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Summary .  Each  par t ic le  of  a con t inuum is assigned a second order tensor  which 
is t a k e n  as a measure  of the  deformat ion  of  some neighborhood of  the  part icle,  and 
which is de te rmined  by a funct ional  depending on the  configurations of  t h a t  neigh- 
borhood.  Two invar iance  restr ict ions are imposed on the  funct ional  whose values  
are spat ial  s t rain tensors,  t h a t  is, associated wi th  the  deformed configuration. The  
first r equ i rement  is t h a t  a t ime  shif t  and rigid t ransformat ion  of  t he  deformed con- 
f igurat ion leave the  spat ia l  deformat ion  tensor  unal te red  re la t ive  to it. The second 
requires t h a t  i f  part icles  of  dis t inct  cont inua undergo the  same deformat ion,  t he  
corresponding deformat ion  tensors should be the  same. Fo r  the  special case in which 
the  funct ional  depends on the  deformat ion  in the  smallest  ne ighborhood of  a part icle,  
the  restr ict ions imply  t h a t  the  deformat ion  tensors associated wi th  the  deformed 
and  reference configurations arc isotropic funct ions of  the  ]eft and r ight  CAITClVZ- 
GREEN tensors, respect ively.  

Zusammenfassung .  J e d e m  Tei lchen eines K o n t i n u u m s  wird ein Tensor  zwciter  
Stufe als Mal3 fi ir  die Deformat ion  einer gewissen Nachbarschaf t  dieses Tei lchen zu- 
geordnet ,  der durch ein Funk t iona l  bes t immt  wird, das y o n  der I~onfiguration dieser 
Nachbarschaf t  abh~Lng~. Zwei Invar ianzbcd ingungen  werden  diesem Funkt iona l ,  
dessen Wer te  raumliche  Verzerrungstensoren darstellen, auferlegt,  und  zwar im 
Hinb l ick  a u f  die deformier te  Konfigurat ion.  Die erste Fo rde rung  besagt,  dal3 eine 
Zei tverschiebung und  eine starre Transformat ion  der deformier ten  ]~onfiguration 
den rguml ichen  Verzerrungstensor  im Hinbl ick  auf  diese unge~nder t  lassen. Die 
zweite  E inschr~nkung besag% dal3 entsprechende Deformat ions tensoren  von  Par-  
t ikcln  verschiedener  Kont inua ,  die dieselbe Ver formung  er l i t ten haben,  gleich scin 
sollen. I m  Spezialfall, dal3 die Funk t iona le  nur  yon der Deformat ion  in der n~ichsten 
U m g e b u n g  des Par t ikels  abh~Lngen, be inhal ten  die E inschrgnkungcn  die Aussage, 
daf3 die mi t  dem deformier ten  n e d  dem undcformier ten  Zus tand  verkni ipf ten  Defor- 
mat ions tensoren  nur  isotrope Funk t ionen  des l inken und  des rech ten  CAIse~u 
GREEN Tensors sein k6nnen.  

1. Introduction 

The concept of strain as a measure of the change of local geometry 
of a deforming continuum has a long history dating back to the early 
seventeenth century 1. Certain of the measures proposed since tha t  t ime 
have met with general acceptance. These measures belong to a class whose 
general form satisfies a common set of underlying restrictive ,conditions 
which must logically be imposed upon any rational measure. The inade- 
quacy of those measures which have not  been found acceptable in general 

i See TRUESDELL and To~PI~ [9], w 33A for an account of the history. 
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studies of cont inuum mechanics has been due, we believe, essentially to  
an incomple te  and insufficient unders tanding of these res t r ic t ive  con- 
ditions. We remark  t ha t  the  acceptable measures have  also been simple 
in the sense t ha t  only local geometr ic  changes in vanishingly small neigh- 
borhoods of a particle are assumed to affect the  strain at  the  particle.  
Wi th  the recent  flourish of research on polar media it would appear  t h a t  
this restr ict ive assumption could s tand generalization. This possibil i ty of  
general izat ion combined with certain classical, as well as current  day  s 
proposals for measures of s train which are not  proper ly  invar ian t  3, and  
which therefore,  wi thin  the  rat ional  theory  of continua, are not  general ly 
applicable,  supplies the  mot iva t ion  for this invest igat ion of general meas- 
ures of deformation.  

In  order to  develop a s t ructure  upon which all realistic measures 
of deformat ion should be built, we shall find it  necessarjg to  present  those 
ideas which are most  fundamenta l  and essential to the  concept  of strain.  
Hence,  af ter  a br ief  section on kinematics,  we begin in Sect ion 3 wi th  a 
general definition of s train at  a part icle in its motion,  based on the in tu i t ive  
feeling t ha t  it should depend upon the mot ion  of the part icles in some 
neighborhood of  the fixed particle. Cer ta in  invarianee restr ict ions which 
should be imposed on all realistic measures of strain are then  discussed in 
Sections r and 5. The results obta ined are applied to the limiting ease 
of simple s train in which the  neighborhood of a particle, which is assumed 
to influence the  value of s train a t  the particle, is t aken  vanishingly small. 
In  part icalar ,  Section 4 contains a s t a tement  of the  implications of our  
first postula te  which says, roughly,  t ha t  if  two motions of a con t inuum 
differ only with respect  to when they  are init iated, and af ter  being ini t ia ted 
are re la ted by  a continuous t ime paramete r  sequence of rigid body  trans-  
formations,  the  strains should remain intrinsically una l te red  ~. I n  Section 5 
we similarly t r ea t  our second postulate ,  which is essentially a r eqn i remen t  
t h a t  if particles of mater ia l ly  distinct cont inua are subjected  to  intr in-  
sically the  same local kinematics  then  intrinsically the  s t ra in  a t  these 
particles should be the  same '5. Strain measures which sat isfy the  two 
invariance postulates  discussed in Sections 4 and 5 are said to be proper ly  
invar iant .  

In  Section 6, we co~sider the special c~se of simple s train for which 
the invarianee postulates yield a general canonieM form. I t  is shown t h a t  
the  concept  of simple strain is completely character ized b y  the necessary 
and sufficient condit ion t ha t  the  strain ra te  tensor  must  vanish as a con- 

The most recent appears to be that of KA~NI and I~EISE~ [7] in which they 
present two measures of strain, in addition to those commonly named after G~EEN 
and ALMANSI, which are not properly invariant. 

In w167 3,4 of the present paper, we consider the question of properly invariant 
measures of strain. 

This postulate is analogous to the principle o] material ]rame indifference which 
is used in modern treatments of constitutive equations in continuum mechanics. 
See, e.g., TI~UESDELL and NOLL [1]. 

This postulate is analogous to the concepts of isotro29y and homogeneity in 
continuum mechanics. Again see [1]. 
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sequence of the vanishing of the deformation gradient rate tensor at  
given particle. In other words the neighborhood which influences the 
strain at a particle must be arbitrarily small if the strain rate tensor is 
assumed to vanish whenever the deformation gradient rate tensor vanishes 
at the particle. The possibilities of first and second order simple strain 
measures are discussed. Aside from these later results, some of the more 
significant general results obtained in Sections 4, 5 and 6 are stlmmarized 
at the end of Section 3. 

Throughout most of this paper, our central considerations are on 
spatial measures of strain 6. In Seetion 7, material strain measures are 
introduced and related to the spatial measures, obviating the need for 
a detailed independent treatment. Results for the special ease of simple 
materiM measures cf strain are then discussed. 

Notation. The usual direct notation of matrix calculus will be employed; bold 
face capital letters denote second order tensors and bold face lower case letters denote 

vectors or vector fields. Exceptions to this rule are Xr, Yr, YT, and various other 
subscripted versions of the base letters X and Y. These denote position vectors. The 
symbols ], g, h will designate tensor valued functions. We shall use 1 to denote the 
uni t  matrix and 0 to denote either ~he null vector or the null tensor. Matrix inversion, 
transpose, trace, and determinant are denoted respectively by A -~, A T, tr A, and 
det A. The gradient operator V denotes position gradient. The space-like independent 
variables with respect to which the gradient is intended will be stated explicitly 
as arguments of the function to which V is applied. For example, V b (x), denotes 
the matrix of partial derivatives of b with respect to x while V b (X) denotes the 
matrix of partial derivatives of b with respect to X. Finally, light faced capital letters 

X, Y, X, Y denote material particles, and ~, ~, and various subscripted forms of 
these symbols denote neighborhoods. 

2. Kinematics 

The motion of a continuous medium or body is completely specified 
by an invertible functional relation between its particles X and their 
positions in space x as time t progresses; 

x = x ( x ,  t). (2 .1)  

Equation (2.1) is rendered useful for the derivation of certain concepts 
in continuum mechanics by introducing a method of naming or labeling 
the particles. This is conveniently accomplished by a one-to-one mapping 
of the particles X of the body into a region of three-dimensional EUCLIDean 
space called a reference configuration r. Hence, we write 

x r  = r ( x ) ,  (2 .2)  

which denotes the position Xr occupied by particle X in reference con- 
figuration r. We write the motion, referred to r, as 7 

X ~-~ • (r -1 (Xr), t) ---~ X (Xr, t). (2.3) 

6 See Section 3 for this definition. 
7 No confusion should arise by using the same symbol Z to represent the motion 

both in the form (2.1) and in the form (2.3), referring it  to r. 
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Several choices of reference configurations are presently used in con- 
tinuum mechanics. A reference configuration which is often employed 
is one associated with some previous state (e.g. undeformed, if it exists) 
of the body. Although we do not use such an assumption here, it may be 
convenient to think of r in this man~er. 

Let Y be a particle in some neighborhood gt (X) of X. The localization 
of the motion X at X in ~ (X) is defined by  

x x  (Y,  t) = x (Y,  t) - x ( x ,  t), Y e gt ( x ) ,  (2.4) 

and represents the motion of particle Y relative to the motion of X. We 
observe that  

Xx (X, t) = 0. (2.5) 

I t  will be convenient to express this localization in terms of the posi- 
tion of Y relative to the position of X in reference configuration r. Toward 
this end, and analogous to (2.2) the position of Y in r is given by 

Yr = r (Y). (2.6) 

Hence the position of Y relative to X in r becomes 

r x  (Y)  = r (Y)  - -  r (X)  = Yr - -  Xr. (2.7) 

Employing the notation 3 Yr to denote this relative position vector in r, 
we have 

AYr = rx  (Y), AXr = rx  (X) = 0. (2.8) 

In the mapping (2.8) of Y - +  A Yr for fixed X, the neighborhood ~t (X) 
in reference configm'ation r is mapped into a neighborhood of the null 
vector 0. We will denote this neighborhood by  ~r (0), and designate it 
as a neighborhood of the null vector in reference configuration r. Accord- 
ingly, 

1 ~ e ~? (X)  ~ A Yr e ~ r  (0). (2.9) 

Finally, by the inversion of (2.8), it follows from the locMization (2.4) that  

x x  (Y,  t) = ~ x  ( r x - :  ( A L ) ,  t) = ; (x  ( A Y r ,  t), (2 . :0 )  

in which the neighborhoods of definition are related by (2.9). Since Y = X 
corresponds to AYr = 0, we obtain, in view of (2.5) 

x x  (0, t) = o.  (2.11) 

We shall refer to ~ x  (A Yr, t), A Yr ~ gtr (0), as the localization of the 
motion X at 0 in gtr (0). As in (2.3) we have used the same symbol ](x 
to represent the localized motion at X independently of whether it is 
expressed in terms of neighboring particles or in terms of the relative 
position vector of neighboring particles in reference configuration r. 

The deformation gradient F at X in the motion (2.1) is defined relative 
to a particular reference configuration. For the reference configuration r 
it is given by  the non-singular tensor 

F (Xr, t) =- V X (Xr, t). (2.12) 
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I t  follows from (2.4), (2.6), (2.7), (2.8) and (2.10) t ha t  the deformation 
gradient  m a y  also be calculated from the  localization through 

F (Xr, t) = VXx (z~ Yr, t)] Ayr= o = V•x (0, t). (2.13) 

The displacement u of X in the motion (2.1) is defined as the position 
vector of X at  t ime t relative to its position in a reference configuration. 
For  reference configuration r we can either consider u at  X as a function 
of (Xr, t) or as a function of (x, t) and with the aid of (2.3) write accord- 
ingly 

U (Xr, t) = X (Xr,  t) - -  Xr,  ( 2 . 1 4 )  

u (x,  t) = x - x -1  (x,  t). ( 2 . 1 5 )  

Then, the displacement gradients at X are defined through 

P (Xr, t) --~ Vu (Xr, t), (2.16) 
and 

M (x, t) = V n  (x, t), ( 2 . 17 )  

while chain differentiation, together wi th  (2.12) provides the relation 

P = M F.  ( 2 . 1 S )  

Using (2.14) and (2.16) it  follows tha t  P and F are directly related through 

1 ) = F --  1, (2.19) 

while with the aid of (2.18) we similarly reach 

M = 1 - -  F -1. (2.20) 

3. S t ra in  

We consider the strain at  a particle X in a cont inuum as a kinematical  
concept which is defined intui t ively so as to represent a measure of the 
change in geometry of a neighborhood of X as a consequence of deformation. 
The strain at  a given t ime is a quan t i ty  which will then  be determined 
through the comparison of the neighborhood of the particle at  t ha t  t ime 
with  some s tandard  neighborhood. Moreover, the strain measure should 
depend on the size of the neighborhood of X in which the change of 
geometry is being considered. We call the neighborhood of a particle 
which determines, th rough its loeM deformation, the value of the strain, 
the neighborhood of influence. 

Because of the directional nature  of the local geometric changes, it  
seems most natura l  tha t  the strain should be defined as a tensorial quant i ty .  
For  convenience we shall define strain as a second order tensor; the 
generalization of our approach to higher order tensors should be clear 
from the context.  Therefore, the strain tensor D at (X, t) in the motion X, 
is supposed to be determined through the second order tensor valued 
functional  relation 

D (X, t ) = f t ( x ( Y , t ) ; X ) ,  Y e N ( X ) ,  (3.1) 
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where to be deterministic, ft  must satisfy 

ft (X (1) (Y, t); X) = f t  (X (2) (Y, t); X), (3.2) 

provided 
x(1) (y,  t) = (y ,  t) for y (x),  (3.3) 

while ~ (X) represents the neighborhood of influence, ft  is a tensor valued 
functional which assigns to each local deformation of X in ~ (X) the value 
of the strain at X, the form which may depend on t, and, in general, on 
the particular continuum under consideration. 

The "relative" quality of strain is implicit in the fundamental equations 
(3.1) if we recall that  particles ,are assigned (reference) positions in some 
particular reference configuration, which can be taken as a comparison 
configuration. This is made more explicit if, in addition to (3.2) and (3.3), 
we further qualify the definition of strain by  the normalizing assumption 
which recognizes that  when a continuum is subject to a rigid motion from 
a particular reference configuration for all time t it is intrinsically un- 
disturbed relative to this reference config~tration and which therefore 
asserts that  its strain is zero. We shall return to this requirement later 
in Section 6. 

In the present formulation, it is to be noted that  we allow explicit 
dependence on the particle X in ft, which admits the possibility tha t  even 

though the motion of the neighborhoods of influence of two distinct 
particles may be the same at time t, the strain at these two particles could 
be different. 

For definiteness, we shall consider D (X, t) as a spatial strain measure 
in the sense that  in a fixed coordinate system its components are defined 
rcla.tive to the base vectors at the (current) position x of X at time t. 
By way of two invariauee restrictions, postulated for all realistic measures 
of strain, we shall show the following necessary propositions concerning 
the strain functional: 

(1) The form of ft is independent of time; f t  = f. 

(2) The strain functional f is homogeneous and thus does not depend 

explicitly on the particle X; 

f (X ( I(, t); X) = f (X ( Y, t)), I ~ E gt (X). 

(3) The strain functional f is form invariant under changes of continua. 

(4) The strain at X depends only on the localization of the motion at X;  

f (X (Y, t)) = f ( x x ( Y , t ) ,  Y ~ ( X ) .  

In addition to these particular conclusions, mathematical statements 
of the two invarianee postulates, when reduced by conclusions (1)--(4) 
above will remain as fundamental restrictive conditions on the formation 
of any realistic strain measure in the class covered by  (3.1). These con- 
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ditions include the implication tha t  the strain functional  mus t  be an 
isotropie functional  of the localization. 

In  the limit as the neighborhood of influence ~ (X) is t aken  arbi t rar i ly  
small we call the resulting strain measure simple. For a simple strain 
measure the  restrictions imposed by  the invarianee postulates lead to 
the following addit ional  conclusions; 

(5) The strain tensor D must  be symmetr ic ;  D = D T. 

(6) The strain tensor D must  be an isotropie tensor valued function 
of the left CAUCmC-GREEN tensor s. 

4. Invarianee Condition of Frame Indifference 

In  this section we present the first invarianee restriction which we 
believe all realistic measures of strain should be required to satisfy. This 
restriction is analogous to the principle of material frame indifference which 
TnVESDELL and NOLL have discussed in [1]. 

Associated with the motion X of a continuum, consider a motion ;(' 
which is equivalent  to 3( in the sense t ha t  the material  is deformed in 
all respects concerning t ime changes of internal geometry the same as in 
the motion )(. However, the motion 1(' can be init iated at  a different t ime 
t h a n  the  motion E and can be such tha t  it  appeeors to a fixed observer 
different from the motion X by  at  most  a continuous t ime parameter  
sequence of rigid orientations. Hence, 

x '  ( x ,  t') = Q (t) x ( x ,  t) + e (t), t' = t - a,  (4 .1)  

where a is an arbi t rary  scalar representing a shift in t ime t, where e (t) 
is an arbi t rary  vector valued function of t ime representing rigid trans- 
lotion of the motion ~ '  compared to the motion ?(, and where Q (t) 
represents an arbi t rary  t ime dependent  proper orthogonal t ransformat ion 
which accounts for the rigid rota t ion of the motion X' relative to the 
motion 1(; 

Q (t) QT (t) = QT (t) Q (t) = 1, det Q (t) = 1. (4.2) 

Roughly,  the position of X in motion X at t ime t, and the position of X 
in motion X' at  a t ime uni t  earlier differ by  a rigid body t ransformation.  

The strain at  (X, t') in the motion X' is given, analogous to (3.1), by  

D' (X, t') = ft" (X' (Y,  t'); X), Y e ~ (X). (4.3) 

We propose the following postulate concerning its relation to the strain 
D (X, t) in the motion X- 

Postulate I. In  the equivalent motions ~' of (4.1) and ~ of (2.1) of the 
same continuum the corresponding spatial strain tensors D" and D are related 
by the tensor transformation law 

D' (x,  r) = q (t) D (X, t) QT (t). (4.4) 

s The left C• strain tensor is defined in (6.14). 
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This postulate makes precise the general feeling tha t  in two motions of 
a cont inuum which differ only in t ime of occurence and by orientations 
in space the respective strain fields should appear intrinsically indistinguish- 
able. For  this reason, Postula te  I could be considered a postulate of 
observer invarianee. 

As is apparent  from (3.1), and (4.])--(4.4), the foregoing postulate 
places restrictions on the form of the strain functional as well as on the 
manner  in which the strain at  X can depend on the motion in ~ (X). 
These restrictions are of the  same form as those cor~sidered by  TI~UESDELL 
and NoLL [1] 9 in their discussion of stress-deformation consti tutive 
equations. Therefore, we shall not  include the details here, bu t  only ment ion 
tha t  in a series of three special choices for the quantit ies Q (t), a, and c (t) 
consisting of first, Q (t) ~- 1, a = 0, c (t) = --  X (X, t) at X fixed, second, 
Q (t) -- l ,  a = t, c (t) --- o, and last, q (t) any  proper orthogonal trans- 
form, a = 0, c (t) : 0, it  follows, respectively, t ha t  the strain at X depends 
on the motion in ~ (X) through its localization (2.4), 

D (X, t) = fi  (Xx (Y, t); X), Y e ~ (X), (4.5) 

the form of the strain functional ft is independent of time 

]) (x ,  t) = f ( x x  (Y, t); x ) ,  y e ~ (x) ,  (4.6) 

and tha t  the strain functional f satisfies the invariance condition 

f(Q(t)  x x ( Y , t ) ; X ) = Q ( t ) f ( x x ( Y , t ) ; X ) Q T ( t ) ,  Y ~ ( X ) ,  (4.7) 

for arbitrary transformations Q (t) which meet (4.2). We observe tha t  the 
condition of determinism sta ted in (3.2), (3.3) becomes 

f ( x x  (1) (Y, t); X) = f (Xx(2) (Y, t); X), (4.8) 

provided 

Xx(1) (y , t )  = Xx (2)(y, t )  for Y e g ~ ( X ) .  (4.9) 

The above results are independent  of the choice of reference eonfigura- 
tion. I f  we introduce the reference configuration r, it  is possible, and also 
convenient, to express the strain D (X, t) in terms of the localizatiou of 
the motion at  0 in ~r  (0) as given in (2.10). Thus, (4.6) becomes 

D (X, t) = f r  (Xx (~Vr, t); X), ~Yr e ~r (0), (4.10) 

where the notat ion fr indicates t ha t  the form of the strain functional 
m a y  depend on the particular reference configuration chosen. (4.10) dif- 
fers from (4.6) in t ha t  the functional now depends on the values of the 
localization in ~r  (0) rather  t han  in the neighborhood of influence 9~ (X) 
as in (4.6). Since the domains of defirgtion of the localization are related 
by  (2.8), (2.9), we will call ~ r  (0) the neighborhood of influence in reference 
configuration r. In  addit ion to (4.10) there are equations analogous to 

See w 26. Also see the earlier work of NoLL [2]. 
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(4.8), (4.9) expressing the property of determinism which we shall not 
repeat here. The invariance condition (4.7) trivially becomes 

fr (Q (t) Xx (dYr, t); X) = Q (t)fr (Xx (ZJYr, t); X) QT (t), (4.11) 

A Y r e ~ r  (0), 

for all Q (t) which satisfy (4.2). 
In the special case where the neighborhood of influence ~ (X) is 

vanishingly small, we obtain from (2.9) the result that  ~r (0) is also vanish- 
ingly small, and with the aid of (2.11) and (2.13), we reach 

)~x (AYr, t) - -  [Vxx  (0, t)] AYr : F (Xr, t) AYr, AYr ~ ~r (0). (4.12) 

In this case, (4.10) and (4.12) imply the simple strain measure 

D (X, t) = f r  (~F (Xr, t); X), (4.13) 

while the invariance condition (4.11) becomes 

fr (Q (t) F (Xr, t); X) ---- Q (t)fr (F (Xr, t); X) QT (t), (4.14) 

for all Q (t) which meet (4.2). 
Postulate I has been fully exploited and its implications are exhibited 

in (4.10) and (4.11). In the case of a simple strain measure, where the 
neighborhood of influence of the localized motion at X on the strain at 
(X, t) is vanishingly small, the results of Postulate I are given in (4.13) 
and (4.14). We remark that  similar results can also be generated for the 
cases where the neighborhood ~t (X) is considered large enough to include 
second and higher deformation gradients. These investigations could be 
relevant to obtaining measures of strain for multipolar continua. 

5. Invariance Condition on the Definition of Strain 
In Order to describe our second postulate of invariance, it is convenient 

to refer motions to reference configurations. For reasons of comparison 
we introduce two reference configurations r and ~ each of which may  
be used to locate either particles X, Y, . . . ,  of one continuum ~ or par- 

ticles X, ] ~ , . . . ,  of a second continuum ~. We remark that  the two 

continua ~ and ~ could be the same, in which ease we write ~ ---- ~ and 
A A 

interpret X, Y, X,  Y, . . . ,  as different particles of this common material. 
When it is essential to do so, we shall explicitly distinguish the case 

:-  ~. Otherwise, in the following discussion, this particular ease should 
not be considered in any way as being special. 

Analogous to (2.2) we may write 

X7 = r (X), (5.1) 

where X~ denotes the position of particle X in reference configuratiou ~. 
We will have occasion to consider the position of the same particle in 

both reference coufigurations r and ~. The position of a particle ,~ in 
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reference configm'atior~ r, of X in ~, of Y in i ~ . . . .  , etc., are given respec- 

tively by Xr-----r (X), X:~" = ~ (~7), ~7~----~ (Y), . . . ,  etc. Hence, in the 

spirit of (2.7), the position of Y relative to ~7 in ~ is given by 

~2 (Y) = ~ (Y) -- ~ (2) = Y~- -- X~.. (5.2) 

Analogous to (2.8), we shall use the notat ion A Y? to denote this relative 
position vector in ~; 

~ Y ;  = L~ (Y), ~2 (2) = 0. (5.3) 

Denoting by ~ (_~) a neighborhood of particle X, it follows tha t  

? e ~ (:~) ~ d ~  �9 ~ (0), (5.4) 

where ~?  (0) is a neighborhood of the null vector in ~, which corresponds 

to the image of ~ (X) under the mapping (5.2) and (5.3). 

In  a similar fashion A Yr will denote the position vector of ~V relative 

to X in the reference configuration r. Then, from (2.8) and (2.9) we have 

AYr : r,~ (Y-), r2 (2;) ---- 0, (5.5) 
and 

Y �9 ~ (x)  ~ A :~ e ~ (0), (5.6) 

where ~r  (0) is a neighborhood of the null vector i a r  corresponding to 

the image of ~ (X) under the mapping (5.5). 
The motion (2.1), when considered relative to f, will be denoted ~, 

so that similar to (2.3) we may with the aid of (5.1) write 

x = ~ (x~, t). (5.v) 

Hence, to the localization of the motion X at X in ~ ()~) we can associate 
through (5.3), (5A) and in a manner  analogous to (2.10), the localization 

of the motion ~ at 0 in ~ "  (0); 

x~  (~', t) = ~ (A %-, t), (5.s) 

where Y = 2~ corresponds, through (5.3), to A Y7 = O, which implies 

~2 (0, t) ~- 0. (5.9) 

Similarly, we can also associate through (5.5), (5.6) the localization of 

the motion X at 0 in ~r  (0); 

x~  (Y, t) = x~  (A %, t), (5.10) 

where Y --~ X corresponds, through (5.5), to AYr ~- O, which implies 

x ~  (0, t) = 0. (5.11) 
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I t  is now straightforward to express the strain at (X, t) in terms of 

the localization of the motion at 0 in ~r  (0) using (5.10), (5.6) and (4.6) 

rewritten in terms of X and Y ~ ~ (~:) in just the same manner as (4.10) 
was expressed using (2.10), (2.9) and (4.6). Hence in the special case 

= ~ we have 

D (X, t ) = f r ( X 2 ( A Y r ,  t);X), /[ Yr e ~)~r (0), (5.12) 

whereas if the two continua are not the same, ~ :~ ~, and the functional 

fr should be replaced by a different functional f~ distinctive of the con- 

t inuum ~. In  this development, if we replace the localization (5.10), (5.6) 

by the localization (5.8), (5.4) at 0 in ~7(0), then we have essentially 

introduced the reference configuration ~', and, provided ~ ---- ~, the strain 

at ()~, t) takes the form 

D (f~, t) = f'~(X2 (A Yg, t); _~), A Y ; - e ~ r  (0), (5.13) 

with again fg  being replaced by f7 for the continuum ~ when g ~ ~. 

Since (5.12) and (5.13) represent ~ e  strain at the same particle X in the 
same continuum at time t, we obtain a general relation between the strain 
functionals 1~ fr and fg;  

fr (X2 (AYr, t); X) = f ; "  (~2 (AYT, t); X), (5.14) 

provided the localizations (5.8) and (5.10) of the motion X associated with 
these reference configurations satisfy 

( fr, t) = ( YT, t), (5.15) 

where, from (5.3)--(5.6), 

AYr = i~2 (r2 -~ (AYr)) ~ h2 (AYr), (5.16) 
with 

AYr e ~r  (0) ~ AYg + ~?  (0). (5.17) 

I t  is through the mapping (5.16) that  we may consider the neighborhood 

of influence ~ (0) in ~ to be the image of the neighborhood of influence 

~r  (0) in r. 
With a view toward a statement of our second invariance postulate, 

we now assume tha t  a common reference configuration r of continua 

and ~ is given and consider a special choice of a second reference con- 

10 It is understood that if the two continua ~ and ~ are distinct then Jr a n d  ]~" 

are to be replaced in (5.14) by the functionals 7r and f~ respectively, which are 
appropriate to the continuum ~. 
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figuration ~ for ~. Let X and X denote two arbitrarily chosen, but  fixed, 

particles of continua g and ~ respectively, and associate with each particle 

Y e 92 (X) a particle Y e ~ (2~) such tha t  the distances between X and Y 

of g, and 2 and I 7 of ~ in the reference configuration r are equal; 

EdYrl=' tdYr[. (5.1s) 

Hence, the mapping of AYr ~ 92r (0) -~ 3Yr ~ mr (0) is a rigid rotation 
with possible reflection 

ZJY r = I~ ZJYr, H H T = ]7I T H = 1. (5.19) 

From the above, it follows tha t  the neighborhoods 92r (0) and ~r (0) of 
the null vector in reference configuration r induced by (2.9) and (5.6) 
are congruent. 

We now choose a second reference configuration ~ for ~ in such a way 

tha t  the positions of its particles _X and Y in this reference configuration 
coincide respectively with the positions of particles X and Y of ~ in r. 
Then 

X~" = Xr ,  y~, z Yr, (5.20) 

which, by subtracting the two equations, yields 

A]Y~" = zJY r (5.21)  

with the implication, through (2.9) and (5.4), tha t  

~?  (0) = 92r (0). (5.22) 

Thus, F is related to r through a rigid transformation with possible re- 

reflection which equivalently carries a neighborhood of X, for ~ in r, 
into coincidence with a neighborhood of X, for ~ in r. 

From (5.19) and (5.21) it follows tha t  

AYr = H 3Y7". (5.23) 

This equation relates the relative positions of particles X and Y of G in 
the two reference configurations r and F, and, by inversion, represents 
a special choice of the function h2 in the mapping (5.16), 

dY~ = U z ~Yr. (5.24) 

With the aid of (5.21) and (5.13), we may  now express the strain at 

(2,  t) for ~ = ~  as 

D (2~, t ) = f ? ( x ? ( A Y r ,  t);2), AYr e 92r (0), (5.25) 

where the functional f;" is to be replaced by f?  if the two continua ~ and 

are distinct. This brings us to the following 
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Postulate II.  I f  the reference configuration ~ of ~ is chosen relative to 

the reference configuration r of ~ and ~ as implied in (5.18)--(5.20), then 
the strain at (X, t) in ~ due to the localization of a motion at 0 in ~f~r (0), 

and the strain at (X, t) in ~ due to the same localization at 0 in ~ (0), are 
equal. 

Roughly, this postulate expresses the feeling that  the strain at a particle 
should depend on its local kinematics in some neighborhood of influence, 
and, in addition, that  if the neighborhoods of any two particles in materially 
distinct continua coincide in their reference configurations and also at 
time t, then the strain at time t of these two particles should be the same. 

A mathematical statement of this postulate can be constructed from 

(4.10) and (5.25) and reads for arbitrary ~ and ~, 

fr (Xx (AYr, t); X) :o];" (Xx (LJYr, t); .~),  zJY r e ~r (0), (5.26) 

provided 

(a) (5.27a) 

where 2 denotes an arbitrary function, and 

satisfies (5.18)--(5.20) relative to r. (b) (5.27b) 

A first consequence of Postulate I I  is the proposition that  the strain 
functional of a continuum does not depend explicitly on the particle n, 

fr (•x (AYr, t); X) = fr (Xx (AYr, t)). (5.28) 

To see this we need only consider in (5.19) the identity transformation 

H = 1. Then (5.21), (5.23) yield AYr = Ar163162 = AYr. This together with 

(5.14), (5.15), and letting Xx = Xx = 2, implies for arbitrary ~ and 

f r (2(AYr ,  t ) ; 2 ) = f ~ ( x ( A Y r ,  t);2),  A Y r ~ r ( O ) ,  (5.29) 

for arbitrary X. We remark that  in the case ~ = ~, f and f ?  are replaced 
by the functionals fr and f~" respectively. Hence, with the special assumption 

= ~0 (5.26) and (5.27a) imply 

fr (~ (AYr, t); X) -: f;. (2 (AYr, t); 3~), AYr e fftr (0), (5.30) 

and (5.29) and (5.30) yield 

f r (2(A][r , t ) ;X)  : f r ( 2 ( A Y r ,  t);Z), AYre~r(O), (5.31) 

whatever the functional form of X. Since this states that  fr is independent 
of X, (5.28) follows. 

11 An equivalent statement is that the strain functional is said to be homogeneous. 
Acts Mech. VI/4 20 
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A further consequence of Postulate I I  follows if we take account of 
(5.273) and reduce (5.26) and (5.29) by means of the proposition above 
to the respective forms 

fr (X (AYr, t)) =-/7 (X (AYr, t)), 
and (5.32) 

fr (2 (AYr, t)) -----f; (2 (AYr, t)), 

for A Yr e ~r (0), and for arbitrary functious ~. Hence, equating the left 
hand sides above we arrive at the proposition that strain funetionals are 
form invariant under changes of material, 

f = ] .  (5.33) 

We note that  it follows from the first of (5.32) together with (5.33) that  

fr (X (AYr, t)) = f~" (X (AYr, t)), AYr e ~r (0), (5.34) 

for arbitrary X. 
Now, recall the condition (5.27b) of Postulate I I  which requires that  

r and ~ be so related that  the relation (5.16) between A~rr and A~r~ " has 
the special form (5.24). Then (5.14), reexpressed using (5.34), the first 
consequence of Postulate II,  and (5.15) supplemented by (5.24), yields 
the general invariance restriction ~ 

provided 

fr [xx- ( 3 ~ ,  t)] = fr [ ~  (3Yr, t)], (5.353) 

x~ (z%, t) = ~ ( z~ - ,  t), (5.35b) 
and 

~ = n z  d%, A'L + ~ (0), (5.35c) 

for arbitrary constant orthogonal transformations H. 
In the special case where the neighborhood of influence ~ (X) is 

vanishingly small, then, as remarked earlier, (2.9) implies that  9~r (0) 

is vanishingly small. This, in turn, through (5.22), also yields ~ "  (0) 
vanishingly small. Thus, through (5.23), (5.4) and (5.6) we also have 

~r  (0) vanishingly small. With reference to (5.9) and (5.11), these remarks 
imply that  in addition to the approximation (4.12), we also have 

X2 (AYr, t) - -  [Vx2 (0, t)] A~{,. = F (Xr, t) AYr, A~{r e 9~r (0), (5.36) 

~, (~-, t) - -  [ v ~ ,  (0, t)] 3 ~ -  = ~ ( ~ ,  t) a ~ - ,  3 ~ -  ~ ~ -  (0), (5.37) 

where 

r' (s t) = Vx (Rr, t) = Vx~ (0, t), (5.3s) 

12 A less precise equiva len t  statement~ of  th is  result  is t h a t  the  s t ra in  funct ional  
is said to  be isotropic. 
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F (3~7, t) = V~ (J(~., t) = V ~ 2  (0, t), (5.39) 

are deformation gradients of the motions X and ~, respectively. The 
equivalence of the deformation gradients to the gradients of "the locali- 
zations as s ta ted  in (5.38) and (5.39) follow in the  same manner  as in the  
analogous si tuat ion (2.13). The approximations (5.36) and (5.37) imply 
t h a t  (5.12) and (5.13) reduce to simple strain measures, depending only 
on the deformation gradients, analogous to the manner  in which (4.10) 
reduced to (4.13). In  terms of these simple strain measures, (5.35a--c),  
reduce to 

Jr IF (Xr, t)] = fr [f~ (X~., t)], (5.40) 
where 

F (?~r, t) = F (X~, t) H T, (5.41) 

for a rb i t ra ry  orthogonal H. Together, (5.40) and (5.41) yield the invariance 
condition 

fr (F) = fr (F H), (5.42) 

where F is an arbi t rary  deformation gradient  tensor, and where H cor- 
responds to an arbi t rary  orthogonal t ransformation.  

This  completes our general discussion of the restrictions which Postu- 
late I I  places on all realistic measures of strain. The conclusion (5.42) 
is valid for simple strain measures. Again we remark  tha t  fur ther  results 
could be generated for the si tuat ion in which the neighborhood of influence 

(X) is considered large enough to include second and higher deformation 
gradients in the strain functional.  

6. Simple Strain 
For a simple strain measure we have shown in Sections 4 and  5 t ha t  

at  (X, t) TM, 
D (t) --~ f (F (t)), (6.1) 

where f satisfies 

f ( Q  ( t)F (t)) = Q ( t ) f  (F (t)) QT (t) (6.2) 

for arbi t rary  proper orthogonal tensors Q (t), while 

f (F (t)) = f (F (t) H) (6.3) 

for arbi t rary  constant  orthogonal tensors H. 
We shall re turn  later to discuss the consequences of these functional  

equations. Rather ,  as a first objective in this section we show tha t  a neces- 

x3 We omit explicit mention of the material particle or reference configm'ation 
here and, whenever possible, in the remainder of this paper, as we shall now consider 
these two quantities fixed. I t  should be recalled, however, that in general the form 
of ] depends on the choice of reference configuration, that F depends on the position 
of the particle in its reference configuration, and that O is being evaluated at the 
particle in question. 

20* 
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sary and sufficient condition for a strain measure to be "simple", is 8atis- 
faction of the implication 

(t) = o ~ D (t) = 0 .  ( 6 , 4 )  

Roughly, this states that  the assumption of a finite non-zero neighborhood 
of influence in the definition of strain is inconsistent with the impli- 
cation (6.4). 

Clearly, if the strain measure is simple it follows from (6.1) that  (6.4) 
is satisfied. Our object here is to show that  the converse is also true. To 
this end, with fixed reference configuration r and particle X, choose a 
fixed time t and associate with the arbitrary localization Xx at 0 in ~r (0) 
the constant tensor 

F = F (t) = V Xx (0, t), (6.5) 

which is calculated as in (2.13). Now consider the homogeneous deformation 
whose localization at 0 in 9~r (0) is defined by  

XX + (/IYr) = F zlYr, AYr e ~ r  (0). (6.6) 

This localization has the preperty that  

VXX + (AJYr) = VXX (0, t) : F. (6.7) 

In the present context, a theorem recently proved by GI:RTI~ [12] ~4 shows 
that  for fixed r and X, there exists a motion X* and a time t* whose 
localization satisfies the requirements 

(a) Xx* (AYe, t*) = Xx + ( A L L  

(b) Xx* (~Yr, t) = X x  (~Yr, t), (6.8) 

(c) V Xx* (0, 8)----0 at each time s, 

for AYe. e 9~r (0). The strain associated with this localization is given at 
each time s by the functional .fr (Xx* (AYr, 8)) for AYr e 9~r (0). In view 
of (6.8e), the conjecture (6.4) implies that  

d 
ds fr (Xx* (AYr, s)) ---- 0. (6.9) 

Hence, by integration and application of (6.8a, b) we obtain 

.fr (Xx + (AYr)) = fr (Xx (AY,., t)). (6.10) 

Finally, by defining the function hr thru 

hr (A) = fr (A AI Yr), zJ Yr e ~r (0), (6.11) 

for all constant second order tensors A, we reach, with the aid of (6.6), 
(6.10), (6.11), the result 

f r  (Xx  (AYr, t)) : hr (F), AYr e ~ r  (0). (6.12) 

~ See Lemma 2, p. 343. 
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Thus,  recall ing t h a t  the  left  h a n d  side of  (6.12) represents  the  s t ra in  
measure  D (t) for fixed X,  we are led to  conclude t h a t  the  s t ra in  measure  
m u s t  be simp]e, which completes  the  proof.  

We  t u r n  now to  discuss the  funct ional  equat ions  (6.2), and  (6.3). The  
solut ion to  these equat ions  has  been g iven  previous ly  in several  paper s  
and  t reas t i se ' s  on con t inuum mechanics  [1, 2, 3, 4, 5]. Therefore ,  we 
mere ly  r e m a r k  t h a t  the  polar  decomposi t ion  15 of F (t), along wi th  (6.1) 
and  (6.3) yields the  existence of  a funct ion g such t h a t  

D (t) = g (B (t)), (6 .13)  

where  B (t), the  left CAUCI~Y-GREEN strain tensor, is defined b y  

B (t) = F (t) F T (t). (6 .14)  

Moreover,  (6.2) s ta tes  t h a t  t h rough  g, the strain D (t) must be an isotropic 
tensor valued function of B (t), 

g (q (t) B (t) qT (t)) = q (t) g (B (t)) q~  (t), (6.15) 

and, therefore,  admi t s  the  represen ta t ion  16 

D (t) ---- g (B (t)) - -  ~o 1 + ~1 B (t) ~-  ~2 B2 (t), ( 6 .16 )  

where  ai (i ---- 0, 1, 2) are scalar va lued  funct ions of  the  th ree  pr inc ipa l  
invar ian t s  of  B (t), defined b y  

I B ~ t r  B, 

1 
I I B  = y [(tr  B)  2 - -  tr  B2] ,  

I I I s =  det  B. 

(6.17) 

(6.1s) 

(6.19) 

Along wi th  this r ep resen ta t ion  we observe 1G t h a t  for s imple s t ra in  the 
strain tensor D (t) must be symmetric, 

D (t) = D ~  (t). (6.20) 

Fur the r ,  since B -1 (t) is an  isotropic tensor  va lued  funct ion of B (t) a n d  
vice-versa,  we could equal ly  well have  used B -1 (t) eve rywhere  in p lace  
of  B (t) above,  wi thou t  loss of  general i ty .  

KAR~I and  R~I~ER [7] have  called a s t ra iu  measure  n tl~ order  if  i t  
is an  n th order po lynomia l  in the  d isp lacement  gradients .  I n  this  sense, 

15 See, eg., I-IALMOS [11], w 83. 
18 The method used by SER~I~ [6], w 59, to deduce this representation does not 

a priori require g to be a symmetric function, but merely that its argument B be 
symmetric. The symmetry of B is obvious from (6.]4). 

We remark that although this representation is valid in all cases, there are 
examples of simple strain measures which are more conveniently left in their irrational 
or trancendental forms. For example, see I-IEZqCKY'S logarithmic measure discussed 
in TI~YESDELL [10], w167 16, 17. Other examples and related remarks are given in [9], 
w167 32, 33, along with a historical account of the theory of strain in w 33A. 
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b o t h  B (t) a n d  B -1 (t) a re  second  order ,  as i t  fol lows f r o m  (6.14) a n d  
(2.19) t h a t  

B (t) = 1 -~- P (t) + pT (t) ~- P (t) pT (t), (6.21) 

a n d  f r o m  (6.14) a n d  (2.20) t h a t  

B -1 (t) = 1 - -  .M (t) - -  M T (t) @ M T (t) }I (t). (6.22) 

Hence ,  f r o m  (6 .16)- - (6 .19)  we  see t h a t  there exists no properly invariant 
first order measure of simple strain aside f rom a constant isotropic tensorlL 
F u r t h e r ,  i t  fol lows t h a t  the most general properly invariant second order 
measure of simple strain must be of the form 

D (t) = [%0 ~- ~ol t r  B (t)] 1 ~- ~1o B (t), (6.23) 

where ~oo, ~ol, ~o are constants, a n d  whe re  for  B (t) we  m a y  s u b s t i t u t e  
(6.21). W e  r e m a r k  t h a t  an  expres s ion  s imi lar  to  (6.23) m a y  also be  w r i t t e n  
whe re  B (t) is r ep l aced  b y  B -1 (t) o f  (6.22). 

I f  a b o d y  is s u b j e c t e d  to  a r ig id  m o t i o n  ( re la t ive  to  i ts  r e f e rence  con-  
f igura t ion)  i t  is u sua l  to  refer  to  t h e  b o d y  as be ing  u n s t r a i n e d  ( re la t ive  
to  i ts  r e fe rence  conf igura t ion) .  Neg lec t i ng  the  poss ib i l i ty  o f  res idua l  s t r a in ,  
th is  sugges ts  t h e  r e q u i r e m e n t  t h a t  

D (t) =- 0 i f  and only i f  X is rigid ~s. (6.24) 

D u e  to  t he  well  k n o w n  resu l t  ~ t h a t  X is r ig id  i f  a n d  o n l y  i f  B (t) = 1 
for  all t, i t  fol lows f r o m  (6.24) t h a t  

D (t) ~- 0 i f  and only i f  B (t) = 1, for all t. (6.25) 

Th i s  cond i t i on  ru les  ou t  t h e  poss ib i l i ty  of  a c o n s t a n t  i so t rop ie  t e n s o r  as  
a first  o rder  s imple  s t r a i n  measu re ,  a n d  impl ies  t he  neces sa ry  a n d  suf-  
f ic ient  cond i t ions  

c~10 4 0, ~00 @ 3 ~01 @ ~1o : 0, (6.26) 

on  t h e  coeff icients  a p p e a r i n g  in (6.23). 

One  of  t h e  m o s t  c o m m o n  second  o rde r  s imple  s t r a i n  m e a s u r e s  cor- 
1 

r e s p o n d s  t o  t h e  choice e0x = 0 a n d  cq0 - -  2 " I n  th is  case,  

1 1 [P(t )  -~- pT pT D (t) = ) - ( B  (t) - -  1) ---- ~ (t) + P (t) (t)], (6.27) 

wh ich  KAR~I  a n d  R E I ~ R  [7] d e n o t e  as t he  GI~EE~ (final) s t r a i n  tensor .  

~7 Only in the limit of infinitesimal deformation gradients is it possible to approx- 
imate the strain by  a first order measure. This measure will not, however, be properly 
invariant. 

as I-Iere, X denotes the motion relabive to the reference configuration as given 
in (2.3). 

~ This follows from (6.14) and (2.12), and can be found in MIC~IAI, [8]. 
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When B (t) is replaced by  B -1 (t) in (6.23), and  we choose the  corre- 
1 

sponding ~01 = 0 and ~10 -= - - ) -  then 

1 
= 21-- [M M T D (t) = ~- (1 -- B -~ (t)) (t) + (t) --  M T (t) 1tl (t)], (6.28) 

which is denoted as the AL~A~SI (final) strain tensor 2~ in the  above 
referenced work of KAU~I and R m ~ E m  

Finally,  we remark t h a t  the analysis given here, and, in particular,  
the result (6.23), does not  admit  new second order spatial strain measures 
of the form proposed by KAR~I and REI~E~ [7]; their  strain measures 
are physically not  acceptable due essentially to our Postula te  I of observer 
invariance. 

7. Material Strain Measure 

All of the work in the preceeding sections of this paper was concerned 
with a spatial measure of strain, D (X, t). We could equally well have 
considered a material strain measure Dr (X, t) also defined through (3.1), 
(3.2), (3.3) bu t  differing in interpretat ion from D (X, t) in the sense t ha t  
in the same fixed coordinate system its components are calculated relative 
to base vectors at  the  position Xr of X in reference configuration r. Ra ther  
t h a n  formulate  Postulates  I,  I I  and then  reach independent ly  all of the  
foregoing results in terms of Dr (X, t), i t  is sufficient to relate Dr (X, t) 
to D (X, t) by  means of the  motion relative to r given in (2.3). Then the 
results for Dr are immediate.  The motion (2.3) acts as a change of co- 
ordinate system with regard to the  tensor t ransformat ion Dr ++ D. Hence, 
the deformation gradient tensor (2.12) serves as the t ransformat ion  mat r ix  
and we have at  (X, t), 

D = F D r F  T �9 (7.1) 

With  the relation (7.1), it is s traightforward to t ransform all previous 
results of Sections 4, 5, and 6 from D to Dr. We shall no t  dwell on this 
here, except to briefly ment ion some of the main results concerning simple 
strain considered in Section 6. F rom (6.16) a M  (7.1) we can construct. 
the most general material  measure of simple strain. Hence we have 

Dr (t) = F -1 (t) {% 1 -t- e~ B (t) -t- ~2 B2 (t)} [F T (t)] -~. (7.2) 

which m a y  be wri t ten as 

Dr (t) =/~o 1 -t-/~ C (t) -4- fi2 C~ (t), (7.3) 

where C (t), the right CATJCgY-G~EEST strain tensor, is defined by  

C (t) = F r (t) F (t), (7.4) 

and where /~ (i = 0, 1, 2) are scalar valued functions of the three prin- 
cipal invariants  of C (t) (which, because of the forms of (6.14) and (7.4), 

~o See also TRUESDELL and Tou~I~ [9], w 31, where this strain tensor is attri- 
buted to AL~AXSI and tIANEL. 
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are the same as the principal invariants of B (t) given in (6.17)--(6.19)). 
To obtain (7.3), subst i tute for B (t) in (7.2) the definition (6.14), use (7.4), 
and apply the CAYLEY-HAMILTON equation 

I I I c  r = 1]~ _ I c  1] -~ I I c  1. (7.5) 

Hence, the most general material measure of simple strain must be an isotropic 
tensor valued function of 1] (t). Further ,  since 13 -1 (t) is an isotropic tensor 
valued function of t3 (t), and vice-versa, we can, wi thout  loss of generality, 
replace 1] (t) by  13 -1 (t) in (7.3), where the scalar coefficients are under- 
stood to be different. 

By  (2.19), (2.20) and (7.4), 

1] (t) = 1 + P (t) + pT (t) + 1 aT (t) P (t), (7.6) 

and 
1]-i (t) = 1 -- M (t) - -  M T (t) + M (t) M T (t). (7.7) 

Hence, similar to the procedure used in Section 6, we conclude tha t  the 
most general properly invariant second order material measure of strain 
must  be of the form 

Dr (t) = [floo + fl01 t r  1] (t)] 1 + fllo 1] (t), (7.8) 

where fl00, rio1, filo are constants. A similar equation holds for 1] (t) replaced 
by  I] -1 (t). Application of the restriction (6.24) results in the necessary 
and sufficient conditions 

filo 4: 0, fi0o + 3 rio1 + 131o ---- 0. (7.9) 

1 
The particular choice flol----0 /31o = ~ -  yields the well known material  

measure of simple strain 21 

1 
Dr (t) = 21-- (1] (t) --  1) = ~ [P (t) + P~" (t) + pT (t) P (t)], (7.10) 

designated as GREEN (initial) in the previously referenced work of KAa~I 
and R~I~El~. When 1] (t) is replaced by 1]-1 (t) in (7.8), and we choose the 

i 
analogous coefficients /301 = 0 and  /310- 2 ' it  follows tha t  

1 I 
Dr (t) = ~- (1 --  1]-1 (t)) = -ff [M (t) -[- ~[T (t) --  M (t) M T (t)], (7.11) 

which corresponds to the AL~IA~SI (initial) strain tensor in the work of 
KA~z~I and REI~En. 

Finally,  we remark tha t  (7.8) does not  admit  new second order material  
strain tensors of the form which were proposed by KARZ~I and REINER. 
This is due essentially to the fact that their proposed measures are not 
properly invariant. 

21 TI~UESDELL and TOUPIN [9], w 31, attribute this strain tensor to GREEN and 
Sw. VE~A~W. 
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