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Summary. Steady laminar boundary layer flow and heat transfer over a thin longitudinal isothermal circular 
cylinder moving in a flowing stream has been studied in this paper. The cases in which the cylinder is moving 
in the same (parallel) or in the opposite (reverse) direction to the free stream are considered. The transformed 
nonsimilar boundary layer equations are solved numerically using the Keller-box method for some values of 
the curvature parameter, the Prandtl number and relative velocity parameter. The results show that the 
velocity and temperature distributions as well as the coefficients of skin friction and the local Nusselt number 
are appreciably affected by the relative velocity parameter. 

Nomenclature 

Cy skin friction coefficient 
f reduced stream function 
k thermal conductivity 
Nu Nusselt number 
Pr Prandtl number 
q heat transfer 
ro radius of the cylinder 
r radial coordinate 
Re Reynolds number 
T temperature 
x axial coordinate 
u, v velocity component in x- and r-directions 

Greek symbols 

curvature parameter 
~/ pseudo-similarity variable 
0 dimensionless temperature 
2 relative velocity parameter 
# dynamic viscosity 
v kinematic viscosity 
z skin friction 
0 density 
0 stream function 

Superscript 

partial differentiation with respect to q 
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Subscripts 

w condition at the wall 
oo ambient condition 
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1 Introduction 

The laminar boundary layer flow and heat transfer along the outer surface of a static circular 
cylinder in axial flow has been extensively studied in the past by Seban and Bond [1], Kelly [2], 
Glauert and Lighthill [3], Stewartson [4], and Okamura [6], Cebeci [7], Curle [8], Lin and Shih [9] 
and Sawchuk and Zamir [10]. However, in many practical engineering systems both the cylinder 
and the ambient fluid are moving in parallel or reversely. Examples are in the manufacture of 
fibres, in glass and polymer industries. The boundary layer flow for a continuously moving 
cylinder in axial direction has also been studied by several authors. Sakiadis [11] produced the 
first study regarding the boundary layer behavior on a cylindrical surface moving in a quiescent 
fluid. The work of Sakiadis [11] was extended by Rotte and Beek [12], Lin and Shih [9], Karnis and 
Pechoc [13], Choi [14], Pop et al. [15] and Eswara and Nath [16]. 

The purpose of this paper is to study the general forced convection flow and heat transfer over 
a longitudinal thin circular cylinder, which is moving in the same (parallel) or in the opposite 
(reverse) direction to the free stream. In order to anaIyze the effect of both the moving cylinder 
and the free stream on the boundary layer new variables are introduced, which are the 
combination of the classical ones for the static and for the moving cylinder, respectively. The 
transformed equations are non-similar and they are solved numerically using the Keller-box 
method introduced by Keller and Cebeci [17]. Sufficient details to provide essential features of the 
velocity and temperature distributions from which estimates of the skin friction coefficients and 
local Nusselt number can be obtained. It should be mentioned that the present analysis is more 
general than any previous investigation. 

2 Basic equations 

We consider the steady laminar boundary layer of a viscous incompressible fluid over a long thin 
longitudinal circular cylinder of radius ro, moving with a constant velocity u,~ in parallel or 
reversely to a free stream of uniform velocity u~, as shown in Fig. 1. Either the surface velocity or 
the free stream velocity may be zero but not both. It is assumed that the surface temperature of 
the cylinder Tw and the ambient fluid temperature T~o are taken to be constant, where Tw > T~o. It 
is also assumed that the radius of the cylinder is larger compared with the boundary layer 
thickness, so that the boundary layer curvature can be neglected. Under such assumptions and 
neglecting the viscous dissipation, the boundary layer equations are 

0(ru) 0(rv) 
- -  + = o ( 1 )  

ax & 

0u 0 ._  0  rOU } 
u~xx + v  Or r Or ~ & ]  (2) 

aT ~3T 1 1 0 ~ r0T~ 
U~x x + v  Or - Pr r 0 r (  &-rJ (3) 
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Fig. 1. Physical model and coordinate system 

with the boundary  conditions 

r = ro : u = +_uw, v = O, T = Tw (4) 

r = o e : u = u + o ,  T = T + .  (5) 

Here x and r are coordinates along the axis of the cylinder and normal  to it, u and v are the 
velocity components  along x- and r-directions, T is the temperature of the fluid, v is the kinematic 
viscosity and Pr  is the Prandtl  number.  The boundary  condition ofu = + uw in Eq. (4) represents 
the case of a cylinder moving in parallel to the free stream, whilst u = - u+ represents the case of 
a cylinder moving reversely to it, respectively. 

It  is known that due to the curvature effect of the cylinder, no similarity solutions of Eqs. (1) 
to (5) are available. In order to analyze the effect of both  the moving cylinder and the free 
stream on the boundary  layer flow, we introduce the following variables, similar to 
those suggested by Lin and Huang [18] for the corresponding problem of a flat plate. Let us first 
define 

X 
_ _  2 0  . T -  To+ 

ro . r 2 -  r~ ~ vro(Rew+ Re+o)' 0 -  - -  (6) 2 = 4 R e w + R e + o ,  Y =  ro 2 ; = Tw-T+o 

= •  = 2 ;  t/ ~/~, f ( ~ , q ) =  ; g(~,~/)=O 

where the stream function, 0, is defined by 

(7) 

~0 ~0 
r u  ~ - - "  F V  - -  

81 '  Ox 
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Equations (1)--(3) are then transformed to 

{(1 + it/) f " } '  + i f "  = ~ ~ -  ~-~ (8) 

P~I 1 , { f ,  Og _ g af {(1 + { r / )g ' } '+  ~ f g  = ~ (9) 

subject to he boundary conditions 

t / = 0 : f ' ( { , 0 ) = _ + 2 ,  f ( { , 0 ) = 0 ;  g ( { , 0 ) = l  (10) 

t / =  oc : f ' ({ ,  oo) = 1 -T- 2; g({, Qo) = 0 (11) 

which can be reduced to the conventional boundary  conditions for a static and a moving cylinder 

by selling 2 = 0 and 1, respectively. 
The quantities of main physical interest are the skin friction and the heat transfer from the 

cylinder, which are given by 

r~ =/~ (12) 
r=ro 

and 

q ~ = - k  ~ r  . . . .  (13) 

where/x and k are the dynamic viscosity and thermal conductivity of the fluid. The coefficients of 

skin friction for a static and a reeving cylinder are defined as 

Z" w 
(14) 

~ U ~  2 C f ~  - -  

and 

Cs,~- ~w (15) QUw 2" 

Also, the local Nusselt number  is given by 

Nu - xqw . (16) 
k ( r w -  %) 

In terms of the transformed variables, we get 

f "G o) 
R e ~  (1 - 2) ~/z C/~ 1/2 = - (17) 

where R e ~  = u~x/v and 

Cfw Rel~/~ = f ' (~ '  O) 23/2 (18) 
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where Rewx = uwx/v. Also, we get 

N u  _ g'(~, 0) (19) 

Nu g'(~, O) 
(20) 

It should be noted that  Eqs. (17) and (19) are for any value of 2 except 2 = 1, whilst Eqs. (18) 

and (20) are for moving cylinders except 2 = 0. 

3 Results  and discussion 

A finite-difference method known as Keller 's box method proposed  by Keller and Cebeci [17] 

with Newton 's  l inearizat ion method  has been used to solve the parabol ic  differential equations 

(8) and (9) with the associated boundary  condit ions (10) and (11). Since a good  descript ion of this 

method and its appl icat ion to some boundary  layer problems are given in [19] - [21], it will not  be 

presented here. 

The accuracy of the predictive results has been established by compar ison with known 

results. Tables 1 and 2 compare  the local Nusselt  number  da ta  with the results of Lin and Shih [9] 

obta ined by the method  of local similarity solutions. The agreement between these results is 

excellent. 

Representative velocity profiles and temperature  distr ibutions versus ~/are shown in Figs. 2 

to 9, exhibiting the effects of the curvature parameter  4, Prandt l  number  Pr  and relative velocity 

Table 1. Comparison o f - g ' ( ( , 0 )  for a static cylinder (2 =0)  

Pr .72 10. 100. 

Present Lin and Present Lin and Present Lin and 
Shih [9] Shih [91 Shih [9] 

.05 .5997 .60494 1.4742 1.47596 3.1805 3.17525 

.1 .615 3 .618 42 1.498 4 1.495 37 3.2214 3.206 28 

.5 .735 4 .719 96 1.678 4 1.640 73 3.517 2 3.434 93 
1.0 .867 8 .835 68 1.873 4 1.80445 3.828 0 3.686 80 
1.5 .988 7 .943 58 2.048 6 1.95518 4.1001 3.913 57 

Table 2. Comparison of -g ' (~,  0) for a moving cylinder in parallel flow (2 = 1) 

Pr .72 10. 100. 

Present Lin and Present Lin and Present Lin and 
Shih [9] Shih [91 Shih [9] 

�9 05 .6991 .719 48 3.357 4 3.369 34 11.100 3 11.098 21 
.1 .7112 .72692 3.3626 3.37813 11.1105 11.10713 
�9 5 .787 5 .788 52 3.450 6 3.447 92 11.1941 11.178 21 

1.0 .874 9 .86611 3.550 8 3.53217 11.296 4 11.264 98 
1.5 .959 3 .956 95 3.649 9 3.619 83 11.398 8 11.355 07 
2.0 1.041 1 1.038 30 3.7481 3.702 41 11.5013 11.44147 
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Fig. 2. Velocity profiles f '  versus t/for ~ = 0.5; parallel moving cylinder 
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Fig. 3. Velocity profiles f '  versus ~/for ~ = 0.5; reverse moving cylinder 
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Fig. 5. Velocity profilesf '  versus ~/for ~ = 1.5; reverse moving cylinder 
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Fig. 6. Temperature profiles g versus q for ~ = 0.5 and Pr = 0.72; parallel moving cylinder 
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Fig. 7. Temperature profiles g versus q for ~ = 0.5 and Pr = 0.72; reverse moving cylinder 
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Fig. 8. Temperature profiles g versus ~ for ~ = 1.5 and Pr = 0.72; parallel moving cylinder 
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Fig. 9. Temperature profiles g versus t/for ~ = 1.5 and Pr = 0.72; reverse moving cylinder 

parameter 2. Figures 2 and 4 show clearly a gradual conversion of the velocity profiles as the 

relative velocity parameter 2 increases from 0 to 1. On the other hand, it is seen from Figs. 3 and 
5 that the velocity profiles first decrease as the parameter 2 increases, followed by an increase as 

a cross-over point is passed, when the cylinder is moving reversely to the free stream. A reverse 

flow region near the surface of the cylinder (at the region of small t/) can also be seen in these 

figures. 
The non-dimensional temperature profiles are shown in Figs. 6 to 9 for the curvature 

parameter ~ of ~ = 0.5 and 1.5 when Pr = 0.72 (air). As can be seen from these figures, the fluid 

temperature increases with the increase of 2 when the cylinder is moving parallel to the free 
stream. However, the difference in temperature profiles is very small for the range of 2 for the case 

of a cylinder moving reversely to the free stream. 
The variation of the skin friction coefficients is shown in Fig. 10. We notice that when the 

cylinder is moving in parallel to the free stream, Ci~o ~ decreases from 0.734 2, 0.489 3, and 
0.3306, respectively, to zero for ~ = 1.5, 0.5, and 0.0 (flat plate) as 2 increases from 0 to 0.5, 
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Fig. 10. Variation of the local skin friction coefficients C:| ~ and C:w ~ versus 2 for ~ = 0 (flat 
plate), ~ = 0.5 and ~ = 1.5 

Table 3. Coefficient of skin friction C:,~ ~ for reverse flow case 

2 ~ = 0 r = .3  ~ = .6 ~ = .9 r = 1.2 r = 1.5 

~0 .33206 .43122 .51675 
.02 .33186 .43355 .52072 
.06 .33022 .43708 .52739 
.10 .32713 .43932 .53261 
.11 .32614 .43970 .53371 
.12 .32507 .44002 .53473 
.13 .32392 .44027 .53567 
.14 .32269 .44047 .53653 
.15 .32139 .44060 .53728 
.16 .32000 .44067 .53789 
.17 .31854 .44069 
.18 .31701 

.59421 .66621 .73418 

.59946 .67253 .74146 

.60852 .68360 .75430 

.61592 .69280 .76505 

.61753 .69481 .76736 

.61904 .69603 .76924 

.62041 .68910 

.62157 

Table 4. Local Nusselt number N u / R I f ~  for reverse flow case when Pr = 0.72 

2 ~ = 0 ~ = .3  r = .6 ~ = .9 r = 1.2 ~ = 1.5 

.00 .295 64 .38179 .462 66 

.02 .290 41 .377 09 .45782 

.06 .28015 .368 06 .448 54 

.10 .27008 .35947 .43978 

.11 .26759 .35739 .43766 

.12 .26510 .35534 .43557 

.13 .26263 .35331 .43350 

.14 .26016 .35130 .43144 

.15 .25769 .34932 .42938 

.16 .25523 .34735 .42730 

.17 .25277 .34541 

.18 .25032 

.53632 .60500 .66999 

.53118 .59950 .66411 
52135 .58899 .65287 
.51206 .57906 .64223 
.50982 .57664 .63959 
.50759 .57419 
.50535 
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On  the other hand, Czw ~ increases from zero to 0.713 6, 0.539 4 and 0.443 respectively. 7, 

respectively, for ~ = 1.5, 0.5 and 0.0 (flat plate) a s / l  increases from 0.5 to 1.0. 

values of the skin friction coefficient CI~ ~ and local Nusselt  number  Representative 

Nu  ~ corresponding to a cylinder moving reversely to the free stream are given in Tables 3 

and 4 for some specific values of 2 and ~ when Pr  = 0.72. I t  is seen that  C~o increases, 

while Nu  ~ decreases as 2 increases. Further ,  they increase with the increase of the 

curvature parameter  ~. The numerical  results also indicate that  for some values of 2 and ~ the 

laminar  boundary  layer breaks down due to the opposite moving of the cylinder and the free 

stream. Therefore, the convergent numerical  solutions cannot  be obtained beyond the values 

of 2 and ~ indicated in Tables 3 and 4. 
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