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Summary - -  Zusammenfassung 

A Constitutive Representation for Lineal" Aging, Environmental-Dependent Viscoelastic 
Materials. This study is concerned with developing a constitutive law for aging and environ- 
mental-dependent materials. The development rests on the assumption that the mechanical 
properties of the aforementioned materials can be mathematically represented by a functional 
of the strain and environmental histories, and this functional depends on the present time 
and the time the material is created. This constitutive assumption leads to two equivalent 
integral forms of the constitutive law after asserting that the functional is linear in the strain 
history. The first form of the integral law contains a material response functional analogous 
to the creep and relaxation functions of classical linear viscoelasticity. The second integral 
law has the same basic mathematical form but the physical interpretation of the mechanical 
response functional is different. It is demonstrated that both forms of the aging law reduce 
to the same non-aging law which is the usual starting for an analysis of only environmental- 
dependent materials. In the Appendix an operator algebra is presented for convenience in 
manipulating the integral laws for aging materials. 

Ein Werkstoffgesetz fiir lineares Altern und fiir umgebungsabh[ingige viskoelastische 
Stoffe. I)iese Untersuchung beschiiftigt sich mit der I)arstellung eincs Werkstoffgesetzes 
fiir Altern und fiir umgebungsabhi~ngige Stoffe. Die Entwicklung beruht auf der Annahme, 
dab die mechanischen Eigenschaften der oben erw~hnten Stoffe mathematisch durch ein 
Funktional der Verzerrungs- und der Umgebungsgeschichten dargestellt werden kann und 
dab dieses Funktional yon der augenblicklichen Zeit und der Zeit der Erzeugung des Stoffes 
abhs Diese Werkstoffannahme fiihrt, unter der Voraussetzung einer linearen Abh~ngig- 
keit des Funktionals von der Verzerrungsgeschichte, auf zwei ~quivalente Integraldarstellungen 
des Werkstoffgesetzes. Die erste Darstelhng des Integralgesetzes enth~lt ein 1V[aterialantwort- 
Funktional analog der Kriech- und Relaxationsfunktionen der klassisehen linearen Visko- 
elastizit~it. Das zweite Gesetz hat die gleiche mathematische Gestalt, abet verschiedene 
physikalische Interpretation des mechanisehen Antwort-Funktionals. Es wird gezeigt, dab 
fiir nicht-alternde Stoffe beide Darstellungen dasselbe Gesetz, das der iibliche Ausgangspunkt 
einer Untersuchung umgebungsbeeinfluBter Stoffe ist, ergeben. Im Anhang werden einige 
fiir das Rechnen mit den Integralgesetzen altcrnder Stoffe handliche Satze der 0peratoren- 
reehnung angegeben. 

1. Introduction 

The in tegra l  cons t i tu t ive  equa t ion  for l inear  v iscoe las t ic i ty  can be ob ta ined  
heur i s t ica l ly  b y  s t a n d a r d  a rgumen t s  for cons t ruc t ing  superpos i t ion  integrals .  The 
de r iva t ion  of such laws for l inear  non-aging  env i ronmen ta l  i ndependen t  response 
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was put  on a firm theoretical basis in 1962 by GURTI~ and STER~E~G [1]. They 
made fundamental assumptions about the constitutive equation which enab]ed 
them to deduce its integral representation from appropriate theorems. In  1960, 
5~O~LA~D and LE~ [2] developed a constitutive equation for linear non-aging 
response which can be influenced by variations in temperatures. After developing 
a representation for the relaxation function for a certain class of materials which 
includes the effect of temperature  variation, they constructed the integral con- 
stitutive law by the usual superposition arguments. Recently, STOUFrE~ and 
W I ~ A ~  [3] considered the general theory of the constitutive equation for linear 
non-aging materials whose response is effeeted by variations in the environment. 
Basic assumptions were formulated from which the integral representation for 
the constitutive law was deduced. In this way, the existence of a environmental 
dependent relaxation function was shown. A possible form of this dependence 
was derived for a class of materials which includes that  considered by ~r 
and L~]~. 

The theory of the constitutive equation for linear aging materials appears to 
be less developed. The cons~titutive equations for aging materials presented in 
the book by A~UTY~YAN [4] and the excellent review by SAOKMAN [5] are 
derived using heuristic superposition integral arguments. SACK~A~ briefly dis- 
cussed the influence of environment but  did not include its effect in the con- 
stitutive equation. The purpose here is to lay down basic assumptions for linear 
aging viscoelastic materials, allowing for envh~ influence, and then 
deduce the constitutive equations. 

The development rests on the constitutive assumption given in section 2 ' that 
the stress tensor is a functional of the s~rain and environment histories, and 
depends explicitly on the current time and the time the material is created. 
A trivial application of the time shift aspect of the Principle of Material Frame 
Indifference shows that  there are two equivalent forms for the constitutive 
equation. In one case, the strain and environmental histories are referred to 
creation time and in the second they are referred to current time. In  section 3, 
it is assumed that  the response functionals are linear in the strain history. This 
property is first used to establish tensorial properties for the response functional 
and derive restrictions due to isotropy. I t  is then used to obtain two equivalent 
integral representations for the constitutive equation. The physical interpretations 
of the response functions introduced here are discussed in  section 4, along with 
relations between creep and relaxation properties. For the kind of aging materials 
for which this theory may be useful, i.e. curing concrete, the 'aging' constitutive 
equation should approach a 'non-aging' constitutive law for large times. 

This is easily accounted for, in section 5, by introducing a time beyond which 
the material response is translation-invariant [1]. That  is, after a certain time, 
if two strains (and environmental) histories differ only by a shift in time, then 
their corresponding stress histories differ only by that  shift. This treats the concept 
of translation invariance as a property of a kind of material response rather than 
a version of the Principle of Material Frame Indifference. The landmark work 
of Gv~TI~ and STEiNBerG [1] introduced an operator algebra for the integral 
constitutive law which has greatly simplified the manipulations in problems in 
non-aging environmental independent theory. In the Appendix analogous operator 
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algebras are presented for convenience in manipulating either form of integral 
law for aging materials. 

One final comment should be made regarding this study. The constitutive 
assumption recognizes that  the environmental phenomena may chemically react 
with the aging material to alter the mechanical properties. The results and dis- 
cussion may then be regarded as applying to a constitutive equation derived from 
a theory of chemically reacting mixtures. I t  is hoped however that  such a compli- 
cated theory may not be necessary for some aging materials, such as perhaps 
curing concrete. Instead, relaxation or creep tests could be carried out in various 
steady environments. Then, just as for non-aging environmental dependent ma- 
terials, the response during time varying environments can be inferred. 

2. The General Constitutive Relationship 

There are several time variables which can appear in any constitutive assump- 
tion. In  this section the manner in which constitutive equation depends on these 
variables is investigated. To begin, denote a sequence of times which are measured 
relative to an arbitrary origin. Let 

t c represent the creation time of the material, 

t represent the current time, and 

represent the running time variable (t c ~_ ~ ~ t). 

Time t c also denotes an appropriate beginning of any aging phenomenon that 
may be relevant to the particular material and process under consideration. This 
may be the time when the material is made. On the other hand, for problems 
involving concrete or glue, it may be more suitable to eonsider t c as the time 
when the material is cast into some shape or spread in a glue line. In any case, 
t c is the first reference in time and no event prior to t c is considered relevant. 

Let aij (x, t) and e~ (x, t) be the components in the same Cartesian coordinate 
system of the stress and infinitesimal strain tensors of a particle occupying 
position x at time t in body B and denOte them by 6 and ~ respectively. Let the 
components of 6 and ~ be defined and continuous on [to, ~). The notation [a, b] 
represents the closed interval with the endpoints a and b; (a, b) is the open interval 
without the endpoints a and b; [a, b) and (a, b] denotes the mixed intervals open 
on the right and left ends respectively. 

Next, consider the environmental parameters that can influence the mecha- 
nical response of a material; for example, temperature, humidity, concentration, 
radiation intensity, e~c. Let ~ (x, t) represent the set of all environmental pro- 
perties of the particle at position x in body B. Assume ~s (x, t) is defined and con- 
tinuous for all t in the interval [tc, o0). The functions 6, s, and ~ will be called 
the stress, strain and environmental histories respectively. 

Assumption 1. The stress at any given particle x in body B at some time t 
is completely determined by the mechanieM strain and environmental histories 
at the particle on the interval [t~, t], and depends on the present time t and the 
creation time tc of the material. Furthermore, if the mechanical strain e = 0 
on the interval Its, t], then 6 = 0 on [te, t]. 

Aeta Mech. X I I I / i - - 2  3 
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The dependence of ~ on the histories confined to the time interval [tc, t] in- 
corporates the property of non-retroaetivity which is par t  of the constitutive 
definition of G t ~ T ~  and STZR~B~RG ([1], p. 303). Further  it will be assumed 
tha t  any strain history may  be associated with any environmental history. Any 
coupling tha t  does occur can be accounted for in the appropriate field equations. 
Assumption 1 can be characterized by the equation 

['  ' 1 o'(t)  = ~ $ (T1) ; (~ ('t"2) ; t, tc 
L ~x=tc ,~=tc 

(2.1) 

where ~ is a functional relating a stress history 6(t) to each strain and environ- 
mental  history ~(t) and ~(t) for every t and tc in ( - - ~ ,  ~ ) .  The quant i ty  e(t) 
represents the mechanical strain history. 

The constitutive Equation (2.1) contains two time variables t~ and t to re- 
present the aging phenomenon of the material. To determine how these variables 
are relevant to the model the Principle of Material Frame-Indifference ([6], p. 22) 
can be applied to (2.1). Since the current s tudy is restricted to infinitesimal de- 
formations and is concerned with primarily the temporal  aspects of material  
response only the time-translation portion of the frame-transformation is con- 
sidered here. This restriction embodies the principle tha t  in a scale transformation 
of all events, t ime intervals and the sense of t ime are preserved. 

In  order to impose the restriction of Material Frame-Indifference, consider 
a second set of events occurring a t ime units earlier than the first. The significant 
t ime variables are given by:  

( t ' = t - - a ) ,  (~,' = 3 , - - a )  and (to' = t o - - a ) ;  ( n = l , 2 ) ,  (2.2) 

while the strain and environmental histories are defined by 

~ ( t ' )  = ~ ( t  - -  a )  = e ( t )  

and (2.3) 
c~(t') = ~(t --  a) = (p(t). 

The stress at  t ime t' can be determined from Equation (2.1) as 

F t' t' 1 ~ ( t ' )  = ~ ~(~1'); ~(~'); t', t~' . 
L ~lt =~e t ~t = tc 

(2.4) 

The Principle of Material Frame-Indifference requires 

6 ( t )  = ~ ( t ' ) .  ( 2 .5 )  

Equation (2.5) together with (2.1) and (2.4) establishes a restriction on the func- 
tion ~ ; 

= - ' �9 . (2.6) ~(~1); ~(~2); t , t  ~ ~(~1;); ~ (~ ) ,  r ,  tc 
k ~l=tc ~2=tc k r~'=tc" ~2"=tc" 

i 

Equation (2.6) can give rise to two representations of the functional ~. 
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First  let a = t in Equa t ion  (2.2). This refers all events to the current  time. 
Then, 

t' = 0,  3, '  = ~, - -  t and to' = tc - -  t; (n = 1, 2). (2.7) 

Using (2.3), Equa t ion  (2.6) becomes 

e(Tl); ~(v2); t,t~ = ~  e ( t + 3 1 ' ) ;  @ ( t + T ( ) ;  0, t - - t ~  . 
L ~=t~ ~=t~ L ~ ' = - ( t - t ~ )  r z '= - ( t - t~ )  

Defining 3 . '  : - - s ,  (n = 1, 2) and ~ to be a new functional,  the  const i tut ive 
equat ion becomes 

t--re t--to 1 
6 ( 0  = ~ e ( t  - s~) ; ~ ( t  - s 2 ) ;  t - t~ . ( 2 . s )  

L s , = o  ,~==0 

The second form can be derived by  letting a = t~, i.e., referring all events 
to the creation time. Equa t ion  (2.2) becomes 

t' = t - -  tc,  3 , '  = % - -  to, and to' - -  0; (n = 1, 2). (2.9) 

Using (2.3) Equa t ion  (2.6) can now be wri t ten as 

~ ~(3~); ~(3~); t, t~ = ~ |~(3~ + t~/; ~(3~ + t~); t - t c , o  . 
L r~=tc r~=tc L z~=O ~=0 

Again, defining ~ to be a second new functional,  then  

[ t - to  t - to "] 

6 ( 0  = ~ [ _ 1  =[e(Tlr+0tc) ; cf(3 2 + tc) ; t - -  t c j  . (2.10) 
V2~0 

I n  Equat ions  (2.8) and (2.10) the t ime t ransformat ion demonst ra tes  the fact  
for measuring material  response there is no specific t ime origin. Thus, the Principle 
of Material Frame-Indifference is satisfied if the resulting functiona]s depend 
on the t ime elapsed since creation t - -  t c ( that  is, the "age of material") ,  and the 
strain and environmental  states occurring during this elapsed time. Since the  
functionals depend only on the quanti t ies measured between t c and t, t c can be 
set equal to zero with no loss in generality. Therefore Equa t ion  (2.1) can now 
be wri t ten as 

6(0  = ~ ~(t - ~ / ;  (t - 8 ~ ) ;  t (2.11/ 
L s~=O s~=O 

o r  

6(0  = ~ ~(~1); ~o(~,/; t . (2.]2t 
L ~l=0 ~2=0 

Equat ions  (2.11) and (2.12) describe two equivalent  forms of the stress-strain 
law. I n  Equa t ion  (2.11) the arguments  of the strain and environmental  histories 
are measured relative to the present time. I n  Equa t ion  (2.12) the a rguments  
of ~ and ~ are measured relative to the creation time. For  bo th  equations t de- 
notes the age of the material,  since t, was chosen as the origin of the t ime scale. 
Also note  t h a t  the last pa r t  of assumption 1 now states t ha t  if e = 0 on [0, t] 
then 6' = 0 on [0, t]. 
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3. Integral  Representations for the Constitutive Equation 

I f  the response functional  ~ of either (2.11) or (2.12) satisfies the following 
assumption of l inearity in the strain history, then it can be shown tha t  ~ is a 
four th  order tensor functional  and has two integral representations. 

A s s u m p t i o n  2. For  the phenomena and materials to be considered, ~ is 
assumed to be linear in the strain history. Tha t  is, for every pah  ~ of real con- 
stants  a 1 and a S and each fixed environmental  his tory ~, 

[ale 1 + 32e2; ?,  t] = a 1 ~[e l ;  ~; t] + 32 ~[e~; % t], (3.I) 

where ~ [e ;  ~; t] is an abbreviat ion for either (2.11) or (2.12). 
We first show tha t  ~ has the s ta ted tensorial properties. Let t ing X denote 

a Cartesian frame of reference, then the const i tut ive equat ion is wri t ten in the  
X frame as 

a x x x .  t], (3.2) 

where the repeated indices imply  the usual summat ion  convention.  I n  a second 
Cartesian reference frame X ' ,  the consti tut ive equat ion is wri t ten 

x' x' x' t]. (3.3) Ctm~t = q~mnpq [6pq , ~2, 

Thus, corresponding to each strain history component  ek~ there is a functional  
~i]kl [ , ?, t]. E~eh functional  ~ikl  [ , ~, t] will now be expressed in terms of the 
functionals ~pqX' [ , ~, t] by  the t ransformat ion law of four th  order tensors. 

Define A to be the t ransformat ion tha t  relates the X frame and the X '  frame. 
The t ransformat ion A is represented through a set of t ime independent  con- 
stunts a~] such tha t  

Xi' : a i i X i ,  aikaik ~- ~1.  (3.4) 

Since amn~:' and %qX" are second order tensors, 

~ix = x '  x" x ( 3 . 5 )  araiani f f~n a n d  8pq = apk~ql ~kl " 

Combining Equat ions  (3.3) and (3.4) yields 

x' x .  t]. (3.6) ai X = amnani  ~mnpq [apkaqt e~l, ~ ;  

Employ  the linearity proper ty  of ~ and compare Equat ion  (3.6) to (3.2) to obtain 

x x.  t] x' x .  t] (3.7) ~ i i ~  [e~l, Qg; : amian iapkaq l  ~mnpq[Skl,  ~ ;  . 

X Considering strain histories where all components  are zero except e~l = g, then 
the equat ion above becomes 

x t] x' . t]. (3.8) ~i~kz[g ~; : a m i a n i a p k a q t  

Thus the components  of ~ t ransform as a four th  order Cartesian tensor. For  
completeness, f rom the s y m m e t r y  properties of aij and eij, it  also follows tha t  

~j'kl : ~i~kl : ~ : ~'~i~. (3.9) 
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Hence, the assertion of linearity allows the usual tensorial properties of a material  
response function to carry over to a functional type constitutive law. 

I t  is possible to obtain an integral representation for the constitutive equations 
given in (2.11) and (2.12) if the functional ~ is assumed to be linear in the strain 
history as defined in Assumption 2 and have the continuity properties defined 
in Definition 2.2 of Reference [1]. The continuity assumption essentially says 
tha t  if two strain histories are close in value up to t ime t, then their corresponding 
stress states will be close at t ime t. The non-retroactivity property of Definition 2.2 
is implied by the content of Assumption 1. 

In  stating the integral representation, it will be convenient to make use of 
an interval on the negative time axis. Let  this interval be (--r  0). The strain 
histories are then assumed to belong to the class of functions which are continuous 
on (--c~, ~ )  and zero on (--c~, 0). Recalling Assumption 1, it follows tha t  ~ = 0 
on ( - ~ ,  0). 

K6NIG and Mv~ix~]s~ [7] consider a similar functional having all of the above 
mentioned properties along with tha t  of translation invariance. They prove tha t  
the linear hereditary law can be expressed as a Riemann-Stieltjes integral whose 
integrator is uniquely determined from the functional ~ and is independent of 
the strain history. 

I t  will be useful to review the essential details of their proof. For each fixed 
t ime t each component ~ijkz of ~ in (2.11) represents a linear functional on the 
class of scalar functions of form e (t - -  s), for s in the interval [0, t]: Since it was 
assumed e (0) ---- 0, this class of functions defines a linear space of functions /(s) 
which are continuous on [0, t] and have the property tha t  /(t) ~ 0. The t tahn- 
Banach Lemma [8], p. 114, allows extension of the functional to the linear space 
of functions which are continuous on [0, t] with / (t) =~= 0. Then the I~iesz Theorem 
[8], p. 100, can be applied to represent the functional as a Riemann-Stieltjes 
integral with a generating function ~(w, t) where t denotes the interval [0, t] 
and w is the integration variable in [0, t]. At this point in the proof the translation 
invariance condition for non-aging materials can be invoked to remove the de- 
pendence of the generating function on interval size. 

For fixed t, the generating function ~(~, t) evaluated at  some ~ in [0, t] is 
defined as the value of the functional corresponding to the characteristic function 
for the sub-interval [0, ~], which can be expressed in terms of the unit  step func- 
tion by 1 (~ - - s )  for s in [0, t]. I t  is important  to note tha t  this characteristic 
function corresponds to a strain history s(v) ~ 1 [ T -  ( t -  ~)] which implies 
tha t  ~ (~, t) has a well defined physical interpretation. This interpretation will be 
considered in the next  section. 

The work of X6~IG and MEIXNER can be generalized to include the environ- 
mental  history by  allowing all possible strain histories for each fixed environ- 
mental  history. Thus, employing the intermediate result of K6~IG and M]~Ix~]s~ 
preceding the application of the translation-invariance condition, we infer the 
following representation of a linear aging environmental dependent stress-strain 
law. 

Let  the stress history be related to the strain history by (2.11.) where: 
(a) e is defined and continuous on (--0o, c~); 
(b) e vanishes on ( - - ~ ,  0); 
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and, the functional ~ has the properties of linearity and continuity. Then Equation 
(2.11) can be written as 

~.(0 = f ~ ( t  - ~)g,O~j~ -~, t; v ( t - - ~ )  , (3.1o) 
o -  

where d t (~- denotes the differential with respect to ~ for fixed t, and where G has 
the following properties: 

(e) ~ is defined for all t in ( - - ~ ,  r and ~ in (--c~, ~ ) ;  G(T, t; ~) = 0 for 
t < 0 ;  

(d) for each fixed t > 0, G(~, t; ~) = 0 for ~ in ( - - ~ ,  0); and (t, cx~), G may 
be non-zero only for v in [0, t]; 

(e) for each fixed t, G is continuous on the right and of bounded variation 
for ~ in [0, t]; 

(f) ~ is a fourth order tensor whose components with respect to a Cartesian 
coordinate system satisfy 

for r and t in the domain of definition. 
Properties (e), (d), and (e) follow from the results of K 6 ~m  and M~Ix~Xl~ with 

the understanding that  G is defined as zero before the beginning of the aging 
process (for negative t). The proof of (f) is a consequence of Equation (3.8) and (3.9) 
and a similar result in [1, Theorem 2.5.]. 

The results in [7] assert left hand continuity. However, GURTI~r and STEI~- 
BERG have observed [1, p. 306] that  a trivial modification of t h e  underlaying 
proof permits the assertion of right hand continuity which is more convenient 
for purposes considered here. 

The stress-strain law (3.10) can further be specialized by considering the iso- 
t ropy properties of the material in question. For the full isotropy group the fourth 

order tensor G can be expressed in terms of two scalar functionals (see, for example, 
Eqn. (2.34) of [9]). For the case of non-aging environmental independent linear 
viscoelastic materials, goGm~s and PIPKI~ [10], established tensorial represen- 

rations of G for many of the sub-groups of the full isotropy group. The extension 
of these results to include Equation (3.10) follows directly if the isotropy trans- 
formations are valid for each environmental history and are assumed to be in- 
dependent of the age of the material. 

For convenience, assume the material is isotropie and homogeneous. Define 
the deviatoric stress and strain tensors as 

s i j  : (Yij - -  1 / 3 ~ k k d i i  

and (3.11) 

e i j  : s i i  - -  1/3 e~k~ii 

where the quanti ty 5ij is the Kronecker delta. GvnTIx and S~ERXBEnG'S derivation 
of the representation of linear isotropic hereditary stress-strain laws [1, Theorem 
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2.5] can now be appfied to give 

O-- 

and (3.12) 

~k~ = f ~ ( t - ~ ) g ~ 0 ~  ~ , ~ ; ~  - o  s) 
0 -  

f o r  some fixed t. The function 01 is the shear relaxation functional and ~ the 
dilatational relaxation functional. 

I t  is possible to remove the necessity of continuous stress and strain histories. 
In  their s tudy of non-aging environmental independent viscoelastic materials, 
GvRwI~r and STE~ZeB~O treated discontinuous stress and strain histories as the 
limits of appropriate sequences of continuous stress and strain histories [1, 
Theorem 3.1]. This puts the concept of discontinuous stress and strain histories 
on a sound theoretical basis which leads to a natural  physical meaning of the 
integral law. Application of their theorem in the case of aging materials is valid 
since the proof of the theorem does not depend on the size of the t ime interval 
[0, t] and requires tha t  Gijkl have a continuous first derivative on [0, t] ; we assume 
this latter property.  

According to property (d) following (3.10), 0 may  have a jump discontinuity 
at  ~ = 0. By utilizing the theorem on step function integrators and the theorem 
on reduction of Sticltjes to Riemann integrals [11, Theorems 9.8, 9.9], the con- 
stitutive equation in (3.12) can be expanded as follows 

s~ (t) = e~ (t) ~ 0, t; ~ (t - s) + f o 0 ,  v,t;~o(t--_os ) d~.  (3.13) e~(t --  ~:) 
0 

sl, e 1 are corresponding deviatoric components defined in (3.11) and 01 is the 
shear relaxation functional, s2, ee are the isotropic stress and strain components 
and ~2 is the dilatational relaxation functional. An alternate form can be derived 
by  integrating (3.13) by  parts  and changing variables to arrive at  

8~(t)=e~(o)O~ t,t; + O~ t -~ ,~  Tos) --bTd~. (3.14) 
0 

In  the preceding discussion it was assumed tha t  the stress is determined by 
the strain and environmental histories. This assumption can be reversed, and 
one could assume the strain is determined by the stress and environmental 
histories. This amounts to interchanging the roles of 6 and e ~ the preceding 
development. The counterpart  of the relaxation law given in Equation (3.10) is 
the creep taw 

eij(t) = ~ ( t  --  ~)dt2ijkz ~, t; q~(tzo~ ) . (3.15) 
0 - -  
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For an isotropic material the aging hereditary creep law is 

e,(t) =s~(t )J~ O,t" ~o s) + s ~ ( t _  ~) 0__~_ j t , ~ : ~,  t ;  ~ ( t  - -  s )  d ~ ,  ( 3 . 1 6 )  
8 = 0  

0 

where J l  and J2 are the creep functiona]s in shear and dilatation respectively. 
The derivation of the integral representation for the functional in (2.12) 

differs slightly from that  for (2.11). For each fixed t each component ~im of 
in (2.12) represents a linear functional on the linear space of scalar functions ](s) 
which are continuous on [0, t] and have the property [(0) = 0. As before, the 
Hahn-Banach Lemma and the Riesz Theorem are applied to represent the func- 
tional as a Riemann-Stieltjes integral. However, in this case, with its physical 
interpretation in mind, the generating function of the Stieltjes integral G* (T, t) 
is now defined as the value of the functional corresponding to the characteristic 
function for the sub-interval [~, t] of the interval [0, t]. This characteristic function 
coincides with the argument of the linear functional for the strain history 

(s) = 1 (s -- ~). The proof of the Riesz Theorem is unaffected by this change 
in definition of the generating function. The properties of G* (T, t) differ slightly 
from those of the earlier proof and are summarized below. 

For the linear ~ging environmental dependent stress-strain law denoted by 
(2.12) having the properties of linearity and continuity, the stress history can be 
expressed in terms of the strain history through the relation 

f *[ (~ij (t) : - -  ekl (~) dt Gii~l ~, t ; , 
0 

(3.17) 

where d t G* denotes the differential with respect to T for fixed t and where G* 
has properties (e), (d) and (f) mentioned after (3.10). The change in definition 
of the generating function gives rise to the minus sign in (3.17) and changes 
property (e) to assert left-hand continuity. 

The remarks made in regard to (3.10) also apply to (3.17). Confining our 
attention to isotropic materials, it  is sufficient to consider scalar versions of (3.17). 
In view of the remarks following (3.14), the strain histories in (3.17) may now 
have jump discontinuities. 

According to its property (d), G* may have a jump discontinuity at r = t. 
Assuming that  G* (T, t ;~)  has a continuous first derivative for ~ in (0, t], the 
methods leading to (3.13) also can be used to reduce (3.17) to 

t 

fl ~ G * ( T , t ; q s ) d v  cr(t) = e( t )G*(t ,  t; q)) - -  e(T) ~ 

0 

(3.18) 

An alternate form for (3.17) can be obtained by integrating (3.18) by parts 
to give 

t 

f ~ s(~) dv (3.19) a(t) ---- s(0)G*(0, t; ~0) + G*(r, t; ~) ~-r 

0 
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Finally, the creep law counterpart  of the relaxation law (3.17) is given by 

( e(t) = - -  f ( r (~ )d t J*  3, t; q~(s (3.20) 
0 = 

where J* has the same properties as G*. 

4. Properties of the Model 

To investigate the physical meaning of the variables in the generating func- 
tionals of Equations (3.10) and (3.17), let the strain history be given by 

~(t) = l ( t  - ~ ) .  (4.1)  

Using Equation (4.1) to evaluate the scalar equivalent of (3.10) gives 

('t t ] 
a ( t ) = O  t - -  a, t; q~ ~os )  , t > a ,  (4.2) 

or(t) = 0 ,  t < a .  

Thus, 0 t -- a, t; ~(t -- s) is the stress at the present time t due to a unit step 

strain tha t  was applied at time a. The quanti ty (t -- a) represents the time that  
has elapsed since the strain was applied. The relaxation functional 0 can be inter- 
preted as a surface for each environmental history. A typical surface is shown 
in Fig. 1. 

J~-<~, t,/#~-sif f i t  fc~'l'i'ei~/ l+he) 
m=Y X / 

o 
s 

Fig. 1. A typical relaxation surface G for the response function given by equation (4.2) 

Using (4.1) to evaluate the scalar equivalent of (3.16) gives 

a(t )  = G* a, t; , t > a ,  

(~(t) = 0 ,  t < a .  

(4 .3)  



42 D.C. STOUFFER and A. S. WI~-~,~A~: 

Although (4.3) has the same physical interpretation as (4.2), the argument _a 
denotes the actual t ime tha t  the unit  step strain was applied. A typical relaxation 
surface corresponding to G* (r, t; F) is shown in Fig. 2. 

J=O 
,4 "~ 

////// /~ 

Fig. 2. A typical relaxation surface G* for the response function given in equation (4.3) 

In  Figures 1 and 2 the curve A B represents the value of the stress (0 or G* 
respectively) at  t ime t due to a unit step strain applied at  values of _a. The curves 
CD in Figures 1 and 2 represent the stress at  different times t due to the a unit 
step strain applied at t ime a. Utilizing the physical interpretation given for 0 
in (4.2) and G* in (4.3), integrals (3.13), (3.14), (3.18) and (3.19) can be constructed 
by superposition arguments of the type given in FLffaGE [12]. Equations (3.13) 
and (3.18) arise by  considering the strain history to be approximated by  a series 
of strain pulses. Equations (3.14) and (3.19) arise by  considering the strain history 
to be the limit of a series of step strains. Recalling tha t  the first argument  in 
represents t ime elapsed since a step strain, the first term in (3.13) implies tha t  
G [0, t; ~0] is the instantaneous elastic response due to a unit strain impulse applied 
at t ime t. Similarly, G*[0, t; 9J] in (3.18) also represents an instantaneous elastic 
response. 

At  this point i t  is easy to introduce the relationships between the creep and 
relaxation functions for aging materials2 The relaxation functional in (4.2) may  be 
interpreted as the stress history required to produce the unit-step strain history 
1 (t - - a ) .  Thus, substituting (4.1) and (4.2) into the scalar version of (3.15) yields 

1 ( ,  - a)  = f o it - - . ,  t - ,z, j (r, t) 
O-- 

t 

J[t - -  2, t] d~0[~ - -  ct, ~], 

(4.4-) 

=f 
0--  

where the last line follows by integrating by  parts  and changing variables. Two 
additional relationships may  be calculated from (3.10) when o'(t) = 1 (t - - a )  and 
the resulting creep response is s (t) = J (t - -  a, t) calculated from (3.15). These 

1 For convenience in writing, dependence on ~0 is suppressed. 
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relat ions can be formal ly  ob ta ined  interchanging 0* and  ~ in (4.4). They  represent  
four  equivalent  forms of a Vol ter ra  integral  equat ion  of the  second k ind  which 
m a y  be solved for one of the  mater ia l  response funct ions when the  other  is deter- 
mined  exper imental ly .  If,  say, J is known,  the mos t  useful form for finding 
appears  to be t h a t  ob ta ined  by  reducing the  first  line of (4.4) to the  form 

t 

f ~ J ( t - - ~ , t ) d ~ = l ,  t > a .  (4.5) 4 I t  - a,  t] d [ 0 ,  t] + 4 ( ~  - a,  ~) ~(t - ~------~ 
@ 

Obtaining (4.5) required use of a j u m p  discont inui ty  in d a t  3 = 0, the  vanishing 
of ~ for 3 ~ t - -  a and the  change of var iables  3 = t - -  ~. This appears  to be 
the  only fo rm in which given the  cons tan t  a, G (~ - -  a, $) = ] (~), is a funct ion of 
only one variable.  This solution represents  the  curve CD shown in Fig. 1. 

Analogous relat ions for the  second form of s tress-strain relat ion can be der ived 
by  using e (t) : 1 (t - -  a) and  stress response (4.3) in (3.20) to yield 

t +  

l ( t  -- a) -~ -- f G*[a, r] dr J*(3, t]. (4.6) 
0 

Using a = 1 (t - -  a) and  corresponding s t rain J *  (a, t) in (3.17) yields 

t*  

l i t  -- a) = -- f J*(a, r) dtG*(3, t). (4.7) 
0 

I f  J *  is known, G* for f ixed a can be found f rom the Vol terra  integral  equat ion 
(4.6) which when reduced to a R i emann  integral  has the  form 

t 

f 0 j , ( r , t )  d 3 = l ,  t ~ a .  (4.8) G* [a, t] J *  (t, t) - -  G* (a, r) ~ 
@ 

Although the integral  representa t ions  (3.10) and  (3.17) show t h a t  the re laxat ion 
funct ions depend on env i ronmenta l  his tory,  ve ry  little can be said abou t  the  
explicit  na ture  of this deI)endcnce. Including the  env i ronmenta l  h is tory on the  
in terva l  [0, t] in (4.2) and (4.3) implies t h a t  the  stress, and consequent ly  the  
mater ia l  propert ies,  depend on the  in terac t ion  of the aging phenomenon  and the  
env i ronment  a t  all t imes since the mater ia l  was made.  ~ 

I n  a general  discussion of concrete as an aging mater ia l ,  SACKMA~ [5] poin ted  
out  t h a t  an explicit  representa t ion  for the  dependence of re laxat ion  funct ional  
(4.2) or (4.3) on the envi ronmenta l  h is tory ~ migh t  be der ivable  using the  cor- 
responding theory  for non-aging mater ia ls  as a guide. Such an approach  requires 
t h a t  creep or re laxat ion measuremel / t s  be made  a t  s teady  environments .  For  
example,  [5] contains creep curves measured  a t  var ious  cons tant  t empera tu res  
and  humid i ty  levels. SACKMA~ considered the  possibil i ty t h a t  the  curves for, say, 

2 A discussion of environmental effects in non-aging materials [3] utilizes the apparently 
reasonable assumption that for a strain history of form (4.1), G depends on the history of 
only during straining, i.e., on the interval [a, t]. 
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various temperatures,  could be related by  translations along a logarithmic t ime 
axis, as is possible for non-aging materials. The data also suggests the possibility 
tha t  these families of creep curves can be related by  vertical sealing. The creep 
function for transient environments can then be derived using relations for steady 
environments. A general s tudy for non-aging materiMs in which creep functions 
are related by  both vertical scaling and shifts along the log time axis has recently 
been given in [3]. 

In  conclusion, we briefly discuss the relative merits of the stress-strain law in 
forms (3.10) and (3.17). Note tha t  the law in form (3.10) can be transformed into 
form (3.17) by letting t - - 3  = 3' and by equating (4.2) and (4.3), which are 
different expressions for the stress relaxation history arising from the same step 
strain history. This is to be expected because the above transformation causes 
events measured with respect to current t ime t in (3.10) now to be measured with 
respect to creation time as in (3.17). Furthermore,  curve CD in Fig. 1 is mapped 
into UD in Fig. 2. 

As t becomes large, it is reasonable to expect the "aging" laws (3.10) and 
(3.12) to approach the standard integral non-aging law of linear viscoelasticity. 
For steady environments, (3.10) approaches this law if 0 (3, t) --> 0 (3). For (3.17), 
however, G* (3, t) -~ 0 (t --  3), and then a change of variables is necessary to 
get the proper form. A discussion for general environments is presented in See- 
tion 5. 

Since (3.10) can be transformed into (3.17), or vice-versa, a preference for one 
form or the other should be based on analytical convenience. SAOK~A~ [5] has 
pointed out tha t  (3.17) has been more convenient to work with. Furthermore,  
An~UTYUSYA~r [4] has made (3.17) the basis for his s tudy of the mechanics of 
concrete. In  the non-aging theory, manipulations of the integral operator of the 
stress strain law can be expressed in terms of an operator algebra which has been 
invaluable in solving problems. Although an operator algebra can be developed 
for both forms of the law, as is shown in Section 6, (3.12) appears to be preferable 
because of economy in writing. 

5. Specialization for Non-Aging Materials 

Although the constitutive equations (2.11) and (2.12) are intended as the 
starting point for a discussion of an aging environmental-dependent viscoelastic 
material, they can also be applied to non-aging materials. Thus, instead of making 
a specific constitutive assumption for a theory in which aging effects are absent, 
it is demonstrated tha t  under appropriate conditions, as t becomes large, (2.11) 
and (2.12) approach a constitutive equation describing a non-aging material. S The 
environmental history experienced by a particle while aging interacts with the 
aging process to produce a fully cured (no/i-aging) material  with certain mechan- 
ical properties. 

In  considering this transition in more detail, let T be a measure of the time 
required for the material  to become fully cured (T may  depend on the inter- 

a This idea was incorporated by A~uwvtT_~:~tN ([4], 1 o. 29) in suggesting analytic ex- 
pression for the relaxation function G* (~, t) in (3.17). 
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action). Assume tha t  s = 0 on [0, T] so tha t  there are no initial stresses in the 
cured state. Then 6(t) in the cured state, i.e. for t > T,  depends explicitly on the 
strain his tory e (T) and the environmenta l  h is tory ~v (T) only on the interval  IT, t]. 
I f  ~ denotes a new functional,  then (2.11) and (2.12) reduce to 

6(t)  = ~  e ~(T2);t (5.1) 
z2~T 

and 

[ t--T t--T 1 
6(t) = ~ ~(t - -  sl); ~v(t - -  s3); t (5.2) 

L 81~to 8~to 

t >> T .  The new functional  ~ describes the mechanical  properties of the fully f o r  
cured material,  which m a y  be different for each io (t) on [0, T]. 

The const i tut ive assumption,  as given in (2.1), prescribes the physical  quan- 
tities which can affect the stress history. We next  make an assumpt ion on the 
na ture  of this dependence in the  cured state. 

A s s u m p t i o n  3. Let  e ---- 0 on [0, to] for t o > T .  Then the state of stress at  
any  t > t o is independent  of the environmental  his tory on [T, to]. 

I n  more physical  terms, the environmental  h is tory when the cured material  is 
" o n  the shelf" does no t  affect later mechanical  response. Let t ing ~ denote another  
new response functional,  the const i tut ive equat ions (5.1) or (5.2) for strain 
histories with ~ = 0 on [0, to] can be rewri t ten as 

6 ( 0  = ~ ~(T~); ~ ( ~ ) ; t  (5.3) 
- L ~1=0 ~ 2 : 0  

or  

t--to t--to ] 
6(t)  = ~ e(t  - -  sa); ~0(t - -  s~); t (5.4) 

81=0 8a=O 

for t > t  0 > T > 0 .  
Selecting t o as the new origin for convenience, the const i tut ive equations (5.3) 

and (5.4) assume the form of (2.11) and (2.12). I n  the sequel, e(t) is assumed to 
vanish for t < 0 and is continuous on [0, oo). Assume ~o (t) is continuous for all 
t imes since the curing time. 

Wi th  the establishment of the above notions, non-aging response can now be 
characterized. A material  is said to be non-aging if the const i tut ive equat ion is 
such tha t  the mechanical  response is unal tered by  a shift of the strain and con- 
current  environmental  histories with respect to, say, the curing t ime T. 

Given a set of s train and environmental  histories ~ and ~ satisfying the above 
ment ioned conditions, define a second set by  the relations 

for all T since the cure time, 

on E--a, ~) 
(5.5) and 

(T) = s (T + a) 

r = ~(~  + a) 

(~) .. .  a rb i t rary  from cure t ime to T =- - -  a,  
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where "a" is an arb i t rary  constant .  The stress state ~ which results at  t - -  a due 
to strain his tory ~ and environmental  his tory ~ is given by,  say, (5.3) as 

t - -a  t - -a  1 ~ ( t - - a )  = { ~  ~ ( ~ l ) ; { ~  . 
LTI=--a ~ = - a  

(5.6) 

According to the above definition, the material  is said to be non-aging if the stress 
states which result f rom equations (5.3) and (5.6) are identical; i.e., d(t  - - a )  
=- 6(t).  The consti tut ive equat ion is said to be t ranslat ion invar iant  (see [1]). 
This condition together  with (5.5), leads to the following restriction on ~ : 

e(vl ) ;  ~~ t = ~ e(~l  q- a);  ~(T 2 + a); t - -  a . (5.7) 
L vl=0 v2=0 L Tl=--a  r l = - - a  

Lett ing a = t - -  ~, ~ being an arb i t rary  constant ,  and defining v~ --  ~ = - - s , ,  
n = 1, 2, Equa t ion  (5.7) can be wri t ten as 

F 0 o 1 $ (T1) ; ~ (T2) ; t = ~ $ (t  - -  81) ; ~ (t - -  83) ; J . 
L 31=0 ~2=0 L 81=t s~=t 

Since $ is arbi t rary,  ~ cannot  depend explicitly on t ime t. Thus, for t ranslat ion 
invariant ,  environmental  dependent  materials, the viscoelastic response can be 
characterized by  the functional  relation 

6(t)  = ~ e(t  - -  s l);  q (  2 
L sl=O 

(5.s) 

where ~ is again defined as a new functional.  
A similar result  can be obtained for the consti tut ive equation in form (5.4). 

The stress ~ at  t ime t - -  a is given by  

d ( t - a ) = ~  ~ ( t - a - s l ) ; ~ ( t - a - 8 2 ) ; t - a  . 
8z=0 82~0 

Employing the t ranslat ion invariance principle, ~(t - -  a) = (~(t) and (5.5) gives 

i t s  t , ] , ] e( _ - -0 s l ) ; ~ ( t - - s2 ) ; t  = ~  ~ ( t - - s l )  ; ~ ( t - % ) ; t - a  . (5.9) 
s2=0 L sl=O s~=O 

Thus it can be seen tha t  the consti tut ive functional ~ is independent  of the 
explicit t ime variable t since the constant  a is arbitrary.  The const i tut ive equation 
as implied by  (5.9) is identical to (5.8). 

The resul tant  stress-strain law for a non-aging material,  Equa t ion  (5.8), is the 
usual start ing point  for an analysis involving only environmental  effects. Many  
such studies have been carried out  for both  temporal ly  constant  and transient  
environments.  Some examples of this work are given in References [2], [3], and 
[13]. 
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Appendix 

6. Operator Algebra 

The constitutive equations in form (3.12) or (3.17) can be conveniently re- 
presented using an operator notation. Operations involving (3.12) or (3.17) form 
an operator algebra which facilitates their manipulations in solving boundary 
value problems. 

Definition 1. Let the scalar function /(t) be defined and have the fo l lo~ng 
properties on (--c~, cr 

(a) /(t) vanishes on (--r 0); 

(b) /(t) is continuous on the right in the interval [0, ~ ) ;  
d/  

(c) - ~  exists and is continuous on [0, :xD). 

Definition 2. Let  the scalar function W (3, t) have the following properties: 

(a) ~(v, t) is defined for all t and v in (--c% oz); ~v(v, t) = 0 for t < 0. 

(b) For each fixed t > O ,  F ( v , t ) = 0  for z i n  ( - - ~ , 0 )  and ( t , ~ ) ,  ~(%t) 
may be non-zero for v in [0, t]. 

a ~ (v, t) exists and is continuous with respect to ~ on [0, t]. (c) 

In the remainder of this section, all functions will be assumed to have these 
properties unless otherwise stated. These properties are sufficient to guarantee 
the existence of the Stieltjes integrals to be used (see [11], Theorem 9--26). 

Functions of one time variable f(t) will usually arise from operations per- 
formed on stress or strain. Functions of two time variables ~ (~, t) will usually 
represent material response functions or operations involving them. 

Definition 3. If T is fixed in ~p (3, t), the resulting function of t is denoted by 

w(t) = ~p(v, t); (6.1a) 

if t is fixed in ~ (3, t), the resultant function of ~ is denoted by 

y~t(~) = ~v(~, t); (6.1b) 

if s is fixed in ~ (t -- s, t), the resultant function of t is denoted by 

~ ( s ,  t) = ~ ( s ,  t) = ~ ( t  - s, t). (6.1 c) 

Note that  ~b has properties (a) and (b) of Definition 2. 

Definition 4. The Riemann Stieltjes integrals 

t t 

= f f i t  - 3) ~ t v (~ ,  t) = f / ( t  - ~) dw(~:) ,  Ii(t)  
0 - -  0 - -  

and (6.2 a) 
t t 

O-- O-- 
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will be denoted respectively by 

11 = / * dFt  

The 1%iemann-Stieltjes integrals 

and 11 = ~t * d r .  (6.2b) 

t t 

x ~ ( s ,  t) = f v ( t  - -c - 8, t - -c) d ~ ( ~ ,  t) = f ~ ( s ,  t - -  -c) d w ( - c ) ,  
0 - -  0 - -  

and (6.3a) 
t t 

x ~ ( s ,  t) = f ~ ( t  - -c, t) d~0(-c  - -  8, -c) = f ~0,(t - -  -c) d~r 7:) 

0 - -  o -  

will be denoted respectively by 

X 1 = s~  �9 d~ot, X 2 = ~o t �9 d(~r (6.3b) 

These integrals are similar in structure to the Stieltjes convolutions discussed in 
[1] and hence are given similar notation. This notation, although perhaps cumber- 
some, will be useful in representing the algebraic like manipulations of (6.2 a) and 
(6.3a). 

These manipulations and their proofs are analogous to those given in [1]. 

P r o p e r t i e s  of (6.2a) a n d  (6.3a) 

(a) J �9 d~ft and YJt * d /  are defined for t on (--co, e,z) and vanish on (--co, 0); 
%*d~o t and ~o t*d~0s vanish for t < 0 ;  for fixed t _ ~ 0 ,  they vanish 
for s in (--oo, 0) and in (t, e~). 

(b) / * d ~  = ~t * all, (fl)) * d,ft = ~o~ �9 d(~r 

(e) ~,  �9 d [ ~ t  * d / ]  = [~t * d ( ~ ) ]  * d / .  

(d) [ * dFt  is linear in [ and ~. 

(e) / *  d~ot = 0 implies / = 0. 

(f) if [ = l ( t - - s ) ,  then ~0 t * d [ = ~ p ( t - s , t ) .  
t 

(g) l �9 d~ t  = ~ ( 0 ,  t ) / ( t )  + / ( t  - - c )  ~ d.c, 

0 

t 

f st ~o t * c l /  : / (0 )  v ( t ,  t) -Jr- ~ t ( t  - -  -c) - ~  d-c, 

0 

l - - 8  

f ( f i b ) .  d~ft = ~f(t - -  s, t) yJ(O, t) -t- q)(t - -  s - -  -c, t - -  3) ~ ~o(-c, t) d-c, 

8 

t 

f ~ft * d ( f l ) )  -~ ~f(t - -  s,  t) ~v(O, s) -l- ~o(t - -  % t) --~-cf(-c - -  s,  ~) d-c. 

8 

P r o @  Properties (d), (f) follow directly from the properties of Riemann- 
Stieltjes integrals ([11], Theorem 9-3, 9-9, respectively). 
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To establish the  propert ies  in (a), use the fact  t h a t  the  functions ~o and ~0 
appear ing  in (6.2) and  (6.3) have  propert ies  given in Definit ion 2. 

The first  operat ional  p rope r ty  s ta ted  in (b) is analogous to p rope r ty  (b) of 
Theorem 1.2 in [1]. The proofs are identical,  bo th  resting on an appl icat ion of the 
theorem of in tegra t ion  of Stieltjes integrals by  par ts  [11, Theorem 9-6] for fixed t; 
followed by  a change of var iables  and  not ing the  p rope r ty  t h a t  ~o ( - -~ ,  t) = 0. 
The  proof of the second pa r t  of (b) is similar. In tegra t ing  by  parts ,  noting t h a t  
@(s, 0) = 0 by  p rope r ty  (b) of Defini t ion 2, and  t h a t  io(--c,, t) = 0 gives 

t t 

f ~C8, t - ~) d~0,C3) = - -  f v~(3) d , [ ~ C t  - -  ~)]. (6.4) 
--or --o~ 

Let  t - -  T = ~ and use the  theorem on change of variables in a Stieltjes integral  
[11, Theorem 9-7]. Then  since q)(8, 3) = 0 for 3 < s and ~C3,.t) = 0 for z > O, 
(6.4) becomes 

t t 

--or - - 0  

which by  (6.3) completes  the  proof. 
To prove  the  first  pa r t  of (g), define ~C% t), continuous on ( - c o ,  t], by  

~o (T, t) = v) (% t) ~- F C0, t) 1 (3). (6.5) 

Subst i tu t ing (6.5) in (6.2a), using p rope r ty  (d) and  the theorem on step funct ion 
integrators ,  

t 

(] * d~ot) (t) = ~o(t), t) ] ( t )  -~- f/ct - ~) d ~ c ~ ) .  (6.6) 
0 

Observing t h a t  for z in [0, t] 

~o (~, t) _ a~ (v, t___~) (6.7) 
0~ 0r ' 

and  using the  theorem on reduct ion of Stieltjes integrals to R i emann  integrals,  
(6.6) und  (6.7) yields 

t 

([ �9 d~f,)  (t) = ~f(O, t ) / ( t )  + f /ct - r )  0~(,,0~ ,) 43 

0 

as asserted.  In te rchanging  [ and ~0 t yields the  second pa r t  of (g). The thi rd  is 
ob ta ined  f rom the first  two by  lett ing ] (~) = ~o (~ - -  s, ~) = ~v (s, v), for fixed s, 
and then  recalling t h a t  r  T) = 0 for T < s. To obtain  the  ]ast par t ,  let 
~b (s, T) = ~o (z - -  s, 3) = 9) (0, s) 1 (~ - -  s) ~- ~ (~ - -  s, 3), where ~ is continuous for 

in ( - -oo,  ~ ) .  
To ver i fy  (e), set  ] * dy~ t = 0 in the  first  pa r t  of (g) and make  the change 

variable ~ = t - -  v to arrive at 
t 

f ~(t - ~, t) 0 = ~C0, t) / (t) + / (8) ~ _- ?-) d ~. (6.8) 
0 

Thus, Equa t ion  (6.11) is a homogeneous  Vol terra  integral  equat ion of the  second 
kind for ] (t), when ~ (0, t) :~ 0. The  uniqueness propert ies  of Vol terra  integral  

A c t a  M e c h .  X I I I / l - - 2  4 



50 D.C. STOUFFER and A. S. WI~EHA~: 

equations [14, p. 35] verify tha t  /(t) = 0 on [0, t]. For  the case when ~(0, t) = 0 
let 

g (t - -  ~:, t) = e ,~ (t - ~, t) 
(t - $) ' 

then differentiate Equa t ion  (6.8) with respect to t to  get  

t 

0 = g(O, t) t(t) + f /(~)  "(' .t- ~' ') ' ~ "  
0 

Thus, once again it follows tha t  [ (t) mus t  equal zero. 
To prove (e) let 

} 01 = ( ~  * d~ot)  �9 d ~  = c ; ( t  - -  ~ - -  8, t - -  ~) d t ~ ( ~ ,  t )  d / ( s ) .  (6.9) 

Expanding  the Stieltjes integrals in (6.9) according to relations developed in (g) 

; } 01 q~( t - - s , t )  F(O, t ) -F 7 ( t - - v - - s , t - - z )  o~(T,t) dz  d/(s)  O~ 
0 

t t 

=~(o,t) f ~,(t-8, t)e/(8)+/(o) ~o( t -~ , t - r )  ~(~'~) dr (6.1o) 

t t - - s  

- ] - i f  q ~ ( t - T - 8 ' t - r u  ~ d/(S)ds d T d s .  
0 0 

Interchanging the order of integration, the double integral can be rewrit ten as 

t 

01 -~- ~2(0 ,  t )  f q ) ( t  - -  8 ,  t )  d/(8) 
--o; 

/I } + q : ( t - - T , t - - T ) / ( O ) +  f ( t - - 3 - - a , t - - ~ ) e / ( s )  d8 0 ~ ( ~ , t ) d r .  
.~ ds ~ 
O 

Again utilizing (g), 01 can be wri t ten as Stieltjes integrals:  

0 l=~o(O , t )  ~ ( t - - s , t )  d / ( 8 ) +  c p ( t - - r - - s , t - - r )  dl(8) Or 
--o; 0 

/I; } = ~(t - ~ - 8, t - 3) dr(8) dw(7:, t). 
--a 

I n  terms of the nota t ion defined in (6.2), (6.3), 01 can be expressed by 

(fl~ * d~t) * d/  = (q:t * dr) �9 d ~ .  
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The desired result is then obtained using the commutativity properties (b). 
Similar properties can be developed for the integrul operator in (3.17). The 

most convenient notation for this operator appears to be that  obtained by sup- 
pressing the independent variable of integration in the Riemann-Stieltjes integrals, 
i . e ,  

t t 

f ~(~, t) dl(~) = f V, all, 
- o  - o  ( 6 . 1 1 )  

t +  t +  

f ~(~,-~) ,~,~,(~, t) = f ,~ d~,. 
0 o 

P r o p e r t i e s  of (6.14) 
t +  t 

(a) f [d~t, f ~ptd] are defined for t in (--c~, c~) and vanish on (--c~, 0). 
0 O-- 

t-F t 

f ~a~t, f ~,a(s~) vanish for t < O; for fixed t ~ O, they vanish for s 
0 0 -  

i n  (--(x), O) and (t, ~ ) .  

t +  t t +  t 

(h) f l d ~ ,  = - f W , d / ,  f , ~ d w ,  = - -  f w , d ( , w )  
0 O--  0 O - -  

/I; ] (e) ~ftd(sq~) d l= f wtd ~ldt 
o -  0 t O -  0 

t +  

(d) f ]d~t is linear in / and ~t 
o 

t +  

(e) f Jd~ = 0 implies ](t) = 0 for all t 
o 

t 

(f) if [ = l ( t  -- s), thenf ~ t d / =  ~o(s, t) 
O-- 

t-F t 

(g) /d~,  = --/(t)  ~(t, t) + I(3) ~ 
0 0 

t t 

f ~td] = ](0) ~(0, t) + f t) a/(T) cl~ Ov 
O-- 0 

t +  l 

f sgd~, ~- --~(s,t) F(t,t) + f q~(8,~) O~(~,t)o~ dr 
0 s 

t t 

- - 0  8 

4* 
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Pro@ The proof of properties (a), (d) and (f) is the same as before. To prove 
the first part  of (b), let ~ be a positive constant and integrate by parts, 

t +  t + ~  

f sago, = f s(~) a,,p(~, t) 
0 o 

tq-c~ 

= l( t  + ~) ~o(t + c~, t) - 1(0) ~o(0, t) - f ~o(~, t) d / ( r ) .  
0 

Since W(7, t) = 0  for T > t  and /(r) = 0  for r < 0 ,  this ean be rewritten as 
t-{- t t 

f l e ~ ,  -- - f ~(r, t)dl(~) = -- f w, e i ,  
0 O-- o -  

as asserted. For the second part  of (b), integrate by parts and use the fact that  
~0(8, r) = 0  for r < s .  

The proof of (g) is essentially the same as before. To obtain the first and third 
giemann integral expansions let ~o (r, t) = ~f (t, t) 1 (r - -  t) + ~ (r, t), where 

( ,  t) is continuous on [0, ~ ) .  
To show (e), set the left hand side of the first expansion in (g) equal to zero. 

The result is a homogeneous linear Volterra integral equation of the second kind. 
Now apply the discussion following (6.11). 

Property (e) can be established by first letting 

i[ / j /[ ] 0 = --  oq)d~f, d l  = --  f re(s, r) d t ~ f ( r  , t) all(s) (6.12) 
O-- t O-- 0 

and then applying the expansions in (g) to give 

i[ , ;  ] 0 - ~  ~o(t,t) cf(s , t  - -  q~(s,r) O~(r't) dr  d/(s)  
O T  

o -  s 
t t 

O-- O 

t t 

- -  f f q~(a, r) d/(~)da O~o(v,t)~v d r d a .  
O a 

Interchanging the order of integration and recombining terms in 0 gives 
t t 

0 = ~o(t, t ) f o r ( s ,  t) d](8 ) --  1(0) (~o(0, r) ~P("  t) d r  
,, aT 

O-- 0 

t 

- f f cp(8, T) d/(8)d8 ~ W ( T '  ds dr  

f O~f(r, t) dT = w(t, t) q)(s, t) d l (s)  - -  ~(s, ~) dl(s)  o~ 
O-- 0 
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E q u a t i n g  (6.16) and  (6.17) and  using p r o p e r t y  (b) gives the  desh~ed result .  
The  in tegra ls  in (6.2a), (6.3a) reduce  to St ie l t jes  convolut ions  i~ ~ and  F are  

i ndependen t  o~ t. The in tegra ls  in (6.14) becomes St ie l t jes  convolut ions  if ~f(~, t) 
= F (t - -  v) and  ~ (s, ~) = q~ (~ - -  s) .  As discussed in Sect ion 5, there  are  also the  
condi t ions  requ i red  for the  "ag ing"  s t ress-s t ra in  re la t ions  (3.12) and  (3.17) to  
reduce to  a non-aging  one. I t  is wor th  not ing  t h a t  if these  reduct ions  t ake  p]ace, 
t hen  the  opera to r  a lgebras  def ined here reduce to  t h a t  p resen ted  in [1]. 
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