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Summary 

Limit analysis studies the asymptotic behavior of elastic-plastic materials and struc- 
tures. The asymptotic material properties exist for a class of ductile metals and are 
designed into optimal structural members such as I-beams and composite plates. The 
analysis automatically ignores the relatively small elastic deformations. Classical lower 
and upper bound theorems in the form of inequalities are mathematically incomplete. A 
duality theorem equates the greatest lower bound and the least upper bound. Although 
some general statement has been made on the duality relation of limit analysis, each 
yield criterion will lead to a specific duality theorem. The duality theorem for a class of 
plastic plates is established in this paper. The family of ~-norms is used to represent the 
yield functions. Exact solutions for circular plates under a uniform load are obtained for 
clamped and simply supported boundaries as examples of the specific duality relations. 
Two classical solutions associated with Tresca and Johansen yield functions are also 
presented in the spirit of their own duality relations, providing interesting comparison 
to the new solutions. A class of approximate solutions by a finite element method is 
presented to show the rapid mesh convergence property of the dual formulation. Complete 
and general forms of the primal and dual limit analysis problems for the ~-family plates 
are stated in terms of the components of the moment and curvature matrices. 

1. Introduction 

In the 1950s, limit analysis of plasticity [1], [2] had enjoyed a burst of 

development, that  produced many results of theoretical and practical significance. 
The advances made during that  decade had laid the foundation of a potentially 
very powerful theory for plastic analysis and designs of structures [3] and metal 
forming processes [4]. Unfortunately, the development stopped short of a general 
algorithm for solving practical problems. I t  also left some important  theoretical 
questions unanswered. As a result, limit analysis has not been in the main stream 
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of solid mechanics compared t.o elasticity and incremental plasticity [5]. Some 
researchers abandoned limit analysis for its seemingly over simplified physical 

assumptions. Others were frustrated by its difficult mathematical structure. In 
fact, limit analysis involves deeper physieM and mathematical  concepts than 
one is led to believe. Its usefulness is irreplaceable by that  of incremental plas- 
ticity. Limit analysis and incremental plasticity should complement each other 
to produce further advances in our endeavor of this branch of nonlinear me- 

chanics. 
Statements of "upper and lower bound theorems" in earlier articles of limit. 

analysis were derived from simple physical arguments. Those inequality state- 
ments are mathematically incomplete because the equality relation between the 
least upper bound and the greatest lower bound had not been established. Such 
a relation, called duality, is essential for constructing a minimization or max- 
imization algorithm that  converges to the exact solutions of limit analysis prob- 
lems. 

Recently, duality theorems for limit analysis have received more at tention 
in mathematical  papers [6, 7]. Although a general theorem [8] has been available, 
certain technicality in the pure mathematics language has not made it easy to 
apply the theorem to physically more spophisticated cases. I~ecent works like 
[9], [15], [23] begin to close some gaps between mat.hematieal, algorithmic and 
mechanical view points. 

In this paper, we use a physically motivated upper bounding process to 
derive a class of duality theorems for plastic plates using a specific family of 
yield functions. Examples are presented with exact, solutions approached from 
both lower and upper bounds. The theorems and examples should offer additional 
insight into the duality relations. Each specific yield function used in limit 
analysis will lead to an associated duality theorem. 

The chosen [3-family yield functions which span between the yon Mises [10] 
and the Frobinius [15] functions provide an opportuni ty  to examine the effects 
of yield functions on the limit solutions. Some solutions for circular plates in 
terms of static and kinematic quantities are obtained numerically. We present 
also the classical solutions using two other yield functions named after Tresea 
[12] and Johansen [13]. These two yield functions and the range of ]3-norms 
intersect. Therefore, the exact solutions associated with these two yield functions 
offer independent verification and comparison to the new solutions associated 
with the [3-family yield functions. 

In another section, a finite element method is used to obtain approximate 
solutions from the upper bound formulation or the dual. Because of the available 
exact solutions, the rapid convergence of the approximate solutions is numer- 
ically observed. One of the purposes of a duality theorem is to help constructing 
general algorithms for solving problems faced in engineering applications. Based 
on a duality theorem, a finite element method for general plate shapes, loadings 
and boundary conditions is given in [14] for the ease [3 = 0. 
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2. Family of Yield Functions Represented by p-Norms 

Since yield functions are convex and bounded, it is natural  to represent a 
yield function by the notation of a mathemat ica l  norm (or semi-norm). A norm 
representat ion gives a direct perception of bounding certain quantities. For  
plastic plates, we shall bound the static quanti ty,  the symmetr ic  bending moment  
matr ix  [15], 

M = \Mxy /Vsyy) (1) 

such tha t  its [3-norm satisfies 

IIMII(~) = ~/M~ - 13M1M~ + MN < M0 (2) 

where M1 and M2 are the eigenvalues of M; 13 and M0 are material  constants. 
The square root function in (2) remains convex [16] for - 2 ~< 13 ~< 2. We choose 
the range 0 ~< 13 ~< 1 to fit some known yield functions. The ease ~ = 1 corresponds 
to the yon Mises function and 13 = 0 corresponds to the Frobinius norm of the 
matr ix  M. 

The yield loci, ]l M I] (~)= M0, form a family of ellipses in the M~-M2 plane as 
shown in Fig. 1 for the range of 13 chosen. The Tresca yield criterion, 

IIMI[~ = max{IM;[,  tM:~[, ]M1 - M-~I} = Mo (3) 

and the Johansen yield criterion, 

Illgliz : max{IMll,  IMel} : M0 (4) 

intersect the range and their yield loci are shown in Fig. 1 by the hexagon and 
square respectively. 
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Fig. 1. 13-family, Tresea and Johansen Yield Loci 
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The D-norm family defined in (2) is introduced here for plastic plate analysis. 
I t  does not correspond to any s tandard  mathemat ica l  norm except for ~ = 0. 
We use a pair of parentheses on D to avoid confusion from other known norms. 
The [3-norm so defined satisfies all requirements of a mathemat ica l  norm [17]. 

3. The Primal Formulation of Limit Analysis 

All solutions of mechanics problems satisfy three groups of equations (or 
relations) representing equilibrium, constitutive and kinematic conditions, We 
present a geometric interpretat ion of these solutions as point sets in some up- 
propriate  space. 

Consider a system of algebraic equations whose nmnber  is less than the 
number  of unknowns. The solution of the system if exists will not be unique. 
All solutions of such a system form a point set in the finite dimensional space 
of the unknown variables. I f  the system contains inequalities, its solution is 
natural ly  a point set. 

Solutions of mechanics problems can also be represented by sets. Since dif- 
ferentiat and functional equations are usually involved in a mechanics problem, 
the solution set lies in a functional space. The s tudy of differential equations 
and the spaces of their solutions is one of the most  impor tan t  activities in modern 
mathematics .  

We shall now direct our discussion to plastic plate problems using this geo- 
metric concept. Let  the solutions of equilibrium equation [15] 

V. (V. M) = q~ (~., y) (5) 

and its static boundary  conditions, if any, on the moment  matr ix  M, be rep- 
resented by the statically admissible set S in the space of 2 x 2 real symmetr ic  
matr ix  functions, R 2 • ') (R ~) and (p (x, y) is a given normalized distribution rune- 
tion and q is the non-negative multiplier of the distr ibuted load. The limit analysis 
seeks the max imum  q such tha t  the yield function. 

f(M) = IIMII(~/- M0 ~< 0 (6) 

remains non-positive. Let  the solutions of relation (6) be represented by the 
consti tutively admissible set C also in R 2• 2(R2). The primal (or natural)  for- 
mnlat ion of limit analysis becomes 

maximize q(M) 

subject to M e  L, L = S c~ C (7) 

where L is called the set of lower bound solutions. The set L is non-empty  since 

the trivial solution (M = 0, q = 0) is always in L. Physically, there exist m a n y  
elastic solutions corresponding to some small q such tha t  the inequality (6) 
remains strictly an inequality. Since the set L is convex and bounded, there 
exists a unique m a x i m u m  q* corresponding to one (or more) point in L. Any 
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other point  in L corresponds to a value of q < q*. This justifies the name "'lower 
bound solutions" for points in L. 

The lower bound formation (7) is in general difficult to solve because the 
finite dimensional approximat ion of a matr ix  function can be very large in 
dimension. The convex but  generally nonlinear constraints in (7) present ad- 
ditional complexi ty in this maximizat ion problem. For the circular plate prob- 
lems considered, the exact  solution of (7) can be approached by i terat ively solving 
an ordinary differential equation. This will be demonstra ted in a later section. 

4. Upper Bounding and Dual Formulation 

The equation of equilibrium (5) can be stated in an integral (or weak) form, 

f fDW V. (V. M) d A = q f fDq) Wd A (8) 

where the integrals cover the plate domain D and w is an arbi t rary  function. 
Equat ion  (8) is known as the vir tual  work s ta tement  in mechanics literature. 
Using the extension of divergence theorem for generalized functions [ l l ]  and 
natural  boundary  conditions . (8) can be rewrit ten in the form, 

S~M: V V w d A  

q = ~ q ~ w d A  (9) 

where Vgw is the 2 x 2 Hessian (eurvature) matr ix  of w(x,y) and : denotes the 
inner product  operator  between two matriees [15]. Although second derivatives 
are involved in (9), we m a y  not assume w(x,y) to be twice differentiable in the 
classical sense. Engineers have long accepted solutions of plastic plate defor- 
mat ion with jump discontinuities in the first derivatives of w. Under a more 

relaxed condition of differentiability, the components of VVw may  eontain dis- 
tr ibutions (integrable singularities). The function w must  also satisfy the kine- 
matic boundary  conditions if they are prescribed and the condition tha t  the 
denominator  of (9) does not vanish. The function w(x,y),  still a rb i t ra ry  other 
than  subjecting to these restrictions, belongs to the set K e R ( R  2) which is called 

kinematieally admissible. Since w appears  homogeneously in both  numera tor  
and denominator  of (9), we can scale w to normalize the denominator  such tha t  

ffDWWdA = 1 (10) 

which will be added to the conditions of kinematic admissibility. Since (9) 
is a s ta tement  of equilibrium, the task now is to maximize the integral in the 
numera tor  of (9) by choosing the optimal  M in the consti tutively admissible set 
C. 
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Creating an upper bound of a quanti ty is a s tandard tool in mathematical 
analysis. But the sharpest upper bound to q can only be established when none 
of the physical principles is violated. A constitutively admissible M not only 
satisfies the yield criterion (6). but is related also to the curvature matrix VVw 
by the normali ty condition (flow rule) [18] such that  

VVw oc Vf(M) (11) 

We shall rewrite the relation (11) in the principal directions for the specific f(M) 
in (6). Let  ~1 and ~:2 be the eigenvalues of VVw. Then 

knl=(All- ~ M.~)/[IM,,(~) 

(12) 

]c~c2 = (M., - ~ M,)/llMIl(~ 

where ]c is a proportional factor. We can solve M1 and M.) in terms of K1 and 
~co to obtain 

(~3) 

M.,_ k ( 13) 
IlMll<~) 1 - 13~/4 ~:2 + )-~:l 

We now choose M1 and M., most favorably to maximize q without violating (6). 
The choices are those M on the yield loci under the condition, 

[IMIk(~) = M0 (1~) 

which is used to determine the proportional factor, 

k = 3/i -- 132/4 (15) 

Since the inner product of two matrices is invariant to coordinate rotation. 
we can choose M defined in (13) to establish an upper bound expression for the 
exact maximum q* such that  

q*~< ~ ~ / ~  I _ ~ ) d A = ~ ( w )  (16) 

where the norm on VVw with the sign of 13 reversed is called the dual 13-norm. 
The dual formulation seeks the minimum value of ( /by choosing an optimal 
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wEK. The fact tha t  

max q(M) = q* = min~(w) (17) 

is the duali ty condition sought. Since we know tha t  q(M) <<. q* <~ ~(w), we need 
to show only one equali ty case to establish (17). I t  will be shown in the next  
section. The dual formulation can be s ta ted as 

minimize q(w) (18) 

subject, to w e K  

We m a y  regard (7) and (18) to be dual of each other depending (,ll ,)lies wew 
point.. In  fact, some mathemat ica l  work on the subject starts  with a lil,,, of (18) 
as the natural  formulation and derives its dual in a like of (7). 

5. Circular  P l a t e s  U n d e r  U n i f o r m  L o a d  

We shall now demonstra te  the duali ty relation (17) by  the examples of a 
circular plate of radius R under uniform load q. Solutions are obtained by  
maximizing q and minimizing ~ for the range of [3. using two types of boundary  
conditions: simply supported and clamped. By axisymmetry ,  the moment  and 
curvature  matrices are both  diagonal such tha t  

d 2 w 

= = (19)  
M o ( r )  0 ~ d "  

r d r  

(A) Greatest Lower Bound: The equilibrium equation for the circular plates can 
be integrated once from (5) or directly formulated from an axisymmetr ic  plate 
element to give 

1 qr d M,, + _ ( M ~  - M 0 )  = - -  ( 2 0 )  
dr r 2 

which is a first order ordinary differential equation in two unknowns M~ (r) and 
Mo(r). Mo can be solved in terms of M, by the choices of M on the yield locus 
such tha t  

M o = ~ A I , -  !/M~- (1 - ~ /4 )M~ (21) 

where the negative sign of the square root is chosen since M 0 ~ M~ for q ~ 0. 
The intersection of S as the solution set of (20) and C as the solution set of (21) 
can be obtained by substi tut ing (21) into (20). The resulting differential equation 
in M~ (r) can be integrated numerically with the "init ial" condition 

Mr(0) _ 1 
(22) 

M0 4 -  - 13 
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Fig 2. Moment distribution in a simply supported circular plate 
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Fig. 3. Collapse loads of ~3-family plates 

An appropr ia te  value of q is yet  to be chosen to satisfy also the "end"  condition 

M~(R) _ I0  simply supported 
M0 _2 /~ /4 -  ~2 clamped (23) 

where 2 /3 /4 -  ~32 is the max imum at tainable value of M~. 
With a stable numerical method, the integration can be made as accurately 

as one desires. We choose the step size h/R = 0.01 and use a modified Newton's  
iteration to home-in on the correct value of q which is the greatest  lower bound 
or the collapse load q*. 
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Fig. 4. Moment distribution in a clamped circular plate 

The results of the moment  distribution M,~(r), M 0(r) are shown in Figs. 2 
and 4 for simply supported and clamped plates respectively. The collapse loads 
q* plotted as functions of [3 for both cases of boundary conditions are shown in 
Fig. 3. These results can be regarded as exact since further reduction of step 
size of integration will not change the results in six significant digits in our single 
precision computation. 

The collapse load increases as [3 increases. Although this result is expected, 
it is not obvious since the constitutively admissible set C corresponding to a 
given [3 is not a subset of tha t  of a larger 13. I t  is conceivable tha t  for certain 
plate deformations whose moments lie in the second and fourth quadrants of 
Fig. l, larger [3 may produce smaller collapse load. 

The static solutions presented in Figs. 2, 3 and 4 tell only one-half of the 
limit analysis story. I f  we need to know the collapse modes, the dual problem 
(18) must be solved. We shall next  discuss the kinematic solutions of the circular 
plates considered above. 
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(B) Least Upper Bound:  Using the variat ional calculus, we can derive the "Euler ' s  
equat ion" for the minimizing functional of (18). After some manipulation, we 
obtain the following ordinary differential equation 

7[7 (rp) - : ~ : p  - - = ( 2 4 )  

_ r .," + ~,,,'/e with w" = de "~" ' = a" and B is an arb i t ra ry  constant wherep  ~/(,w";-'+ ~.,',~"+ (u,') e ~ , .  w d' ~ 

of integration. Since w" = w'/r at r = O, we obtain the initial condition. 

p ( 0 )  - ( 2 5 )  
2 

With a trial value of B, p(r) can be numerically integrated. 
Let 0 = dw/dr.  I t  is easy to show tha t  0 satisfies the differential equation 

(26) 

and 0 (0) = 0. Equat ion (26) can be readily integrated with a known p (r). Finally, 
the differential equation d w / d r =  0(r) and w ( R ) =  0 provides the solution w(r). 
Thus far, the trial solutions p(r), 0(r) and w (r) depend on the assumed value of 
B. We can use these trial solutions to evaluate q(B). The correct B associated 
with qmm can be determined i terat ively using the condition d~l/dB = 0. The al- 
gori thm is summarized below: 

1. Assume a value of B 
2. In tegra te  p(r) 
3. In tegra te  0(r) 
4. In tegra te  w(r) 

5. Calculate ~(B) 
6. Minimize q(B) i terat ively by repeating from step 1 with a bet ter  choice 

of B. 

Note tha t  we have only imposed w ( R ) =  0 as the kinematical  boundary  
condition. For  the clamped plate, it may  be surprising to some tha t  0(R) may  
not vanish as it does in the linear plate theories. The class of kinematic solutions 
in limit analysis of plates admits  functions with discontinuous first derivative. 
This leads to the relaxed boundary  condition to allow nonzero slope as the plate 
approaches a clamped boundary.  The slope then takes a jump to the zero value 
imposed. In terpre ta t ion  of w" at a clamped boundary  is a distribution (a line 
singularity) which makes a contribution in the integration of ~. This phenomenon 
known as a yield line can also take place in the interior of plates [13]. 

We apply s tandard l ibrary subroutines to integrate the ODEs and to minimize 
a real function. The kinematic solutions w(r) are shown in Figs. 5 and 6 for 
simply supported and clamped plates respectively. The minimum values of 
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Fig. 5. Collapse modes of simply supported circular plates 
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Fig. 6. Collapse modes of clamped circular plates 

agree with tha t  of q* shown in Fig. 3 to five significant digits for all values of 
13 with our single precision computat ion.  We conclude tha t  these minimum 
solutions are practically exact. We have demonst ra ted  the duali ty relation (17) 
by the solutions of [3-family circular plates. In  addition, we present in the next  
section two classical solutions which satisfy their own duality relations. 

6. C las s i ca l  S o l u t i o n s  

The piecewise linear yield functions of Tresca and Johansen seem popular  
in earlier works of plasticity. Although, Tresca function in stress space has been 
tested experimental ly [19], its usage as a function of moment  to model plastic 
plate behavior  was only conjectured. I t  was chosen for its simplicity ra ther  than  
experimental  fitness. For  circular plates, the greatest  lower bound solutions for 
these two yield criteria are given in [20]. The least upper  bound solutions are 
presented in [21], [22]. 
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For a simply supported circular plate under uniform load, the kinematic 

solutions for both yield criteria are the cone 

w (r) = 1 - (27) 

where u, has dimension of R - 2  because of the normalization condition (10). The 

cone solution remains the same for clamped Johansen plate. For the clamped 

Tresca plate, a cone of the inner region is matched to a logarithmic function for 
the outer region to give 

f A [ l - r / a + l n ( R / a ) ]  O<~,'<~a 
w(r) = ,__in(R/r) a ~ r ~< R (28) 

where A = 6~[re (3R 2 - a2)] and a = 0.730012R. The collapse loads are: q* = 6Mo/ 

R 2 for both simply supported Tresea and Johansen plates; q*=  12Mo/R  2 for 

the clamped Johansen plate and l l . 2 5 8 7 7 7 M o / R  ~ for clamped Tresca plate. 
The static solutions for the simply supported Tresca and Johansen plates in 

terms of moment components are the same 

M,(r) = Mo(r2/R 2 - 1), Mo(r)  = - Mo (29) 

For the clamped Johansen plate, they are simply 

M,,(r) = Mo(2r2 /R  "~- 1), M0 (r) = - M 0 (30) 

The clamped Tresea plate has the two-piece matched solution, 

= ~ M o [ ( r / a )  "~ - 1] 0 ~< r ~< a 
M,(r) ( M  o[1.5(r/a) 2 -  1 . 5 - I n ( r / a ) ]  a ~ < r ~ < R  

(31) 

f -  Mo O <~ r <<. a 
M o( r )=  ( M  o[1.5(r/a) 2 - 2 . 5 - I n ( r / a ) ]  a < ~ r ~ R  

where a = 0.730012R is the point of matching. 

These exact static and kinematic solutions are shown as the dotted lines in 
Figs. 2, 4, 5 and 6. We shall draw some conclusions from the comparison of these 

classical solutions and the new solutions obtained in the last two sections. 

7. Approximate Upper Bound Solutions 

Since the dual formulation involves only a real unknown function w, it is in 
general easier to approximate its solution by a finite difference or a finite element 
method. A general finite element method and some solutions of circular and 

square plates are given in [14]. We shall present here solutions of a circular plate 
obtained by a one dimensional finite element method where w (r) is approximated 
by piecewise cubic spline functions with continuity of w and 0 at element bound- 
aries. 
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Table l. Upper bound solutions ~ approximated by two cubic spli~e elements compared to 
the exac~t solutions q* 

~7 q* %Error 

O.0 5.214663 4.998523 4.32 
0.1 5.295504 5.090353 4.03 
0.2 5.385060 5.189316 3.77 
0.3 5.484692 5.296411 3.55 
0.4 5.596005 5.412847 3.38 
0.5 5.720942 5.540108 3.26 
0.6 5.861901 5.680030 3.20 
0.7 6.021901 5.834934 3.20 
0.8 6.204817 6.007777 3.38 
0.9 6.415734 6.202425 3.44 
1.0 6.661482 6.424049 3.70 

Using only two elements in the domain, 0 ~< r ~< R, we obtain the following 
results for the simply supported plate and compare them with the exact  solutions. 

When eight elements are used, the results agree with the exact solutions to 
all six decimals. Such rapid convergence in the mesh size is highly desirable for 
this nonlinear problem since the finite dimensional problem is solved repeatedly 
for i terations and paramete r  variat ions on ~. Decreasing the dimension of the 
problem dramatical ly  improves computat ional  efficiency. 

8. Conclusion 

The trend of plastic analysis today  is heavilv inclined toward the large scale 
incremental computat ion.  Two major  drawbacks remain in this approach.  High 
computat ional  cost is one. Lack of exact solutions to make test  cases for highly 
complex codes often raises questions on the quality of the numerical solutions 
they produce. After a t remendous computing effort and cost, a researcher may  
only conclude tha t  the results seem reasonable compared with some experiments.  
Incremental  computat ion produces a great deal of details not  required in the 
intended analysis but necessary for the subsequent incremental computat ion 
and adding up costs. Of course, some applications like residual stress analysis 
can only be made by incremental  computat ion.  

Limit  analysis computat ions are relatively less expensive, therefore more 
useful in designs as well as parametr ic  analysis of material  or process modelling 
where computat ions  are repeated for variat ions and iterations. More exact  so- 
lutions are available in limit analysis to check general computer  codes than they 
are in incremental plasticity. Limit  analysis bypasses the solutions of inter- 
mediate elastic-plastic deformation and computes directly the more interesting 
limit solutions. Limit  solutions are often the only information sought in design 
criteria. At the present, the activities of incremental computat ions seem to 
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overwhelm other efforts in plasticity research. Limit. analysis and incremental 
analysis are equally important  and should complement each other to further 
advance the plasticity theory. 

The exact limit solutions for the [3-family yield functions should be a wel- 
coming addition to the limited repertoire of exact solutions in plasticity. The 
[3-family can fit, a wide range of experimental data  on yield loci. The exact 
solutions in this paper may be used in conjunction with circular plate experiments 
to identify a specific material model. 

The results of the renowned experiment of Taylor and Quinney [19] favor 
the yon Mises yield function to that  of Tresca which claims validity in single 
crystal experiments. Since the random orientations of micro structures in ma- 
terials, the polycrystal  aggregates like most metals behave as a statistical mean 
of their single crystal properties. A sm ooth yield function models the macroscopic 
behavior more realistically than a piecewise yield function. Upon examining the 
limit solutions of the 13-family plates and that  of Tresca and Johansen plates, 
one should notice the consistancy of their intersecting relations. However, the 
moment  distributions and the deflection modes of the [3-plates are more con- 
sistant to that  observed in real plates. The sharp apex of a cone associated with 
kinematic solutions of Tresea and Johansen plates has never been observed in 
experiments of a plate under uniform load. 

A smooth yield function has its computational advantage. The ~3-family has 
yielded smooth solutions in the interior of the plate. Absence of yield lines in 
the interior greatly simplifies the finite element approximation. There is no need 
to be concerned with integrating the possible distributions not known a priori 
in a plate. The general finite element method in [14] produced smooth solutions 
even for square plates. Non-smoothness in loading and boundary conditions may 
still introduce yield lines and apices in the interior. We are currently investigating 
this problem. 

Finally, we reiterate a point made earlier. An upper or lower bound inequality 
does not constitute a useful limit, analysis theorem. Only a duality theorem which 
equates the least upper bound to the greatest lower bound becomes the basis 
for constructing maximization and minimization algorithms for limit solutions. 
Since they are stated in matrix notation, the duality theorem (17) and the primal 
and dual problems (7) and (18) apply as well to general plate shapes as to those 
circular plates presented in this paper. We shall restate these two problems in 
a(x,y) coordinate system in terms of the moment and curvature components. 

(A) The Primal Proble~n: 

maximize q(M) 

subject to : 

c~ ~ Mx~ 0 2 M~: 0 2 M~.v 
Ox ~ +9~+.Ox(~y (~y2 --q(p(x,y) 



A DuM~ty Theorem for Plastic Plates 191 

2 - ~ (Mx,~ + M.<,) ~ + 2 + ~ [(2tlx~ - yyy)2 + 4 (Mxy) '2] ~ 21i o 
4 

static boundary  conditions. 

(B) The Dual Problem: 

minimize q(w) 

subject to: 

M0 

i/1 - ~3~/4 

dd q 4 \~x"  + Oy-J 4 LKS-2 s- 

f w ( x , y ) q ) ( x , y ) d A  = 1 

kinematic boundary  conditions, 

0~'~,~ ~ / 0~w \:~-I 

which are convenient for constructing numerical algorithms for general plate 
shapes, loadings and boundary  conditions. A numerical method for the dual 
problem should allow possible jump discontinuity in the first derivatives of 
w(x,y) and provide accurate integration of the contribution along the lines of 
discontinuity. These deeper issues of numerical analysis will be discussed in a 
separate paper�9 
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Summary 
A solution method for elastoplastic vibrating beams including damage accumulation 

is shown, where inelastic behavior of the structure is represented by an ad&tional loading 
due to sources of selfstresses acting upon the linear elastic structure of time-invariant 
stiffness. Response due to this additional loading is evaluated using proper Green's func- 
tions. Thus, integral relations are set up, similar to Maysel's formula. Theory is applied 
to a two span sandwich beam with elastoplastic degrading flanges and elastic core material 

1. Introduction 

Dynamic  plastic deformations in severely loaded structures render damping 
and the ra ther  unwanted effects of drift (permanent  strain) and damage accu- 
mulat ion during cycling. Quasistatic analysis is effectively performed by  the 
s tandard  incremental#stiffness formulation often in connection with a discreti- 
zation by  the Finite-Element-Method.  Extension to the dynamic problem runs 
high in computing time. An initial strain formulation summarized by  Lin [1] 
was not very well received until recently an extension to dynamic plast ici ty 
shouted the merits of the method [2]. A comparat ive  s tudy was made by Argyris 
et M. [3]. 

Improvemen t s  were performed when Irschik and Ziegler [4], [5] consequently 
introduced the concept of sources of selfstresses (SES) determined by the non- 
linear (plastic) par t  of total  strain and acting upon the associated linear elastic 
system when keeping the stiffness constant  in time. Recognizing the full analogy 
to thermal  shock loading of the linear elastic beam, the powerful superposition 

* Part of the lecture on "Nonstatlonary Vibrations of Yielding Structures" contrib- 
uted by F. Ziegler in the Session on Computational Plasticity (Organizers. S. N. Atluri 
and D. W. Nicholson) to the Aris Phillips memorial symposium (chairman: M Eisenberg, 
Gainesville, Florida Jan. 28-30, 1987). 


