to the constant in the Fourier expansion of
g(x); the usual formula for the error in computing Fourier coefficients through the
trapezoidal rule [55] gives

o]

I—T=-> aj, (114)

j=1

where the{a;} are the exact Fourier cosine coefficientgof), i.e.,

1
a; = 2f0 g(x) coq2mj[x — 1/2]) dx. (115)

(Note that in (114), the degree of the Fourier coefficient is the product of the sum
variable j with N so that only everyth coefficient appears in the error series.)
For aperiodicfunction, it is known that

a; ~ v(j) eXp—2m 1)), (116)

where 11 is the absolute value of that singularity in the compleplane which
is closest to the real axis and where the prefactds an algebraic rather than
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exponential function off which depends on the type of singularity (simple pole,
logarithm, etc.). Inserting this into Equation (114) gives the correct conclusion that
for periodic functions, free of singularity for reg the error in the trapezoidal rule

is

I—T ~vexp—2rtu/h). (117)

In other words, the error lies beyond all orders in powers of the grid spacing
Presumably such exponential dependence/anldrks in the Euler—Maclaurin
series even for nonperiodic functions. We can confirm this suspicion by considering
a particular case: a functiogg(x) whose singularity nearest the interwak [0, 1]
is a simple pole of unit residue at= —o. In the limit that the order; — oo,
the (2j — 1)st derivative will be more and more dominated by this singularity.
(Recall that the convergence of the power series abbout the origin has a radius
of convergencer controlled by this nearest singularity, and that the coefficients
of the power series are the derivativesgaf) at the origin.) Using the known
asymptotics of the Bernoulli numberBy; ~ (—1)/-1(2/)!/(2%/~1x2/), we find
hZ/ﬁ 2j
2!
This implies one can obtain an improved trapezoidal rule by subtracting the leading
term of the hyperasymptotic approximation to the error in the ordinary trape-
zoidal rule. This is obtained by optimally-truncating the Euler—Maclaurin series
and approximating the error by a Dingle terminant:

Ey ~ AN(h—2>. (119)

4202

One important implication of the factorial divergence of the Euler—Maclaurin
series is that it shows that Richardson extrapolation will diverge, too, if applied
to arbitrarily high order foffixed 2. Romberg integration, which is a popular and
robust algorithm for numerical integration, does in fact employ Richardson extrap-
olation of arbitrary order. However, at each stage, the grid spdciadalved. In
the limit that I/ » and the order of Richardson extrapolatsimultaneouslyend to
infinity, the quadrature scheme converges.

Lyness and Ninham [190] noted this exponential dependencé lomljuadra-
ture errors nearly thirty years ago. Lyness has emphasized that the Euler—Maclaurin
series for the trapezoidal rule is closely related to a general formula for the coeffi-
cients of a Fourier series. His ‘FCAE’ [Fourier Coefficient Asymptotic Expansion]
takes the form [188, 189]

M
o — Z(_l)ﬁkflgz"—l(l) )
(2mrn)%

{g<z,,-—1>(1) _ g(zj—b(o)} ~ 2(=1)/ j — oo. (118)

22j 72j g 2]

k=1
(_1)M+l

1
+ i /O gD (%) sin2rn[x — 1/2]) dx (120)
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plus a similar series for the sine coefficients. It is derived by integration-by-parts.
As noted by Lyness, it is usually divergent.

As explained in the books by Boyd [55] and Canetal. [91], spectral meth-
ods usually employ a basis set so that the error is exponentially smallhirorl
equivalently, in the number of degrees of freeddf Fourier series, for exam-
ple, are restricted to periodic functions. Chebyshev polynomials give exponential
convergence even for nonperiodic functions, provided only fitaj is free of sin-
gularities onx € [—1, 1]. These polynomials are defined By(coq0]) = cogno)
so that the expansion ¢f(x) as a Chebyshev series is identical, under this change
of variable, with the Fourier expansion g{cog0)). The transformed function is
alwaysperiodic in6, so the error in truncating a Chebyshev series affeierms
decreases exponentially fast with For Chebyshev and Fourier spectral methods,
the power series ih is always the trivial one with zero coefficients.

It follows that all asymptotic approximations to Fourier, Chebyshev, and other
spectral coefficients for larg#f are implicitly hyperasymptotic (Table V). One
might object that this catalogue of asymptotics for orthogonal series is out of place
here because it is ‘beyond all orders’ [ifh only because the coefficients of all
powers ofz are zero. The main tools for the work of Elliott, Miller, Luke, Weide-
man and Boyd were steepest descents and the calculus of residues — no explicit use
of hyperasymptotic thinking at all.

Nevertheless, Table V makes several important points. First, much of hyper-
asympoticss steepest descent and the calculus of residues. In discussing the Stielt-
jes function earlier, for example, we noted that one could go beyond the superasym-
potic approximation by applying steepest descent to the error integral of the opti-
mally-truncateds power series. Similarly, the heart of the PKKS technique of
matched asymptotic expansions in the complex plane is the notion that the singu-
larities or other critical points closest to the real axis control the hyperasymptotic
behavior. The asymptotic behavior of the coefficients of orthogonal expansions is
likewise controlled by complex singularities. In both cases, the congtamide
the exponential factor, expq/¢) or exa—q/h), is simply the distance from the
dominant singularity to the reataxis*

Second, an important hyperasymptotic strategy is to isolate the exponentially
small contributions. For the large degree behavior of Chebyshev and Fourier co-
efficients, this isolation is a free gift, the result of choosing the sensible spectral
basis — Chebyshev or Legendre polynomials for nonperiodic problems, spherical
harmonics for problems on the surface of a sphere and so on. For less trivial
problems, the key to isolation is to subtract eptimally truncatedasymptotic
expansion. This is the justification for applying steepest descent to the error in-
tegral for Stieltjes function, for applying Euler’s method or other sum acceleration
scheme, for Dingle’s universal terminants and for Berry’'s smoothing of Stokes

* For Chebyshev series, ‘distance from the real axis’ means distance in the transformed coordi-
nated, the argument of the equivalent Fourier series, rather than the argument of the Chebyshev
polynomials,x = cog0).
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Table V. Asymptotics of Fourier, Chebyshev, Hermite and other spectral methods.

Functions

Comments

References

Entire functions,

Meromorphic functions,
Branch points ori—1, 1]

Entire functions,
f(x) when Laplace
transform known

Whittaker
Exponential integral,
Error integral,

Confluent hypergeometric

Whittaker

Many (monograph)

exp(—A/x) [Laguerre]
Contour integrals for
arbitrary f (x)

Stieltjes functions
Stieltjes functions
General
General

General

Entire functions

General

Entire functions:
Exp (Gaussian)

Error function

Uniform as well as
large asymptotics

Asymptotics for Meier
G-function [exact
Chebyshev functions]

Many (complicated)
exact coefficients
and asymptotics

Misleading title;

Elliott [124, 125]

Elliott and Szekeres [126]

Miller [227]

[230, 231]

Nemeth [232 —235]
éineth (1992) [236]

Wimp [317]

Luke [187]

Tuan and Elliott [295]
Elliott and Tuan [127]

‘Fourier’ coefficients are
Jacobi, Laguerre and Hermite coeffs.

Upper bound ¢h

Lower boung@® > 1 —r/2

Hermite functions

Rational Chebyshev

Fourier and Chebyshev

error envelopes
Chebyshev

Mapped Fourier
for infinite interval

Fourier coeffs.

Rational Chebyshev series

Boyd [49]
Boyd [49]
Boyd [48, 52]
Boyd [50, 53, 54]
Boyd (1990c) [59]

Ciasullo and Cochran [99]

Cloot and Weideman [102],
Weideman and Cloot [312]

Boyd [64]

Weideman [309—-311]

Note: g is the spectral ‘exponential index of convergence’ suchdhat exp(—constant?). r is
defined byr = limsup,_, o, 109 |b,|/(n logn)
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phenomenon. The difference between a quantity and its superasymptotic approx-
imation is as trivially isolated as the spectral coefficients of a Fourier series, for
which the superasymptotic approximation is zero.

Third, the asymptotics of spectral series and other numerical processes is a
relatively under-cultivated area. Can the ideas reviewed here lead to optimal order
Richardson extrapolation for numerical quadrature, various classes of differential
eqguations, and so on?

Fourth, there have been some limited but important excursions beyond con-
ventional asymptoatics in the analysis of the convergence of spectral series. For
example, Boyd's 1982 article on the optimization of Chebyshev methods on an
unbounded domain notes that there are two different species of contributions to the
asymptotic spectral coefficients: (i) saddle point contributions that depend on how
rapidly the functionf (x) being expanded decays|a$ — oo and (ii) contributions
from the poles and other singularities @fx). In the limit that the degree of
the rational Chebyshev coefficient tends to infinity for fixed value of the ‘map
parameter’L, one type of contribution will be exponentially large compared to
the other, and it is inconsistent (in the Poincaré sense of asymptotics) to retain the
other. Boyd points out that to optimize numerical efficiency, one should allow
to vary with the truncationv of the Chebyshev series. Convergence is optimized
when N and L simultaneouslytend to infinity in a certain way so that both the
pole and saddle point contributions are of equal order. This sort of analysis does
not explicitly use exponentially-improved asymptotics of the Dingle—Berry—Olver
sort. Nevertheless, hyperasymptotic thinking — considering the role of terms that at
first glance are exponentially small compared to the dominant terms — is absolutely
essential to this kind of numerical optimization.

A few other interesting studies of the role of exponential smallness in numerical
analysis have already been made. For example, the usual second order differential
equation for the nonlinear pendulumg, + sin(g) = 0, can be written as the
equivalent system

p:=sin(q), g =p, (121)
whereg is the angle of deflection of the pendulum with= 0 when the pendulum
is standing (unstably) on its head apds the momentum. Hakim and Mallick
[136] show that when the first equation is discretized by a forward difference and
the second equation by a backward difference, the system (121) becomes what in
dynamical systems theory, with a slight change in notation, is called the ‘standard

mapping’:
Pnt1 = Pn+TSING),  Gui1 = Gn + T Pui1. (122)

The usual numerical analysis description begins and ends with the statement that
this algorithm is second order accurate, that is, has an error which is proportional to
2. * Hakim and Mallick point out that there are also changes which are exponen-

* The one-sided differences are only first order, but by elimingtingne can show that the system
is equivalent to applying centered, 2d order differences to the second order differential equation.
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2R

Figure 14. Phase plane for the nonlinear pendulum. Left panel: trajectories for the exact solu-
tion. Right panel: trajectories when the differential equation is integrated by a finite difference
scheme, i.e., the ‘standard mapping’, wite= 1. The cross-hatched area is the region spanned
by a single chaotic trajectory. To avoid printer overload, the individual iterates were erased and
replaced by a uniform texture.

2n 0 T a

tially small in 1/t — and qualitatively different from the effects of finite differencing
which are proportional to powers of the timestep.

These changes are easiest to explain by examining the trajectories of the dif-
ferential equation and the difference system in the phase plane (Figure 14). The
nonlinear pendulum is an exactly integrable system, and all trajectories are peri-
odic. The closed curves in the phase plane represent side-to-side, small amplitude
oscillations of the pendulum. The open curves at top and bottom show trajectories
in which the pendulum swings through complete loops like a propeller. These two
species of trajectories are divided by the ‘separatrix’, which is a trajectory that
passes through = 0, the unstable equilibrium, with zero momentwnrhe sepa-
ratrix and trajectories near it are super-sensitive to perturbations because only a tiny
additional amount of momentum will suffice to push a large amplitude oscillation
over the top and thereby convert it into a propeller-like motion.

The difference system, alias ‘standard mapping’, is not integrable and has chaotic
solutions. When the time stepis very small, however, one would expect that in
some sense the difference and differential systems would be close to one another.
Indeed, trajectories away from the separatrix are not drastically altered by the dis-
cretization; finite differences give a good approximation to these trajectories of the
nonlinear pendulum. The neighborhood of the separatrix, however, dissolves into
chaotic motion. The incoming and outgoing separatrices from the equilibrium split
with a splitting angle at the point where the separatrices cross of approximately
[136, 180]
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The width of the region of chaos around the separatrices has a similar exponential
dependence.

The bland statement ‘the method is second order’ or even a formal expansion of
the errors in powers of the timestegompletely misses the spawning of this region
of chaos. Such exponentially small qualitative changes are perhaps less important
in the real world, where the original differential equation probably has regions of
chaotic motion anyway, than in the idealized world of exactly integrable systems
such as the nonlinear pendulum, the Korteweg—deVries equation and so on. Still, it
reiterates the theme that hyperasymptotics is important to numerical analysis.

Hakim and Mallick observe that the discretized system can be interpreted in two
ways: (i) a second order accurate approximation to the pendulum system or (ii) a
fourth order accurate approximation to a nonlinear differential equation which is
obtained by modifying the pendulum equation by the addition of a higher derivative
with a t-dependent coefficient. Although the second interpretation seems rather
artificial, it is also illuminating. Weakly nonlocal solitary waves and hydrodynamic
boundary layers arise in this same way through addition of a higher derivative with
a coefficient proportional to the small parameter. The result of such a singular per-
turbation is that the power series in the small parameter is divergent, and there are
effects which depend on the exponential of the reciprocal of the small parameter.

17. Numerical Methods for Exponential Smallness or: Poltergeist-Hunting
by the Numbers, I: Chebyshev and Fourier Spectral Methods

Because of the messiness of hyperasymptotic methods even for classical special
functions and ordinary differential equations, numerical algorithms are important
both as checks and as alternatives to hyperasymptotics. The exponential depen-
dence on l¢ for ¢ « 1 cries out for numerical schemes whose error also falls
exponentially with the number of degrees of freeddm Fortunately, Chebyshev
and Fourier spectral methods [55, 91] and also Padé approximants [9, 19] have this
property. In this section, we shall discuss spectral methods while Padé algorithms
are described in the following section.

However, when the unknown functiofi(e) has only a divergent power series
and also has contributions that lie beyond all orders, inoth the rate of conver-
gence and (sometimes) the methodology are altered. For example, when a function
f(x) which is analytic onx € [—1, 1] is expanded in a Chebyshev series, the error
decreasegeometricallywith M, the truncation of the Chebyshev series. In other
words, the erroi£,; = O(exp(—uM)) asM — oo.

When f(¢) has only a divergent power series abeut= 0, the Chebyshev
or other spectral series on an interval that includes this point will lack geometric
convergence. However, as long as the function is infinitely differentiable (with
bounded derivatives), it is easy to prove by integration-by-parts that the error must
decrease faster than any finite powenbf' C>°’ singularities do not defeat spectral
methods, but merely slow them down.
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By using the method of steepest descents, one can often show that the spectral
coefficients for functions which are infinitely-differentiable-but-nonananalytic on
the expansion are ‘subgeometric with exponential index of converg&nce

a, ~ v(n) exp(—un?), (124)

wherev is a prefactor that varies algebraically rather than exponentially avith
Elliott [124, 125] pioneered this method, but Miller [227] first applied it to esti-
mate Chebyshev coefficients for functions with divergent power series about one
endpoint of the expansion interval.

For example, denoting the coefficients of the corresponding divergent power
series byp, and the Chebyshev expansion intervalsby [0, y], Miller found for
S(e) andN(S(—¢)), respectively,

16n 1 n?/3
— (_ no\ ~ (—_ n - _ R S
b, = (=D"n! - a, ~ (1", | 3, exp(sy) exp( 3y1/3>’ (125)
[16m 1
bn = l’l’—)an'\'l(—l)n gexp<—§) X

(332 2/3 3 n?/3

(One can show that the error in truncating an exponentially convergent series after
the Nth term is proportional ta, as explained in [55, 73].) Note that even when
the asymptotic series imonotonig corresponding to a principal value integral with
asimple pole at = —1/¢ on the path of integration, the Chebyshev series still hap-
pily converges. However, roughly twice as many terms are needed to achieve the
same accuracy faR(S(—¢)) as forS(e) (Figure 15). Asymptotic approximations

to the subgeometrically decreasing Chebyshev coefficients for many other special
functions are given by Miller [227] and in the books by Luke [187] and Németh
[236]*

It easy to derive asymptotic approximations for Chebyshev or other spectral
coefficients for specific functions, but few general results are known. One such
theorem applies to the class of Stieltjes functions, which is defined to be the set of
all functions that can be written in the form

Fle) = / IO (127)
0

1+ et
for some positive semi-definite weight functipiy) such that the moment integrals

b, = foo t" o () dr (128)
0

* It appears from his English-language monograph thamdth independently derived many
asymptotic approximations in Hungarian-language articles in the mid-60’s.
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Figure 15. Chebyshev coefficients for the expansionor [0, 1] of the Stieltjes function,
S(e) [lower curve, circles] anei[S(—e)] (upper curve, solid).

exist for all nonnegative integers (These moments are also the coefficients of
the power series expansion ffe) aboute = 0.) W. G. C. Boyd has developed a
general theory for hyperasymptotics for Stieltjes functions.

J. P. Boyd [49, 51] showed that if the power series coefficients diverge! és
or(rn)!, i.e.,

lim supL =r (229)

n—oo nlogn

then the Chebyshev coefficients satisfy the inequalities

091(00ja ;7 (130)

> limsup
r+2 700 logn
Less precisely, the theorem implies that if the Chebyshev coefficients are decreas-
ing like O(exp(—un?)) for some constantg andg, theng must be smaller Ar +
2), implying subgeometric convergence forall- 0, i.e., all factorial divergence.
However, the exponential index of convergericeannot be smaller than-1 /2.

The integration-by-parts theorem shows that evenrfor 2, the convergence
of Chebyshev series is beyond all orders jiv1 However, it would be highly de-
sirable to extend Boyd'’s theorem to more general classes of asymptotic functions,
and perhaps sharpen it, too.

Berry [29] has shown that his error-function smoothing of Stokes phenomenon
applies even to several broad classes of functions whose coefficients diverge faster
than any factorial, so-called ‘superfactorial asymptotics’. His numerical illustration
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n

Figure 16. Solid with circles: The absolute values of the Chebyshev coefficignfsr the

expansion of Berry's superfactorial function, BeSA = 4) one¢ € [0, 1]. The thin dashed
curve, closely tracking the solid curve, illustrates the coefficients of-efx), which are
known to decay as exp-3 2/3 n2/3).

is the function
0 I’l2
BeSeg; A) ~ exp|l — )&"
s ~ Yoo( )

o 2
) \/Epv/ expl—A(t — (1/2) log(e))?} ar. (131)
- . 1— exp(2t)

where we have replaced hisy —(1/2) log(e) so that the asymptotic series is a
conventional power series. Figure 16 shows that Chebyshev polynomials have no
problem in providing a highly accurate approximation even though the power series
coefficients are blowing up like GaussiansiotUnfortunately, there are a hundred
papers on the asymptotics and hyperasymptotics of the confluent hypergeometric
function for every one on the asymptotics of spectral series.

When exponentially small effects are present, there are often algorithmic chal-
lenges present, too. Numerical checking of the prefactors in front gf-exfz) as
obtained by the PKKS matched asymptotics (or whatever) may be impossible in
single precision because the exponentially small quantity may fall below the single
precision threshold for moderate making it impossible to determine whether
numerical differences are due to errors in the asymptotics, or the neglected effects
of higher order terms at not-so-smallWhena was smaller by a factor of 168
than the core of the solitary wave, Boyd [71] humerically computed the radiation
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coefficientx to a relative precision of six decimal places by using 70 decimal place
arithmetic in Maple.

These calculations would seem to be very expensive since (i) spectral methods
generate full matrices instead of the sparse matrices produced by finite differences
and (ii) multiple precision arithmetic is excruciatingly slow in comparison to single
precision operations, which are executed directly in silicon. However, most spectral
solutions to boundary value and eigenvalue problems are performed with precon-
ditioning. That is to say, the bulk of the code for solving a differential equation in
multiple precision with spectral accuracy is to writéoav order finite difference
or finite element code to solve the inhomogeneous version of the problsingie
precision By repeatedly calling this finite difference solver, evaluating the residual
in multiple precisionwith spectralmethods at the end of each iteration, one can
obtain a multiple precision, spectrally accurate solution without ever factoring (or
even computing) the full, dense spectral matrix. By use of the Fast Fourier Trans-
form, the spectral evaluation of the residual of an ordinary differential equation
can be performed at a cost that grows g&v@g, N) operations wher&/ is the
number of degrees of freedom.

Another special difficulty that arises mostly in exponentially small phenomena
is that of solutions on the infinite interval which do not decay to zerdfgrbut
rather to sinusoidal oscillations. Two good strategies have been developed.

The first is to approximate the infinite interval by a large but spatially periodic
interval, and then expand the solution as a Fourier series. The drawback is that the
radiation coefficientr is sensitive to the spatial peria®l (modulo the wavelength
of the far field oscillationsW). However, the periodic solutions themselves are
often interesting. (In the atmosphere, for example, the solutiore\aegsperiodic
in latitude and longitude.) In addition, the paramea®giv is actually a manifesta-
tion of a genuine degree of freedom, the ‘phase facigrof the infinite interval.
Consequently, it is possible to trace the entire parameter space for the unbounded
domain by using the device of a large but periodic computational interval.

The second strategy is add one or more additional basis functions which are
chosen to mimic the required asymptotic behavior of the ‘wings’ of the weakly
nonlocal solitary wave (or whatever). When the width of the core structure is in-
versely proportional te and the wavenumber of the wing oscillationskis an
effective radiation basis function is

Prad(x) = H(x + s ¢) Sin(kfx + &)
+H(—x 4+ ®;¢)sintky —x + P), (132)

where a smoothed approximation to the step function is defined by
H(x;e) = (1/2){1 + tanhex)}. (133)

Boyd [60] has successfully applied a mixed basis of the rational Chebyshev polyno-
mials [53] plus a single ‘radiation function’ to compute quantum scattering in one
dimension. Boyd [62] shows that one can construct a basis function that depends
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nonlinearlyon its coefficient — which is an approximationde- so as to apply this
method even when the oscillations for lalgéare allowed to weakly self-interact,
as is inevitable for nonlinear differential equations.

Boyd [54] used rational Chebyshev functions on the semi-infinite interval to ap-
proximate the/y Bessel function. This asymptotes to a sinusoidal oscillation rather
than decaying, so a naive expansion in basis functions appropriate to an unbounded
interval will fail disastrously. Nevertheless, he wrote, in a form mimicking the large
x asymptotics,

1 .
Jo(x) ~ m{P(x) cosx — 7/4) + Q(x) sin(x — /4)}. (134)

Using a total of only 17 coefficients fdt (x) andQ(x) combined gave a maximum
absolute error of less thanx210~7 uniformlyonx e [0, co].

Numerical methods to replace divergent power series do demand some technol-
ogy which is not otherwise widely used. It is encouraging that now this technology
mostly exists and has been tested in applications.

18. Numerical Methods, II: Sequence Acceleration and Padé and
Hermite—Padé Approximants

Sequence acceleration or ‘summability’ methods have a long history [139, 318,
315, 316]. The Euler sum acceleration is an elderly but still potent algorithm as
already shown for the Stieltjes function. It is, however, but one of many schemes
in the literature. We must refer to specialized reviews [139, 318, 315, 316] for an
in depth discussion, but it is important to note one principle and one algorithm.

The principle is that acceleration methods are slaves to the oscillations of the
jth term in the series with respect o For alternating series, that is, those for
which the sign of thej + 1)st term is opposite the sign of thigh term, and for
nearly alternating series, acceleration methods are very effective. For monotonic
series, that is, expansions whose terms are all of the same sign, some different
but effective acceleration schemes are also known [315, 316]. However, when
the series is slowly oscillating in degrgebut not strictly monotonic, sequence
acceleration algorithms tend to perform very badly [70].

The [p/q] Padé approximant to a functiofi(e) is a polynomial of degree
divided by a polynomial of degreg which is chosen so that the leading terms of
the power series of the approximant match the fipst ¢ + 1) terms of the power
series of f(¢). The good news is that the Padé approximation usuaiywerges
even when the power series from whence it cativerges For example, it has
been rigorously proved that thi&/ /N1 approximant to the Stieltjes functiasy(e)
converges with an error that decreases proportional to-ek'/2/¢1/2) —in other
words, exponential but subgeometric convergence, similar to the Chebyshev series
for this function [19].

Unfortunately, the Padé approximant fails along the branch cut for the Stieltjes
function, which is the negative realaxis. Because the integral that defines the
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Stieltjes function has a pole on the integration path whisrreal and negative, the
function is not completely specified until we choose how the pole is treated. The
Stieltjes function is real-valued if the integral is interpreted as a Principal Value
integral, but has an imaginary part which is exponentially small/inifithe path

of integration is indented above or below the pole intipdane. That is,

1
1— et

S(—e) = PV/ exp(—1t) dr + i:ri:L exp(—1/e), (135)

0
where the sign of the imaginary part depends on whether the contour is idented
above or below the realaxis. Since the terms in the Stieltjes power seifgs) ~
Zf/’.io(—l)fj!, are all real-valued, one can prove that the coefficients of the nu-
merator and denominator polynomials in the Padé approximant are real, too. Even
if the approximants converged, they would inevitably miss the imaginary part of
S(—leD.

The same difficulty arises in quantum mechanics. For the quartic oscillator,
for example, the eigenvalug of the stationary Schrodinger equation is complex-
valued when the coupling constants negative; physically, the imaginary part is
the inverse of the lifetime of a metastable bound state, which eventually radiates
away from the local minimum of the potential energy. The exagE) is not
analytically known, but it does decrease exponentially fast wijtla|1Because
J(E) gives the lifetime of the state, and therefore the rate of radiation, it is a very
important quantity even when small. Ordinary Padé approximants fail when
real and negative, however, just as for the Stieltjes function. (In fact, it has been
proved that both the eigenvalue of the quartic oscillator $d belong to a class
of functions called Stieltjes fuctions, and thus are close cousins.)

Shafer [282] developed a generalized Padé approximant which has been used
successfully by several groups to calculate exponentially small imaginary parts of
guantum eigenvalues [300, 131, 280, 287, 281]. The approxinipkiyL/M] is
defined to be the solution of the quadratic equation

P(fIK/L/M1)?+ Qf[K/L/M]+ R =0, (136)

where the polynomial®, Q andR are of degree&’, L andM, respectively. These
polynomials are chosen so that the power series expansighkofL /M| agrees
with that of f through the firstv = K 4+ L + M + 1 terms. (The constants i and
Q can be set equal to one without loss of generality since these choices do not alter
the root of the equation, so the total number of degrees of freedom is as indicated.)
As for ordinary Padé approximants, the coefficients of the polynomials can be
computed by solving a matrix equation and the most accurate approximations are
obtained by choosing the polynomials to be of equal degree, so-called ‘diagonal’
approximants.

Figure 17 shows the diagonal approximant of the Stieltjes function for negative
reale; the polynomials for the [4/4/4] approximation are

P = 1— (160/3)¢ + (3680/3)c? + (3680/3)> + 7240:%,
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Stieltjes func. S on the cut e‘bs. Errors: Shafer Approx.
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Figure 17. Left panel: the real and imaginary parts of the Stieltjes function on the negative
real e-axis. Right: the absolute value of the absolute error for the real part (thin dashed) and

imaginary part (thick solid) part in thgl/4/4] Shafer approximant (top pair of curves) and
the[8/8/8] approximant (bottom solid and dashed curves).

0 = 1+ (22399)c — (2698/9)s? + (43658 3)c° + 5056,
R = —2— (1732/9)¢ — (7126/9)e% — (41504/3)c> — (2452/9)e*. (137)

The two roots of the quadratic equation give us the result of choosing to indent
the contour either above or below the path of integration; discarding the imaginary
part gives the Principal Value of the integral. T€/10/10] approximant gives a
maximum relative error for both parts of less thas 3076,

Shafer’s idea can be generalized to polynomials of higher degree in the approx-
imation. The result is usually called a ‘Hermite—Padé’ approximant. The quadratic
or ‘Shafer’ approximants seem to be quite successful for most quantum problems
[300, 131, 280, 287]. However, Sergeev and Goodson describe fast algorithms for
computing approximants of higher degree and also solve some problems where
such higher degree approximants, capable of representing cube roots and higher
branch points, are very useful [281].

Padé approximants have been generalized in several other directions, too [129].
Reinhardt [269] has developed a procedure udimgblePadé approximants which
works well even for monotonic, factorially-diverging series, including the compu-
tation of exponentially smali(E), although it has been largely displaced by Shafer
approximants. Another generalization is to approximftby the solution of an
ordinary differential equation ([10] and earlier references cited there) or a partial
differential equation ([97] and earlier articles therein) where again the coefficients
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of the differential equation are polynomialsdrchosen so the approximant has a
power series matching up to some finite order.

Padé methods have limitations; they seem to be quite useless for calculating
the exponentially small radiation coefficient of a weakly nonlocal solitary wave,
for example. Nonetheless, many problems in quantum mechanics have fallen to
Hermite—Padé approximants.

19. High-Order Hyperasymptotics versus Chebyshev and Hermite—Padé
Approximations

| wrote an analytical solution to a sixth order differential equation as a hypergeometric
integral, derived asymptotic approximations, matched the boundary conditions, and
finally went to a computer to make graphs. The machine took about a minute. Then |
solved the whole problem numerically, and the same machine took about two seconds.
That was the last analytical work | ever did!

R. E. Dickinson [115]

As illustrated by Dickinson’s amusing experience, very complicated analytical
answers are really just another form of numerical solution. High order asymptotic
and hyperasymptotic solutions are usually in this category because a long string
of terms adds little insight to the lowest term, only greater numerical accuracy.
Consequently, a proverb in perturbation theory is: One term: insight; several terms:
numerics.

If many terms, as opposed to three or four terms, are available, it is possible to
deduce some non-numerical information from the series such as the approximate
location of the convergence-limiting singularities in the complex plane (another use
of Darboux’s Principle!) However, this analytic information is mostly used only to
transform the series to improve the rate of convergence as described in van Dyke’s
book [298], for example. Fluid dynamicists are not too interested in branch points
at complex values of the spatial coordinates!

In the rest of this section, we shall focus on answering the question suggested
by these considerations: How useful are high order hyperasympintiogrically
in comparison to other numerical methods?

Although many books and articles on beyond-all-orders methods offer numeri-
cal tables, head-to-head comparisons between hyperasymptotics and other numer-
ical algorithms are rare. Most of the work catalogued in Table IV has a decidely
pre-computer spirit.

One reason for this lack of efficiency contests is that most software libraries
already have quite efficient routines for computing special functions. Typically, the
algorithms for computing Bessel and Airy functions, the Error Integral, and so on
employtwo expansions for each function. Through experimentation and theory, a
breakpoint¢ is chosen for each function. A convergent power series is used for
|z] < ¢ whereas a divergent expansion in form of an exponential or trigopnometric
pre-factor multiplied by a series of inverse powers 6§ employed forz| > ¢.

ACAP1276.tex; 7/05/1999; 9:15; p.71



72 JOHN P. BOYD

(The divergent series may actually be different expansions in different parts of the
complex plane because of Stokes’ phenomenon.) Hyperasymptotics might seem
like a natural way to add a few decimal places of additional accuracy.

Unfortunately, the extension beyond the superasymptotic approximation is a se-
ries of terminants like Equation (73). Olde Daalhuis [240, 242] has developed good
numerical methods for evaluating terminants, but the approximations are series of
hypergeometric functions which can only be evaluated by recurrence. This implies
that each terminant is itself as expensive to evaluate as the special function it helps
to approximate. Thus, terminant series are numerically inefficient. It is probably
more sensible to simply increase the ‘break point’ where the subroutine switches
from the power series to the inverse power series and also increase the number of
terms in each series.

In practice, both series are replaced by the equivalent Chebyshev series, which
converge faster and also are much more resistant to roundoff error. It is useful
to illustrate how easily these expansions can be derived to replace the standard
divergent asymptotic series.

For example, the Stieltjes functiciie) satisfies the ordinary differential equa-
tion

523—‘: +(14+e)S=1 (138)

For paper-and-pencil or symbolic language calculation, the simplest method is the
‘Lanczost-method’. He observed [177, 284] that if we perturb the right-hand side
of Equation (138) by a polynomial of degré¢, multiplied by an unknown con-
stantr, we can then solve this perturbed equatigactlyby a polynomial of degree
M. (Instead of the usual strategy approximatelysolving the exact differential
equation, the-methodexactlysolves arapproximatedifferential equation.) If the
perturbing polynomial is*, then ther-method yields the first/ terms of the
usual divergent power seriesdn

However, this is actually a rather stupid choice if the goal is uniform accuracy
on some intervaté € [0, z] wherez is a complex number. The power functief{
is extremely nonuniform — very small near the origin, but increasing very rapidly
away from it. The polynomial of degred (and leading coefficient of one) which
is most uniform or{0, z] is the shifted Chebyshev polynomigj; (¢/z) [177, 178,
55].

Table VI is a short code in the symbolic manipulation language Maple to solve
the ordinary differential equation

d
ezd—S +(A+e)S=1+1T;(/2) (139)
£

through a Chebyshev-method. The most important feature of the table is sim-
ply its brevity: all the necessary algebra is performed in exact, rational arithmetic
under the control of only nine lines of code! The choice of Maple is arbitrary;
the same calculation could be performed with equal brevity in any of the other
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Table VI. A Maple program to compute the Chebysheapproximation for the Stieltjes
function S(x).

# For brevity, epsilon is replaced hy

M :=8; M1:= M + 1; # degree of Chebyshev polynomial

# Next, compute the shifted Chebyshev polynoriial

T[0]:=1;T[1] :==2*y - 1;

for j from2 by 1toM doT[;]:=2*(2*y — )*T[j — 1] — T[j — 2]; od;

vy :=x/z; TM := simplify(T[M]));

S :=a0; for j from1by 1toN do S := S +a.j*x**j; od;

resid:= x*x*diff (S, x) + (1 + x)*S — 1 — tau*T M; resid:= collect(resid x);
for j from 0 by 1toM 1 do eq; := coeff(resid x, j); od;

egset= eq(0..M1); varset:= tau, a.(0..M); asol:= solveleqset varse}; assigriaso);
x := z; Srational:= simplify(S);

widely used symbolic algebra languages including Mathematica, MACSYMA and
Reduce. Boyd [55, 63] gives many examples of problem-solving via spectral meth-
ods in algebraic manipulation languages. Note that because all operations involve
polynomials, not transcendentals, the code also executes very speedily.

The Chebyshevw-result is rather messy: polynomial in rational inz. How-
ever, the Chebyshev (or Chebyshev-like) expansion will obviously converge most
rapidly when the expansion intervi, z] is small as possible for a given This
implies that for best results, one should chogse ¢. Making this substitution not
only optimizes accuracy for a given but also simplifies the result torational
function ofe alone. The = 8 approximation, which is a polynomial of degree 7
over a polynomial of degree 8, is

Ss = 16{4 + 124 + 13362 + 616&° + 12173* +
+895%° 4 173%% + 337}/
{256+ 8192 + 931842 + 473088 + 110880@“ +
+112896@° + 42336@° + 403267 + 31%8). (140)

Figure 18 shows that for small positigethis simple rational approximation is on
the whole a lot more useful than either the superasymptotic or hyperasymptotic
series.

Chebyshev polynomial approximations are usually polynomials rather than ra-
tional functions and are optimized for a particular line segment in the complex
plane. By computing symbolically, we have obtained an approximation that is more
complicated (because it is rational rather than polynomial) but has the great virtue
of being as accurate, for a given as the standard Chebyshev approximation of
degreeM along the segmen0, ] even where is complex-valued.
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In the previous section, we have already given the ordinary asymptotics of the
Chebyshev coefficients of the Stieltjes function. However, the comparison of con-
vergent Chebyshev series with divergent power series is not completely straight-
forward. The asymptotic series uses a number of tevnwvghich is inversely pro-
portional toe. What happens if we compare thé-term Chebyshev series on
the intervale € [0, 1/N] with the N-term optimally truncated power series for
e=1/N?

Through an elementary steepest descent analysis of the usual inner product inte-
grals for the coefficients of an orthogonal series, one finds thattheChebyshev
coefficient for the series 0, 1/N1] is (previously unpublished)

ay ~ 2.98VN exp(—2.723N)
~ 2987 Y2 exp(—2.723/¢). (141)

(One can show that the error in truncating the Chebyshev serieshafiemms is
proportional tazy [55, 73].) Intriguingly, the errors for Padé approximants and for
hyperasymptotics are of this same form:

|f — vl < exp(—q/e), N ~O(/e), (142)

where the constanj > 0 depends on the precise Chebyshev, Padé, or hyperas-
ymptotic scheme used. There are likely deep connections between these different
families of approximations which are now only dimly understood [51].

One can make more entertaining approximations by using other spectral basis
sets. For example, the rational Chebyshev functions are a good basis set for the
semi-infinite interval,x € [0, co]. Boyd [54] gives three examples in which the
usualpair of series — divergent series iryA for large x and convergent power
series for smalk — can be replaced by single expansion over the entire semi-
infinite range. The examples range from tkie Bessel function, which has a pole
at the origin, to the/y Bessel function, in which separate series multiply the sine
and cosine in the uniform approximations, to the ground state eigenvalue of the
guantum quartic oscillator as a function of the coupling constanthich is a
Stieltjes function with a factorially divergent power series about 0 [47, 19].

These uniform approximations are much complicated and converge more slowly

than the pair of Chebyshev series they replace, but have the advantage of avoid-
ing a conditional statement, which is needed in the traditional approach to switch

between large and smallapproximations.

Lastly, one must not overlook non-series alternatives. Schulten, Anderson and
Gordon [277] have developed an efficient subroutine to evaluate the Airy functions
at arbitrary points in the complex plane. Instead of using an asymptotic approxi-
mation for large|z|, they use a clever optimized Gaussian quadrature to directly
evaluate the integral representations for Ai and Bi, even on Stokes’ lines. Their
double precision code, which is accurate to at least 11 decimal places for all
(with use of the power series abaut= 0 near the origin) employs a maximum of
just six quadrature points!
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Figure 18. A comparison of the rational-Chebyshev approximatiofg versus the superas-
ymptotic and hyperasympotic approximations for the Stieltjes functi@), The three solid
curves plot the errors for each of the three methods verdfiacceptable accuracy for a given

¢ is a point in the unshaded region in the upper left corner, all three methods are satisfactory.
In the unshaded lower right region, none of the three approximations is sufficiently good
(although such tiny errors: 1 x 10E 12 can be achieved by simply using a Chebyshev
approximation of higher order). The vertical shading — most of the graph — shows where the
Chebyshev approximatiofig, a polynomial of degree 7 divided by degree 8, is successful,
but the asymptotic series fail because their minimum error is larger than the required tol-
erance. In the vertically-and-horizontally shaded area, both hyperasympoticg@ndare
successful. Finally, there is a tiny region of horizontal shading where only hyperasymptotics
is successful (though a Chebyshev approximation of higher ordeSg{anwould succeed).

The hyperasymptotic errors were calculated using the Berry—Howls scheme (where the errors
are Qexp(—2.386/¢)), but employing the more accurate hyperasymptotic methods of later
authors such as Olde Daalhuis would not change the theme of the graph.

Detailed comparisons between high order hyperasymptotics and other methods
of numerical approximation have not yet been carried out. Still, the examples and
illustrations above show that the comparison, except perhaps for special cases, is
likely to be unfavorable to high order asymptotics.

Although hyperasymptotics look comparable to Chebyshev and Padé schemes
whenN ~ O(e), the Chebyshev and Padé have the profound advantagenef
vergingas N — oo for fixed . Furthermore, these approximations are built
from ordinary polynomials whereas hyperasymptotic approximations are series
of hyperterminants, which in turn are approximated by series of hypergeometric
functions.
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There may be a few exceptions: problems where no alternatives are available.
In quantum chaology, Gutzwiller's divergent series for the quantum spectrum has
been summed using resurgence [182, 39]. The practical result has been greatly im-
proved energies for quantum mechanics odd-shaped billiard tables — idealized but
popular for testing theories [182, 39]. Another application is computing the zeros
of the Riemann zeta function, where resurgence has proved to be much better than
the best available competitor, the (un-resurgent) Riemann-Siegel formula [34].

Berry’'s amusing quote,‘l am not expecting an early call’, is a frank admission
that most extensions of exponential asymptotics beyond the lowest nontrivial term
are arithmurgically useless. The proper use of exponential asymptotics is to give
insight. A sensible application is to compute a small term that is also the leading
term to approximate some crucial feature of a problem, perhaps the lifetime of a
guantum bound state or a nonlocal solitary wave.

20. Hybridizing Asymptotics with Numerics

The hyperasymptotic scheme of Boyd [68] and the PKKS method [171, 172] are
both blends of analysis and numerics in the sense that the final step, the deter-
mination of the proportionality constant which multiplies the exponential /ef 1
requires a computation. However, the prior analysis has reduced the problem to a
very small calculation that returns an answer as the product of a number with an
analytical factor. This is far different than a brute force calculation that requires a
hundred times as much computer time to return only a number.

The flow past a sphere or cylinder at small Reynolds number Re [264, 159,
161, 160, 98, 283] has frustrated fluid dynamicists for over forty years, but there
has been, very recently, a partial breakthrough by means of a hybrid numerical-
asymptotic method [170]. The source of pain is that these expansions are double
series in powers of Re and Ibg(Re) or, defininge = 1/log(Re), in powers of
exp(—1/¢) ande. Formally, one should include an infinite number of logarithmic
corrections to the drag coefficient before computing the first correction propor-
tional to Re. For the flow past the circle, however, Re(1/ log(3.70/Re))* for
all Re > 1/12000. (Real fluid flows are typically at much larger Re.) A system-
atic scheme for the transcendentally small terms is still an open problem. For the
sphere, which is probably the easier of the two, Chester and Breach conclude sadly
‘the expansion is of practical value only in the limited range<R&/2 and that in
this range there is little point in continuing the expansion further’.

Kropinski, Ward and Keller [170] made the crucial observation that if the outer
(‘Oseen’) problem is solved numerically, the numerical solution will implicitly
incorporate an infinite number of logarithmic corrections. Better yet, the outer
solution is independent of whether the body is a cylinder, an elliptic cylinder, or
some other smooth shape: a single numerical solution provides a good answer to
a whole spectrum of body shapes. The inner solution differs from shape to shape,
but is easy to calculate analytically. They have successfully applied this same idea,
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outer-numerical/inner-analytical, to other problems with logarithmic corrections
[308]. The end product neglects higher powers ahd the necessary numerics is
the full solution to a PDE, but still, their work is real progress after two decades of
no advance at all.

It seems likely that such hybrid numerical-asympotic methods will flourish in
the next few years for following reasons:

— Analytical perturbation theory has enjoyed at least a century of development,
and it is hard to grow good ideas in such old soil.

— Mathematics departments, even in the noncomputational areas, are becoming
more computer-friendly.

— Hyrid algorithms have successfully attacked a number of problems already.

— There are broad areas where hybrids have not yet been tried.

21. History

Improving upon the minimum error of an asymptotic series has a long history;
Stieltjes himself discussed the possibility in his 1888 doctoral thesis. Oppenheimer’s
calculation of the exponentially large decay time in the quantum Stark effect and
the independent discovery of quantum tunnelling by Gamow and by Condon and
Gurney all happened in 1928. The Euler acceleration of the Stieltjes function series
was first analyzed by Rosser [273] in 1951.

One can distinguish several parallel lines of development. The first is the cal-
culation of ‘converging factors’ or terminants for the asymptotic expansions of
special functions, beginning with Airey in 1937 [3] and reaching a high degree of
sophistication in the books of Dingle (1973) and Olver (1974) [118, 249], who also
give good histories of earlier work.

Another was guantum mechanics, beginning with discovery of tunnelling in
1928, continuing with the Pokrovskii—Khalatnikov solution for ‘above-the-barrier’
guantum scattering, and continued to the present with studies of high order pertur-
bation theory. The books written by Arteca, Fernandez and Castro [8] and edited
by LeGuillou and Zinn-Justin [181] and Braaksma [83] are good testaments, as is
a special issue dhternational Journal of Quantum Chemisti369].

A third area is KAM theory and dynamical systems theory in general. Un-
der perturbations, integrable dynamical systems become chaotic, but the chaos is
confined to exponentially thin regions around the separatrices [136] for small
Through ‘Arnold diffusion’, dynamical systems can move great distances in phase
space (on exponentially long time scales) even when the perturbation is very weak.

A fourth area is ‘weakly nonlocal solitary waves’, that is, nonlinear coherent
structures that would be immortal were it not for weak radiation away from the
core of the structure. These seem to be as ubiquitous as classical, decaying-to-
zero solitary waves. Nonlocal solitary waves arise in fiber optics, hydrodynamics,
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plasmas and a wide variety of other applications. Meiss and Horton (1983) [201]
seem to have done the earliest explicit calculations. However, the existence of
slowly radiating solitary waves in particle physic®{‘breathers’) and oceanog-
raphy (Gulf Stream Rings) was known from observations and initial value com-
putations a decade earlier. The subsequent eruption of activity is catalogued in the
book by Boyd [72].

A fifth area is crystal formation and solidification. The 1985 work of Kruskal
and Segur [171, 172] resolved a long-standing roadblock in the theory of dendritic
fingers on melt interfaces, and touched off a great plume of activity. There was
rapid cross-fertilization with nonlocal solitary waves because Segur and Kruskal
applied their new PKKS method to thg* breather of particle physics, contribut-
ing to the rapid growth of exponential asymptotics for nonlinear waves.

A sixth area is fluid mechanics. The Berman—Terrill-Robinson problem [135]
in flows with suction, the radiative decay of free oscillations bound to islands [185]
and Kelvin wave instability in oceanography and atmospheric dynamics [74, 75]
were all examples in which exponential smallness had been calculated in the sev-
enties or early eighties. Somehow, these problems remained isolated. However,
boundary layer theory always involves divergent power series and exponential
smallness as showed by example above. Fluids is an area where hyperasymptotic
technology is likely to have a vigorous future.

A seventh line of research is that pursued by Richard E. Meyer and his stu-
dents. This began with studies of adiabatic invariants [202 —204, 219, 205, 207].
He also devised an independent solution to ‘above the barrier’ quantum scattering:
recasting the problem as an integral equation so that the reflection coefficient ap-
pears as the dominant contribution instead of as an exponentially small correction
[206, 208]. This led to further studies of exponential smallness in water waves
trapped around an island [185, 209, 220], connection across WKB turning points
and wave dynamics and quantum tunnelling [221, 211, 222 -224, 212, 214216,
225, 218, 226]. Meyer has also written four reviews [210, 213, 217, 218].

An eighth line of development is the abstract theory of resurgence and multi-
summability. This began with Ecalle [123] and continued with important contribu-
tions from Pham, Ramis, Delabaere, Braaksma and others too numerous to mention
as reviewed in [285, 83, 15].

Lastly, a ninth area is the development of resurgence and Stokes phenomenon
by physicists and applied mathematicians. This grew out of the abstract theory
of Ecalle, which Berry learned during a visit to France, but took resurgence in a
direction that was less rigorous but much more pragmatic and applied. The trigger
was Berry's 1989 realization that the discontinuity in the numerical value of an
asymptotic expansion at a Stokes' line could be smoothed. (The chatog®iagy
of the steepest descent path at a Stokes lines is unavoidable, however.) Building on
the books of Dingle, Olver and Ecalle, Berry, Howls, Olver, Olde Daalhuis, Paris,
Wood, W. G. C. Boyd and others have developed smoothed, high order hyper-
asymptotic approximations for many species of special functions, for the WKB
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method and for other schemes for differential equations. A selection is given in
Table IV.

Dingle’s ideas of generic forms for the late terms in asymptotic series and uni-
versal terminants now seem as important to the rise of exponential asymptotics
as the comet-crash(?) that put an end to the dinosaurs was in biology. Only a
year later, Olver's book developed similar ideas, with error bounds, for ordinary
differential equations. And yet, though these books were widely bought and read,
their net effect at the time was as quiet as a sandcastle washed away by a rising
tide. Bothered by long-term iliness, Dingle never published again.

In recent years, however, the analysis of exponentially small terms has ex-
ploded. A special program of study at the Newton Institute at Cambridge has
brought together researchers from a wide range of fields for a workshop lasting the
whole first half of 1995. The books by Boyd [72] and Segur, Tanveer and Levine
(eds) [279] are good introductions to the vigour and diversity of this interest.

Why was this revolution in asymptotics so slow, so long delayed? Perhaps the
most important factor is that alterations in scientific world-view, like atom bombs,
require assembling a critical mass. Part of this critical mass was provided by the
parallel threads of slow development outlined above; when ideas began to cross
disciplinary boundaries, exponential asymptotics exponentiated. Another trigger
was the popularization of algebraic manipulation languages, which made it easier
to compute many terms of an asymptotic series. Lastly, applied mathematics is
subject to fads and enthusiasms.

I myself read both the Dingle and Olver books when they first appeared while |
was still in graduate school, but was unimpressed. Firstg mygis not very small.
Second, a string of messy hyperasymptotic corrections seemed a poor alternative
to numerical algorithms, which were fast and efficient even a quarter century ago.
Modern exponential asymptotics still shares these limitations, but there is now a
cadre of enthusiasts who are unbothered as there was not in Dingle’s time.

Still, with the emergence of exponential asymptotics as a subfield of its own
with ideas shared widely from physics to fluids to nonlinear optics, hyperasymp-
totics has been very useful, at least as the lowest hyperasymptotic order, in a wide
variety of practical applications. When the parallel threads ceased to be parallel
and converged, the ancient topic of asymptotics suddenly became very interesting
again.

22. Books and Review Articles

The theme of extending asymptotic series through Borel summation and other
methods of re-expanding remainder integrals is treated in the classic books of Din-
gle [118] and Olver [249]. Jones’ 1997 book is very short (160 pages), a primer of
steepest descent and hyperasymptotics that is perhaps closest in style and spirit to

* In a language of Papua New Guinea, the word ‘mokita’ is used to denote ‘things we all know
but agree not to talk about’.
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the Dingle and Olver books, but at a somewhat more elementary level. It includes
a short appendix on nonstandard analysis as well as exercises at the end of each
chapter.

Ecalle’s 1981 three-volume treatise greatly extended and generalized earlier
ideas on hyperasymptotics. Unfortunately, his work has not been translated from
French. However, Sternin and Shatalov is a recent presentation of the abstract the-
ory of resurgence [285]. The collection of articles edited by Braaksma [83] gives
a broader but less coherent state of the abstract resurgence work. Balser [15] is
only one hundred pages long, but is very readable, based on a course taught by the
author.

Kowalenkoet al. [169] is a short monograph devoted entirely to the hyperas-
ymptotics of a fairly narrow class of integrals. Maslov [199] is a broad treatment
of the WKB method.

Segur, Tanveer and Levine [279] is a collection of articles from a NATO Work-
shop that displays the remarkable breadth of application of beyond-all-orders as-
ymptotics that existed even in 1991. Arteca, Fernandez and Castro [8] and LeGuil-
lou and Zinn-Justin [181] describe the calculation of exponentially small terms
in quantum mechanics through large order perturbation theory and summation
methods. Boyd [72] is focused particularly on nonlocal solitary waves, but it in-
cludes a chapter on general applications of hyperasymptotics and several chapters
on numerical methods.

Curiously, review articles seem rarer than books. Berry and Howls [39], Paris
and Wood [260] and Wood [320] have written short, semi-popular reviews. De-
labaere [112] has written (in English) an introduction to Ecalle alient calculus. Olde
Daalhuis and Olver [248] describe hyperasymptotics (and numerical methods) for
linear differential equations. Byatt-Smith [87], based on an unpublished but widely
circulated manuscript of seven years earlier, is not technically a review, but it
nonetheless is one of the most readable treatments of re-expansion of remainder
integrals and the error function smoothing of Stokes phenomenon.

This profusion of books and reviews is helpful, but there are still some large
gaps. This present article was written to fill in some of these holes and point the
reader to other summaries of progress.

23. Summary
What they [engineers] want from applied mathematics .. .is informationlthati-
nates.
Richard E. Meyer (1992) [218, p. 43]
Key concepts:

— Divergence is a disease caused by a perturbative approximation which is true
for only part of the interval of integration or part of the Fourier spectrum.
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— A power series is asymptotic when the perturbative assumption is bad only
for a part of the spectrum or integrand that makes an exponentially small
contribution.

— When a factorially divergent series is truncated at its smallest term, this ‘op-
timal truncation’ gives an error which is typically axponentialfunction
of 1/e. The usual Poincaré definition of asymptoticity, which refers only
to powersof ¢, is therefore rather misleading. The neologism ‘superasymp-
totic’ was therefore coined by Berry and Howls to describe the error in an
optimally-truncated asymptotic series.

— By appending one or more terms of a second asymptotic series (with a differ-
ent rationale) to the optimal truncation of a divergent series, one can reduce
the error below that of the superasymptotic approximation to obtain a ‘hyper-
asymptotic’ approximation. This, too, is divergent, but with a minimum error
far smaller than the best ‘superasymptotic’ approximation. (This rescale-and-
add-another-series step can be repeated for further error reduction.)

— There are many different species of hyperasymptotic methods including:

(1) Sequence acceleration schemes such as the Euler, Padé and Hermite—
Padé (Shafer) approximations.

(2) Complex-plane matched asymptotics (the Pokrovskii—Khalatnikov—Kru-
sal-Segur method).

(3) Resurgence schemes.

(4) Isolation of exponential smallness.

(5) Special numerical algorithms, usually employing Chebyshev or Fourier
spectral methods or Gaussian quadrature.

— The history of exponential asymptotics stretches back at least a century with
several parallel lines of slow development that reached a critical mass only
within the last six years, culminating in an explosion of both applications and
theory that will touch almost every field of science and engineering as well as
mathematics.

The list of open problems is large. One is a rigorous numerical test of many-
term, high order hyperasymptotic expansions versus competing methods, such as
Chebyshev series, for special function software. (The arguments presented above
suggest that the results are likely to be unfavorable to hyperasymptotics.)

Another is to create an expanded theory for the connection between the rate of
growth of power series coefficients or other properties of functions with divergent
power series and the rate of convergence of Chebyshev series and Padé approxi-
mants. Some theorems exist for the special class of Stieljtes functions (Chebyshev
[49, 51] and Padé [19]), but little else.

An important issue is whether the Dingle terminant formalism can be extended
to weakly nonlocal solitary waves. The radiation coefficientwhich is propor-
tional to the function ex@-u/¢) for some constant, has only the trivial power
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series 0+ 0- ¢ 4+ 0- ¢2 4 - - .. Doesa somehow influence the coefficients of the
power series subtly so that terminants can be applied, or is the radiation condition
truly a ghost, forever invisible to methods that look only at the asymptotic form of
the power series coefficients?

A fourth domain of future study is to apply exponential asymptotics to new
realms. We have shown above that the theory of numerical algorithms contains
hidden beyond-all-orders terms, but this aspect of numerical analysis is largely
terra incognita

Although applications and fundamental research on exponentially small terms
will doubtless continue for many years, we have tried to show that the underlying
principles are neither complicated nor obscure.

Acknowledgements

This work was supported by the National Science Foundation through grant
OCE9119459 and by the Department of Energy through contract KC070101. |
thank Richard Meyer, Michael Ward and Robert O’Malley for helpful correspon-
dence or conversations, and others too numerous to mention for supplying reprints
and references. | am grateful to the three referees for their extremely careful reading
of this long paper.

References

1. Ackerberg, R. C. and O'Malley, R. E., Jr.: Boundary layer problems exhibiting resonance,
Stud. Appl. Math49 (1970), 277—-295. Classical paper illustrating the failure of standard
matched asymptotics; this can be resolved by incorporating exponentially small terms in the
analysis (MacGillivray, 1997).

2. Adamson, T. C., Jr. and Richey, G. K.: Unsteady transonic flows with shock waves in two-
dimensional channeld, Fluid Mech.60(1973), 363—-382. Shows the key role of exponentially
small terms.

3. Airey, J. R.: The “converging factor” in asymptotic series and the calculation of Bessel,
Laguerre and other function®hilos. Magazine24 (1937), 521-552. Hyperasymptotic
approximation to some special functions for latge

4. Akylas, T. R. and Grimshaw, R. H. J.: Solitary internal waves with oscillatory tailsluid
Mech.242(1992), 279-298. Theory agrees with observations of Farmer and Smith (1980).

5. Akylas, T. R. and Yang, T.-S.: On short-scale oscillatory tails of long-wave disturb&taes,
Appl. Math.94 (1995), 1-20. Nonlocal solitary waves; perturbation theory in Fourier space.

6. Alvarez, G.: Coupling-constant behavior of the resonances of the cubic anharmonic oscilla-
tor, Phys. Rev. /87 (1988), 4079-4083. Beyond-all-orders perturbation theory in quantum
mechanics.

7. Arnold, V. I.: Mathematical Methods of Classical Mechani&pringer-Verlag, New York,
1978. Quote about why series diverge: p. 395.

8. Arteca, G. A, Fernandez, F. M. and Castro, E. lfarge Order Perturbation Theory and
Summation Methods in Quantum Mechani&pringer-Verlag, New York, 1990, p. 642;
beyond-all-orders perturbation theory.

9. Baker, G. A,, Jr. and Graves-Morris, Pade Approximan{<ambridge University Press, New
York, 1996.

ACAP1276.tex; 7/05/1999; 9:15; p.82



EXPONENTIAL ASYMPTOTICS 83

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

Baker, G. A., Jr., Oitmaa, J. and Velgakis, M. J.: Series analysis of multivalued functions,
Phys. Rev. /88 (1988), 5316-5331. Generalization of Padé approximants; the power series
for a functionu(z), known only through its series, is used to define the polynomial coefficients
of a differential equation, whose solution is then used as an approximation to

Balian, R., Parisi, G. and Voros, A.: Quartic oscillator, in: S. Albeverio, P. Combe, R. Hoegh-
Krohn, G. Rideau, M. Siruge-Collin, M. Sirugue and R. Stora (eésynman Path Integrals
Lecture Notes in Phys. 106, Springer-Verlag, New York, 1979, pp. 337-360.

Balser, W.: A different characterization of multisummable power sehieslysis12 (1992),
57-65.

Balser, W.: Summation of formal power series through iterated Laplace intebftats,
Scand.70(1992), 161-171.

Balser, W.: Addendum to my paper: A different characterization of multisummable power
seriesAnalysis13(1993), 317-319.

Balser, W.From Divergent Power Series to Analytic Functiphscture Notes in Math. 1582,
Springer-Verlag, New York, 1994, p. 100; good presentation of Gevrey order and asymptotics
and multisummability.

Balser, W., Braaksma, B. L. J., Ramis, J.-P. and Sibuya, Y.: Multisummability of formal power
series of linear ordinary differential equatiodsymptotic Anal5 (1991), 27-45.

Balser, W. and Tovbis, A.: Multisummability of iterated integrélsymptotic Anal7 (1992),
121-127.

Benassi, L., Grecchi, V., Harrell, E. and Simon, B.: Bender—Wu formula and the Stark effect
in hydrogenPhys. Rev. Lettd2 (1979), 704—707. Exponentially small corrections in quantum
mechanics.

Bender, C. M. and Orszag, S. AAdvanced Mathematical Methods for Scientists and
Engineers McGraw-Hill, New York, 1978, p. 594.

Bender, C. M. and Wu, T. T.: Anharmonic oscillatehys. Rev184(1969), 1231-1260.

Bender, C. M. and Wu, T. T.: Anharmonic oscillator. Il. A study of perturbation theory in large
order,Phys. Rev. ¥ (1973), 1620-1636.

Benilov, E., Grimshaw, R. H. and Kuznetsova, E.: The generation of radiating waves in a
singularly perturbed Korteweg—de Vries equatiBhysica D69 (1993), 270-276.

Berman, A. S.: Laminar flow in channel with porous wallsAppl. Phys24 (1953), 1232—
1235. Earliest paper on an ODE (Berman—Robinson—Terrill problem) where exponentially
small corrections are important.

Berry, M. V.: Stokes’ phenomenon; smoothing a Victorian discontinBityl. Math. IHES58
(1989), 211-221.

Berry, M. V.: Uniform asymptotic smoothing of Stokes'’s discontinuitiesc. Roy. Soc.
London A422(1989), 7-21.

Berry, M. V.: Waves near Stokes lin€spc. Roy. Soc. London 427 (1990), 265-280.

Berry, M. V.: Histories of adiabatic quantum transitidAmc. Roy. Soc. London429(1990),
61-72.

Berry, M. V.: Infinitely many Stokes smoothings in the Gamma functifmoc. Roy. Soc.
London A434(1991), 465-472.

Berry, M. V.: Stokes phenomenon for superfactorial asymptotic s€ries, Roy. Soc. London
A435(1991), 437-444.

Berry, M. V.: Asymptotics, superasymptotics, hyperasymptotics, in: H. Segur, S. Tanveer and
H. Levine (eds)Asymptotics Beyond All OrderBlenum, Amsterdam, 1991, pp. 1-14.

Berry, M. V.: Faster than Fourier, in: J. S. Auandan and J. L. Safko (@d&bration of the

60th Birthday of Yakir Aharongw\orld Scientific, Singapore, 1994.

Berry, M. V.: Evanescent and real waves in quantum billiards and Gaussian Be&imgs. A
27(1994), L391-1L.398.

ACAP1276.tex; 7/05/1999; 9:15; p.83



84

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.
49.

50.

51.

52.

53.

54.

JOHN P. BOYD

Berry, M. V.: Asymptotics, singularities and the reduction of theories, in: D. Prawitz,
B. Skyrms and D. Westerstahl (edt)ogic, Methodology and Philosophy of Science IX
Elsevier, Amsterdam, 1994, pp. 597-607.

Berry, M. V.: Riemann—Siegel expansion for the zeta function: High orders and remainders,
Proc. Roy. Soc. London 4#60(1995), 439-462. Beyond all orders asymptotics.

Berry, M. V. and Howls, C. J.: Hyperasymptotié&oc. Roy. Soc. London A30 (1990),
653-668.

Berry, M. V. and Howils, C. J.: Stokes surfaces of diffraction catastrophes with codimension
three,Nonlinearity3 (1990), 281-291.

Berry, M. V. and Howils, C. J.: Hyperasymptotics for integrals with sadées;. Roy. Soc.
London A434(1991), 657—675.

Berry, M. V. and Howls, C. J.: Unfolding the high orders of asymptotic expansions with
coalescing saddles: Singularity theory, crossover and duBlibg. Roy. Soc. London #43
(1993), 107-126.

Berry, M. V. and Howls, C. J.: Infinity interpreteldhysics World1993), 35-39.

Berry, M. V. and Howls, C. J.: Overlapping Stokes smoothings: Survival of the error function
and canonical catastrophe integr&gyc. Roy. Soc. London #44(1994), 201-216.

Berry, M. V. and Howls, C. J.: High orders of the Weyl expansion for quantum billiards:
Resurgence of periodic orbits, and the Stokes phenomd®or, Roy. Soc. London 447
(1994), 527-555.

Berry, M. V. and Lim, R.: Universal transition prefactors derived by superadiabatic renormal-
ization,J. Phys. A26 (1993), 4737-4747.

Bhattacharyya, K.: Notes on polynomial perturbation probl€hem. Phys. Let80 (1981),
257-261.

Bhattacharyya, K. and Bhattacharyya, S. P.: The sign-change argument re@iséed,Phys.

Lett. 76 (1980), 117-119. Criterion for divergence of asymptotic series.

Bhattacharyya, K. and Bhattacharyya, S. P.: Reply to “another attack on the sign-change
argument”,Chem. Phys. Let80 (1981), 604-605.

Boasman, P. A. and Keating, J. P.: Semiclassical asymptotics of perturbed caroapRpy.

Soc. London Al49 (1995), 625-653. Shows that the optimal truncation of the semiclassical
expansion is accurate to within an error which is an exponential functioryiaf 3tokes
phenomenon, Borel resummation, and a universal approximation to the late terms are used
beyond the superasymptotic approximation.

Boyd, J. P.: A Chebyshev polynomial method for computing analytic solutions to eigenvalue
problems with application to the anharmonic oscillafoiiath. Phys19(1978), 1445-1456.
Boyd, J. P.: The nonlinear equatorial Kelvin walieRhys. Oceanogi0(1980), 1-11.

Boyd, J. P.: The rate of convergence of Chebyshev polynomials for functions which have
asymptotic power series about one endpdifdth. Comput37 (1981), 189-196.

Boyd, J. P.: The optimization of covergence for Chebyshev polynomial methods in an un-
bounded domainJ. Comput. Phys45 (1982), 43—79. Infinite and semi-infinite intervals;
guidelines for choosing the map parameter or domainkize

Boyd, J. P.: A Chebyshev polynomial rate-of-covergence theorem for Stieltjes functions,
Math. Comput.39 (1982), 201-206. Typo: In (24), the rightmost expression should be
1—(r+¢)/2.

Boyd, J. P.: The asymptotic coefficients of Hermite sedie€omput. Phys4 (1984), 382—

410.

Boyd, J. P.: Spectral methods using rational basis functions on an infinite infe®amput.
Phys.69(1987), 112-142.

Boyd, J. P.: Orthogonal rational functions on a semi-infinite inted/aGomput. Phys70
(1987), 63-88.

ACAP1276.tex; 7/05/1999; 9:15; p.84



EXPONENTIAL ASYMPTOTICS 85

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

Boyd, J. P.Chebyshev and Fourier Spectral Methp&gpringer-Verlag, New York, 1989, p.
792.

Boyd, J. P.: New directions in solitons and nonlinear periodic waves: Polycnoidal waves, im-
bricated solitons, weakly non-local solitary waves and numerical boundary value algorithms,
in: T.-Y. Wu and J. W. Hutchinson (ed#)dvances in Applied Mechanijasdyv. in Appl. Mech.

27, Academic Press, New York, 1989, pp. 1-82.

Boyd, J. P.: Non-local equatorial solitary waves, in: J. C. J. Nihoul and B. M. Jamart (eds),
Mesoscale/Synoptic Coherent Structures in Geophysical Turbulence: Proc. 20th Liége Coll.
on HydrodynamicsElsevier, Amsterdam, 1989, pp. 103-112. Typo: In (4.1b), 0.8266 should
be 1.6532.

Boyd, J. P.: A numerical calculation of a weakly non-local solitary waveythdreather,
Nonlinearity 3 (1990), pp. 177-195. The eigenfunction calculation (5.15, etc.) has some
typographical errors corrected in Chapter 12 of Boyd (1998).

Boyd, J. P.: The envelope of the error for Chebyshev and Fourier interpolhtiiei, Comput.
5(1990), 311-363.

Boyd, J. P.: A Chebyshev/radiation function pseudospectral method for wave sca@erng,
puters in Physicd (1990), 83-85. Numerical calculation of exponentially small reflection.
Boyd, J. P.: A comparison of numerical and analytical methods for the reduced wave equation
with multiple spatial scalesAppl. Numer. Math7 (1991), 453—-479. Study ofx + uy =

f(ex). Typo: 2" factor should be omitted from Equation (4.3).

Boyd, J. P.: Weakly non-local solitons for capillary-gravity waves: Fifth-degree Korteweg—de
Vries equationPhysica D48 (1991), 129-146. Typo: at the beginning of Section 5, ‘Newton—
Kantorovich (5.1)’ should read ‘Newton—Kantorovich (3.2)’. Also, in the caption to Figure 12,
‘500,000’ should be 70,000'.

Boyd, J. P.: Chebyshev and Legendre spectral methods in algebraic manipulation languages,
J. Symbolic Compufl6 (1993), 377-399.

Boyd, J. P.: The rate of convergence of Fourier coefficients for entire functions of infinite order
with application to the Weideman—Cloot sinh-mapping for pseudospectral computations on an
infinite interval,J. Comput. Physl10(1994), 360-372.

Boyd, J. P.: The slow manifold of a five mode modelAtmos. Sci51(1994), 1057-1064.

Boyd, J. P.: Time-marching on the slow manifold: The relationship between the nonlinear
Galerkin method and implicit timestepping algorithrAspl. Math. Lett7 (1994), 95-99.

Boyd, J. P.: Weakly nonlocal envelope solitary waves: Numerical calculations for the Klein—
Gordon(y4) equationWave Motior21 (1995), 311-330.

Boyd, J. P.: A hyperasymptotic perturbative method for computing the radiation coefficient
for weakly nonlocal solitary waved, Comput. Physl20(1995), 15-32.

Boyd, J. P.: Eight definitions of the slow manifold: Seiches, pseudoseiches and exponential
smallnessPyn. Atmos. Ocear22 (1995), 49-75.

Boyd, J. P.: A lag-averaged generalization of Euler's method for accelerating genss,
Math. Comput72 (1995), 146-166.

Boyd, J. P.: Multiple precision pseudospectral computations of the radiation coefficient for
weakly nonlocal solitary waves: Fifth-order Korteweg—de Vries equat@omputers in
Physics9 (1995), 324-334.

Boyd, J. PWWeakly Nonlocal Solitary Waves and Beyond-All-Orders Asymptotics: Generalized
Solitons and Hyperasymptotic Perturbation Theddath. Appl. 442, Kluwer Acad. Publ.,
Dordrecht, 1998, p. 608.

Boyd, J. P.Chebyshev and Fourier Spectral MethpBsver, New York, 1999. Second edition

of Boyd (1989a), in press.

ACAP1276.tex; 7/05/1999; 9:15; p.85



86

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

JOHN P. BOYD

Boyd, J. P. and Christidis, Z. D.: Low wavenumber instability on the equatorial beta-plane,
Geophys. Res. Let®.(1982), 769-772. Growth rate is exponentially ife Wheree is the
shear strength.

Boyd, J. P. and Christidis, Z. D.: Instability on the equatorial beta-plane, in: J. Nihoul (ed.),
Hydrodynamics of the Equatorial Ocedglsevier, Amsterdam, 1983, pp. 339—-351.

Boyd, J. P. and Natarov, A.: A Sturm-Liouville eigenproblem of the fourth kind: A critical
latitude with equatorial trappingtud. Appl. Math101(1998), 433—-455.

Boyd, W. G. C.: Stieltjes transforms and the Stokes phenomé&on, Roy. Soc. London A
429(1990), 227-246.

Boyd, W. G. C.: Error bounds for the method of steepest desdé#nots, Roy. Soc. London A
440(1993), 493-516.

Boyd, W. G. C.: Gamma function asymptotics by an extension of the method of steepest
descentsProc. Roy. Soc. London #47(1993), 609-630.

Boyd, W. G. C.: Steepest-descent integral representations for dominant solutions of linear
second-order differential equatiomdethods Appl. Anal3 (1996), 174—202.

Braaksma, B. L. J.: Multisummability and Stokes multipliers of linear meromorphic differen-
tial equationsAnn. Inst. Fourier (Grenobled2 (1991), 45-75.

Braaksma, B. L. J.: Multisummability of formal power-series solutions of nonlinear mero-
morphic differential equation#\nn. Inst. Fourier (Grenoble$2 (1992), 517-540. Proves a
theorem of Ecalle that formal power series of nonlinear meromorphic differential equations
are multisummable.

Braaksma, B. L. J. (ed.The Stokes Phenomenon and Hilbert's Sixteenth Problem: Gronin-
gen, The Netherlands, 31 May—3 June 1986rld Scientific, Singapore, 1996.

Branis, S. V., Martin, O. and Birman, J. L.: Self-induced transparency selects discrete ve-
locities for solitary-wave solutionghys. Rev. A3 (1991), 1549-1563. Nonlocal envelope
solitons.

Bulakh, B. M.: On higher approximations in the boundary-layer theo#ppl. Math. Mech.
28(1964), 675-681.

Byatt-Smith, J. G. B.: On solutions of ordinary differential equations arising from a model of
crystal growth Stud. Appl. Math89 (1993), 167-187.

Byatt-Smith, J. G. B.: Formulation and summation of hyperasymptotic expansions obtained
from integrals European J. Appl. Mati9 (1998), 159-185.

Byatt-Smith, J. G. B. and Davie, A. M.: Exponentially small oscillations in the solution of an
ordinary differential equatiorRroc. Roy. Soc. Edinburgh 14 (1990), 243.

Byatt-Smith, J. G. B. and Davie, A. M.: Exponentially small oscillations in the solution of
an ordinary differential equation, in: H. Segur, S. Tanveer and H. Levine (&ggnptotics
Beyond All OrdersPlenum, Amsterdam, 1991, pp. 223—-240.

Candelpergher, B., Nosmas, J. C. and Pham, F.: Introduction to Ecalle alien caloulusst.
Fourier (Grenoble)43 (1993), 201-224. Review. The “alien calculus” is a systematic theory
for resurgence and Borel summability to generate hyperasymptotic approximation. Written in
French.

Canuto, C., Hussaini, M. Y., Quarteroni, A. and Zang, T. 3pectral Methods for Fluid
Dynamics Springer-Verlag, New York, 1987.

Carr, J.: Slowly varying solutions of a nonlinear partial differential equation, in: D. S. Broom-
head and A. Iserles (ed§)he Dynamics of Numerics and the Numerics of Dynandesord
University Press, Oxford, 1992, pp. 23-30.

Carr, J. and Pego, R. L.: Metastable patterns in solutions &f¢2u,, — £ (1), Comm. Pure
Appl. Math.42(1989), 523-576. Merger of fronts on an exponentially slow time scale.
Chang, Y.-H.: Proof of an asymptotic symmetry of the rapidly forced pendulum, in: H. Segur,
S. Tanveer and H. Levine (ed#)symptotics Beyond All OrderBlenum, Amsterdam, 1991,

pp. 213-221.

ACAP1276.tex; 7/05/1999; 9:15; p.86



EXPONENTIAL ASYMPTOTICS 87

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

Chapman, S. J.: On the non-universality of the error function in the smoothing of Stokes
discontinuitiesProc. Roy. Soc. London #62(1996), 2225-2230.

Chapman, S. J., King, J. R. and Adams, K. L.: Exponential asymptotics and Stokes lines in
nonlinear ordinary differential equatiorBtoc. Roy. Soc. London A998). To appear.

Chen, J., Fisher, M. E. and Nickel, B. G.: Unbiased estimation of corrections to scaling by
partial differential approximant®hys. Rev. Let#8(1982), 630—-634. Generalization of Padé
approximants.

Chester, W. and Breach, D. R.: On the flow past a sphere at low Reynolds ndnHaid
Mech.37 (1969), 751-760. Log-and-power series.

Ciasullo, L. M. and Cochran, J. A.: Accelerating the convergence of Chebyshev series, in:
R. Wong (ed.)Asymptotic and Computational Analydidarcel Dekker, New York, 1990, pp.
95-136.

Cizek, J., Damburg, R. J., Graffi, S., Grecchi, V., Il, E. M. H., Harris, J. G., Nakai, S.,
Paldus, J., Propin, R. K. and Silverstone, H. J.Rlexpansion forH2+: Calculation of
exponentially small terms and asymptotiPsys. Rev. 83 (1986), 12-54.

Cizek, J. and Vrscay, E. R.: Large order perturbation theory in the context of atomic and
molecular physics — interdisciplinary aspedig, J. Quantum Chen21 (1982), 27-68.

Cloot, A. and Weideman, J. A. C.: An adaptive algorithm for spectral computations on
unbounded domaing, Comput. Physl02(1992), 398—406.

Combescot, R., Dombe, T., Hakim, V. and Pomeau, Y.: Shape selection of Saffman—Taylor
fingers,Phys. Rev. Letb6 (1986), 2036—2039.

Costin, O.: Exponential asymptotics, trans-series and generalized Borel summation for
analytic nonlinear rank one systems of ODHaternat. Math. Res. Notice8 (1995),
377-418.

Costin, O.: On Borel summation and Stokes phenomenon for nonlinear rank one systems of
ODE'’s, Duke Math. J.93 (1998), 289-344. Connections with Berry smoothing and Ecalle
resurgence.

Costin, O. and Kruskal, M. D.: Optimal uniform estimates and rigorous asymptotics beyond
all orders for a class of ordinary differential equatioRsyc. Roy. Soc. London 462 (1996),
1057-1085.

Costin, O. and Kruskal, M. On optimal truncation of divergent series solutions of nonlinear
differential systems; Berry smoothin@roc. Roy. Soc. London A52 (1998). Submitted.
Rigorous proofs of some assertions and conclusions in the smoothing of discontinuities in
Stokes phenomenon.

Cox, S. M.: Two-dimensional flow of a viscous fluid in a channel with porous wialEuid
Mech.227(1991), 1-33. Multiple solutions differing by exponentially small terms.

Cox, S. M. and King, A. C.: On the asymptotic solution of a high-order nonlinear ordinary dif-
ferential equationProc. Roy. Soc. London463(1997), 711-728. Berman-Terrill-Robinson
problem with good review of earlier work.

Darboux, M. G.: Mémoire sur I'approximation des fonctions de trés-grands nombres, et sur
une classe étendue de développements en déktgth. Pures AppH (1878), 5-56.

Darboux, M. G.: Mémoire sur I'approximation des fonctions de trés-grands nombres, et sur
une classe étendue de développements en Séhtath. Pures AppHK (1878), 377—-416.
Delabaere, E.: Introduction to the Ecalle theory, in: E. Tournier (€drputer Algebra and
Differential Equations London Math. Soc. Lecture Notes Ser. 193, Cambridge University
Press, Cambridge, 1994, pp. 59-102.

Delabaere, E. and Pham, F.: Unfolding the quartic oscill&ton, Phys261 (1997), 180—

218. Resurgence and “exact WKB methods”; confirm the branch structure found by Bender
and Wu.

Dias, F., Menasce, D. and Vanden-Broeck, J.-M.: Numerical study of capillary-gravity solitary
waves,Eur. J. Mech. B Fluid45 (1996), 17-36.

ACAP1276.tex; 7/05/1999; 9:15; p.87



88

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

JOHN P. BOYD

Dickinson, R. E.: Numerical versus analytical methods for a sixth order hypergeometric
equation arising in a diffusion-wave theory of the quasi-biennial oscillation QBO. Seminar,
1980.

Dingle, R. B.: Asymptotic expansions and converging factors I. General theory and basic
converging factorsProc. Roy. Soc. London 244 (1958), 456—475.

Dingle, R. B.: Asymptotic expansions and converging factors IV. Confluent hypergeometric,
parabolic cylinder, modified Bessel and ordinary Bessel functi®rag. Roy. Soc. London A
249(1958), 270-283.

Dingle, R. B.Asymptotic Expansions: Their Derivation and Interpretatidoademic Press,

New York, 1973. Beyond all orders asymptotics.

Dumas, H. S.: Existence and stability of particle channeling in crystals on timescales beyond
all orders, in: H. Segur, S. Tanveer and H. Levine (edsymptotics Beyond All Orders
Plenum, Amsterdam, 1991, pp. 267-273.

Dumas, H. S.: A Nekhoroshev-like theory of classical particle channeling in perfect crys-
tals, Dynamics Reporte@ (1993), 69—115. Beyond all orders perturbation theory in crystal
physics.

Dunster, T. M.: Error bounds for exponentially improved asymptotic solutions of ordinary
differential equations having irregular singularities of rank dviethods Appl. AnaB (1996),
109-134.

Dyson, F. J.: Divergence of perturbation theory in quantum electrodynaptigs, Rev85
(1952), 631-632.

Ecalle, J.Les fonctions résurgentetiniversité de Paris-Sud, Paris, 1981. Three volumes,
Earliest systematic development of resurgence theory.

Elliott, D.: The evaluation and estimation of the coefficients in the Chebyshev series expansion
of a function,Math. Computl18 (1964), 274-284. This and the next two papers are classic
contributions to the asymptotic theory of Chebyshev coefficients.

Elliott, D.: Truncation errors in two Chebyshev series approximatibteth. Comput.

19 (1965), 234-248. Errors in Lagrangian interpolation with a general contour integral
representation and an exact analytical formula f@qa 1t x).

Elliott, D. and Szekeres, G.: Some estimates of the coefficients in the Chebyshev expansion
of a function,Math. Comput19 (1965), 25-32. The Chebyshev coefficients are exponentially
small in the degree.

Elliott, D. and Tuan, P. D.: Asymptotic coefficients of Fourier coefficieBt&M J. Math.
Anal.5 (1974), 1-10.

Froman, N.: The energy levels of double-well potentiéatk, Fysik32 (1966), 79-96. WKB
method for exponentially small splitting of eigenvalue degeneracy.

Frost, P. A. and Harper, E. Y.: An extended Padé procedure for constructing global approx-
imations from asymptotic expansions: an explication with exam @3V Rev.18 (1976),
62-91.

Fusco, G. and Hale, J. K.: Slow motion manifolds, dormant instability and singular per-
turbations,J. Dynamics Differential Equations (1989), 75-94. Exponentially slow frontal
motion.

Germann, T. C. and Kais, S.: Large order dimensional perturbation theory for complex energy
eigenvalues,). Chem. Phys99 (1993), 7739-7747. Quadratic Shafer-Padé approximants,
applied to compute imaginary part of eigenvalue.

Gingold, H. and Hu, J.: Transcendentally small reflection of waves for problems with/without
turning points near infinity: A new uniform approach,Math. Phys32 (1991), 3278-3284.
Generalized WBK (Liouville—Green) for above-the-barrier scattering.

Grasman, J. and Matkowsky, B. J.: A variational approach to singularly perturbed boundary
value problems for ordinary and partial differential equations with turning po8i&sM J.

Appl. Math.32 (1976), 588-597. Resolve the failure of standard matched asymptotics for

ACAP1276.tex; 7/05/1999; 9:15; p.88



EXPONENTIAL ASYMPTOTICS 89

134.

135.

136.

137.

138.

139.
140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

the problem of Ackerberg and O’Malley (1970) by applying a non-perturbative variational
principle; MacGillivray (1997) solves the same problem by incorporating exponentially small
terms into matched asymptotics.

Grimshaw, R. H. J. and Joshi, N.: Weakly non-local solitary waves in a singularly-perturbed
Korteweg—de Vries equatioBIAM J. Appl. Math55 (1995), 124-135.

Grundy, R. E. and Allen, H. R.: The asymptotic solution of a family of boundary value
problems involving exponentially small termi&A J. Appl. Math.53(1994), 151-168.

Hakim, V. and Mallick, K.: Exponentially small splitting of separatrices, matching in the
complex plane and Borel summatiddonlinearity6 (1993), 57—70. Very readable analysis.
Hale, J. K.: Dynamics and numerics, in: D. S. Broomhead and A. IserlesTaéddpynamics

of Numerics and the Numerics of Dynami@sford University Press, Oxford, 1992, pp. 243—
254.

Hanson, F. B.: Singular point and exponential analysis, in: R. Wong fsi/inptotic and
Computational AnalysjsMarcel Dekker, New York, 1990, pp. 211-240.

Hardy, G. H.Divergent SeriesOxford University Press, New York, 1949.

Harrell, E. and Simon, B.: The mathematical theory of resonances whose widths are
exponentially smallDuke Math. J47 (1980), 845.

Harrell, E. M.: On the asymptotic rate of eigenvalue degenef@amm. Math. Phys60
(1978), 73-95.

Harrell, E. M.: Double wellsComm. Math. Phys/5 (1980), 239—261. Exponentially small
splitting of eigenvalues.

Hildebrand, F. H.introduction to Numerical AnalysiDover, New York, 1974. Numerical;
asymptotic-but-divergent series/rfor errors.

Hinton, D. B. and Shaw, J. K.: Absolutely continuous spectra of 2d order differential opera-
tors with short and long range potentia@uart. J. Math.36 (1985), 183—-213. Exponential
smallness in eigenvalues.

Holmes, P., Marsden, J. and Scheurle, J.: Exponentially small splitting of separatrices with
applications to KAM theory and degenerate bifurcatiocBentemp. Math81 (1988), 214—

244,

Hong, D. C. and Langer, J. S.: Analytic theory of the selection mechanism in the Saffman—
Taylor problemPhys. Rev. Let66 (1986), 2032—-2035.

Howils, C. J.: Hyperasymptotics for multidimensional integrals, exact remainder terms and the
global connection problenfiroc. Roy. Soc. London 463 (1997), 2271-2294.

Howls, C. J. and Trasler, S. A.: Weyl's wedgg<hys. A: Math. Ger81(1998), 1911-1928.
Hyperasymptotics for quantum billiards with nonsmooth boundary.

Hu, J.: Asymptotics beyond all orders for a certain type of nonlinear oscilftied, Appl.
Math. 96 (1996), 85-109.

Hu, J. and Kruskal, M.: Reflection coefficient beyond all orders for singular problems, 1,
separated critical-points on the nearest critical-level liheMath. Phys32 (1991), 2400—
2405.

Hu, J. and Kruskal, M.: Reflection coefficient beyond all orders for singular problems, 2,
close-spaced critical-points on the nearest critical-level In®&ath. Phys32 (1991), 2676—
2678.

Hu, J. and Kruskal, M. D.: Reflection coefficient beyond all orders for singular problems,
in: H. Segur, S. Tanveer and H. Levine (eddsymptotics Beyond All Order®lenum,
Amsterdam, 1991, pp. 247-253.

Hunter, J. K. and Scheurle, J.: Existence of perturbed solitary wave solutions to a model
equation for water wave®hysica D32 (1988), 253-268. FKdV nonlocal solitons.

Jardine, M., Allen, H. R., Grundy, R. E. and Priest, E. R.: A family of two-dimensional non-
linear solutions for magnetic field annihilatioh, Geophys. Res. — Space Phy$§i¢$1992),
4199-4207.

ACAP1276.tex; 7/05/1999; 9:15; p.89



90

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

JOHN P. BOYD

Jones, D. S.: Uniform asymptotic remainders, in: R. Wong (&dymptotic Comput. Anal.
Marcel Dekker, New York, 1990, pp. 241-264.

Jones, D. S.: Asymptotic series and remainders, in: B. D. Sleeman and R. J. Jarvis (eds),
Ordinary and Partial Differential Equations/olume 1V, Longman, London, 1993, p. 12.

Jones, D. S.: Asymptotic remainde®8AM J. Math. Anal25 (1994), 474-490. Hyperas-
ymptotics; shows that the remainders in a variety of asymptotic series can be uniformly
approximated by the same integral.

Jones, D. Sintroduction to Asymptotics: A Treatment Using Nonstandard Analyeisid
Scientific, Singapore, 1997, 160 pages; includes a chapter on hyperasymptotics.

Kaplun, S.: Low Reynolds number flow past a circular cylindeiath. Mech.6 (1957),
595-603. Log-plus-power expansions.

Kaplun, S.Fluid Mechanics and Singular Perturbation&cademic Press, New York, 1967.

Ed. by P. A. Lagerstrom, L. N. Howard and C. S. Liu; Analyzed difficulties of log-plus-power
expansions.

Kaplun, S. and Lagerstrom, P. A.: Asymptotic expansions of Navier—Stokes solutions for small
Reynolds number]. Math. Mech6 (1957), 585-593.

Kath, W. L and Kriegsmann, G. A.: Optical tunnelling: Radiation losses in bent fibre-optic
waveguides|MA J. Appl. Math.41 (1988), 85-103. Radiation loss is exponentially small in
the small parameter, so “beyond all orders” perturbation theory is developed here.

Kessler, D. A., Koplik, J. and Levine, H.: Pattern selection in fingered growth phenomena,
Adv. Phys37(1988), 255-339.

Killingbeck, J.: Quantum-mechanical perturbation theRgports on Progress in Theoretical
Physics40(1977), 977-1031. Divergence of asymptotic series.

Killingbeck, J.: A polynomial perturbation problefhys. Lett. 67 (1978), 13-15.

Killingbeck, J.: Another attack on the sign-change argun@n¢m. Phys. LetB80 (1981),
601-603.

Kivshar, Y. S. and Malomed, B. A.: Comment on ‘nonexistence of small amplitude breather
solutions iny# theory’, Phys. Rev. Let60 (1988), 164—164. Exponentially small radiation
from perturbed from perturbed sine-Gordon solitons and other species.

Kivshar, Y. S. and Malomed, B. A.: Dynamics of solitons in nearly integrable sysiams,

Mod. Phys61 (1989), 763-915. Exponentially small radiation from perturbed sine-Gordon
solitons and other species.

Kowalenko, V., Glasser, M. L., Taucher, T. and Frankel, N.G&neralised Euler—Jacobi
Inversion Formula and Asymptotics Beyond All Ordémsndon Math. Soc. Lecture Note Ser.
214, Cambridge University Press, Cambridge, 1995.

Kropinski, M. C. A., Ward, M. J. and Keller, J. B.: A hybrid asymptotic-numerical method for
low Reynolds number flows past a cylindrical bo&AM J. Appl. Math55 (1995), 1484—
1510. Log-and-power series in Re.

Kruskal, M. D. and Segur, H.: Asymptotics beyond all orders in a model of crystal growth,
Tech. Rep. 85-25, Aeronautical Research Associates of Princeton, 1985.

Kruskal, M. D. and Segur, H.: Asymptotics beyond all orders in a model of crystal growth,
Stud. Appl. Math85 (1991), 129-181.

Laforgue, J. G. L. and O’'Malley, R. E., Jr.: Supersensitive boundary value problems, in:
H. G. Kaper and M. Garbey (edfdsymptotic and Numerical Methods for Partial Differential
Equations with Critical Parameter&luwer Acad. Publ., Dordrecht, 1993, pp. 215-223.
Laforgue, J. G. L. and O’'Malley, R. E., Jr.: On the motion of viscous shocks and the super-
sensitivity of their steady-state limitMethods Appl. Anall (1994), 465-487. Exponential
smallness in shock movement.

Laforgue, J. G. L. and O’'Malley, R. E., Jr.: Shock layer movement for Burgers’ equation,
SIAM J. Appl. Math55 (1995), 332-347.

ACAP1276.tex; 7/05/1999; 9:15; p.90



EXPONENTIAL ASYMPTOTICS 91

176.

177.

178.
179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

Laforgue, J. G. L. and O'Malley, R. E., Jr.: Viscous shock motion for advection-diffusion
equationStud. Appl. Math95 (1995), 147-170.

Lanczos, C.: Trigonometric interpolation of empirical and analytical functibméath. Phys.

17 (1938), 123-199. The origin of both the pseudospectral method and the tau method.
Lanczos is to spectral methods what Newton was to calculus.

Lanczos, CDiscourse on Fourier Serie®liver and Boyd, Edinburgh, 1966.

Lange, C. G. and Weinitschke, H. J.: Singular perturbations of elliptic problems on domains
with small holesStud. Appl. Math92 (1994), 55-93. Log-and-power series for eigenvalues
with comparisons with numerical solutions; demonstrates the surprisingly large sensitivity of
eigenvalues to small holes in the membrane.

Lazutkin, V. F., Schachmannski, I. G. and Tabanov, M. B.: Splitting of separatrices for
standard and semistandard mappirijsysica D40 (1989), 235-248.

Le Guillou, J. C. and Zinn-Justin, J. (edsarge-Order Behaviour of Perturbation The-
ory, North-Holland, Amsterdam, 1990. Exponential corrections to power series, mostly in
quantum mechanics.

Lim, R. and Berry, M. V.: Superadiabatic tracking for quantum evolufiorhys. 224 (1991),
3255-3264.

Liu, J. and Wood, A.: Matched asymptotics for a generalisation of a model equation for optical
tunnelling,Europ. J. Appl. Math2 (1991), 223—-231. Compute the exponentially small imag-
inary part of the eigenvalug, I(1) ~ exp(—1/¢1/™), for the problemiyx + (A + ex™)u = 0

with outward radiating waves on the semi-infinite interval.

Lorenz, E. N. and Krishnamurthy, V.: On the nonexistence of a slow manifoddmos. Sci.

44 (1987), 2940-2950. Weakly non-local in time.

Lozano, C. and Meyer, R. E.: Leakage and response of waves trapped by round i&igads,
Fluids 19 (1976), 1075-1088. Leakage is exponentially small in the perturbation parameter.
Lu, C., MacGillivray, A. D. and Hastings, S. P.: Asymptotic behavior of solutions of a simi-
larity equation for laminar flows in channels with porous wdl&A J. Appl. Math49 (1992),
139-162. Beyond-all-orders matched asymptotics.

Luke, Y. L.:The Special Functions and Their Approximatipwsls | and Il, Academic Press,

New York, 1969.

Lyness, J. N.: Adjusted forms of the Fourier coefficient asymptotic expahéaih, Comput.
25(1971), 87-104.

Lyness, J. N.: The calculation of trigonometric Fourier coefficieht€Gomput. Phys54
(1984), 57-73. A good review article which discusses the integration-by-parts series for the
asymptotic Fourier coefficients.

Lyness, J. N. and Ninham, B. W.: Numerical quadrature and asymptotic expamdaihs,
Comp.21 (1967), 162. Shows that the error is a power series in the grid spadguhgs an
integral which is transcendentally small ip/d.

MacGillivray, A. D.: A method for incorporating transcendentally small terms into the method
of matched asymptotic expansior&tud. Appl. Math99 (1997), 285-310. Linear example

has a general solution which is the sum of an antisymmetric funetion which is well-
approximated by a second-derivative-dropping outer expansion plus a symmetric part which
is exponentially small except at the boundaries, and can be approximated only by a WKB
method (with second derivative retained). His nonlinear example is the Carrier—Pearson prob-
lem whose exact solution is a KdV cnoidal wave, but required to satisfy Dirichlet boundary
conditions. Matching fails because each soliton peak can be translated with only an expo-
nentially small error; MacGillivray shows that the peaks, however many are fit between the
boundaries, must be evenly spaced.

MacGillivray, A. D., Liu, B. and Kazarinoff, N. D.: Asymptotic analysis of the peeling-off
point of a French duckviethods Appl. Anall (1994), 488-509. Beyond-all-orders theory.

ACAP1276.tex; 7/05/1999; 9:15; p.91



92

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

208.

204.
205.

206.
207.

208.

209.

210.
211.

212.
213.
214.
215.
216.

217.

JOHN P. BOYD

MacGillivray, A. D. and Lu, C.: Asymptotic solution of a laminar flow in a porous channel
with large suction: A nonlinear turning point probleivgthods Appl. Anall (1994), 229—

248. Incorporation of exponentially small terms into matched asymptotics.

Malomed, B. A.: Emission from, quasi-classical quantization, and stochastic decay of sine-
Gordon solitons in external field®hysica D27 (1987), 113-157. Explicit calculations of
exponentially small radiation.

Malomed, B. A.: Perturbation-induced radiative decay of solitBhgs. Lett. AL23(1987),
459-468. Explicit calculations of exponentially small radiation for perturbed sine-Gordon
solitons, fluxons, kinks and coupled double-sine-Gordon equations.

Marion, M. and Témam, R.: Nonlinear Galerkin methds\M J. Numer. Anal26 (19),
1139-1157.

Martin, O. and Branis, S. V.: Solitary waves in self-induced transparency, in: H. Segur, S. Tan-
veer and H. Levine (edspsymptotics Beyond All Order®lenum, Amsterdam, 1991, pp.
327-336.

Martinet, J. and Ramis, J.-P.: Elementary acceleration and multisummabAlity-lInst. H.
Poincaré-Phys. Theos4 (1991), 331-401.

Maslov, V. P..:The Complex WKB Method for Nonlinear Equations I: Linear Theory
Birkh&user, Boston, 1994. Calculation of exponentially small terms.

McLeod, J. B.: Smoothing of Stokes discontinuitiemc. Roy. Soc. London 437 (1992),
343-354.

Meiss, J. D. and Horton, W.: Solitary drift waves in the presence of magnetic BhgarFlu-

ids 26 (1983), 990-997. Show that plasma modons leak radiation for |afgand therefore

are nanopterons.

Meyer, R. E.: Adiabatic variation. Part |: Exponential property for the simple oscillator,
Appl. Math. Phys. ZAMR4 (1973), 517-524.

Meyer, R. E.: Adiabatic variation. Part II: Action change for simple oscilldtakppl. Math.
Phys. ZAMR1973).

Meyer, R. E.: Exponential action of a penduliBnjl. Amer. Math. So80(1974), 164-168.
Meyer, R. E.: Adiabatic variation. Part IV: Action change of a pendulum for general frequency,
J. Appl. Math. Phys. ZAMR5 (1974), 651-654.

Meyer, R. E.: Gradual reflection of short wav@\M J. Appl. Math29 (1975), 481-492.

Meyer, R. E.: Adiabatic variation. Part V: Nonlinear near-periodic oscilldtdkppl. Math.
Phys. ZAMP27 (1976), 181-195.

Meyer, R. E.: Quasiclassical scattering above barriers in one dimedsidiath. Phys17
(1976), 1039-1041.

Meyer, R. E.: Surface wave reflection by underwater ridgdzhys. Oceang® (1979), 150—

157.

Meyer, R. E.: Exponential asymptoti&AM Rev22 (1980), 213-224.

Meyer, R. E.: Wave reflection and quasiresonanceTheory and Application of Singular
Perturbation Lecture Notes in Math. 942, Springer-Verlag, New York, 1982, pp. 84-112.
Meyer, R. E.: Quasiresonance of long lfeMath. Phys27 (1986), 238-248.

Meyer, R. E.: A simple explanation of Stokes phenomeS8btAM Rev31 (1989), 435-444.
Meyer, R. E.: Observable tunneling in several dimensions, in: R. WongAsgiptotic and
Computational AnalysjdVarcel Dekker, New York, 1990, pp. 299-328.

Meyer, R. E.: On exponential asymptotics for nonseparable wave equations I: Complex
geometrical optics and connectid®lAM J. Appl. Math51 (1991), 1585-1601.

Meyer, R. E.: On exponential asymptotics for nonseparable wave equations I: EBK quantiza-
tion, SIAM J. Appl. Math51 (1991), 1602-1615.

Meyer, R. E.: Exponential asymptotics for partial differential equations, in: H. Segur, S. Tan-
veer and H. Levine (edspsymptotics Beyond All Oredem®lenum, Amsterdam, 1991, pp.
29-36.

ACAP1276.tex; 7/05/1999; 9:15; p.92



EXPONENTIAL ASYMPTOTICS 93

218.

2109.

220.

221.

222.

223.

224.

225.

226.

227.

228.

229.

230.

231.

232.

233.

234.

235.

236.

237.

238.

239.

Meyer, R. E.: Approximation and asymptotics, in: D. A. Martin and G. R. Wickham (eds),
Wave AsymptoticsxCambridge University Press, New York, 1992, pp. 43-53. Blunt and
perceptive review.

Meyer, R. E. and Guay, E. J.: Adiabatic variation. Part Ill: A deep mirror mdd&ppl.

Math. Phys. ZAMRS5 (1974), 643—650.

Meyer, R. E. and Painter, J. F.: Wave trapping with shore absorptiBngg. Math13(1979),

33-45.

Meyer, R. E. and Painter, J. F.: New connection method across more general turning points,
Bull. Amer. Math. Soct (1981), 335-338.

Meyer, R. E. and Painter, J. F.: Irregular points of modulatiatv, Appl. Math.4 (1982),
145-174.

Meyer, R. E. and Painter, J. F.: Connection for wave modulaBbkiV J. Math. Anall14
(1983), 450-462.

Meyer, R. E. and Painter, J. F.: On the Schrddinger conne®idh, Amer. Math. Soc8
(1983), 73-76.

Meyer, R. E. and Shen, M. C.: On Floquet's theorem for nonseparable partial differential
equations, in: B. D. Sleeman (edBleventh Dundee Conference in Ordinary and Partial
Differential EquationsPitman Adv. Math. Res. Notes, Longman-Wiley, New York, 1991, pp.
146-167.

Meyer, R. E. and Shen, M. C.: On exponential asymptotics for nonseparable wave equations
Ill: Approximate spectral bands of periodic potentials on stripgAM J. Appl. Math.52
(1992), 730-745.

Miller, G. F.: On the convergence of Chebyshev series for functions possessing a singularity
in the range of representatidBlAM J. Numer. Anal3 (1966), 390—409.

Murphy, B. T. M. and Wood, A. D.: Exponentially improved asymptotic solutions of second
order ordinary differential equations of arbitrary raMethods Appl. Anal1998).

Nayfeh, A. H.Perturbation MethodsWiley, New York, 1973. Good reference on the method

of multiple scales.

Németh, G.: Polynomial approximation to the functjoa, ¢, x), Technical Report, Central
Institute for Physics, Budapest, 1965.

Németh, G.: Chebyshev expansion of Gauss’ hypergeometric function, Technical Report,
Central Institute for Physics, Budapest, 1965.

Németh, G.: Chebyshev expansions of the Bessel functi®ioteedings of the KFK14
(1966), 157.

Németh, G.: Chebyshev expansions of the Bessel functiofaotieedings of the KFK14
(1966), 299-309.

Németh, G.: Note on the zeros of the Bessel functions, Technical Report, Central Institute for
Physics, Budapest, 1969.

Németh, G.: Chebyshev series for special functions, Technical Report 74-13, Central Institute
for Physics, Budapest, 1974.

Németh, G.Mathematical Approximation of Special Functions: Ten Papers on Chebyshev
ExpansionsNova Science Publishers, New York, 1992, p. 200. [Tables, with some theory and
coefficient asymptotics, for Bessel functions, Airy functions, zeros of Bessel functions, and
generalized hypergeometric functions.]

Olde Daalhuis, A. B.: Hyperasymptotic expansions of confluent hypergeometric functions,
IMA J. Appl. Math.49(1992), 203-216.

Olde Daalhuis, A. B.: Hyperasymptotics and the Stokes phenomBrmn,Roy. Math. Soc.
Edinburgh A123(1993), 731-743.

Olde Daalhuis, A. B.: Hyperasymptotic solutions of second-order linear differential equations
Il, Methods Appl. AnaR (1995), 198-211.

ACAP1276.tex; 7/05/1999; 9:15; p.93



94

240.

241.

242.

243.

244.

245,

246.

247.

248.

249.
250.

251.

252.

253.

254.

255.

256.

257.

258.

259.

260.

261.

JOHN P. BOYD

Olde Daalhuis, A. B.: Hyperterminants J, Comput. Appl. Math76 (1996), 255—-264.
Convergent series for the generalized Stieltjes functions that appear in hyperasymptotic
expansions.

Olde Daalhuis, A. B.: Hyperasymptotic solutions of higher order linear differential equations
with a singularity of rank oneProc. Roy. Soc. London 454 (1997), 1-29. Borel-Laplace
transform; new method to compute Stokes multipliers.

Olde Daalhuis, A. B.: Hyperterminants, JI, Comput. Appl. Math89 (1998), 87-95. Con-
vergent and computable expansions for hyperterminants so that these can be easily evaluated
for use with hyperasymptotic perturbation theories. The expansions involve hypergeometric
(2 F1) functions, but these can be computed by recurrence.

Olde Daalhuis, A. B., Chapman, S. J., King, J. R., Ockendon, J. R. and Tew, R. H.: Stokes
phenomenon and matched asymptotic expans®idgyl J. Appl. Math6 (1995), 1469-1483.

Olde Daalhuis, A. B. and Olver, F. W. J.: Exponentially improved asymptotic solutions of
ordinary differential equations. Il. Irregular singularities of rank dh@c. Roy. Soc. London

A 445(1994), 39-56.

Olde Daalhuis, A. B. and Olver, F. W. J.: Hyperasymptotic solutions of second-order linear
differential equations. IMethods Appl. Anal (1995), 173-197.

Olde Daalhuis, A. B. and Olver, F. W. J.: On the calculation of Stokes multipliers for linear
second-order differential equatiomdethods Appl. AnaR (1995), 348—-367.

Olde Daalhuis, A. B. and Olver, F. W. J.: Exponentially-improved asymptotic solutions of
ordinary differential equations. 1I: Irregular singularities of rank dPeac. Roy. Soc. London

A2 (1995), 39-56.

Olde Daalhuis, A. B. and Olver, F. W.: On the asymptotic and numerical solution of ordinary
differential equationsSIAM Rev40 (1998). In press.

Olver, F. W. J.Asymptotics and Spectral FunctioWscademic Press, New York, 1974.

Olver, F. W. J.: On Stokes’ phenomenon and converging factors, in: R. Wong\&drnptotic

and Computational Analysidlarcel Dekker, New York, 1990, pp. 329-356.

Olver, F. W. J.: Uniform, exponentially-improved asymptotic expansions for the generalized
exponential integralSIAM J. Math. Anal22 (1991), 1460-1474.

Olver, F. W. J.: Uniform, exponentially-improved asymptotic expansions for the confluent
hypergeometric function and other integral transfor8i$\M J. Math. Anal22 (1991), 1475—
1489.

Olver, F. W. J.: Exponentially-improved asymptotic solutions of ordinary differential equa-
tions I: The confluent hypergeometric functi®@lAM J. Math. Anal24 (1993), 756—767.

Olver, F. W. J.: Asymptotic expansions of the coefficient in asymptotic series solutions of
linear differential equationdviethods Appl. Anall (1994), 1-13.

Oppenheimer, J. R.: Three notes on the quantum theory of aperiodic éfflegss,Rev31l
(1928), 66-81. Shows that Zeeman effect generates an imaginary part to the energy which is
exponentially small in the reciprocal of the perturbation parameter.

Paris, R. B.: Smoothing of the Stokes phenomenon for high-order differential equitmmns,

Roy. Soc. London A36(1992), 165-186.

Paris, R. B.: Smoothing of the Stokes phenomenon using Mellin—Barnes intég@asyput.

Appl. Math.41(1992), 117-133.

Paris, R. B. and Wood, A. D.: A model for optical tunnelifgA J. Appl. Math.43 (1989),
273-284. Exponentially small leakage from the fiber.

Paris, R. B. and Wood, A. D.: Exponentially-improved asymptotics for the gamma function,
J. Comput. Appl. Math41 (1992), 135-143.

Paris, R. B. and Wood, A. D.: Stokes phenomenon demystifiesi Bulletin 31 (1995), 21—

28. Short review of hyperasymptotics.

Pokrovskii, V. L.: Science and life: conversations with Dau, in: I. M. Khalatnikov (kdr);

dau, the Physicist and the Man: Recollections of L. D. Land2ergamon Press, Oxford,

ACAP1276.tex; 7/05/1999; 9:15; p.9%4



EXPONENTIAL ASYMPTOTICS 95

262.

263.

264.

265.

266.

267.

268.

269.

270.

271.

272.

273.

274.

275.

276.

277.

1989. Relates the amusing story that the Nobel Laureate Lev Landau believed the Pokrovskii—
Khalatnikov (1961) “beyond-all-orders” method was wrong. The correct answer (but with
incorrect derivation) is given in the Landau-Lifschitz textbooks. Eventually, Landau realized
his mistake and apologized.

Pokrovskii, V. L. and Khalatnikov, I. M.: On the problem of above-barrier reflection of high-
energy particlesSoviet Phys. JETR3 (1961), 1207-1210. Applies matched asymptotics in
the complex plane to compute the exponentially small reflection which is missed by WKB.
Pomeau, Y., Ramani, A. and Grammaticos, G.: A Structural stability of the Korteweg—de
Vries solitons under a singular perturbati®mnysica D21 (1988), 127-134. Weakly nonlocal
solitons of the FKdV equation; complex-plane matched asymptotics.

Proudman, I. and Pearson, J. R.: Expansions at small Reynolds numbers for the flow past a
sphere and a circular cylindek, Fluid Mech.2 (1957), 237—-262. Log-and-powers expansion.
Raithby, G.: Laminar heat transfer in the thermal entrance region of circular tubes and two-
dimensional rectangular ducts with wall suction and injectioternat. J. Heat Mass Transfer
14(1971), 223-243.

Ramis, J. P. and Schafke, R.: Gevrey separation of fast and slow varidbldsearity

9 (1996), 353—-384. Iterated averaging transformations of perturbed one phase Hamiltonian
systems, not necessarily conservative.

Reddy, S. C., Schmid, P. J. and Henningson, D. S.: Pseudospectra of the Orr—Sommerfeld
equationSIAM J. Appl. Math53 (19), 15-47. Exponentially sensitive eigenvalues.

Reichel, L. and Trefethen, N. L.: The eigenvalues and pseudo-eigenvalues of Toeplitz
matricesLinear Algebra Appl162(1992), 153-185.

Reinhardt, W. P.: Padé summation for the real and imaginary parts of atomic Stark eigenvalues,
Int. J. Quantum Chen21 (1982), 133-146. Two successive Padé transformations are used to
compute the exponentially small imaginary part of the eigenvalue.

Richardson, L. F.: The deferred approach to the limit. Part I. — Single |2®tids. Trans.

Roy. S0c226(1927), 299-349. Invention of Richardson extrapolation, which is an asymptotic
but divergent procedure because of beyond-all-orders terms in the grid spaétegrinted

in Richardson’s Collected Papers, ed. by O. M. Ashfetrdl.

Richardson, L. F.: The deferred approach to the limit. Part |.—Single lattice, in: O. M. Ashford,
H. Charnock, P. G. Drazin, J. C. R. Hunt, P. Smoker and |. Sutherland (@al)cted Papers

of Lewis Fry RichardsanCambridge University Press, New York, 1993, pp. 625-678.
Robinson, W. A.: The existence of multiple solutions for the laminar flow in a uniformly
porous channel with suction at both walls,Engg. Math10 (1976), 23—-40. Exponentially
small difference between two distinct nonlinear solutions.

Rosser, J. B.: Transformations to speed the convergence of deriss. Nat. Bureau of
Standardst6 (1951), 56—-64. Convergence factors; improvements to asymptotic series.
Rosser, J. B.: Explicit remainder terms for some asymptotic sérié¢&at. Mech. Anal4

(1955), 595-626.

Scheurle, J., Marsden, J. E. and Holmes, P.: Exponentially small estimate for separatrix split-
ting, in: H. Segur, S. Tanveer and H. Levine (eds3ymptotics Beyond All OrderBlenum,
Amsterdam, 1991, pp. 187-196. Show that the splitting is proportiongkjexp(—/(2¢))
wherev(e) has as essential singularitysaat= 0 and must be represented as a Laurent series
rather than a power series. No examples of essentially-sing@afor nonlocal solitons are

as yet known.

Schraiman, B. I.: On velocity selection and the Saffman—Taylor prolitys. Rev. Let66

(1986), 2028—-2031.

Schulten, Z., Anderson, D. G. M. and Gordon, R. G.: An algorithm for the evaluation
of the complex Airy functionsJ. Comput. Phys31 (1979), 60-75. An alternative to
hyperasymptotics — a very efficient one.

ACAP1276.tex; 7/05/1999; 9:15; p.95



96

278.

279.

280.

281.

282.

283.

284.

285.

286.

287.

288.

289.

290.

291.

292.

293.

294.
295.

JOHN P. BOYD

Segur, H. and Kruskal, D.: On the nonexistence of small amplitude breather solutjp)"ns in
theory,Phys. Rev. Letb8(1987), 747—750. Title not withstanding, thé breather does exist,

but is nonlocal.

Segur, H., Tanveer, S. and Levine, H. (edsgymptotics Beyond All Order®lenum, New

York, 1991, 389 pages.

Sergeev, A. V.. Summation of the eigenvalue perturbation series by multivalued Padé ap-
proximants — application to resonance problems and double welRhys. A: Math. Gen.

28 (1995), 4157-4162. Shows that Shafer's generalization of Padé approximants, when the
approximant is the solution of a quadratic equation with polynomial coefficients, converge to
the lowest eigenvalue of the quantum quartic oscillator even when the perturbation parameter
¢ (“coupling constant”) is real and negative and thus lies on the branch cut of the eigenvalue.
(Ordinary Padé approximants fail on the branch cut.)

Sergeeyv, A. V. and Goodson, D. Z.: Summation of asymptotic expansions of multiple-valued
functions using algebraic approximants: Application to anharmonic oscillatoRhys. A:

Math. Gen.31(1998), 4301-4317. Show that Shafer’s (1974) generalization of Padé approx-
imants can successfully sum the exponentially small imaginary part of some functions with
divergent power series, as illustrated through the quantum quartic oscillation with negative
coupling constant.

Shafer, R. E.: On quadratic approximati8hAM J. Numer. Analll (1974), 447-460. Gen-
eralization of Padé approximants. A functiaiiz), known only through its power series,

is approximated by the root of a quadratic equation. The coefficients of the quadratic are
polynomials which are chosen so that the power series of the root of the quadratic equation
will match the power series of to a given order.

Skinner, L. A.: Generalized expansions for slow flow past a cylir@@eart. J. Mech. Appl.

Math. 28 (1975), 333-340. Log-and-series in Re.

Snyder, M. A.Chebyshev Methods in Numerical ApproximatiBrentice-Hall, Englewood
Cliffs, New Jersey, 1966, p. 150.

Sternin, B. Y. and Shatalov, V. EBorel-Laplace Transform and Asymptotic Theory:
Introduction to Resurgent AnalysiSRC Press, New York, 1996.

Stieltjes, T. J.: Recherches sur quelques séries semi-convergemteSci. Ecole Norm. Sup.
3(1886), 201—-258. Hyperasymptotic extensions to asymptotic series.

Suvernev, A. A. and Goodson, D. Z.: Perturbation theory for coupled anharmonic oscilla-
tors, J. Chem. Phys106 (1997), 2681-2684. Computation of complex-valued eigenvalues
through quadratic Shafer—Padé approximants; the imaginary parts are exponentially small in
the reciprocal of the perturbation parameter.

Tanveer, S.: Analytic theory for the selection of Saffman—Taylor finger in the presence of
thin-film effects,Proc. Roy. Soc. London 428(1990), 511.

Tanveer, S.: Viscous displacement in a Hele-Shaw cell, in: H. Segur, S. Tanveer and H. Levine
(eds),Asymptotics Beyond All OrderBlenum, Amsterdam, 1991, pp. 131-154.

Terrill, R. M.: Laminar flow in a uniformly porous channel with large injectidaronautical
Quarterly 16 (1965), 323-332.

Terrill, R. M.: On some exponentially small terms arising in flow through a porous@izet.

J. Mech. Appl. Math26 (1973), 347-354.

Terrill, R. M. and Thomas, P. W.: Laminar flow in a uniformly porous pAgl. Sci. Re21
(1969), 37-67.

Tovbis, A.: On exponentially small terms of solutions to nonlinear ordinary differential
equationsMethods Appl. Anall (1994), 57-74.

Trefethen, L. N. and Bau, D., IINumerical Linear AlgebraSIAM, Philadelphia, 1997.

Tuan, P. D. and Elliott, D.: Coefficients in series expansions for certain classes of functions,
Math. Comp26 (1972), 213-232.

ACAP1276.tex; 7/05/1999; 9:15; p.96



EXPONENTIAL ASYMPTOTICS 97

296.

297.

298.

299.

300.

301.

302.

3083.

304.
305.

306.

307.

308.

3009.

310.

311.

312.

313.

314.

315.

316.

317.

Van der Waerden, B. L.: On the method of saddle poAyp)l. Sci. Res. BR1951), 33-45.
Steepest descent for integral with nearly coincident saddle point and pole.

Van Dyke, M. Perturbation Methods in Fluid Mechanicst edn, Academic Press, Boston,
1964.

Van Dyke, M. Perturbation Methods in Fluid Mechanicgnd edn, Parabolic Press, Stanford,
California, 1975.

Vanden-Broeck, J.-M. and Turner, R. E. L.: Long periodic internal wadegs. Fluids A4
(1992), 1929-1935.

Vdnberg, V. M., Mur, V. D., Popov, V. S. and Sergeeyv, A. V.: Strong-field Stark eff&tP

Lett. 44 (1986), 9—-13. Shafer—-Padé approximants are used to compute the complex-valued
eigenvalues of the hydrogen atom in an electric field. The imaginary part is exponentially in
the reciprocal of the perturbation parameter.

Voros, A.: Semi-classical correspondence and exact results: The case of the spectra of
homogeneous Schrédinger operatdr$2hysique-Let43(1982), L1-L4.

Voros, A.: The return of the quartic oscillator: the complex WKB methfd. Inst. H.
Poincaré, Physique Théoriqua9 (1983), 211-338.

Voros, A.: Schrédinger equation fraf(#) to o(7i°°), in: M. C. Gutzwiller, A. Inomata, J. R.
Klauder and L. Streit (edspath Integrals from meV to MeWo. 7 in Bielefeld Encounters in
Physics and Mathematics, Bielefeld Center for Interdisciplinary Research, World Scientific,
Singapore, 1986, pp. 173-195. Review.

Voros, A.: Quantum resurgenden. Inst. Fourier43 (1993), 1509-1534. In French.

Voros, A.: Aspects of semiclassical theory in the presence of classical &rags,Theor.
Phys.116(1994), 17-44.

Voros, A.: Exact quantization condition for anharmonic oscillators (in one dimension),
Phys. A: Math. Gern7 (1994), 4653-4661.

Wai, P. K. A., Chen, H. H. and Lee, Y. C.: Radiation by “solitons” at the zero group-dispersion
wavelength of single-mode optimal fibeRhys. Rev. A1(19), 426—439. Nonlocal envelope
solitons of the TNLS Eq. Their (2.1) contains a typo and should®e= —(39/2)425© +
21130230,

Ward, M. J., Henshaw, W. D. and Keller, J. B.: Summing logarithmic expansions for singularly
perturbed eigenvalue problen®&AM J. Appl. Math53 (1993), 799-828.

Weideman, J. A. C.: Computation of the complex error funct®iAM J. Numer. Anal31
(1994), 1497-1518. [Errata: 19982, 330—-331.] These series of rational functions are useful
for complex-valued.

Weideman, J. A. C.: Computing integrals of the complex error funcBooceedings of
Symposia in Applied Mathematid8 (1994), 403—407. Short version of Weideman (1994a).
Weideman, J. A. C.: Errata: computation of the complex error func@igxiyvi J. Numer. Anal.
32(1995), 330-331.

Weideman, J. A. C. and Cloot, A.: Spectral methods and mappings for evolution equations on
the infinite line,Comput. Meth. Appl. Mech. En@0 (1990), 467—481. Numerical.

Weinstein, M. I. and Keller, J. B.: Hill's equation with a large potens&iM J. Appl. Math.
45(1985), 200-214.

Weinstein, M. I. and Keller, J. B.: Asymptotic behavior of stability regions for Hill's equation,
SIAM J. Appl. Math47 (1987), 941-958.

Weniger, E. J.: Nonlinear sequence transformations for the acceleration of convergence and
the summation of divergent seri€domput. Phys. Repori€ (1989), 189-371.

Weniger, E. J.: On the derivation of iterated sequence transformations for the acceleration of
convergence and the summation of divergent se@esmput. Phys. Comrf4 (1991), 19-45.
Wimp, J.: The asymptotic representation of a clags-&ifinctions for large parametéyjath.
Comp.21(1967), 639-646.

ACAP1276.tex; 7/05/1999; 9:15; p.97



98

318.

319.

320.

321.

322.

323.

324.

325.

326.

327.

328.

JOHN P. BOYD

Wimp, J.:Sequence Transformations and Their Applicatjohsademic Press, New York,
1981.

Wong, R.Asymptotic Approximation of Integral&cademic Press, New York, 1989.

Wood, A.: Stokes phenomenon for high order differential equatihnsngew. Math. Mech.

76 (1996), 45-48. Brief review.

Wood, A. D.: Exponential asymptotics and spectral theory for curved optical waveguides,
in: H. Segur, S. Tanveer and H. Levine (eddsymptotics Beyond All Order®lenum,
Amsterdam, 1991, pp. 317-326.

Wood, A. D. and Paris, R. B.: On eigenvalues with exponentially small imaginary part, in:
R. Wong (ed.)Asymptotic and Computational Analydidarcel Dekker, New York, 1990, pp.
741-749.

Yang, T.-S.: On traveling-wave solutions of the Kuramoto—Sivashinsky equBtigsica D
110(1998), 25-42. Shocks with oscillations, exponentially small/iy tvhich grow slowly in
space, and thus are (very!) nonlocal. Applies the Akylas—Yang beyond-all-orders perturbation
method in wavenumber space to compute the far field for oscillatory shocks. These are then
matched to the nonlocal regular shocks to create solitary waves (that asymptote to the same
constant as — +00); these are confirmed by numerical solutions.

Yang, T.-S. and Akylas, T. R.: Radiating solitary waves of a model evolution equation in fluids
of finite depth,Physica D82 (1995), 418-425. Solve the Intermediate-Long Wave (ILW)
equation for water waves with an extra third derivative term, which makes the solitary waves
weakly nonlocal. The Yang—Akylas matched asymptotics in wavenumber is used to calculate
the exponentially small amplitude of the far field oscillations.

Yang, T.-S. and Akylas, T. R.: Weakly nonlocal gravity-capillary solitary waRigs. Fluids
8(1996), 1506-1514.

Yang, T.-S. and Akylas, T. R.: Finite-amplitude effects on steady lee-wave patterns in
subcritical stratified flow over topography, Fluid Mech.308(1996), 147-170.

Yang, T.-S. and Akylas, T. R.: On asymmetric gravity-capillary solitary wale§|uid
Mech.330(1997), 215-232. Asymptotic analysis of classical solitons of the FKdV equation;
demonstrates the coalescence of classical bions.

Zinn-Justin, J.Quantum Field Theory and Critical Phenomer@xford University Press,
Oxford, 1989.

ACAP1276.tex; 7/05/1999; 9:15; p.98



