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Summary 

Onset of thermal convection in a layer of saturated porous medium, heated from below, 
is examined when the layer is subjected to random vibrations. It  is shown that when the 
vibrations are characterized by a white noise process, they hasten the onset of convection. 
Further, decrease in permeability tends to stabilize the flow field. 

1. Introduction 

Several experiments were conducted by Morrison [1], Morrison, Rogers and 
Horto n [2], and Rogers and Sehilberg [3] for observing the onset of convection in 
a horizontal layer of a saturated porous medium heated from below. The observed 
critical temperature gradient was smaller by an .order of magnitude than the 
gradient predicted from the theoretical investigations of Horton and Rogers [4], 
and Lapwood [5]. Extension of these theoretical studies was made by Wooding 
[6], [7]. The quantitative disagreement between the theory and experiments was 
sought to be removed by Rogers and Morrison [8], Morrison and Rogers [9], and 
Rogers [10] by allowing for the temperature dependence of viscosity, an initially 
steady nonlinear temperature distribution, and a columnar rather than cellular 
form of convection. However the experiments mentioned above involved a time- 
dependent situation and so cannot be regarded as a satisfactory test of the Lap- 
wood theory which assumes an initially steady temperature distribution. Elder 
[11] and Combarnous and Le Fur  [12] determined experimentally the point at 
which thermal convection began and found good agreement with the theory. An 
extension of Lapwood's theory was made by Gheorghitza [13] who assumed the 
porous medium to be nonhomogeneous. The global stability of convective flow in 
a porous medium using energy method was studied by Westbook [14]. Dependence 
of Nusselt number on the Rayleigh number in steady convection in a porous 
medium was investigated by Palm, Weber and Kvernvold [15]. Using a variational 
method, the bounds on heat transport in a porous medium were determined by 
Busse and Joseph [16]: Strauss and Schubert [17] and Horne [18] studied two- 
dimensional and three-dimensional natural convection in a confined porous 
medium heated from below. 
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In all the above investigations the forces acting on the system are deter- 
ministic. In this paper we study the thermal instability in a layer of saturated 
porous medium which is heated from below and is subjected to random vibra- 
tions. In particular the vibrations are characterized by a white noise process and 
their effects on the onset of convection are investigated. The motivation for this 
study comes doubtless from geophysics with particular reference to the influence 
of earthquakes on convective instabilities in the upper mantle of the earth. I t  is 
therefore meaningful to consider the onset of convection in such a geothermal 
region (which is a porous medium) subjected to random vibrations. Of course in 
the case of earthquake waves, definite frequencies are preferred and modelling 
such waves by a stochastic process of white noise type would certainly be an 
oversimplification of a complex process. Nevertheless we feel that  the study of 
thermal convection using a white noise model would perhaps be a first step to- 
wards understanding the effect of earthquakes on thermal convection. The present 
study has also some methodological interest since the stability analysis is reduced 
to the study of a certain class of stochastic (random) differential equations 
(Soong [19]). We shall, however, confine ourselves to the mean square stability of 
the solution of such equations. The physical significance of a white noise process 
and its limitations are discussed in Section 2. 

2. Mathematical Formulation and Stability Analysis 

Consider a layer of saturated porous medium of thickness d between the 
planes z = 0 and z ~ d, z-axis being vertically upward. The layer is infinite in the 
horizontal direction and is heated from below leading to a uniform adverse 
temperature gradient fil = (T1 -- T2)/d, where T 1 and T2 are the constant tem- 
peratures of the lower and upper surface respectively with T 1 > T2. Further we 
assume that  the porous layer oscillates vertically in a random fashion so that  the 
total gravitational acceleration is g @ g'(t), where g is the mean gravity and g'(t) 
is a stochastic process. Fig. 1 gives a sketch of the physical problem with the used 
symbols. 
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Fig. 1. Sketch of the physical problem 

The general form of the Darcy law governing the motion of an incompressible 
fluid through a homogeneous isotropic porous medium is given by (Nield [20]) 

Dt "-K q + /zV2q + QX, (1) 

where ~, e, q, p, #, K and X denote fluid density, porosity of the medium, filtration 
velocity, fluid pressure, dynamic viscosity coefficient, permeability and body 
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force per unit mass respectively. For very fluffy foam metal materials or fibrous 
materials, s is very close to unity and in beds of packed spheres, s is in the range of 
0.25--0.50 (Joseph [21]). Although the viscous term #VPq is generally neglected 
in slow motion through a porous medium, it should be taken into account for the 
general flow particularly in the ease e ~ 1, when the fluid occupies all parts of the 
porous medium. The equation of continuity is 

V . q  = 0 (2) 

while the energy equation is (see Caltagirone [22]) 

(~oc)* ~ § (~c)i q .  V T  = 2* VPT. (3) 

The porous medium formed by the porous matrix and the interstitial fluid (which 
is the fluid in the pores) is regarded as a fictitious isotropie fluid with heat capacity 
(~c)* = e(~oc)! @ (1 -- e) (~c)s, where (qc)1 and (~c)s denote the heat capacity of the 
fluid and the solid respectively. The physical properties of the medium with an 
effective thermal conductivity 2" are assumed constant, in particular with respect 
to temperature dependence. The variations in density with temperature are 
neglected in the. present analysis, except with regard to their influence on the 
buoyancy force (Boussinesq approximation). 

Within the framework of linear stability theory, the equations of momentum, 
mass and energy for infinitesimal perturbations imposed on the quiescent initial 
state (the frame of reference is fixed in the porous layer) are given by (1), (2) and 
(3) as 

1 8 u  1 ~p v 
u + ~ V~u, (4) 

1 8v l o p  v 
v + ~ VPv, (5) 

8t ~o 8y K 

8w 181)  v 

e 8t ' ~o 8z" K 
w + (g + g') s0 + ~g~w, (6) 

~u + 8v 8w = O, 
~ ~ + ~--2 (7) 

where 

80  @ riw = K~ VPO (8) 
Ot 

ri ~-  ril(Qe)ff(QC)*, T ~ T 1 @- rilz -~- O, 

q ~ -  (u,  v,  w ) ,  K 1 ~-- ~.~'/(ec) ~" . 
(9) 

In writing the above equations, the equation of state q = ~0[1 --  ~(T -- To)] is 
used where cr is the coefficient of volume expansion and ~0 and To denote density 
and temperature of a reference state. 

Eliminating all the variables in favor of the dimensionless vertical velocity 
wl ( =  wd/v) and the dimensionless temperature perturbation 01 (-----O/rid), we 
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obtain from (4)--(8) the following dimensionless equations: 

1 ~ V2wl = gccfld 4 [1 @ G(T)] V1~01 --  BV2Wl -~- V4wl, 
e ~v v e 

Here 

erg a~ ) \ a~ ~ wl  =~ V201. 

vt (X ,  Y,  Z)  = (x/d, y/d, z/d),  V12 ~ / ~ X  ~ + ~2/~ y~,  3 ~ d-T, = 

Pr = vlK1,  V ~ ~- ~ I ~ X  ~ + ~2/~y2 @ ~ O Z  2, B = d21K, 

G(O = g'(t)/g. 

(10) 

(11) 

(12) 

We next  use normal mode technique to solve (10) and (11). When w I is elimi- 
nated from (10) and (11) and 01 is taken as 

0t = A(3) sin uZ exp [i(k~X ~- kyY)] (13) 

in the resulting equation, the following equation for the amplitude A(3) is obtained 

d2A Cx dA aeRG(~) e 
dv 2 + ~ + D1A - -  p r y  ~ A ,  (14) 

where 

(15) 
C1 • (y2/Pr) @ (B ~- y~) s, D1 = e[y4(B ~_ y2) _ Ra2]/pr y2. 

I t  may  be seen from (14) tha t  in addition to the t ime-dependent stochastic param- 
eter G(3), the stability characteristics depend on the Rayleigh number  R, the 
Prandt l  number Pr, the permeabili ty parameter  B and the porosity e. Note that  
the expression (13) for 01 corresponds to the lowest mode and is consistent with 
our assumption of two free surfaces at Z = 0 and Z = 1. At these two surfaces the 
vertical velocity component wl, the temperature perturbation 01 and the shear 
stress must  vanish so that  

01== ~O1/~Z 2 ~ ' ' '  =- ~2~01/~Z2~ ( n = 2 , 3 , . . . ) a t Z : 0 a n d  1 (16) 

upon using (10) and (11). I t  may  be remarked that  the choice of free boundaries 
is not so artificial since the porous problem can accomodate permeable walls. 

Ins tead of a t tempting to find the explicit solution of (14), we shall seek the 
mean square stability criterion for this solution. This implies that  every mean 
square bounded input leads to a mean square bounded output. To this end we 
assume that  G(3) is given by  a white noise process (Soong [19]) and recast (14) as 
a two-dimensional I to  equation given by  

eX( ) - -  3) e3 + H(X(3), 7) dP, 
where the vectors A, i and the matr ix  H are as follows: 

A2 1 A1 --  G1A2 L 1)r Y~ 

(17) 

~] (is) 
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with A1 = A(v) and  A2 -~ dA/dv. The reason for choosing white noise process 
(which is an abstraction or a limiting process) is two-fold. First, this is one of the 
most commonly used stochastic processes which are amenable to a fairly simple 
and straightforward mathematical  analysis. Hence we use it as an approximation 
to a number of random physical phenomena.  Secondly, the use of the white noise 
models simulates well the behaviour of the actual stochastic process if one deals 
with a small portion of the frequency spectrum in the analysis (Soong [19]). The 
term 'white '  is introduced in connection with the white light, which has the prop- 
er ty  tha t  its power spectral density is f lat  over the visible portion of the electro- 
magnetic spectrum. However  it is customary to define a white noise in a stronger 
sense so that  its power spectral density is constant for all frequencies. The vector 
/~(v), T ~ 0 defined in (17) represents a two-dimensional Brownian motion process 
(or a Wiener process) with zero mean such that  

d~ 

I t  should be noted that  the stochastic process/~(~) is not mean square differen- 
tiable so that  in (19) we consider the derivative in the formal sense. Clearly dB/d~ 
is Gaussian with mean zero. 

I f  h(.A@), ~) is an arbi trary function of A(~) and ~,-the following moment  
equation can be derived from (1'/) (Soong [19]) as 

~=1 (2o) 

+ ~ E (HDHT)~j OAi~A~] -t- E , 
i,j=l 

where E stands for mathematical  expectation and D stands for the 2 • 2 matrix 
with elements D~j satisfying 

E[zJB~(v) ~Bj(~)] ~- 2Dij LIT, i, ] ~-- 1, 2. (21) 

Here ABi(~) (=  Bi(v -t- A~) - -  Bi(v)) is an increment in B~(v) during time interval 
LJ~. 

Introducing the moment  A 

mik@)= E{AlJ@) A2k(~)}, (22) 

we find from (20) the first-order moment  equations as 

rh~0(~) ~- m01(~), rh01@) = --Dlmlo(-r - -  Clmol(v), (23) 

where an overdot denotes derivative with respect to v. Similarly the second-order 
moment  equations are 

rh2o : 2ran, ~hn == --Dlm2o --  Clmn ~ too2, 
(24) 

\ p--~y~ ] m2o --  D~mn 
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where D n is the on ly  nonzero element in Dij for a white noise process. As these 
equations are iinear, the solutions are assumed in the form 

2 2 
mlO(-C) = V '  ~i exp. ()@; mot(V) = ~ flj exp (x~t). (25) 

]=1 ./=1 

In  order that  the first-order moments  be asymptotically stable, the real parts  of ~j 
must  be negative. Substituting (25) in (23) we find that for non~rivial solutions, 
2j must  satisfy 

~2 + C1;, + D1 = O. (26) 

In  order that  its roots have negative real parts,  we must  have 

C a > 0  and D I > 0 .  (27) 

These are the requirements for asymptotic stability in the mean. 
The criterion for asymptotic mean square stability can be obtained from (24) 

in the same manner. The characteristic equation in this case is 

2 - -2  0 2 
Da C 1 + 2 --  1 

- - 2 D n  \ p - - ~ ]  2Da 2Ca + 
= 0  

which on simplification reduces to 

2 ~ + 3Ca2 ~ + 2(01 ~ + 2Da) 2 + 4 (C1D1 
\ 

Dll s2~2~4 
T r ~  / = 0 .  (2s) 

Using the l~outh-Hurwitz criterion, it can be shown that  the second-order 
moments are stable if all the coefficients in (28) are positive and the inequality 

6Cl(Ca 2 + 2Da) > 4 (C;Da Dns2R2aa)pr 2 Y 4 (29) 

holds. The coefficients in (28) will be positive if 

(ye/Pr) + (B q- y 2) s > 0, (30) 

+ (B + ~2) r247 2e[y~(B + y~) -- ga2] 
pr 2 y2 > o, (31) 

~r  + (B + r e) e I'r ~s Pr 2 y~ > 0, (32) 

after recalling the definitions of C1 and D 1 from (15). 
Condition (30) is always satisfied. Inequali ty (31) is satisfied when 

a 2 2ca ~ Pr 

This implies a stabilizing effect whose magnitude depends on Pr, e and B but  not 
on the stochastic parameter  D1,. The inequality (32) ensures that  the right hand 
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side of (29) is positive. Since the Routh-Hurwitz criterion provides both necessary 
and sufficient canditions for stability, violation of (32) alone would imply in- 
stability even if the remaining inequalities are satisfied. For given values of Pr, 
Dn, B and s, the regions of stability and instability in the (a -- R) plane are 
separated by  the curve whose equation is any one of the following relationships: 

R1 2 ~ 1 [_a2•2(y 2 %- (B %- ~2) e Pr} ~ {a4y4[y 2 + (B %- y2) e Pr] 2 
, 2DilSa 4 

%- 4V6(B %- V2) (~2 @ (B %- 72) e Pr) Dlle664}i/2], (34) 

I t  may be seen that  the position of the stability boundary depends on the random 
parameter D n. 

I t  is also clear that  of the two values RI,~, the one which gives positive ]~ayleigh 
number (R1, say) will be relevant to our discussion. The critical Rayleigh number 
R* at the onset of convection will correspond to the minimum of R~ with respect 
to the wave number a so that  dR1/da = 0 at R1 = R*. Using this fact in (34), the 
expression for the critical Rayleigh number is given by 

R * - -  1 2Dnes~ [__ (712s %- s3) {~2 4_ s + (JB + ~2 %- s) e Pr} 

+ { ( ~ s  %- s2) 2 [~2 %- s %- (B + 7c 2 + s) s Pr] 2 

+ 4(~ + s) ~ (Bs~ § ~2s~ + s ~) (35) 

• (7~ ~ %-s %- (B %- ~z z %- 8) e P r )Dne}  1/2] 

where s is a positive root of the following equation: 

2[--(~28 @ 82) (MI* @ C1"8) @ {(~28 %- 82) 2 (AI* + CI*s) 2 

%- 4Dne(~z z + s) ~ (BI* %- s) (Al*s 2 + CI*sS)} 1/2] (36) 

= --{7~2AI*s + 2(A1" %- z~2Ca *) s 2 + 3Cx*s ~} %- {(~2s + s2) 2 (AI* %- Cl*s) 2 

%- 4D11e(7~ 2 + s) (BI* + s) (AI*S z @ C1"s8)} -1/2. {~A1.2 %- 4~A~*B~*Dne) s 2 

%- (3z~A~ *~ %- 3z~Ax*C~ * %- 18zaA~*BI*Dns %- 6~A~*Dne %- 6z~2Ba*C~*Dns) s a 

%- (4z~A~*C~ * %- 2(A~* @ zzCl*) ~ %- 8Dns(3~zA~*B~ * %- 3~aA~ * %- 3~aB~*C1 * 

%- u~G~*)) s t %- (5A1"C~* %- 5z~C~ * %- IODne(AI*B~* + 3~A1 * %- 3z~B~*Ca * 

%- 3naC,*)) s ~ %- (3Cx .2 %- lZDne(A~* %- B~*C~* %- 3~2C~*)) s s %- 14C~*Dnes ~} 

with 

A~* ~- ~z ~ + (B %- z~ ~) e Pr ,  B~* = ~ %- B,  C1" = 1%- s Pr .  (37) 

However the evaluation of R* from (35) by  solving the highly complicated 
Eq. (36) poses insuperable difficulties. We have circumvented this problem by 
computing Rx versus a ~ from (34) for several values of e, B and D n with Pr  ~- 7 
(water). It, is found that  R~ h~s a minimum (R*) for a definite value of a when the 
other parameters are fixed. 
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3. Results and Discussion 

Fig. 2 shows the variation of -~1 with a 2 for several values of B with s = 0.6 
and D:~ = 1. Each curve has a minimum (which gives R*) and R* increases with 
B. Since B ~ d2/K, the implication of this result is that  a decrease in permeability 
(for a fixed value of d) tends to stabilize the flow fields. Fig, 3 shows the variation 
of R1 with a e for several values of s with D:I ~ 1 and B m 1. I t  can be seen that 
the critical R~yleigh number decreases with increase in e. The interpretation of 
this result is that  the Rayleigh-B~nard system is a lower bound and decreasing 
porosity tends to exert a stabilizing influence on the flow. 

Fig. 4 displays the plot of R: versus a 2 for several values of the random param- 
eter Dll with e = 0.6 and B = 1. I t  is clear that  R* steadily decreases with 
increase in Dll and this shows that random vibrations tend to destabilize the flow. 
This can also be shown analytically from (34) since OR1/~D:: is always negative 
for given values of a ~, B, e and Pr. As D:~ --~ 0, it follows from (34) on binomial 
expansion in powers of DI~ that 

R: = y4(B + y2)/a2. (3S) 

It is interesting to note that in this limit, R1 depends neither on Pr nor on s. 
Further 'when B = 0, we retrieve from (38) the classical result in B6nard con- 
vection in the absence of a porous medium as R1 =- y6/a2 (Chandrasekhar [23]). 
The absence of s in (38) in the limit D I : - +  0 may be explained physically as 
follows. The porosity factor e appears only in the convective term of the momen- 
tum equation. In the absence of random vibrations, the present problem reduces 
to the B6nard problem where a stationary marginal state prevails (Lapwood [5]). 
This shows that there is no effect of porosity on thermal convection unless random 
disturbances are examined, in which case its effect is that of a sealing factor for 
Dll. Note that in the foregoing analysis, the stochastic component of gravity g' is 
not assumed small. This means that the above stability analysis is valid for any 
value of DI: characterizing the white noise process. To see what size of random 
variation in gravity will produce a significant lowering of the Rayleigh number, 
we proceed as follows. In  the absence of random vibrations, the critical Rayleigh 
number R* computed from (38) for B ~ 1 is 701.69 and this value occurs at 
a 2 = 5 . 0 9 .  On the other hand, Fig. 4 shows that f o r B =  1, R * ~ 2 0 0 w h e n  
D::  = 5.0. Thus we see that D::  = 0 (5) causes a significant lowering of the 
critical Rayleigh number. Similar calculations can be performed in any practical 
situation as there is no restriction on the value of DI:. We are not, however, 
aware of any actual data in this respect but our guess is that  in any natural 
random forcing, much lower value of DI: would initiate convection. 

The eigen functions in this problem can be found from (13) with amplitude 
A(z) given by a stochastic process. When convection takes place slightly past the 
marginal state we might expect that  this amplitude (in the mean square sense) 
will vary as ( R -  R*) :/a (Chandrasekhar [23]). Since the behavior of R* for 
various values of e, B and Dll is known from Figs. 2, 3 and 4, we can compute the 
eigen functions for special value of any of these parameters. For example we may 
say that  the amplitude in the eigen function (13) increases with increase in the 
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s tochast ic  p a r a m e t e r  D l l  for f ixed values  of s a n d  B 1 since R *  decreases wi th  
increase in Dl l .  

We  might  offer a phys ica l  exp lana t ion  of the  des tabi l iz ing effects of r andom 
v ib ra t ions  on convect ion  as follows. Ignor ing  diffusive effects, u r andom gravi-  
t a t iona l  forcing super imposed  on the  s t e a d y  value,  i nc reases  the  mean  square 
va lue  of g r av i t y  and  so makes  d i s tu rbances  to  the  sys tem grow more  rap id ly .  If, 
however,  the  f luc tua t ing  p a r t  has a careful ly  chosen f requency  i t m a y  be possible  
to s tabi l ize  the  sys tem in a w a y  s imilar  t o  the  inve r t ed  pendulum.  Thus f ixed (and 
hence determinis t ic)  f requency  osci l lat ions m a y  stabil ize,  b u t  r a n d o m  ones will 
des tabi l ize  the  sys tem.  As a m a t t e r  of fact  de te rminis t ic  osci l la t ions m a y  e i ther  
s tabi l ize  or des tabi l ize  a sys tem depending  on the  a m p l i t u d e  and  f requency  of the  
imposed  oscil lat ions.  I n  this  connect ion men t ion  m a y  be made  of the  inves t iga t ions  
of u  and  Li  [24] who found  t ha t  t ime-per iodic  modu la t i on  of the  t empera tu re s  
of the  two p la tes  has  a des tabi l iz ing influence On the  Bdngrd  convect ion  be tween 
the  p la tes  over  a wide range of frequencies of modu la t ion  a l though the  modu la t ion  
is s tabi l iz ing at  the  low f requency  end of t h e s p e c t r u m .  Thus one would  expect. 
t h a t  in a the rmal  s t ab i l i t y  analysis  based  on a mul t i ch romat ic  d i s tu rbance  (i.e. a 
d i s tu rbance  averaged  over  all  frequencies) of the  p la te  t empera tu re ,  modu la t ion  
would  h~ve a ne t  destabi l iz ing influence since the  s tabi l iz ing influence of modu-  
l a t ion  over  the  smal l  p a r t  of the  f requency  spec t rum would be overwhelmed b y  the  
des tabi l iz ing influence over  a much  wider  range of frequencies.  This pred ic t ion  for 
de te rminis t ic  modula t ions  is, therefore,  in keeping  wi th  our  resul t  of the  des tabi -  
l izing influence of r andom v ibra t ions  of the  white  noise t y p e  which m a y  be regarded  
as a modu la t ion  averaged  over  all frequencies.  

We thank Professor C.-S. u  for some stimulating discussions on this paper. 

References 

[1] Morrison, H. L.: Preliminary measurements relative to the onset of thermal con- 
vection currents in unconsolidated sands. J. Appl. Physics 18, 849 (1947). 

[2] Morrison, It. L., Rogers, Jr., F. T., Horton, C.W.:  Convection currents in porous 
media. Observation of conditions at onset of convection. J. Appl. Physics 20, 1027 
(1949). 

[3] Rogers, Jr., F. T., Schilberg, L. E., 3~orrison_H. L.: Convection currents in porous 
media. Remarks on the theory. J. Appl. Physics 22, 1476 (1951). 

[4] I-Iorton, C. W., Rogers, Jr., F. T. : Convection currents in a porous medium. J. App]. 
Physics  16, 367 (1945). 

[5] Lapwood, E. R. : Convection of a fluid in a porous medium. Proc. Camb. Phil. Soc. 44:, 
508 (1948). 

[6] Wooding, R. A.: Steady state free thermal convection of liquid in a saturated per- 
meable medium. J. Fluid Mech. 2, 273 (1957). 

[7] Wooding, t~. A.: An experiment on free thermal convection of water in saturated 
permeable material. J. Fluid Mech. 3, 582 (1958). 

[8] Rogers, Jr., F. T., Morrison, H. L.: Convection currents in porous media. Extended 
theory of critical gradient~ J. Appl~ Physics 21, 1177 (1950). 

[9] Morrison, H.L. ,  Rogers, Jr., F .T . :  Significance of flow-patterns for initial con- 
vection in porous media. J. Appl. Physics 23, 1058 (1952). 

[10] Rogers, Jr., F. T.: Convection in porous media. Variational form of the theory. J. 
Appl. Physics 24, 877 (1953). 

[11] Elder, J. W.: Steady free convection in a porous medium heated from below. J. 
Fluid Mech. 27, 29 (1967). 



Thermal Instability in a Porous Medium with l~andom Vibrations 47 

[12] Combarnous, M., Lefur, B.: Transfert de chaleur par convection naturelle duns une 
eouehe poreuse horizontale. Comptes Rendus 269, 1009 (1969). 

[13] Gheorghitza, S. I. : The marginal stability in porous inhomogeneous media. Proc. 
Camb. Phil. Soc. 57, 871 (1961). 

[14] Westbrook, D. R. : Stability of convective flow in a porous medium. Phys. Fluids 12, 
1547 (1969). 

[15] Palm, E., Weber, J. E., Kvernvo!d, O. : On steady convection in a porous medium. 
J. Fluid Mech. 54, 153 (1972). 

[16] Busse, F. H., Joseph, D. D.: Bounds for heat transport in a porous layer. 5. Fluid 
}[ech. 54, 521 (1972). 

[17] Strauss, J. ~. ,  Schubert, G.: Three-dimensional convection in a cubic box of fluid- 
saturated porous material. J. Fluid ~eeh. 91, 155 (1979). 

[18] I-Iorne, 1%. N.: Three-dimensional natural convection in a confined porous medium 
heated from below. J. Fluid.Mech. 92, 751 (1979). 

[19J Soong, T. T.: Random differential equations in science and engineering. Academic 
Press 1973. 

[20] Nicld, D. A.: Onset of thermohaline convection in a porous medium. WateI l~e- 
sources l~esearch 4, 553 (1968). 

[21] Joseph, D. D. : Stability of fluid motions II. Berlin--Heidelberg--New York: Springer 
1976. 

[22] Caltagirone, J. P.: Ti~ermoconvective instabilities in a porous medium bounded by 
two concentric horizontal cylinders. J. Fluid ~ech. 76, 337 (1976). 

[23] Chandrasekhar, S. : Hydrodynamic and hydromagnetic stability. Oxford University 
Press 1961. 

[24] Yih, C.-S., Li, C.-H.: Instability of unsteady flows or configurations, part 2: Con- 
vective instability. J. Fluid Mech. 54, 143 (1972). 

B. S. Dandapat and A. S. Gupta* 
z]/[athematicz Department 

Indian Institute of Technology 
Kharagpur 

India 

*Pregent address: 
Department of Mech. Eng. and 

Appl. Mech. College o/Engineerinq 
The University o] Michigan 

550 East University 
Ann Arbor, MI 48109, U.S.A. 


