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For subsonic flows and upwind-discretized, linearized 1-D Euler equations, the smoothing 
behavior of multigrid-accelerated point Gauss-Seidel relaxation is analyzed. Error decay by 
convection across domain boundaries is also discussed. A fix to poor convergence rates at 
low Mach numbers is sought in replacing the point relaxation applied to unconditioned 
Euler equations, by locally implicit "time"-stepping applied to preconditioned Euler equa- 
tions. The locally implicit iteration step is optimized for good damping of high-frequency 
errors. Numerical inaccuracy at low Mach numbers is also addressed. 
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1. In troduc t ion  

The mathematical  theory of  inviscid, subsonic gas flows is relatively undeveloped 
in comparison with that of  inviscid, transonic, supersonic and hypersonic flows. An 
indication of  this is the small amount  of  literature which is available on the 
mathematical aspects of  subsonic gas dynamics. Whereas various thorough text 
books  exist, which extensively deal with the mathematics of  transonic, supersonic 
or hypersonic gas dynamics (see e.g. [3,5,8,17,20]), for the subsonic case we only 
know a few book  chapters (chapters 2 and 3 from [1], and chapter 2 from [16]). 
At present, mathematical research in the inviscid, subsonic flow regime is at 
a rapid pace, particularly as far as it concerns numerical computat ions  in the 
zero Mach-number  limit. The present paper is intended to contribute to this 
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development. In it, the flows of interest are not flows with uniformly low Mach 
numbers (i.e. flows with M << 1 throughout almost the entire computational 
domain), but flows with locally low Mach numbers (flows with small stagnation 
regions and - particularly - for Navier-Stokes extensions: flows with thin bound- 
ary layers and wakes). We also remark that in our case the pressure cannot become 
infinitely large for M l 0. (The pressure can become infinitely large for M 1 0 when 
the velocity remains finite but the speed of sound becomes infinite [9,10].) We con- 
sider the case in which the pressure remains finite for M I 0, the case in which - as 
opposed to in the preceding incompressible one - the velocity goes to zero but the 
speed of sound remains finite (which is physically more realistic in e.g. aircraft- 
aerodynamics applications). 

Since about a decade, various multigrid methods exist that give good con- 
vergence rates for steady Euler-flow computations at high-subsonic inflow Mach 
numbers (see chapter 9 from [26] for an overview). For decreasing inflow 
Mach numbers, or enlarging low-subsonic flow regions, convergence rates are 
known to deteriorate. This decrease is not specific for multigrid methods, but 
seems to hold for any solution method. The cause has to be sought in the con- 
tinuous Euler equations, in their increasing stiffness (i.e. in their increasing dis- 
parity of wave speeds) at decreasing subsonic Mach numbers. With the 
application of single-grid, explicit time-stepping schemes in mind, various fixes 
have already been proposed to this stiffness problem. See [23] for a review of 
this. A key paper is [14]. In it, a preconditioning matrix is given which completely 
equalizes the three wave speeds (u - c, u and u + c) of the 1-D Euler equations. 
Furthermore, the paper gives preconditioning matrices for the 2-D and 3-D 
Euler equations. 

Besides convergence problems, for decreasing Mach numbers also accuracy 
problems arise [24,25]. Whereas the convergence problems are intrinsically related 
to the continuous Euler equations (to their stiffness), the accuracy problems hold for 
the discretized equations (independent of whether the discretization is central or 
upwind). 

In the present paper, we will mainly focus on the stiffness problem. It is expected 
that solution methods other than explicit time-stepping schemes may also profit 
from preconditioning matrices such as those proposed in [14]; some early experi- 
ences with e.g. Approximate Factorization were reported by Godfrey et al. [6]. 
In this paper we will optimize a multigrid accelerated, locally implicit iteration 
method, applied to subsonic, preconditioned Euler equations. To start with, in sec- 
tion 2, the continuous unconditioned equations and their discretization are intro- 
duced. In section 3, first a smoothing analysis is given of point Gauss-Seidel 
relaxation applied to these unconditioned discrete equations, and next a discussion 
is made of error convection across domain boundaries. It is shown that for low 
Mach numbers the convergence properties are poor. In section 4 it is made clear 
that for flows with uniformly low Mach numbers, numerical accuracy may be 
poor as well. In section 5 a 1-D preconditioning matrix is derived which is par- 
ticularly capable of removing stiffness. In section 6 we discuss a simple way to 
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implement the preconditioning, without collecting the accuracy benefit. At the end 
of section 6 we arrive at the discrete, preconditioned system to be solved. The 
system contains a free parameter: a locally implicit iteration step-size, which is opti- 
mized for smoothing. The optimization is done in section 7, through local-mode 
analysis applied to the upwind-discretized, linearized, preconditioned 1-D Euler 
equations. In section 8 the error smoothing and error convection of the locally 
implicit iteration are analyzed. 

2. The equations 

2.1. Continuous equations 

Consider the 1-D Euler equations 

OQ Of(Q) 
t - - - - o ,  

ot Ox 

with Q the conservative state vector 

Q =  pu , 

pe 

f ( Q )  the corresponding flux vector 

f ( Q )  = pu 2 + p , 

pu(e + p / p )  

and e the internal energy, which for a perfect gas reads 

1 p +lu2" 
e - -  - -  

3' lp  

Linearization of (1 a) with respect to the conservative variables yields 

OQ d f  OQ 
- - + - - - - - 0 ,  
Ot dQ Ox (o  o 

d f  = 3' 3u2 (3-3 ')u 3 ' - 1  

dQ ~ _ ~  ~ _  (3_27)u2 1 c 2 u 3 - uc 2 + "),u 
1 2 "7-1 

(la) 

lb) 

(lc) 

ld) 

(2a) 

, (2b) 
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where C 2 = V / ~ / p .  In order to simplify the analysis, following Turkel [22], the transfor- 
mation from conservative variables Q to non-conservative (entropy) variables q is made: 

dq( ld' ) 
(3) 

- du " 

~ dp - c2dp 
(For viscous flows - instead of  these entropy variables - Choi and Merkle [2] 
recommend the use of  temperature variables: ( p , u ,  T)r.)  The transformation 
matrix corresponding to the entropy variables, 

£C 0 C2 

d Q  pu u 
= P (4) dq c c 2 ' 

pu 2 1 1 u 2 

\ 2  c + pu - 1 pc 2 c 2 

brings equation (1 a) into the analytically more tractable form 

Oq Oq 
0-7 + A ~ = 0, (Sa) 

dqd d  0) 
A - d Q d Q d q  c u 0 . (5b) 

0 0 u 

2.2. Discrete  equat ions  

For  simplicity, we assume A to be constant and next make a first-order upwind, 
cell-centered finite-volume discretization of the space operator in (5a). Then the 
semi-discrete equation in cell fl,. (with mesh size h) reads 

h ~ t  + A+(qi  - q i - l )  + A - ( q i + ,  - qi) = 0, (6) 

with i running in the positive x-direction, and with A + and A-  the matrices corre- 
sponding to the positive and negative eigenvalues of matrix A: 

A + = R A A + R ~  1, (7a) 

A -  = RAA-~R-~ l . (7b) 

With AA = diag (u - c, u, u + c), we get (10 ) 
RA = - 1  0 , 

0 1 

(8) 
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and hence for subsonic flow in the positive x-direction (0 < u < c, without loss of 
generality we assume this to hold throughout the paper): 

A 1(:+c u+c :) 
=-~ + c  u + c  , 

0 0 2u 

A - =  5 c - u  u - c  . 

0 0 

(9a) 

(9b) 

3. Convergence 

3.1. Convergence through error smoothing 

When one applies point Gauss-Seidel relaxation to find the steady solution of(6), for 
successively downstream and upstream relaxation sweeps, the iteration formulae are 

= - -  - -  A - - [  11 IAl(q'/+~ - qT) -A+(q7 ~'+-11) tqi+l - q','), (10a) 

i A l ( q T + Z  _ qT+t) = _A+(q,/+~ q,/_+l l) _ ~-~_.+2 - -  . ,a \ q i + l  - -  ~ + 1 ) ,  (10b) 
with I A I _-- A + - A- and n the relaxation sweep counter. In order to investigate the 
smoothing properties we introduce the local solution error 

6~' = q~ - qT, 

and the Fourier form 
( l la )  

( l lb)  

with q~ the exact local solution, D" the amplitude vector (DT, D~., D~) and e i°; the 
(scalar) mode. With ( l la )  and ( l lb) ,  it follows for the amplification matrices 
~#downstream and J/upstream corresponding with (I 0a) and (10b), respectively: 

'- '~downstream = - (  -e-i°A+ + [A [)-lei°A-, (12a) 

~ u p s t r e a m  = ( ei°A- + [A I)-le-i°A +. (12b) 

By substitution of A + and A- we find the solution-independent matrices  eie e0 ) 
"-///'downstream = "~ 

0 

e-i° e-i° 00 / 
1 ~e~i° e -i° "~upstream = ~ 

0 2e -i° 

(13a) 

(13b) 
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with spectral radii 

= le'°l = 1, 

p(.g[upstream ) = l e - i ° l  = 1, 

Vl01 , (14a)  

71" 
ViOl (14b) 

(Since the matrices (13a) and (13b) are symmetric, the spectral norms, which 
determine the smoothing properties for n = 1, are identical to the spectral radii.) 
Note that in the case of a symmetric sweep, according to this Fourier analysis, 
one has perfect smoothing: ,~upstream,AC~Cdownstream = 0. However, in the case of 
subsonic flow with non-periodic boundary conditions, one generally has error 
reflections at the outflow boundary when still iterating. Therefore this 
theoretical, perfect smoothing result is not realistic and therefore we prefer to 
consider the downstream and upstream amplification matrices separately. 
However, for the two separate sweeps, the smoothing factors (14a) and (14b) are 
surprising as well. They seem to be in contradiction with numerical findings; for 
e.g. standard, high-subsonic airfoil-flow computations, one generally observes 
good multigrid convergence. A first explanation of this apparent contradictory 
result is that care has to be taken in interpreting (14a) and (14b); the frozen 
coefficients assumption generally loses its validity for high-subsonic Mach num- 
bers. As opposed to this, for low-subsonic Mach numbers it seems a reasonable 
assumption (e.g., for limMi0, P becomes constant). 

3.2. Convergence through error convection across domain boundaries 

A second explanation of the seeming contradictory convergence estimate 
for high-subsonic flows in the general case of non-periodic boundary con- 
ditions is that for the downstream and upstream sweeps separately, local-mode 
analysis solely is just too pessimistic. For non-periodic, high-subsonic flow 
computations, additional error decay through advection over the domain 
boundaries may be significant and may therefore not be neglected. Note here- 
with that point Gauss-Seidel relaxation can be interpreted as locally implicit time- 
stepping at an infinitely large time step, which with non-zero wave propagation 
speeds u -  c, u and u + c, implies a significant beneficial influence on conver- 
gence. This phenomenon of solution errors being expelled out of the computa- 
tional domain by convection may next further explain the poor multigrid 
performance for low-subsonic flows. In spite of the infinitely large time step 
associated with point Gauss-Seidel relaxation, for limM~0, the propagation of 
entropy errors, and therefore their expulsion, may well start to stagnate. See [11] 
for a convergence analysis in which error convection across domain boundaries is 
considered. 
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4. Accuracy 

4.1. Well-posedness of the continuous equations 
For limM,0, exact solutions of the continuous Euler equations are assumed to 

converge to the corresponding, exact, incompressible flow solutions. (Compres- 
sible flow in the zero Mach-number limit is assumed to be a regular perturbation 
of incompressible flow.) As a support for this, see e.g. the perturbation theory 
analysis of slightly compressible flow past a circle in chapter 2 of [4]. The limit 
limMl0 is not known to cause general non-uniqueness problems; as opposed to 
for limM_.l (see Morawetz [I8]), for lim~tt0 boundary-value problems are not 
known to become ill-posed. 

4.2. Inaccuracy of the discrete equations 

In the discrete case accuracy problems arise for limMl 0. The inaccuracy can 
be analyzed through the conservative 1-D Euler equations discretized through 
e.g. a first-order accurate flux-difference splitting scheme (such as Osher's [19] 
or Roe's [21]). In non-conservative form the corresponding modified equation 
reads 

Oq Oq h[O ( Oq) 0 (dq)dQ c3__~x ] 
ot+A- x=-20x IAlo--xx - xx  ---qlAl • (15) 

With 

IAI = c , (16) 
0 

with dQ/dq according to (4), and with dq/dQ = (dQ/dq) -1, the two numerical dif- 
fusion terms in the right-hand side of (15) can be written out as 

O( ~x) Ou 1 OquO 1 Oq 
Ox IAI =~xx 1 ~ ~xx + Oxx ~ Oxx 

0 0 0 

( @ M  ilo2q + c 1 Ox2, 
0 

(17a) 
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0 ( d q )  dQlAl-~xx= N Tq 
/ cOp+ Ou Oc u Op Ou Oc 

p ~  ( ~ -  l ) M ~ +  ox pox + ( ~ -  l ) ~ +  M Ox 

u Op Ou cop M OU -~ - - - +  
pox Ox pox Ox 

1 Ou Oc 1 Ou Oc 
7 - 1 pu ~x + 2pc Ox ? - 1 pC-~x + 2pU-~x 

M Ou Oq 

pc ox I 
_2MOCJ 

Ox/ 
(17b) 

It appears that  for limul0, with t7 fixed and with all three components  of  Oq/Ox 
finite, the first two vector elements of  (1 / 

Ou -M 1 0 
1 Oq 

N 1 N 

0 0 1 

become infinitely large. (All other diffusion terms become finite or zero.) 

5. P r e c o n d i t i o n i n g  

5.1. Removing the stiffness 

For  a detailed account  of  this topic we refer to [14]. The ratio of  the max imu m 
and m i n i m u m  characteristic wave speeds (the characteristic condit ion number  K) 
of A can be written as 

KA(M)=max ! + M  1 +  M - - - e ( 0 , 1 )  (18) 
M '1 ' c ' 

see also figure 1. At M = 0 and M = 1, A is singular. Precondit ioning A (by pre- 
multiplying it) with the 3 x 3-matrix P t ransforms equat ion (5a) into 

Oq Oq 
O---i + PA Oxx = 0. (19) 

For  general P, the possibility of  doing time-accurate calculations is lost. When 
solving steady problems, this is of  no concern. P should at least be invertible and 
should remove the static and  sonic singularity. In the ideal case, P leads to the 
situation: (i) that  KeA (M) = 1 over the entire subsonic Mach-number  range, and 
(ii) that  PA yields two downst ream waves and one ups t ream wave. Satisfaction 
of  the second property,  conservat ion of the propagat ion  directions of  the three 
waves, avoids the complicat ion of a change of  numbers  of  boundary  condit ions 
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Figure 1. Character is t ic  condi t ion of  the derivative matr ix  A as a funct ion of  the M a c h  number .  

to be imposed at in- and outlet. This property is satisfied by taking P positive 
definite, which implies that  P must  be symmetric. 

A c o m m o n  choice for P is 

P = wlAI -~, (20) 

with w some arbitrary propagat ion  speed that  can still be chosen. With (20) one has 
ApA = d iag ( -w,  w, w). In mult i-D, perfect subsonic precondit ioning is not  possible. 
For 2-D subsonic Euler flows and for d q =  ((1/pc)dp, du, dv, dp-cZdp)  T, the 
following precondit ioning matrix is proposed  in [14]: 

p = 

(' M 2 - M  
0 0 

V~ - M 2 ~/1 - M 2 
- M  1 

b l  0 0 
V/1 --  M 2 ~/1 - M 2 

0 0 

i, o o 
x/1 - M 2 0 

0 1 

(21) 

M 2 M 

a ff l  - M 2 - a  f f l  - M 2 0 0 

( ,  ) 
p =  - c ~ f f l _ M  2 o~ ~/1 M 2 t-1 0 

0 0 v / - 1 - M  2 

0 0 0 

0 , (22a) 

0 

Ol 

For  2-D stagnat ion flows, precondit ioning by (20) may  lead to stability problems; 
inside s tagnat ion regions instability may occur due to the great flow-angle sensitiv- 
ity. In [15] a fix is proposed to these problems. The fix consists of  precondi t ioning 
through the sub-optimal,  but  for stagnation flows stable matrix 
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1 ( 2 2 b )  a = ½ ,  0_<M_<5, 

2 (22c) a = 3 1 1 + 3 ( M - ½ ) ( 1 - 1 2 ( M - ½ ) 2 ) ] ,  ½ < M < g ,  

a = l ,  2 _ < M < l .  (22d) 

Note the good resemblance between (21) and (22). Since local-mode analysis for 
the preconditioned full, 2-D Euler equations is hard and does not lead to trans- 
parent results, we do the analysis for the 1-D Euler equations, with as precon- 
ditioning matrix a single 1-D version of both 2-D P's (21) and (22). This 1-D 
preconditioning matrix is already given in section 6.3 of [13]. We proceed by 
re-deriving it. 

Striving for the almost diagonal form 

P A  = w , 

0 

(23) 

which still satisfies K p A ( M )  = 1, VM E (0, 1), a symmetric 1-D version of (21) and 
(22) can be found• For w = u, it follows 

M 2 - M  / 
1 - M  2 1 - M  2 0 

P = - M  1 (24) 
1 - M  - - - - - ~  1 - M  2 +  1 0 

0 0 1 

(and, unimportant, ~, = 2c). Note that P according to (24) is positive-definite; for 
M ~ (0, 1) its three eigenvalues are all positive: 

1 + x/1 - M 2 -t- M 4 
A1 = 1 and ~2,3 = 1 - -  M 2 > 0, VM e (0, 1). 

Also still note the freedom in the derivation of this preconditioning matrix. E.g., 
another w could have been chosen; w = u + c would have yielded 

p = 

I i/ 
1 - M  1 - M  

- 1  2 - M  z 

1 - M  M(1 - M) 

0 0 I + M  

(25) 

Moreover, instead of preconditioning, postconditioning could have been 
applied. The difference between pre- and postconditioning can be clarified by con- 
sidering the auxiliary equation A d q / d x  = r. Preconditioning this equation 
( P A d q / d x  = r) is identical to right-hand side transformation ( A d q / d x  = P - l r ) ,  



B. Koren, B. van Leer/Preconditioning for Euler flows 137 

whereas postconditioning (APdq /dx  = r) can be interpreted as solution transfor- 
mation. Postconditioning (5a) by a symmetric P such that 

A P =  ~v u , (26) 

0 0 

leads to 

1 i] P = M - M  2 . (27) 
1 - M  2 1 - M  2 

0 0 

Note the resemblance between (27) and (24). When we interpret the postcondition- 
ing matrix (27) as a solution transformation matrix dgl/dq, we get 

M 2 - 2  1 M ) 
M 2 lp-'~dP M 2 - 1 d u  

dO= 2-~ 1 M 2 . (28) 
~ d p  + M--T---du M 1 - 1  

dp - c2 dp 

Physical interpretation of the first two components of dO is not trivial. In the 
remainder we consider preconditioning according to (24). Concerning the rele- 
vance of doing 1-D analyses with (24) for multi-D preconditioned equations, the 
following can be remarked. The 1-D preconditioning matrix (24) resembles the 
2-D preconditioning matrix (21). In 2-D (and also in 3-D) preconditioning is 
done for the Euler equations which are locally rotated in streamwise direction. 
So, in fact, in multi-D preconditioning is done for quasi-l-D equations. Therefore 
we expect that the 1-D analyses done in this paper are relevant for the multi-D pre- 
conditioned equations. 

5.2. Concerning inaccuracy 

A partial fix to the discrete accuracy problem discussed in section 4.2, is to make 
the discretization second-order accurate. If one applies a second-order accurate dis- 
cretization, the error still diverges for M J. 0, but not as soon as in the case of a first- 
order discretization (because of the h 2- instead of the h-proportionality). Of course, 
as long as the two limits M .[ 0 and h 1 0 are independent (and as long as the dis- 
cretization method is not exact), formally the accuracy problem continues to exist. 
A subsequent fix would then be to take the mesh size appropriately dependent on 
the Mach number. 
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A really good remedy is to exploit the freedom still existing in the choice of the 
preconditioning matrices for removing the stiffness. By first preconditioning: 

Oq 
=0,  (29) 

Ot 

and next discretizing, one gets the influence of the preconditioning in the discreti- 
zation error. For flow computations at uniformly low Mach numbers, the challenge 
is then to get rid of both the stiffness and the accuracy problem by a single precon- 
ditioning matrix P. It has been shown, both in practice [14] and in theory [24], that 
the matrices (21) and (24) accomplish this. Discretization of (29) requires the incor- 
poration of a space discretization scheme which is modified for the preconditioning 
(both at the interior and the boundary cell faces). Further, in multigrid contexts the 
residual transfer has to be reconsidered, in order to maintain the Galerkin property 
and hence good multigrid convergence [12]. Since uniformly low-Mach-number 
flows are not our present interest, we will not apply the preconditioning in the 
form (29). (For computations in which the Mach number is not uniformly low, 
the accuracy problems occurring for limM~0 are local, and hence no reduction of 
global solution accuracy is expected to be found.) 

6. Implementing the preconditioning 

By implementing the preconditioning as 

P-I ~-~qt + 

with p- i  the inverse of (24): 

=0 ,  (30a) 

2~/2 M 0 

P-1 = 1 (30b) 
1 ' 

0 0 

the original space discretization scheme can still be applied (because the space 
operator is still original). Steady-state solutions will therefore be identical to 
those belonging to the unconditioned equations (5a) (and (15)). The conservative 
form corresponding to (30a) reads 

 p - 1 0 q  O f ( Q )  _ O. 

-f f i  
(31) 

Taking the integral form of (31), discretizing that by a first-order upwind finite- 
volume method, and denoting the numerical flux function which approximates 
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cell-face flux f(qi+ 1/2) by F(qi, qi+l), for cell f~i the semi-discrete equation reads 

fn ~--P-l~-ttdx + (F(qi, q i+l ) -  F(qi_,,qi)) =O. (32) 
i q 

Given the good smoothing properties of point Gauss-Seidel relaxation in the multi- 
grid computation of high-subsonic, transonic and supersonic flows, in choosing the 
time discretization for (32) we want to deviate as little as possible from this trusty 
smoother. Therefore we apply locally implicit time-stepping in a Gauss-Seidel 
fashion. Hence, as fully discrete equation in cell f~;, for downstream and upstream 
sweeps, respectively, it follows: 

I--£S-XT [ h dQ -f OF(q':,q'e+,) OF(C+ll,qT)] (qT+ 1 
LZ.a, uq (~:)P-'(MF) aq7 aq7 ~ q~ ~ 

.A 

F" ,+1 F ' "  " " (33a) = (q i - l ,q ' : ) -  (qi,qi+l), 
_ n + 2 \  ~'F' n + l  n +  I x'l [h dQ(q:+ 1 , OF(q~.+l,qi+l) o ~qi-,,qi ) / . , ,+2 

L ~ t ~  q )P-l(  Mn+ )-f oq n+l "~i+i  ~ q i  - -  
q'i ' +1 ) 

---- Fr':+l~,ti-,, q'i '+l - F(q~i + 1, ~'+?). (33b) 

The time step At (which due to the preconditioning is not identical to a physical 
time step) is still amenable to optimization. In the next section it will be optimized 
for smoothing. 

7. Optimizat ion o f  the locally implicit  iteration step 

For simplicity, smoothing optimization of At from (33a) and (33b) is done for 
the non-conservative, frozen-coeificient variants of both equations, i.e. for: 

At + IAt (~,+l _ q~) = _A+(~  _ ~.,_+1) _ A-(~;+, - ~-), (34a) 

( h p_, ) _ . _ A tq,+, " . S~ +1,41 (q7 +z M'+I)=-A+(C+~ qT+~)_--, ,,+2_q;,+~) (34b) 

7.1. Qualitative optimization 

From (34a) and (34b), with (1 la) and (1 lb), in the same way as in section 3.1, we 
derive: 

- e~°A-j (35a) 

J/g,pstre,m - \ A t  + ei°A- + ]A [ \ A t  + e-i°A+ . (35b) 
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We proceed by considering the two highest error frequencies: [01 = 7r. For both 
frequencies, with 

h 
a -- cAt'  (36) 

(35a) and (35b) can be written out as: 

2 - M 2 
0. M 2 

1 1 
0 .  . . . . .  

M 2 
0 

~[downstream = 

~upstream = 

2 - M  2 3 1 
a M2 + ~ + ~ M  

1 1 3 
0 . ~ +  M 

0 

2 - M  2 1 1 
0. M 2  - ~ + ~ M  

1 1 x 0 . 1 + ~ _ _ ~ M  

0 

2 - M  2 3 1 
0. M 2  + ~ - ~ M  

1 1 3 

0 

1 t 
. . . .  m 

2 2 
x 1 

M 
2 

The corresponding eigenvalues are: 

0. 

0.-  M 

-1 

a-~ + ~ + -~ M 

3 1 0.+g+gM 
0 a+ 2M 

1 1 1 0. +g-gM 
1 1 

0 . - ~ + ~ M  

0 

1 1 3 
a ~ - - + ~ M  

M 2 
3 1 

0 . + ~ - - ~ M  

0 

1 1 1 
0.M 2 2 M 

1 1 
0. 2 ~M 

0 

i ) ,  (37a) 

0 1-1 
0 

0 . + M  

0 . 1 M ) "  (37b) 

o '+ o -z - M 2 + V/40.2(1 - M 2) + M 4 
30. + o a + 2M 2 

(38a) 

0. + 0 .2 _ M 2 + v/4a2(l - M 2) + M 4 
30. + o -2 + 2M 2 

(38b) 

Note t h a t  ('~2,3)~¢/downstream = (A2,3)~up~t~a~" We proceed by considering the eigenvalues 
for limM~0. With 0. a finite (positive) constant this yields 

• ( I  -°" + 0.2"~ 1Mi~(A,,A2,)~3)..a~o,~,~m,,~=~o.~t~nt= 1, , 3 a + a 2 ) ,  (39a) 

+ 0.2",~ 
1, -~--~ ~ ~ - ) .  (39b) 
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For o- = vM with v a finite (positive) constant it yields 

1Mil~o(A1 ' A2' A3)-'gd t . . . .  . . . .  cr=uM= ~ - - ~ ,  1, - , ( 4 0 a )  

fi~(A,, A2, A3)~aop,~,,~=,M : ( ~ - ~ 1 , 1 ,  -- 1 ) .  (40b) 

Thus the choice a = constant yields two maximum eigenvalues equal to one, for 
both the downstream and upstream sweeps. For a = vM with v constant, this 
number is only one, which probably implies smaller Frobenius matrix norms (see 
e.g. chapter 2 from [7]) and hence better smoothing when applying two, three, 
four, . . .  Gauss-Seidel sweeps. Note that no function a = ~r(M) exists which 
makes the moduli of all three eigenvalues smaller than one for limMt0. We proceed 
with cr = vM, in the next section the optimal value of v is derived. 

7.2. Quantitative optimization 

In order to optimize v from a : vM, we continue to apply Fourier analysis for 
the highest error frequencies 101 = 7r, where, as in section 3.1, the spectral radii of 
the amplification matrices are considered. To avoid Mach-number dependence of 
v, we consider the moduli of the amplification matrices' eigenvalues integrated 
over the entire subsonic Mach-number range. (Avoiding Mach-number depen- 
dence by taking limMl0 does not allow v-optimization; from (40a) and (40b) 
it appears that the corresponding spectral radii of both ~[downstream and 
• ////'upstream equal one, for any v.) In figure 2 the distributions of the aforemen- 
tioned eigenvalue integrals are depicted over the v-range [0,10]. (Note that 
since ()~2,3)-¢t'downstr~ = (/~2,3)J/upstre~m' the corresponding integrals are the same.) 
From figure 2 it can be seen that the optimal value of v follows from 

"~ c5 
l 

! 

( 3  

i = 2 - - - - - -  
f 

= 3 j 

i 1 i i 

j° d 

6 

Q 

0 2 4 6 8 10 0 

i = 

i 

i i i 

2 4 6 8 10 
v 

a. Downstream sweep, b. Upstream sweep. 

Figure 2. Integrated moduli  of  the eigenvalues of the amplification matrices, for the highest error  
frequencies. 
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f0 ~ I(Al).¢:ops,,,mldM = f~ I(A2).¢top~,~,mldM (dashed line in figure 2b), i.e. (after some 
computer algebra) from: 

(. (/" _+ 2)2_ " ~ -  3v/i- - 4/,2 in (. v/l - 4/'2 + 1) - 4  + 2/" - 2 / "  2 -k- / ,3  + ( 5  - 2/" 2) In \ / ' (2 /"  + 1)J 2/" 

/" (/'2 q_ 2)2 

u - I  
-t - -  - 0 .  ( 4 1 )  

/ , + 1  

From (41), it follows by good approximation that / ,  = 2/5, and thus as (approxi- 
mately) optimal o': 

2 (42) ~r = g M .  

8. Convergence for the precondi t ioned  equat ions  

8.1. Error smooth ing  

Relation (42) implies as (approximately) optimal iteration step At: 

5t, (43) At = - - ,  
2u 

i.e. CFL = 5/2. We verify the smoothing behavior for this iteration step. This is 
done over the entire subsonic Mach-number range (0,1), for the three error fre- 
quencies 0 = 7r/2, 37r/4 and 7r. In figure 3 the distributions of the corresponding 
spectral radii are depicted. Recalling from section 3.1 that the spectral radii of 
downstream and upstream point Gauss-Seidel relaxation equal one over the 
entire subsonic Mach-number range, from figure 3 it appears that the precondition- 
ing does a good job. 

8.2. Error convection 

The locally implicit iteration applied to preconditioned Euler equations may be 
interpreted as physical time-stepping. To do so, for simplicity we consider the 
common P according to (20) with w = u. Then, with CFL = u A t / h ,  the iteration 
formulae (34a) and (34b) become 

(1 + CFL)]A [(q7 +I - q~) = - A + ( q 7  - q~'+l l) - A-(qT+, - q~[), (44a) 

( I + C F L ) I A [ ( ~  +2 . . . .  ~'+~) - A + ( ~  +' q~+l ~) .a--'"+2~qi+~ - q ' ] + l ) .  (448) 

From (44a) and (44b) it appears that for this common P, the locally implicit time- 
stepping can be directly interpreted as point Gauss-Seidel relaxation with under- 
relaxation factor w = 1 + CFL. I.e., even with CFL = (9(1), (44a) and (44b) can 
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a. Downstream sweep. b. Upstream sweep. 

Figure 3. Spectral radii of the amplification matrices, for the downstream and upstream (approxi- 
mately optimal) point Gauss-Seidel "time"-stepping, and three error frequencies. 

still be interpreted as locally implicit physical time-stepping at an infinitely large 
time step. 

9. Conclus ions  

• Poor convergence of multigrid accelerated point Gauss-Seidel relaxation at low 
Mach numbers is explained by the relaxation's poor smoothing at low Mach 
numbers and by the likewise poor entropy-error expulsion across domain 
boundaries. 

• Poor solution accuracy known to occur at low Mach numbers can be explained 
by means of the modified equation for the 1-D Euler equations, discretized by a 
first-order accurate flux-difference splitting scheme. For flows with uniformly 
low Mach numbers, a fix to this inaccuracy is a necessity. For flows of which 
the global solution error is not affected by the occurrence of low-subsonic 
flow regions such a fix may not be necessary. 

• For the latter flows, implementation of preconditioning in a locally implicit 
time-stepping method with the inverse of the preconditioning matrix working 
on the time operator, may be practical. It allows the application of an off- 
the-shelf space discretization method. 

• Local-mode analysis shows that optimal high-frequency damping for locally 
implicit "time"-stepping in a Gauss-Seidel way, is obtained for CFL ~ 5/2. 
(When preconditioning with the 1-D matrix P = utA I -l ,  the locally implicit 
"time"-stepping boils down to point Gauss-Seidel relaxation with underrelaxa- 
tion factor 1 + CFL.) 

• Given the direct availability of the 2-D and 3-D extensions of the 1-D precon- 
ditioning matrix analyzed, the present improved solution method is directly 
extendible to multi-D. 
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