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Summary — Zusammenfassung

Controllable Motions of Compressible Simple Materials of Various Types. Tt is
shown that a motion is possible in every compressible homogeneous isotropic
simple solid having a certain range of memory, in the presence of a constant body
force field, if and only if it is homogeneous and uniformly accelerated after a
certain time. In the class of solids having perfect memory, the only motion of this
kind which can be smoothly initiated in a body at rest is a rigid one. For the class
of solids having finite memory of duration 7' and initially at rest, the motions of
the type considered need be homogeneous and uniformly accelerated only after time 7.
For those solids having fading memory, the motion must reduce to a fixed homo-
geneous deformation. Similar results are developed for simple fluids and anisotropic
simple solids.

Steuerbare Bewegungen verschiedener kompressibler einfacher Stoffe. Es wird
gezeigh, daf in jedem kompressiblen, homogenen und isotropen einfachen Festkorper
mit einem gewissen Erinnerungsbereich und in Gegenwart eines konstanten Massen-
kraftfeldes eine Bewegung dann und nur dann moglich ist, wenn sie homogen und
nach einer gewissen Zeit gleichmiBig beschleunigt ist. Bei Festkorpern mit voll-
kommener Erinnerung ist die einzige Bewegung dieser Art, die bei einem ruhenden
Korper glatt eingeleitet werden kann, eine starre. Bei Festkoérpern mit begrenzter
Erinnerungsdauer 7', die anfangs in Ruhe waren, miissen die Bewegungen der
betrachteten Art homogen und nur nach der Zeit T gleichméBig beschleunigt sein.
Fur Festkorper mit schwindendem Gedéchtnis reduziert sich die Bewegung auf eien
feste homogene Verformung. Ahnliche Ergebnisse werden fiir einfache Flissigkeiten
und anisotrope einfache Festkorper entwickelt.

1. Introduction

A simple material, as defined by Norr [1], is one for which knowledge
of its response to all homogeneous deformations is necessary and sufficient
to determine the relation between stress and any deformation. It thus
appears that in order to determine the response functional relating stress
and deformation history, one need only carry out an experimental pro-
gram in which a specimen is subjected to arbitrary homogeneous defor-
mations. The possibility of carrying out such a program depends on

i Numbers in square brackets refer to the List of References at the end of this
paper.
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whether the material is incompressible or compressible. CoLeMAN and
TRUESDELL [2] have shown that only irrotational homogeneous motions
need be considered for incompressible materials. For compressible mate-
rials, TRUESDELL and NorL [3, § 28] have shown that, in the presence
of a constant body force field, the only homogeneous motions satisfying
the equations of motion are those having constant acceleration. In order
to determine the response functional for compressible materials therefore,
it will be necessary to subject the material to nonhomogeneous defor-
mations. In this case the experimentor is faced with the problem that,
in general such motions depend on the form of the response functional
he is trying to determine.

Suppose an experimenter has decided that a given specimen is a
compressible homogeneous isotropic solid. With no other a priori prejudice
as to the nature of the material, and with the above remarks in mind,
the question now arise as to whether there are any motions which may
be produced in every compressible homogeneous isotropic solid. Such a
motion must then be possible in the particular specimen on hand. For
any motion of this kind the interior state of deformation at each time ¢
will be the same for all such isotropic solids. Assuming a constant body
force field only, these motions can be produced by the application of
appropriate surface tractions alone. Knowing the details of the defor-
mation completely, and having measured the surface tractions required,
the experimenter can directly obtain information on the form of the
response functicnal. We call such motions controllable. A more precise
definition will be given in Section 3.

In the present paper we will be concerned with the determination
of motions of this kind for compressible simple materials of the following
general types: fluids, isotropic solids, and anisotropic solids. This problem
was first posed in a paper by ERICKSEN [4] in which he derived a number
of deformations which can be maintained in every incompressible homo-
geneous isotropic perfectly elastic solid by the action of surface tractions
alone. In a later paper ERICKSEN [5] showed that any deformation which
is controllable in compressible homogeneous isotropic perfectly elastic
solids in equilibrium must necessarily be homogeneous. We use this result
to show that any test motion which is to be controllable in compressible
simple fluids, isotropic solids or anisotropic solids after some time { must
be homogeneous after that time. The details of the motion before time ¢
depend on the duration of memory of the particular type of material
considered. These details are derived for compressible simple materials
having perfect memory, finite memory, and fading memory. Generally
speaking, depending on whether the memory is perfect, finite or fading,
the deformation up to time ¢ must be homogeneous and respectively,
uniformly accelerated, arbitrary or fixed. Once the motion has become
controllable it must be homogeneous and have constant acceleration.
This latter motion is discussed in the article by TrRUEsDELL and Noiw
[3, §28].
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In Section 2 we present constitutive equations for compressible simple
fluids and isotropic simple solids in forms which are most useful for our
analysis. The field equations and a more explicit definition of the con-
dition that a motion be controllable are given in Section 3. In Sections 4
and 5 we apply this condition to the determination of controllable motions
in isotropic solids. The results obtained are summarized above. Section 6
contains a similar treatment for simple fluids. The final two sections are
devoted to the extensions of results for isotropic solids to anisotropic
solids. The proof of the extension is carried out in Section 7, using the
result proved in Section 8, that the constitutive equation for a solid having
any material symmetry can be represented in one of two general forms.
In Section 8, we first review the method of constructing representations
of constitutive equations. We then show that for any material symmetry,
the corresponding representation can take one of the two general forms
used in Section 7.

Notation. We refer the components of all tensors to a fixed CARTESTAN
coordinate system. We use the usual conventions of index notation.
Repeated indices denote summation over the range ¢ = 1, 2, 3. A comma
preceding an index denotes partial differentiation, ie., @; = dp/da;. A
second rank tensor is denoted by the matrix D = || D; || of its components.
DT, DL tr D = Dy, det D = | Dy; |, DV denote, respectively, the trans-
pose, inverse, trace, determinant and Nth power of D. Dy =1 = | 3 ||
represents the identity matrix, where J;; is the KrRONECKER delta.

2. The Constitutive Equation

The motion of a deformable body can be described by specifying the
motion of each of its particles. Relative to a fixed CARTESIAN coordinate
system, the deformation of a body can be described by a relation

x=x(X, 7) (2.1)

between the position X occupied by a generic particle in some reference
configuration and the position X occupied at each time 7 in some time
interval. This relation is assumed to be one-to-one and at least three times
continuously differentiable.

The deformation gradient at a particle taken with respect to some
reference configuration is denoted by F (X, 7) = | 225 X; (X, 7) ||. For
simple materials, the stress tensor o (X, ¢) depends on all the values of
F (X, {) in some time interval [ — 7', t], i.e., is a functional of the history
F (XJ T),

t
o(X,)= T [F(X, )] (2.2)
t={—1T
The interval [t — 7', ¢] defines the extent of this memory of the material.

A homogeneous simple solid is defined [1] as a simple material having
a fixed reference configuration and such that the form of the response
functional is independent of X.
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If the simple solid is isotropic in its reference configuration, then this
property and the Principle of Material Indifference [1] imply that (2.2)
can be expressed in the form

;

o(f)= T [0 (r); B(@)], (2.3)

T=f—

where ¥ is a functional of the history of the relative right CaAvcrY-GREEN
tensor Cf (v) defined by

I d |
Ct (7) = || O (v) || = ,‘% S%’%i , (2.4)
and a function of the inverse left CAvcHY-GREEN tensor
3X AX, |
B0 = 1B 01 = | Sarty 07| (2.5)

Although, in most applications the response functional is expressed in
terms of the left CAvcHY-GREEN tensor B, for our present purposes it is
convenient to use its inverse B—'. o, C* (1), B~ depend on a fixed particle
through its position X in the reference configuration. By means of (2.1)
we can express them in terms of the position x (!) in the current con-
figuration.

Dependence of T on B (f) represents the effect on the stress of the
present deformation with respect to the fixed reference configuration.
Dependence on the history Of () represents the effect of the deformations
which the material has already undergone.

An additional restriction on ¥ is the isotropy condition

4

Q 2 [0 (x); B (0]1Q% = T Q0 (z)Q7; QB (1) Q7]

T=I{— 1T T=f—

QQT=0QTQ =1 (2.6)

which must be satisfied identically in C*! (z) and B~ (¢) for all constant
orthogonal transformations Q. A theory of general representations for
response functionals ¥ satisfying (2.6) has been developed by Riviin
and his co-workers for various continuity assumptions. (See [6] for a
resume of this work.) A specific example of a constitutive equation arising

from such representations is given by
t

G() =@ol + @ Bt g B2 1 f O ()0 —7)dr.  (27)
t— 1T
The @ are polynomials in the invariants of B~, defined by

I, =tr B, I, =1/2 [(tr B2 — tr B—2%], [; = det B! (2.8)
and the invariant

o () = ftr Ct (1) p (¢ — 7) d. (2.9)

t— 7
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C! (7) can be taken as depending on x (¢), implying that w = w (X (t), #).
The scalar quantities ¢, 0, ¥ are material parameters, depending on the
particular solid considered. 6 and ¢ are assumed to be continuous on the
interval [t — 7', t] whatever the choice of 7. The response functional
(2.7) may be made more general by adding integrals of greater multiplicity
whose integrands are matrix products formed from B-1, Ct (;), . . ., C¢ (7;).
However, (2.7) is sufficiently general for our purposes. For brevity, we
will refer to materials of this type as isotropic solids.

A homogeneous simple fluid is a simple material whose reference con-
figuration may be taken as the one at the current time . Dependence
of the response functional (2.3) on B! () is replaced by dependence on
the present density o (f). In addition, simple fluids are isotropic, so that
their response functionals satisfy a condition of form (2.6). A representation
of a constitutive equation for a compressible simple fluid which will be
useful is

4

c=—pE1+1 trCt () (t— 7;0)dv + fﬁt(‘c)B(t—~1; o) dz.
T t—1 (2.10)

t—

The scalar p (g) is the pressure the fluid would be supporting if it had
remained at rest in its present configuration at all times in the past.

3. Field Equations

The body force field f per unit mass is assumed to be conservative.
To be dynamically possible, the motion (2.1) of the material and the
stress field related to it by (2.3) must satisfy the equations of motion

doy (¢ .
S oW fi=0®) 0 @)
in the region occupied by the body at each time ¢. g (¢) is the density of

the material at time ¢ which for simple solids is related to the density g,
in the reference configurations by

¢ (1) = I3'/% g, (3.2)

We are particularly interested in those motions which are possible in
every compressible simple material of the types mentioned in Section 1.
By a controllable motion for materials of a given type, we mean a
mapping (2.1) which is such that the system consisting of (3.1) and the
appropriate constitutive equation is satisfied identically, independent of
the properties of particular materials of that type. By controllable tensors
we mean the deformation tensors B! and Cf () corresponding to a con-
trollable motion.

When the system consisting of (3.1) and the constitutive equation
(2.7) is restricted by the condition that the motion be controllable, we
obtain a system of equations for the controllable tensor fields B (x ({), )
and Ct (x (¢), ) for some range of 7. It is seen from (2.4), (2.5) that both
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of these strain tensors can be interpreted as the covariant components
of metric tensors. Thus, in order that B~ (f) lead to a one-to-one mapping
(2.1) at time f, the RIEMANN-CHRISTOFFEL tensor based on B! must
vanish. Similarly, in order that Cf (7) lead to a one-to-one relation between
x (7) and x (f), the RiEMANN-CHRISTOFFEL tensor based on C!(7) must
vanish for each desired chcice of 7. An explicit statement of this condition,
not needed for our purposes, is given in [5].

4. Determination of the General Controllable Motion

We now consider motions of isotropic solids which are to be controllable
at time ¢. Such a motion must be possible in the particular isofropic solid
whose constitutive equation is given by (2.7). Substitution of this con-
stitutive equation and (3.2) into (3.1) yields the following equation

3
Z(PNBz]y’i"E ESWN ]Mszy +

=0 M=1

+ Z’, N By [ Gy —adre @)

¢
+ f 0 (t — 7) Clyj,5 (v) d + 0o Ls¥2 fy = g0 L3 @i
(=T
(4.1) must hold for arbitrary choices of the material parameters gy,
don3 Iy, dpndw, v, 6, and g, From the arbitrariness of g, and the

condition that I, = det B! + 0 in a continuous motion, we conclude
that a necessary condition that a motion be controllable at time f is that

1) = fi. (4.2)

Continued application of this argument implies that the coefficients of
on, don/d Iy, and dpfdw must vanish, yielding the conditions

_ _ N=o012
B =0, Iy ;Bi" =0, (M 12 3) , (4.3)
¢
By f w(t — 1) Cyp s (1)dT =0, (N =0, 1, 2), (4.4)
t— 1T
f 0(t — 1) Oty s (v) dv = . (4.5)

t— 7T
Letting N =1 in (4.3); and N = 0, M =1 in (4.3)2 and using (2.8) we
obtain as conditions on B~! that

Bty (1) = 0, Bl (t) = 0. (4.6)
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Letting N = 0 in (4.4) we find

i

f w(t — 7) Oty ; (v) dit = 0. (4.7)
t—T

For a controllable motion, the strain history Cf (z) must be the same
for all isotropic solids. (4.5) and (4.7), with C%; ; (v) and Oty (7) fixed,
must be satisfied for each choice of the material functions 0 and . By
an argument similar to that used to prove the Fundamental Lemma of
the Calculus of Variations [7, p. 185], this implies that any motion which
is to be controllable at time ¢ must satisfy

Cly () =0, Clyy; (1) =0 (4.8)
for v in [t — T, ¢].

In determining the deformations which can be maintained in every
compressible isotropic homogeneous prefectly elastic solid in equilibrium,
ErickseN [5] also showed that the finite strain tensor B~ must satisfy
the system (4:6). He then showed that a strain tensor whose components
are of the form of the covariant components of a metric tensor, which
satisfies a system such as (4.6) or (4.8) and whose RIEMANN-CHRISTOFFEL
tensor vanishes, is a constant tensor field. Thus, recalling the discussion
at the end of Section 3, we conclude that B (1) is a constant tensor field
and so is Cf (v) for each 7 in [t — T, ¢]. The system (4.3), (4.4), (4.5) is
now satisfied as would any system which would arise from a constitutive
equation more complex than (2.7).

A mnecessary and sufficient condition that B~ (f) be a constant tensor
field is that time ¢ (2.1) have the form

XX, ) =F B X +Db@), dtF () + 0, (4.9)

while a necessary and sufficient condition that Cf (z) be a constant tensor
field for 7 in [t — 7', ] is that

X (x(t), 7) = F{x)x(t) + b (v), det F (7) * 0, (4.10)

for v in [t — T, t]. The result of combining (4.9) and (4.10) is stated in
the following theorem.

Theorem 1. A necessary condition that a motion be controllable at time ¢
in isotropic solids is that the motion (2.1) have the form

x(X,7)=F (@) X+ b (), det ¥ (z) * 0, (4.11)
for v in [t — T, 1].

5. Controllable Motions in Isotropic Solids

We now investigate the restrictions on (4.11) due to (4.2) and various
durations of memory. For the present, we assume that the controllable
motions are to be produced in solids which are initially at rest in their
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reference configurations. Then, (2.1) has the form

x(X,7)=X, 7 0. (5.1)

A motion which is to be controllable in every isotropic solid must be
controllable in those having perfect memory. For such solids, the defor-
mations in the entire interval [0, {] determine the present stress. Hence
the results of Section 4 must hold for 77 = ¢. In particular, by Theorem 1,
(2.1) must have the form (4.11) for 7 in [0, #].

Let ¢* be an arbitrary time such that * << ¢ It follows from (2.4),
(2.5), and (4.11) that B~ (¢*) and the history C¢* (7) are constant tensor
fields for 7 in [0, £*]. (2.7) then implies that &y, ; (£*) = 0. Since (3.1) must
hold for each choice of ¢* in [0, £], we conclude that (4.2) must hold on
the entire interval [0, £].

From (4.11) and the condition that F (v) must be nonsingular in [0, ¢],
we obtain the acceleration field at time 7.

& (x (1), 7) =F () F1 () [x () — b ()] + b (7). (5.2)

Comparing (4.2) at time 7 with (5.2), we see that a conservative body
force field is compatible with this acceleration field if and only if f has
the form

f=6Gx+g (5.3)

where g is a vector field and & is a symmetric tensor field, both inde-
pendent of x. Since the most physically meaningful form of (5.3) is a
constant body force field, we take G = 0 and g = constant here and
throughout the paper. Substituting (5.2) and (5.3) with & = 0 in (4.2),
we conclude that

F=0,b=g¢g (5.4)

for 7 in [0, ¢]. (4.11), (5.1), and (5.4) now imply that a controllable motion
must have the general form

XX, 7)=(Ft+1)X+g 5 +ar, 7in [0,0], (5.5)

where a and F, are constant vector and tensor fields, respectively. F,
represents an initial uniform velocity gradient field. It is clear from (2.3),
(2.4), (2.5), (3.1), and (5.3) with & = 0, that a motion of form (5.5) is
possible in any simple solid.

For some materials, it may be possible to establish the homogeneous
motion (5.5) with an initial uniform velocity gradient by appropriate
surface tractions. An example would be a pure shearing deformation
suddenly imposed on a material with no instantaneous elasticity, a
KEeLviN-type material. Because the materials under consideration are
compressible, it does not seem generally possible to produce instantaneously
an initial uniform velocity gradient field by the action of surface tractions
alone. Since we are considering motions possible in all isotropic solids,
we require that any controllable motion begin continuously from the
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initial state (5.1). Combining this requirement with the above results,
we conclude the following theorem.

Theorem 2. Let g be a constant body force field and let (5.1) hold for
t << 0. Let the class of materials considered be isotropic solids having
perfect memory on [0, ¢]. If a motion is to be controllable at time ¢ in
materials of this class, and be continuously initiated, then it must be
uniformly accelerated motion, in which case (2.1) reduces to

x(X,7)=X+g5 7 7in([0,0]. (5.6)

By considering controllable motions in the narrower class of isotropic
solids having a finite memory of duration 7', we can avoid the above
restrictions arising from the condition that the motion be continuously
initiated. For such solids, the stress at time f is determined by the defor-
mation in the interval [t — 7', ¢], for some finite 7' > 0.

Suppose a motion is initiated at time 7= == 0 in an isotropic solid at
rest for ¢t < 0. If we require that this motion be controllable at a time
t* < T, then the material has a memory for the entire interval [0, £*].
By Theorem 2 the only continuous controllable motion is given by (5.6).
Consequently, for isotropic solids with finite memory of duration 7, we
require that a motion initiated at v = 0 be controllable only at time
t > T when the details of the initiation of the motion cannot influence
the present stress.

Let £ now be the earliest time at which the motion is controllable,
ie., at which (4.1) is satisfied identically independently of the particular
solid considered. (4.2) must hold for all times after {. By Theorem 1, {2.1)
must have the form (4.11) for each = in the interval [t — T, t]. Now, let
£* be a fixed time in the open interval (¢t — T, f). (2.4), (2.5), and (4.11)
imply that B—1 (£*) and C** (7) are constant tensor fields for zin [t — T, £*].
If the motion (2.1) is homogeneous during the extended interval
it*¥ — T, ¢*] then C** (1) is a constant tensor field for = in [i* — T, ¢*].
By (2.3), (2.4), (2.5), o must be a constant tensor field for each 7 in [t¥*, £],
during which the motion will have to satisfy (4.2). Therefore, the motion
is controllable at time ¢#*. Since we assumed that ¢ is the earliest time at
which the motion is controllable, we conclude that (2.1) must be non-
homogeneous for 7 <t — 7. Consequently for ¢* <, e ({*) is not a
constant field, and (4.2) does not hold.

For = >t, (4.2) and (4.11) hold. Assuming a constant body force field,
our previous argument shows that F and b must satisfy (5.4) on this
interval. Integrating these conditions, we find that a motion which is
controllable for v >t must have the form

X(X,7) =B, + B, )X+ g5 +hr+e, (5.7)

where Fy, F;, and b, e are constant tensor and vector fields, respectively.
The above results are summarized in the following theorem.
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Theorem 3. Let g be a constant body force field and (5.1) hold for v > 0.
Let the class of materials consist of isotropic solids having finite memory
of duration 7. In order that a motion be controllable at time ¢ and be
nonrigid in materials of this class, it is necessary and sufficient that ¢ > 7'
and that (2.1) be defined as follows,

x (X, 7). .. continuous and arbitrary, 0<7«
=F ()X + b (v), det F (1) += 0, F—T <1<
= (Fo + Fy 1) X + g (7), det (Fy + F17) * 0, T =t (5.8)

where F,, F; are constant tensors, g (r) is the rigid body motion part of
(6.7), and F (7), b (7) are continuous tensor and vector valued functions
of 7 satisfying (5.4) at 7 = . The only restriction on the motion in the
interval [0,¢ — 7] is that it lead to an homogeneous motion during the
interval [t — T, t].

The necessity of the form (5.8) for the motion follows from the dis-
cussion preceding (5.7). Its sufficiency is readily established from (2.3),
(2.4), (2.5), (3.1), (5.4), and (5.8). An analysis of the condition
det (Fy 4 F1 1) + 0 has been given by TRUESDELL and NoiL [3, § 28].

Finally, we consider isotropic solids having fading memory. For these
materials the deformations in the recent past influence the present stress
o () more strongly than those in the distant past. In particular, in a
material with fading memory, the manner in which a motion is initiated
has diminishing influence on o (!) as ¢ increases. Thus, the material has
a perfect memory for all deformations in any finite interval after the
motion is initiated, during which the only continuous controllable motion
is the rigid one (5.6), by Theorem 2. However, the previous results suggest
that if a homogeneous motion were to be established and maintained,
then it would become controllable a long time after its initiation, when
the influence of the details of its initiation on o (f) becomes negligible.

One formulation of the property of fading memory has been given
by CoremaN and Noirr [8]. This formulation leads to an integral ap-
proximation to the response functional in (2.3) which contains (2.7) as a
special case when 7' — oo and @y depends linearly on the invariant o (f)
defined in (2.9). Futrhermore the material functions 6 (s), v (s) have the
property that they tend to zero as s — co. We assume that 0 and y tend
to zero sufficiently rapidly so that the integrals in (4.1) converge uni-
formly. We can then justify interchanging differentiation and integration.

The analysis and results of Section 4 now apply. In particular, (4.11)
holds for 7 in (— oo, f). Let #; be an arbitrary time in this interval. It
follows from (2.4), (2.5), and (4.11) that B-1 () and €' (7) are constant
strain fields for ¢ in (— oo, #;). Furthermore, the general constitutive
equation (2.3), with T taken as oo, shows that the stress field o () is
constant. This, together with (3.1) implies that (4.2) holds at 7 =¢,.
Since ¢#; was chosen arbitrarily, (4.2) must hold on the entire interval
(— oo, t]. Applying (4.2) to (4.11), we conclude that the motion has the
form (5.7) on (— oo, £]. From (2.4) and (4.7) we see that C? () becomes
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unbounded as 7 — — oo, i.e., the distance between particles in previous
configurations becomes arbitrarily large compared to this distance in the
current configuration. Since for some solids the deformation gradients
must be bounded, we conclude the following result.

Theorem 4. Let g be a constant body force field. A necessary and sufficient
condition that a motion be controllable in isotropic solids having fading
memory is that (2.1) have the form

x(X, ) =F, X+ g(7), 7in (— oo, ] (5.9)

where F is a constant tensor, and g () is defined as in (5.8).

In other terms, ignoring the effects of gravity the only possible con-
trollable motion in an isotropic solid with fading memory is one in which
the material is held in a fixed deformed state. In other terms the only
test situation common to all isotropic solids with fading memory is a
stress relaxation test.

6. Simple Fluids

The analysis for simple fluids is similar to that for isotropic solids.
A motion which is to be controllable at time £ in homogeneous compressible
simple fluids must be possible in the particular fluid whose constitutive
equation is given by (2.10). The condition that a motion be controllable
is obtained by substituting (2.10) into (3.1),

4

£
f Cipp,i (D) (f — 75 0)dT + gu f Clpp (7) %% t—7;0dr+
t—T

-7

4 i
6
4+ | Cly ()0 — 150 dr+ 0,5 | Chj(7) —g? t—1;0dv— (6.1)
T T

t— t—~

dp ..
—d—Q"Q:i‘JFin:Qxi-

In order that a motion be contrcllable at time £, (6.1) must hold for ar-
bitrary choices of the material parameters ¢, p (¢), v, 0, dy/d0, 36/3¢.
Arguing as in Section 4, we conclude that (4.2) must hold at times
beginning with £, while the following system holds for 7 in the interval
[t —T,t],

Clig, 5 (v) = 0, Cly5(1) =0, (6.2)

Otii (T) 0, = 07 Otl] (T) 05 — O: 0yt — 0. (63)

The system (6.2) is the same as the system (4.8). Requiring the RreMaNy-
CHRISTOFFEL tensor based on C!(7) to vanish for each v in [t — T, ¢],
we find that € (z) must be a constant strain tensor field so that on this
interval the motion has the form (4.10).

Considering now the system (6.3), we see that it is satisfied if and
only if g,; (£) = 0. Applying this condition to the equation of conservation
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of mass

REZ)
e(t)=9(r)z bﬁ’((:)) , (6.4)

and observing that the JacoBiax of the mapping (4.10) must be indepen-
dent of the coordinates z; () and nonzero, we conclude that 3¢ (7)/d%; (t) =0
for T in [t — T, t]. By (4.10) and (6.4)

0 (1) = o (t) (det F (). (6.5)

We now turn to the restrictions on these motions implied by the range
of memory involved. For the present, we assume the fluids are initially
at rest,

X (X (1), 1) =X (x(1), ©<O. (6.6)

Some fluids may have a perfect memory over any finite time interval,
that is, the duravion of memory 7' equals the present time ¢. Therefore,
(4.10) must hold on [0, ¢]. Let #; be some instant in this interval. By
arguments similar to those used for the discussion of isotropic solids
having perfect memory, we conclude that € (7) is a constant strain tensor
field for = in [0, #]. It follows that o (f;) is also a constant field. Since
£y is arbitrary, (4.2) must hold on [0, #]. Again allowing at most a constant
body force field g, we are led to the conclusion that in (4.10)

F(r)=0, b(z) =g (6.7)
These restrictions, along with
x (x (), 8 =x (), (6.8)
imply that (4.10) must have the form
XX (), 7)=[1— () BIx () + g5 (2 — ) +Fe(r—1), (69)

where F, is a constant tensor. F, represents a uniform velocity gradient
at time f. From (6.9) we find that the initial velocity gradient field is
¥, [1 — ¢ F,]7%. Since in some compressible fluids the motion must begin
continuously, we require that this field vanish. As (6.9) is not defined
at v =0 if [l —¢F,]7* = 0, we conclude that F; = 0.

Theorem 5. Let g be a constant body force field. Let the class of materials
considered be simple fluids having perfect memory on [0, /]. In addition,
let (6.6) hold for = < 0. Then a continuous motion is controllable at time ¢
in materials of this class if and only if it is uniformly accelerated motion,
that is, (2.1) has the form

X (X (2), r):x(t)+g(’2;‘2). (6.10)

We now consider fluids having finite memory of duration 7. The
determination of the controllable motions for this case is similar to that
for the corresponding isotropic solid except that the appropriate reference
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configuration is always the current configuration. Let ¢ be the present
time and £, be an earlier time at which the motion first becomes con-
trollable. There will be no loss in generality if ¢, is in [ — T, t]. By the
same argument as was used for isotropic solids with finite memory, we
conclude that the conftrollable motions will be nonrigid and continuous
if and only if ¢, > 7. Furthermore, for = in [0,¢, — T'] the motion is
arbitrary, while for = in [, — 7', £,], (6.2) implies the form

X (X (&), ©) = F (1) X (£,) + b (2). (6.11)

Since the motion is to be controllable at all times greater than f,, we

conclude that it must have form (4.10) on the extended interval [¢, — T, £],

while (4.2) holds on [f,, ¢]. Assuming that the body force field is constant,

this last condition implies that x [x (#), v] has the form (6.9) on [f,, {].
The following theorem combines these results.

Theorem 6. Let g be a constant body force field and (6.6) hold for == 0.
Let the class of materials considered consist of simple fluids having finite
memory of duration 7. A motion will become controllable at time ¢, << ¢
and be nonrigid in materials of this clags if and only if () ¢, > T and (ii)
the motion has the structure

X [X (¢), 7] ... arbitrary and continuous, 0 <y <t, — T,
=F)x@t)+b(z), det F(r) =0, £, —T <v <k, (6.12)
=1—-(¢—0F)x{)+g(), det [L — (¢ —7)F] =0, £, <7 <4,

where F,; is a constant tensor and g (7) represents uniformly accelerated
rigid motion. The corresponding density variation on [£,, {] is

0 (1) = o (t) det [1 — (¢t — 7) F,] (6.13)

This last result follows from (6.5) and (6.12).

The discussion for fluids with fading memory is also analogous to
that for solids. An analysis leads to the conclusion that both (4.2) and
(4.10) hold on the interval (— oo, ¢]. The controllable motion then has
form (6.9) on this interval. In order that this motion be defined it is
necessary that for 7 in (— oo, ¢].

det [L — (¢t — D) Fy] =1+ (v —0) tr Fy +- T (o )2 — b0 0,2] -

+ (v — ty3 det ¥y = 0. (6.14)

This is possible only if the set of proper numbers 1/(v — ¢) of F, consists
of 0 and two complex numbers, or 0, 0 and 02. The first possibility requires
that det F; = 0 and (tr F,)2 < 2 [(tr F,)? — tr F,2]. However, it follows
from (6.13) and (6.14) that as v -> — co, p ~» 0, which is not physically
meaningful. The second possibility requires that tr F, = tr ;2 = det F, =
= 0, in which case det [l — (! — 7) F;]=1 and ¢ (v) = ¢ (f). An example
of such a motion is steady simple shearing flow.

2 See [3, § 28].
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Theorem 7. Let g be a constant body force field and the simple fluid have
fading memory. A necessary and sufficient condition that a metion be
controllable in fluids of this class is that it have the form (6.9) on the
interval (— oo, t] and be isochorie.

7. Anisotropic Simple Solids

The results obtained in Section 5 for isotropic simple solids can be
readily extended to include transversely isotropic solids and solids be-
longing to one of the crystal classes.

By means of the polar decomposition theorem of algebra [9, §83],
the nonsingular deformation gradient F (f) defined in Section 2 can be
decomposed into the product of an orthogonal transformation R (¢) and
positive definite symmetric matrices U (¢), V (t) as follows,

FO =ROUE=VHRE
R(H)RT () =1, (7.1)
U@ =U®T, Vi) =V (@r.

R represents the rigid rotation of the neighborhood of a particle at time ¢
relative to its position in the reference configuration. U (t), V (£) represent
pure deformations.

The constitutive equation (2.2), when subjected to the restrictions of
the Principle of Material Indifference, reduces to the form

o () = RT[R7 (¢ (r) R; RT B1R]RT (1.2)

t={-T
where B = R (t). We will use the notation
Ot (1) =RT (¢t () R, B = RT B R. (7.3)

The symmetry properties for any simple solid are defined by a group
of orthogonal transformations {H}, called a material symmetry group.
For example, for transversely isotropic materials, the group consists of
rotations in a plane and possibly a reflection about an axis perpendicular
to or lying in the plane. The material symmetry property for a given
material implies that the response functional ¥ satisfies the condition

[ [4
THC (r)HT; HBHT] =HZ [C (7); B]HT (7.4)
T=t—1T T=f{—17

identically in €! () and B for each transformation H in the group {H}

of symmetry transformations. A response functional satisfying (7.4) is

said to be form-invariant under the transformations of the symmetry
group {H}.

The theory of representations for form invariant response functionals

has been developed by Riviin and his co-workers. In the present section

we will state and use the form of the constitutive equation for a given
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anisotropic material which is most convenient for our purposes. In the
next section we shall indicate its derivation.

For transversely isotropic materials and materials of the cubic,
tetragonal and hexagonal systems, there is no loss in generality if the
response functional is written in the form

£
g:¢m1+¢®ﬁ+¢mﬁ+-f@hwu_ﬂdr+6 (7.5)

t—1T

where 6 is a scalar function of £ — 7. The tensor € depends on certain

combinations of B and Ct () which are appropriate only to the specific
symmetry group under consideration. ¢® depends on the invariants
(2.8), (2.9) and other scalar invariants appropriate to the given group.
Substituting (7.5) into (7.2) and using (7.1) and (7.3) we see that the con-
stitutive equation for a typical material having one of the above-men-
tioned symmetries has the form

t
o (1) =M1+ @ B4 ¢® B2 4 f(}t (7)o@t —r)dr +
t—T

+ R (t) € RT (). (7.6)

In order to determine the controllable motions for simple solids having
the above mentioned symmetries, the system of equations (3.1) and (7.6)
must be satisfied identically, independently of the nature of the material
functions oM, ¢®, ¢®, 0, and those contained in €. As in Section 4, the
application of this restriction to the system (3.1), (7.6) leads to a new
system of equatioris among which are (4.2) and (4.3)—(4.5). We can thus
now apply precisely the same analysis as was used for isotropic solids.
Since the only controllable motions will be homogeneous motions, the
equations in the above system arising from the terms R (f) € RT (¢) will
be identically satisfied. Thus, all the results of Section 5 apply to materials
having transverse isotropy, or belonging to the cubic, tetragonal or
hexagonal systems.

For materials of the triclinic, monocline, and rhombic systems, the
possible response functionals are written most usefully in the form

T =gl 2+ (7.7)

where T* represents terms depending on certain combinations of B and
Ct (1) which are appropriate to the specific symmetry group under con-
sideration. @ is a scalar material function in which the components By
or their squares (E-j)2 appear as arguments. ¢ also depends on the com-
ponents E’t“ (7) or their squares [6%-7- ()] by means of a combination
of the functionals

Acta Mech. VII/1 8
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i

wy® = f Oty (7) iy (¢ — 7) dv,

t—1T

¢ t

wii(z) = f f %’J’m (¢ — 11, £ — 15) 6%‘ (71) atij (t9) dry dry; (7.8)
t—T (=T

appropriate to the group considered.
Proceeding as before, we find that a motion will be controllable only if
d Eij o d _C”i“- (z}

Rar @) T dxk (8)

We note from (7.1} and (7.3) that B = ¢~ = F-1 (F-))7. (7.9), now
implies that the right CAUcHY-GREEN strain tensor ¢ = F7 F is a constant
tensor field with respect to the reference configuration, i.e.,

Y (e dep @)Y
X Cy = 0 Xy ( 2.X 2 X; )”‘ 0. (7.10)

= 0. (7.9)

(7.10) implies that (4.9) holds, i.e., the deformation field at time ¢ is
homogeneous. (4.9) and (7.1) now imply that the rotation field R (¢) is
also constant. By (7.3) and (7.9),, C? () must also be a constant tensor
field. We conclude, at last, that (4.11) must hold; the controllable motions
must be homogeneous. It is easy to see now that the results of Section 5
now apply to materials of the triclinic, monoclinic and rhombic systems.

8. Representations of Response Funectionals

In this section we will summarize the method of constructing repre-
sentations for response functionals ¥ which are form-invariant under the
transformations of an arbitrary material symmetry group. The general
forms (7.5) and (7.7) will then be verified.

Associated with each symmetry group is a finite set of basic tensors,
a, ..., a®, of orders r (1), ..., r (n), respectively, called the anisotropic
tensors [10] for that group. Each tensor a(® has the property that its
components are unaltered by the transformations of the symmetry
group i. e,

a?i%- ety = Higy Huggy - - Hy g 5y “57;;2 I (8.1)
for each transformation H of the symmetry group {H}. If H' is an or-
thogonal transformation not in {H}, then (8.1) fails to hold for at least
one of the anisotropic tensors a(,..., a(®. For example, for the full
isotropy group, the set of anisotropic tensors consists solely of the
KroNECKER delta, ;.

The primary use of anisotropic tensors is in the construction of certain
basic scalar invariants and basic form-invariant tensor-valued functions
in terms of which € will be expressed. In [11], PrpkIN and Riviin illus-
trated the use of the anisotropic tensors for the special case in which the
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response functionals reduce to polynomials of, say, B-* and a finite number
of vectors. GREEN and Rriviix [12] used essentially this technique in
obtaining the representation for response functionals for isotropic materials
which depend on a single second order tensor history Ct (7).

The first step in developing the representation for ¥ is to construct
a set of basic scalar invariants. Each scalar invariant has the form

I[Ct(7y), ..., C (m); B; a®, ..., a] = T [Ct (v5); B]

= Oy, gl e - i Otiljl (tq) - .. Biqu e Otiris (Tm), (8.2)

where «; is an outer product formed from a®, ..., a®,

ST X
A complete set of basic scalar invariants, denoted by I, is constructed
by using all possible combinations of a®, ..., a® and B, Ct (7y),...,

Ct (z) in (8.2) and then eliminating .those invariants which can be shown
to be redundant. Each such invariant is considered a function of

Ty - - -, Tm and satisfies the following invariance condition for each trans-
formation H of the material symmetry group {H},
I [Ct (z5); B) = I [H Ct (z5) HT; H B HT]. (8.3)

In a similar fashion one constructs a set of basic form-invariant tensor-
valued functions. Each has the form

Py® [Ct (1y), - . ., OF (tm); B; a®, ..., a®] = Py® [C¢ (15); B] =

= Qifiyfy v il e iyl Otiljl (ty) - .. Biqu . Oiris (Tm) (8.4)
where CLijiyfy - - - iy is an outer product of a®, ... a in some order.
P® is to be considered a function of 7, ..., 7. Each tensor-valued
function (8.4) satisfies a condition similar to (7.4),

P®) [H € (v5) HT; H B HT] = HPC) [(¢ (z5); B]HZ. (8.5)

For this reason the set formed by eliminating redundancies of form (8.4)
is called a set of basic form invariant tensors.

WingmMaN and PieriN [13] have shown that any form-invariant
response functional can be represented in a certain canonical form in
terms of the basic scalar invariants I and the basic form invariant tensors
P®), Representations of ¥ having this form and which are of most use
for our present purposes are given by ’

N t
T =Y ¢ Pe) [B] + f 66+D (1 — 7, I) PO+ [ (v); B] dr -+
p=1 t—T

+...~}—fft...[6(”)[t—rl,...,t~n; 1P (8.6)

[ (D) e € (1) Bldry ... dy
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where tensors P, » =1.2,..., N, are independent of Ct (z). Ge+L,
..., 0(,) are material scalar functions of 7, ..., 7. They can also be
taken as functions of multiple integrals of the scalar invariants I. It is
readily verified that (8.6), with (8.3) and (8.5) satisfies (7.4).

The anisotropic tensors for 31 of the 32 crystal classes are derived
in [14]. The anisotropic tensors for the remaining class, the gyroidal class
of the cubic system, have not been determined.

Cubic System

For each crystal class of the cubic system, except the gyroidal class,
the corresponding set of anisotropic tensors contains the KRONECKER
delta, di5. The forms of the invariants for a single symmetric tenscr and
a vector which have been calculated for the gyroidal class listed in [15]
are such that it appears that d;; will be one of the anisotropic tensors for
the class. We will assume this is so. The remaining anisotropic tensors
in the set serve to distinguish the given crystal class from all the others.

From (8.2) and the fact that d;; is an anisotropic tensor, we see that
the basic scalar invariants for each crystal class of the cubic system
contains as a subset the invariants (2.8), and the kernel Ct; () of (2.9).
Furthermore, from (8.4) we see that among the basic form invariant
tensors P are

PO =1, P® = B, P® = B2, P+ = (it (7). (8.7)

By (8.6), (8.7) and the preceding remarks, it follows that possible response
functionals for materials of the cubic system have the form (7.5).

Materials of the Tetragonal System, Hexagonal System and Having
Transverse Isotropy.
The anisotropic tensors for transversely isotropic materials are [10],

034, oy = 013 017 -+ 024 Oay. (8.8)

The anisotropic tensors for each class of the tetragonal and hexagonal
systems contains among them u;; and either dg; or d3; d35. The condition
that d3; or dg; Js; satisfy (8.1) restricts the transformations H of the
symmetry group to rotations in a plane and certain reflections. The
condition that «; satisfy (8.1) gives no further restrictions on the trans-
formations. Thus, there is no loss in generality if oy is replaced by
®ij -+ O3; 835 = 8. By the same discussion as was used for the cubic
system, we see that possible response functionals the present classes of
materials also have the form (7.5).

Triclinic, Monoclinic, and Rhombic Systems

For each crystal class in these systems, the set of anisotropic tensors
contains O(i(l) = (317; or ch;j(n) = 51@' (51}', oc@'(z) = (32-7; or ocij(”) == (32@' (32]', O(i(3) =
= 8g; or a;;® = J3; d3; and possibly other products of this form. In each
case, upon substituting these tensors into {8.2) in all possible combinations,
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it is found that each component By, Cyt (1) or the form Bj; By
Otpq (T1) Cfpg (75) (Do summation intended) is one of the basic scalar
invariants. Similarly, it is found that upon substituting these tenscrs into

(8.4) in all possible combinations, the set of basic form-invariant tensors
contains, among others,

PO — ) P@) — g3 PO — o6,

Since these form invariant tensors are formed as outer products of
anisotropic tensors, they automatically satisfy (8.1). a®®® and a® satisfy
(8.1) only for orthogonal transformations whose matrices have components
Hij=0, i #j and Hy = 4 1, ¢ = j. The condition that a®) must
sabisfy (8.1) yields no further restrictions on the transformations. Thus,
there is no loss in generality if PM = a1 is replaced by PM = 1, which
satisfies (8.1) for all orthogonal transformations.

In view of these remarks, we see that the response functionals for
materials of the triclinic, monoclinic and rhombic systems can always
be written in the form (7.7).
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