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Summary. Electro-active solids are solids that are either infused with electrorheological fluids or embed- 
ded with electrically conducting particles, the body as a whole however conducting negligible current. In 
this paper, we provide a mathematical framework, within the context of continuum mechanics, for the 
study of electro-active solids. The theory assumes that the body can be considered as a continuum, in the 
sense of homogenization, which is isotropic, incompressible, elastic and is capable of responding to an 
electric field. Appealing to standard techniques in continuum mechanics, we obtain a constitutive relation 
for the stresses in terms of the deformation and electric field. This is used in a study of triaxial extension, 
simple shear and anisotropy induced by the electric field. 

1 Introduction 

Electro-active solids are solids that are either infused with electrorheological fluids or em- 

bedded with electrically conducting particles, the body as a whole however conducting negli- 

gible current. Such materials find a variety of  applications in hydroacoustics, vibration damp- 

ing, controllers, actuators, valves, seals and sensing devices to name but a few. In addition to 

short response times of  the order of  milliseconds, such electro-active solids have the added 

advantage of  being highly flexible and are amenable to being manufactured into conformable 
shapes and structures. Recently, there has been a concerted effort to gainfully exploit the 

potential of  such materials. However, much of  this work has been devoted to the manu- 

facture, design and engineering of  the material with the desired microstructural features, with 

little if any effort being expended in deriving a reliable mathematical model based on the basic 

principles of  physics that can describe the heretofore observed response of  such materials, and 

even more so possess a modicum of  predictive capability. 

In this paper, we provide a mathematical framework, within the context of  continuum 
mechanics, for the study of  electro-active solids. The theory assumes that the body can be con- 

sidered as a continuum in the sense of  homogenization. We shall restrict our analysis to the 

domain of  mechanics, ignoring completely thermodynamic issues. The electro-active solid will 

be assumed to be an isotropic incompressible elastic solid, and even with the inclusion of  the 

electrorheological fluid or the embedded particles, it will be treated a though it is a single 
elastic continuum that is capable of  responding to an electric field. 

A proper study of  the mechanics of  such a body would require us to consider an electro- 
mechanical framework similar to the theory due to Rajagopal and Ruzicka [1] for electro- 

rheological fluids, i.e. a full set of  field equations including Maxwell's equations. Such a 
system leads to a set of  thirteen coupled partial differential equations and the study of  initial/ 
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boundary value problems in even simple domains becomes most cumbersome. In fact, Toupin 
[2] developed a general framework for the study of elastic dielectrics, with polarization playing 
a central role. Here, we would like to provide a simplification that allows us to capture much 
of the interesting interplay between the electric field and the mechanical dissipation without 
having to reckon with the full set of equations. Such a simplified theory can be used in more 
complex geometries that relate to realistic problems. In fact, this approach is quite similar to 
that adopted for the study of electrorheological fluids by Rajagopal and Wineman [3] that has 

been able to predict the presence of induced normal stresses due to the electric field and other 
associated phenomena. In this sense, the study carried herein is the analog of the earlier work 
on electrorheological fluids to solids. Bearing this in mind, we simplify the problem by treat- 
ing the electric field as a parameter in the theory rather than a field variable, much in the spirit 

of the theories constructed by Rajagopal and Wineman [3] and Wineman and Rajagopal [4] 
for electrorheological fluids, the virtue of such an approximation being validated or otherwise 
by its predictions. 

Using invariant-theoretical considerations presented in the review article by Spencer [5], 
we obtain constitutive relations to describe the stresses that develop in a deformed solid due 
to the presence of an electric field. We then study two simple deformations within the context 
of our theory, the problems of triaxial extension and shear, both providing an opportunity for 
the evaluation of the theory. The main advantages of the proposed theory are that it is 
presented within a full three dimensional context that takes into account the requirements of 
frame-indifference, and allows the study of bodies with different material symmetries. 

This approach has been used to study a variety of phenomena in non-linear continuum 
physics. Pipkin and Rivlin used it to discuss electrical or thermal conduction in deformed iso- 
tropic materials [6], galvanomagnetic and tbermomagnetic effects in isotropic materials [7], 
and magnetic hysteresis [8]. Toupin and Rivlin considered electro-magneto-optical effects in 
isotropic materials [9]. (Indeed, Pipkin and Rivlin state in [6] that "Experience has shown that 
if an effect is allowed by material symmetry, then it can eventually be produced experimen- 
tally in a suitable material unless thermodynamic restrictions rule out the possibility of such 
behavior".) Thus, the approach in the present paper, just as in the work just cited, is to point 
out phenomena that can reasonably be expected to occur in electro-active solids. 

The arrangement of the paper is as follows. In Section 2, we discuss the basic constitutive 
theory and provide a representation for the stress based on the work of Spencer [5]. This is 
followed in Section 3 by a study of triaxial extension of a cube of an electro-active solid where 
it is shown that a stress free state in the presence of an electric field is a strained state. In Sec- 
tion 4 an analysis of simple shear in the presence of an electric field oriented at an angle to the 
plane of shear is carried out wherein it is shown that the absence of a shear strain but the pres- 
ence of an electric field produces both shear and normal stresses. In Section 5, we present a 
discussion of anisotropy induced by the electric field. Section 6 is devoted to a discussion of 
the response when the electric field is applied along a principal direction of stretch, which 
does not coincide with a coordinate axis. A number of issues associated with the representa- 
tion of the constitutive equation are considered in Section 7. 

2 Constitutive relations 

As we remarked in the Introduction, we are concerned with the mechanics of solids that are 
either infused with an electrorheological fluid or embedded with particles that respond to the 
presence of an electric field, with the caveat that the particles of the electrorheological fluid do 
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not move relative to the solid 1. An additional assumption is that this mixture of  the solid 

matrix and the embedded fluid particles/electrorheological fluid can be considered in a homo- 
genized sense as a single continuum, referred to as an electrorheological solid. We shall 

assume that on the application of  an external electric field this continuum responds instant- 

aneously, based on our experience garnered within the context o f  electrorheological fluids. 

Furthermore, as a first approximation it seems reasonable to ignore long range effects (non- 

local effects) and the viscoelastic properties of  the solid matrix. The analysis of  Rajagopal and 
Wineman [4] to incorporate viscoelastic effects in electrorheological fluids can be easily 

extended to electro-active solids which are viscoelastic. We refer the reader to [4] for a detailed 

discussion of  the modeling. Also, as is customary in modeling the behavior o f  electrorheologi- 

cal fluids, we shall suppose that the electric field is essentially constant in the solid, though it 

can vary with time, and is not determined by solving Maxwell's equation (see [1]). Such an 

assumption would be particularly appropriate when we are interested in studying inhomo- 

geneous deformations of  the solid. 

It would be reasonable under the above assumptions to assume that the stress at any point 

in the electro-active solid depends on the deformation gradient F and the electric field vector 
E, the latter playing the role of  a parameter rather than an unknown field 2. Thus, the Cauchy 

stress T is given by 

T = f(~9, F, E ) ,  (1) 

where ~ denotes the density and 

0)C 
F : =  (2) 

where 

x = x ( x ,  t) (3) 

denotes the motion of  the body. Although it is possible to construct electro-active solids with 
foams, we shall be primarily concerned with those solids which are incompressible. Such 

solids can only undergo motions that meet 

det F = 1, (4) 

and the stress T in such materials is determined only up to an arbitrary spherical part  - p I ,  

T = - p I  + g(F,  E) .  (5) 

It follows from frame-indifference that g must satisfy 

g (QF ,  QE)  = Qg(F ,  E) QT (6) 

for all Q belonging to the proper orthogonal group, i.e. det Q = 1. A consequence of  Eq. (6) 

is that g has to satisfy 

g(F,  E) = R~(U,  F r E )  R r , (7) 

If such relative motion is to be taken into account, then we would have to appeal to a theory such as the 
theory of interacting continua (see Rajagopal and Wineman [10], Rajagopal and Tao [11]). 

2 The model that is proposed would also be valid for viscoelastic materials provided that we are interested 
in the long term steady response of the electro-active solid in the presence of an electric field, especially for DC 
voltages. 
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where F = R U  and R is a rigid body rotation. A further simplification leads to 

g(F,  E) : F~(C,  FTE) F T , (8) 

where C = FTF. If  the symmetry group at a point in the body is ~, then ~ has to satisfy the 
additional restriction 

~ (HTCH,  HTFTE)  = H T ~ ( c ,  FTE) H ,  (9) 

f o r H  E g. 

We next discuss issues regarding the material symmetry of  the body. If  the distribution of  

the embedded electrically responding medium is homogeneous and if the solid is isotropic, we 

can assume that the electro-active solid is also isotropic. There has been some discussion as to 

whether the symmetry group g should be the full orthogonal group or just the proper ortho- 

gonal sub-group. Here we shall document the representation of  ~ for both cases. 

In the case when g is the full orthogonal group, we have the following representation for 
(see Spencer [5])3: 

T = - pI  + C~lE | E + c~2B + ~3B -1 + o~4(BE | E + E | BE)  

+ a5 (B-1E  | E + E | B - 1 E  , (10) 

where B = F F  T, and ~{,i = 1,. ,5 are scalar functions that depend on the following in- 
variants: 

l [ ( t r B )  2 - t r B  2] [ l = t r ( E |  / 2 = t r B ,  I 3 = ~  , (11) 

I4 = t r ( B E |  E) ,  h = t r ( B - 1 E |  

On the other hand, if G is the proper orthogonal group, then ~ has the representation 

T = - p I  + &IE | E + &2B + &aB -1 + &4(BE | E + E |  BE)  

+ &5(B-LE | E + E | B-1E)  + &6(MB + B M  T) + &7(MB -~ + B - 1 M  z) 

+ &8(BMB -~ + B - I M T B )  + &9(MB-1E | E + E | M B - 1 E )  

+ &10(MB | E + E | M B ) ,  (12) 

where &i, i = 1, 2 , . . . ,  10 are functions of  the following invariants: 

/ l = t r ( E |  / 2 = t r B ,  I n = t r B )  1 / 4 = t r ( B E |  
(13) 

1.5 = t r (B ]E | E ) ,  /6 = tr (B -1MTB 1E | E) - tr (B -1MTB -1) /1 .  

In Eq. (13), M := cE, where e is the third order alternator tensor. 
In this paper, we shall confine our attention to the model defined by Eq. (10) and Eq. (11), 

bearing in mind that even in this case we have to contend with five unknown material func- 
tions that appear in the representation. 

3 We derive in Section 7 the appropriate representations for the stress that stem from the irreducible represen- 
tation for ~, which seemingly has a different structure than Eq. (10). However, as shown in Section 7, Eq. (10) is 
an acceptable representation for the stress, though not the simplest. 
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3 Triaxial extension 

We shall now consider simple deformations in order to glean some insight into the response 

of  an electro-active solid. Let us first consider the problem in which the electric field vector is 

along the X1 axis and the solid undergoes triaxial extension along the coordinate axes. Then 

E = (E, 0, 0) and the motion from (X1, X2, X3) to (Xl, x2, x3) is defined by 

xl = A1X1, x2 = A2X2, x3 = AaX3, (14) 

where hi, i = 1, 2, 3, is a constant and is the stretch ratio in the i-th direction. The incompressi- 
bility condition Eq. (4) implies that 

I1A2A3=1 .  (15) 

A routine calculation yields 

li [! i I! i I 
0 0 2 0 A 2 0 

T = - p I  + al  0 + a2 A2 2 + a3 A2 -2 

0 0 Aa 2 0 A3-2 

d- 2Ct4 0 + 2C~5 0 , 

0 0 

(16) 

where the material functions ai, i = 1 , . . . ,  5 depend on the following invariants: 

/ I = E  2, I 2 = A 1 2 + A 2 2 + A 3 2 ,  / 3 = A 1  2 + A 2 - 2 + A 3 - 2 ,  I 4 = 2 A 1 2 E  2, / 5 = 2 A 1  2E2. 

(17) 

Now, we restrict attention to a situation wherein all components of  the stress tensor T other 

than Tll are zero. It immediately follows from Eq. (16) that 

Thus, in materials in which a2 # a3/A22Aa 2, we would necessarily have A22 = A32, i.e. the 

stretch ratios in the directions transverse to the direction of  X1 are equal, a situation akin to 
that in non-linear elasticity. We also find that the pressure field is given by 

OZ2 
P = ~-1 + c~aA~, (19) 

and thus 

Tll =alE2 + (/~12-~) (a2-~1) + 2E2 (a4)~12 +~12). (20) 

The above expression for Tn leads to a rather interesting result. Suppose Tn = 0 and 
E # 0. Then, in general, we find that A1 # 1. That is, the body is stress free in the presence of  
the electric field, but in a state that is deformed with respect to the stress free state in the 

absence of  the electric field. Thus, a cube whose sides are initially of  length "a", deforms on 
the application of  the electric field into a parallelepiped whose sides are of  length (aA1, a/v/~-l, 

a/v/~-l, ) along the X1, X2, Xa directions, respectively. Depending on the material functions 
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a~, i = 1 , . . . ,  5 it is possible that  A~ > 1 or that/~1 < 1, or more importantly,  it is possible that 
more than one set of  values of  (t~, A2, A3) is possible for which the body is in a stress free 

state. Moreover,  as Eq. (16) and Eq. (17) are quadratic in the electric field, the above results 
hold whether E < 0 or E > 0. 

4 Simple shear 

Next, we shall consider the electro-active solid subject to a simple shear and an electric field 
vector E. The shear is defined through 

xl = X~ + K X ~ ,  x~ = X~,  xa = Xa,  (21) 

while the electric field vector E has the components  (El, E~, 0). A lengthy but straightforward 
computat ion yields 

El  2 

T = - p I + O ~ l  E~Ez 

0 

+ 34 

+ a5 

E1E2 0 [ 1 + K 2 

E22 0 + a2 l K 

0 0 0 

2E12(1 + K 2) + 2 E I E 2 K  

E~Es(2 + K s) + (E9 + Es ~) K 

0 

2(El 2 - EIE2K) 

S, Ez(2 + K 2) - (El 2 + E2 2) K 

0 

1 + 33 - K  1 + K 2 

0 0 0 

E1E~(2 + K 2 ) + ( E l  ~ + E~ 2) K 0 

2(E1EsK + E2 z) 0 

0 0 

E~E~(2 + K ~) (S, ~ + E22) K 0 

2E22(1 § K 2) - 2 E I E 2 K  0 

0 0 

, (22) 

and the material functions a~, i = 1 , . . . ,  5 depend on the invariants 

[1 = E12 + E22, h -- 1.3 = 3 + K 2, 14 = E12(1 + K 2) + E22 + 2E1E2K,  
(23) 

[5 = E~ 2 + E22(1 + i<2) _ 2E1E2K.  

It  follows immediately that 

Tll -?p  = a2(1 + K 2) + a3 § E12[ch + 2a4(1 -}- K 2) -}- 2aa] + 2EIE2 (a4 - a5) K ,  

T22 + p = as + a3(1+ K2) + E22[Q + 234 + 235(1+ K2)] + 2E1E2(a4 - as) K , (24) 

T12 = (as - 33) K + (El 2 + E22) (34 - 35) K + E1E:[a l  + (34 + 35) (2 + K2)] .  

A useful alternate form is obtained by expressing the electric field in terms of its magnitude Eo, 

E~ = Bo cos e ,  E2 = So ~in ~ .  (25) 

Then, Eq. (22) can be written as 

Tll + p  = az(1 + K 2) + as + Eo 9~ cos 2 r  + 2c~4(1 + K 2) + 2a5] 

+ E0 z sin 2q5(a4 - a5) K ,  

T~ + ;  : as + 33(1 + t< ~) + Eo ~ ~i~ ~ r  + 23~ + 23~(1 + K2)] (2S) 

+ E02 sin 2r - o@ K ,  

1 
T12 = (32 - 33) K + E02(34 35) K + ~ Eo 2 s in24[al  + (34 + as) (2 + KS)]. 
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The invariants in Eq. (26) become 

I1 = E02 , /2 = / 3  = 3 + K 2 , I4 = E02 + E02 cos 2 e K  2 + E02 sin 2 24)K, 
(27)  

/5 = E02 + E02 sin 2 4)K 2 - E o  2 sin 24)K. 

According to Eq. (24), 

Tll  - T22 = (oz2 - o~3) K 2 -[- (E l  2 - E22) (Ctl -[- 20~4 -[- 20~5) -[- 2K2(o~4E12 - 0~5E22), (28) 

and we observe that we do not have an universal relation similar to that encountered in non- 

linear elasticity. 

We observe that the expressions in Eq. (24) and Eq. (26) are quadratic in the components 
of  E. Thus, a reversal of  the electric field has no influence on the stresses. The terms contain- 

ing a2 and c~3 on the right hand sides of  Eq. (24) and Eq. (26) remain if E0 = 0, and are thus 

associated with the non-linear elasticity of  the solid material. The terms containing al ,  c~4 and 

a5 are introduced when E0 # 0. There is thus a contribution to the normal stresses and shear 
stress from the electro-active response of  the solid. If  the electric field is not along a coordi- 

nate direction, i.e. 4) # 0 ~ or 4) # 90 ~ then the normal stresses and invariants contain a term 

that is linear in the shear K. If  the direction of  shear is reversed, while the electric field is held 

fixed, then there is a change in the normal stresses and the shear stress T12 is not an odd func- 

tion of  K. It is also interesting to note the consequences of  the last term in the expression for 

the shear stress. It is possible that the shear stress T12 could be zero for a finite value of  the 

shear K. Also, it is possible that when K = 0 and E0 # 0, the shear stress T12 is non-zero. 

More generally, even in the absence of  shear, the presence of  an electric field leads to normal 

and shear stresses in the body. 

5 Anisotropy induced by the electric field 

Let us now consider the case when El  = 0, and for convenience let E2 be replaced by E. It fol- 
lows from Eq. (23) and Eq. (24) that 

Tll  = - p  + oz2(1 -}- K 2) -}- oz3, 

T22 : - p  -~- o~ 2 -}- 0~3(1 -r- K 2) -~- E2[o!l j-  20/4 @ 2a5(1 + K 2 ) ] ,  (29) 

r12 = [(~2 - ~3)  + e 2 ( ~ 4  - ~5)] ~ ; ,  

and 

I1 = E 2 , h = 4 = 3 + K 2 , h = E 2 , % = E 2 ( 1  + K 2 ) .  (30)  

Then T12 can be expressed as 

T12 = #12(K 2, E 2) K ,  (31) 

where 

#12 : (c~2 - c~3) + E2(c~4 - c~s) (32) 

is a shear modulus which depends on the shear K and the electric field E. 
Next consider a deformation of  the form 

221 = X l ,  x2  = X 2 ,  a:3 ---- X3 + K X 2 ,  (33) 
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and an electric field E whose components  are again (0, E, 0). It follows that  

Ii~ I!~ ~ [i ~ T = - p I  + 31 E 2 + (22 1 K + (23 1 + K 2 

0 K 1 + K 2 - K  

- K  

1 o o 
+(24 2E 2 E +(25 2 E 2 ( 1 + K 2 )  - E 2 K  

E2 K - E2 K 0 

(34) 

and the invariants are the same as in Eq. (30). We observe that  the normal  stress component  

T22 is the same as before, while the component  T33 plays the role of  Tll .  Also, T23 can be 

expressed as 

T2a = #~3(K 2, E 2) K ,  (35) 

with 

m 3 ( K  2 , E 2) = u12(K 2 , E2) ,  (36) 

as is to be expected. 

Finally,  consider the deformat ion 

Xl : X1 , x2 : X2  , x3 : 2 3  -]- K X 1  , (37) 

with the components  of  the electric field E still given by (0, E,  0). I t  then follows that  

[i0il 10 [1 001 l T = - p I  + (21 E 2 -}- (22 0 1 0 + (23 1 

0 K 0 1 + K  2 - 0 

+ (24 2E 2 + (25 

0 

o o il 
0 2E 2 �9 

0 0 

The first four invariants are the same as in Eq. (30), while now I5 = E 2. The stresses are 

(a8) 

r l l  ~- --P @ (22 @ (23( 1 @ K 2 ) ,  T33 = - p  + (22(1 + K 2) + (23, T13 = (c~2 - (23) K .  (39) 

The shear stress can be expressed as 

T13 = #13(K 2, E 2) K ,  (40) 

where 

#13 = 3 2 -  33 r #t2 = #23. (41) 

However,  when E = 0, we recover the identity 

~13 = ~12 = #23 , (42) 

for an isotropic solid, indicating the role of  the applied electric field in inducing anisotropy of  

response. 



Non-linear electro-active solids 227 

6 Response to an electric field applied along a principal direction of stretch 

Recall from Section 3 that when the electric field is along a principal direction of stretch, T 
can be expressed by Eq. (16). Now consider a transformation from coordinate system (X1, 
X2, )23) to coordinate system (X1 t, X2t, 23 t) by a rotation of angle 0 about the Xa axis, so 
that the direction cosine matrix is given by 

L 0 [ cosO sinO i ]  
L =  [ - s i n O  cosO . (43) 

0 

Thus, the electric field vector E has components 

E : =  (El', J~2', 0) = (E cos 0, -E '  sin 0, 0) (44) 

with respect to the primed system. It can be easily shown that the deformation Eq. (14) can be 
expressed in the primed system as 

Xl ! = V;1Xl  t ~- F;2X2' ,  x2' = F;1X1 ! uc F;2X2' ,  x3" ~-- .-~3X3', (45) 

where Ffj, the components of the deformation gradient with respect to the x'-axes, are given 
by 

] Alcos20+A2sin20 (/~2-,~1) sinOcosO 0 

[<}] = sinO o O A, i  o-a co  O o �9 

0 0 A:3 
(46) 

It is unnecessary for the purposes of the following discussion to document the expression for 
the stress T in the primed system. 

In the X1 - )22 plane, a square with edges along the X1 - )22 axes will deform into a rec- 
tangle whose edges are along the X1 - X2 axes. According to Eqs. (45) and (46), a square in 
the X ~ ' - X 2 '  plane with edges along the X1 t -  X2' axes will deform into a parallelogram 
whose diagonal will be along the electric field. This in turn implies that if we apply an electric 
field that is not along a coordinate direction, then an undeformed cube will undergo both a 
shear deformation and a stretch perpendicular to the plane of shear. 

7 Comments on the representation of the constitutive equation 

Consider ~(C, FTE) in Eq. (8) and the case when ~ is the full orthogonal group in Eq. (9). 
The methods presented in the article by Spencer [5] lead to the following representation for 

F E): 
~(C, Y) = 71I + 72Y | Y + %C +.y4C2 + %(CY  | Y + Y | CY) 

+ %(C2Y | Y + Y | C2Y), (47) 

where Y = FTE and 7i, i = i,..., 5 are scalar functions which depend on the invariants 

1 [(ire) 2-trC 2] 11 = tr (Y | Y) ,  I2 = tr C,  /3 = 2 ' (48) 

/ 4  = tr (CY | Y) ,  15 = tr (C2Y | Y) .  
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When Eq. (47) is substituted into Eq. (8), the result is 

g(F,  E) = "/1B + 72BE | B E  + "),3 B2 Jr- ~4 B3 + -/5(B2E | B E  + B E  | B2E) 

+76 (B3E  | B E  + B E  | BaE) ,  

and Eq. (48) becomes 

/1 = tr (BE | E ) ,  

14 = tr (B2E | E ) ,  

(49) 

1 [( trB) 2 - t rB2] ,  I2 = t r B ,  h 
(50) 

L5 = tr (B3E | E) .  

By use of  the Cayley-Hamilton theorem for B, the set of  invariants in Eq. (50) can be 

reduced to the set of  invariants in Eq. (11). Use of  the Cayley-Hamilton theorem for B in 

Eq. (49) leads to terms of  the form 

B E  | B E ,  B2E | B E  + B E  | B2E.  (51) 

According to the method and results presented by Spencer [5], each tensor in Eq. (51) can be 

expressed as a sum of terms, each of  which is the product of  some of  the invariants in Eq. (11) 

and coefficient tensors of  the form 

B E  | E + E | B E ,  B2E | E + E | B2E.  (52) 

In this way, the representation of  the constitutive equation in Eq. (10) is seen to be one of  a 

number of  equivalent possible choices. 
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