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Summary - Zusammenfassung 

Controllable Motions of Compressible Simple Materials of Various Types. I t  is 
shown tha t  a motion is possible in every compressible homogeneous isotropie 
simple solid having a certain range of memory,  in the presence of a constant body 
force field, if and only if  it  is homogeneous and uniformly accelerated after a 
certain time. I n  the class of solids having perfect memory, the only motion of this 
kind which can be smoothly ini t iated in a body at  rest is a rigid one. For  the  class 
of solids having finite memory of durat ion T and init ially at  rest, the motions of 
the type  considered need be homogeneous and uniformly accelerated only after t ime T. 
For  those solids having fading memory,  the motion must  reduce to a fixed homo- 
geneous deformation. Similar results are developed for simple fluids and anisotropie 
simple solids. 

Steuerbare Bewegungen versehiedener kompressibler einfaeher Stoffe. Es wird 
gezeigt, dag in jedem kompressiblen, homogenen und isotropen einfachen Festk6rper 
mi t  einem gewissen Erinnerungsbereich und in Gegenwart eines konstanten 3lassen- 
kraftfeldes eine Bewegung dann nnd nut  dann m6glich ist, wenn sic homogen und 
nach einer gewissen Zeit gleichm/il3ig beschleunigt ist. Bei Festk6rpern mi t  voll- 
kommener Erinnerung ist die einzige t~ewegung dieser Art ,  die bei einem ruhenden 
K6rper  glat t  eingeleitet werden kann, eine starre. Bei Festk6rpern mi t  begrenzter 
Erinnerungsdauer T, die anfangs in l~uhe waren, miissen die Bewegungen der 
betraehteten Ar t  homogen und nur nach der Zeit T gleichm/il3ig beschleunigt sein. 
Fi i r  Festk6rper  mi t  schwindendem Ged/iehtnis reduziert  sich die Bewegung auf eien 
feste homogene Verfbrmung. J~hnliehe Ergebnisse werden fiir einfache Fliissigkeiten 
und anisotrope einfaehe Festk6rper  entwickelt.  

1. Introduction 
A s i m p l e  m a t e r i a l ,  as  de f i ned  b y  NOLL [1] 1, is one  for  w h i c h  k n o w l e d g e  

o f  i t s  r e s p o n s e  t o  a l l  h o m o g e n e o u s  d e f o r m a t i o n s  is  n e c e s s a r y  a n d  su f f i c ien t  
to  d e t e r m i n e  t h e  r e l a t i o n  b e t w e e n  s t ress  a n d  a n y  d e f o r m a t i o n .  I t  t h u s  
a p p e a r s  t h a t  in  o r d e r  t o  d e t e r m i n e  t h e  r e s p o n s e  f u n c t i o n a l  r e l a t i n g  s t r e s s  
a n d  d e f o r m a t i o n  h i s t o r y ,  one  n e e d  o n l y  c a r r y  o u t  a n  e x p e r i m e n t a l  p r o -  
g r a m  in  w h i c h  a s p e c i m e n  is s u b j e c t e d  t o  a r b i t r a r y  h o m o g e n e o u s  de fo r -  
m a t i o n s .  T h e  p o s s i b i l i t y  o f  c a r r y i n g  o u t  such  a p r o g r a m  d e p e n d s  on  

1 Numbers in square brackets refer to the List  of l~eferenees at  the end of this 
paper.  
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whether the material is incompressible or compressible. COLEMAN and 
T1%UESDELL [2] have shown that  only irrotational homogeneous motions 
need be considered for incompressible materials. For compressible mate- 
rials, TI~UESDELL and •OLL [3, w 28] have shown that, in the presence 
of a constant body force field, the only homogeneous motions satisfying 
the equations of motion are those having constant acceleration. In order 
to determine the response functional for compressible materials therefore, 
it will be necessary to subject the material to nonhomogeneous defor- 
mations. In this case the experimentor is faced with the problem that, 
in general such motions depend on the form of the response functional 
he is trying to determine. 

Suppose an experimenter has decided that  a given specimen is a 
compressible homogeneous isotropic solid. With no other a priori prejudice 
as to the nature of the material, and with the above remarks in mind, 
the question now arise as to whether there are any motions which may  
be produced in every compressible homogeneous isotropic solid. Such a 
motion must then be possible in the particular specimen on hand. For 
any motion of this kind the interior state of deformation at each time t 
will be the same for all such isotropic solids. Assuming a constant body 
force field only, these motions can be produced by  the application of 
appropriate surface tractions alone. Knowing the details of the defor- 
mation completely, and having measured the surface tractions required, 
the experimenter can directly obtain information on the form of the 
response functional. We call such motions controllable. A more precise 
definition will be given in Section 3. 

In  the present paper we will be concerned with the determinatioa 
of motions of this kind for compressible simple materials of the following 
general types: fluids, isotropic solids, and anisotropic solids. This problem 
was first posed in a paper by  ERICKSE~ [4] in which he derived a number 
of deformations which can be maintained in every incompressible homo- 
geneous isotropic perfectly elastic solid by  the action of surface tractions 
alone. In a later paper EgICKSE~ [5] showed that  any deformation which 
is controllable in. compressible homogeneous isotropic perfectly elastic 
solids in equilibrium must necessarily be homogeneous. We use this result 
to show that  any test motion which is to be controllable in compressible 
simple fluids, isotropic solids or anisotropic solids after some time t must 
be homogeneous after that  time. The details of the motion before time t 
depend on the duration of memory of the particular type of material 
considered. These details are derived for compressible simple materials 
having perfect memory, finite memory, and fading memory. Generally 
speaking, depending on whether the memory is perfect, finite or fading, 
the deformation up to time t must be homogeneous and respectively, 
uniformly accelerated, ~rbitrary or fixed. Once the motion has become 
controllable it must be homogeneous and have constant acceleration. 
This latter motion is discussed in the article by  TgV~SDELL and NOLL 
[3, w 28]. 
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In Section 2 we present constitutive equations for compressible simple 
fluids and isotropic simple solids in forms which are most useful for our 
analysis. The field equations and a more explicit definition of the con- 
dition tha t  a motion be controllable are given in Section 3. In Sections 4 
and 5 we apply this condition, to the determination of controllable motions 
in isotropic solids. The results obtained are summarized above. Section 6 
contains a similar t reatment  for simple fluids. The final two sections are 
devoted to the extensions of results for isotropic solids to anisotropic 
solids. The proof of the extension is carried out in Section 7, using the 
result proved in Section 8, tha t  the constitutive equation for a solid having 
any material symmetry can be represented in one of two general forms. 
In Section 8, we first review the method of constructing representations 
of constitutive equations. We then show tha t  for any material symmetry, 
the corresponding representation can take one of the two general forms 
used in Section 7. 

Notation. We refer the components of all tensors to a fixed CAR~SIA~r 
coordinate system. We use the usual conventions of index notation. 
Repeated indices denote summation over the range i ~ 1, 2, 3. A comma 
preceding an index denotes partial differentiation, i.e., ~i-----5~v/Sxf. A 
second rank tensor is denoted by the matrix D = 1] Dij/] of its components. 
D ~, D -~, tr D = Dii, det D : ]Dij I, DN denote, respectively, the trans- 
pose, inverse, trace, determinant and Nth  power of D. D o ~ 1 = II ~ij l] 
represents the identity matrix, where ~j is the KnO~ECKER delta. 

2. The Constitutive Equation 
The motion of a deformable body can be described by specifying the 

motion of each of its particles. Relative to a fixed CARTESIA~r coordinate 
system, the deformation of a body can be described by a relation 

x ---- x (X, 3) (2.1) 

between the position X occupied by a generic particle in some reference 
configuration and the position x occupied at each time ~ in some time 
interval. This relation is assumed to be one-to-one and at least three times 
continuously differen~iable. 

The deformation gradient at a particle taken with respect to some 
reference configuration is denoted by F (X, 3 ) :  [I ~x , /3Xj  (X, z)H. For 
simple materials, the stress tensor ~ (X, t) depends on all the values of 
F (X, t) in some time interval [t -- T, t], i.e., is a functional of the history 
]~ (x ,  ~), 

t 

,~ (x, t) = ~ [F (X, 0 ] .  (2.2) 
T = t - - T  

The interval [t -- T, t] defines the extent of this memory of the material. 
A homogeneous simple solid is defined [1] as a simple material having 

a fixed reference configuration and such that  the form of the response 
functional is independent of X. 
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I f  the simple solid is isotropic irt its reference configuration, then this 
property and the Principle of Material Indifference [1] imply that  (2.2) 
can be expressed in the form 

t 

r (t) ----- ~: [C t (T); B -1 (t)], (2.3) 
v=t--T 

where ~ is a functional of the history of the relative right CAUCIIY-GREEN 
tensor Ct (3) defined by  

~x~(~) ~x~(~> (2.4) e~ (3) = l; Ctij (~:) {{ = ~ (t) ~ (~> ' 

and a function of the inverse left CAUCttY-GREEI~ tensor 

~Xq ~Xq (2.5) B - ~ ( t ) = l l B i 3  -~(t)  l i =  ~x~(t) ~x~(t) " 

Although, in most applications the response functional is expressed in 
terms of the left CAVCEY-G~E~r tensor B, for our present purposes it is 
convenient to use its inverse B -~. r Ct (3), B -1 depend on a fixed particle 
through its position X in the reference configuration. By  means of (2.1) 
we can express them in terms of the position x (t) in the current con- 
figuration. 

Dependence of ~ on B -~ (t) represents the effect on the stress of the 
present deformation with respect to the fixed reference configuration. 
Dependence on the history C t (T) represents the effect of the deformations 
which the material has already undergone. 

An additional restriction on ~ is the isotropy condition 
t t 

q z [c~(3);]~-l(t)]q~= z [Qct(3) q~;qB-~<t)q% 
~=t--T ~=t--T 

Q Q T =  QTQ___I (2.6) 

which mus~ be satisfied identically in C t (z) and B -~ (t) for all constant 
orthogonM transformations Q. A theory of general representations for 
response functionals ~ satisfying (2.6) has been developed by RIvLI~ 
and his co-workers for various continuity assumptions. (See [6] for a 
resume of this work.) A specific example of a constitutive equation arising 
from such representations is given by  

t 

(t) =-- q% 1 @ q)l B-1 @ ~2 B-2 -t- f C t (~) 0 (t --  3) dr. (2.7) 

t - - T  

The ~iv are polynomials in the invariants of B -~, defined by  

I~ : tr  B -~, I~ = 1/2 [(tr B-l) ~ -- tr B-2], I~ -~ det B -~ (2.8) 

and the invariant 
t 

co(t) = [" t rC  t ( 3 ) % o ( t -  3) d~. (2.9) 

t - - T  
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C t (~) can be taken as depending on x (t), implying that  o) = ~ (x (t), t). 
The scalar quantities qN, 0, ~ are material parameters, depending on the 
particular solid considered. 0 and ~ are assumed to be continuous on the 
interval I t -  T, t] whatever the choice of T. The response functional 
(2.7) may be made more general by  adding integrals of greater multiplicity 
whose integrands are matrix products formed from B -1, C t (~1), �9 �9 C t (35). 
However, (2.7) is sufficiently general for our purposes. For brevity, we 
will refer to materials of this type  as isotropic solids. 

A homogeneous simple fluid is a simple material whose reference con- 
figuration may  be taken as the one at the current time t. Dependence 
of the response functional (2.3) on B -1 (t) is replaced by  dependence on 
the present density @ (t). In addition, simple fluids are isotropic, so that  
their response functionals satisfy a condition of form (2.6). A representation 
of a constitutive equation for a compressible simple fluid which will be 
useful is 

t 

a = - - p ( @ ) l + l  f trCt(~)~f(t--~;@)d~-~- ; Ct(~)O(t--~; @)dr. 

t -  ~" t -  ~" (2.10) 
. ]  . 3  

The scMar p (@) is the pressure the fluid would be supporting if it had 
remained at rest in its present configuration at all times in the past. 

3.  F i e l d  E q u a t i o n s  

The body force field f per unit mass is assumed to be conservative. 
To be dynamically possible, the motion (2.1) of the material and the 
stress field related to it by  (2.3) must satisfy the equations of motion 

~ij" (t) 
~x~ (t) + @ (t)ft : @ (t) ~i (t) (3.1) 

in  the region occupied by  the body at each time t. @ (t) is the density of 
the material s t  time t which for simple solids is related to the density @0 
in the reference configurations by  

(t) = S31/~ @0. (3.2) 

We are particularly interested in those motions which are possible in 
every compressible simple material of the types mentioned in Section 1. 
By  a controllable motion for materials of a given type, we mean a 
mapping (2.1) which is such that  the system consisting of (3.1) and the 
appropriate constitutive equation is satisfied identically, independent of 
the properties of particular materials of that  type. By  controllable tensors 
we mean the deformation tensors B -1 and C t (v) corresponding to a con- 
trollable motion. 

When the system consisting of (3.1) and the constitutive equation 
(2.7) is restricted by  the condition that  the motion be controllable, we 
obtain a system of equations for the controllable tensor fields B -~ (x (t), t) 
and C t (x (t), "v) for some range of 3. I t  is seen from (2.4), (2.5) that  both 
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of these strain tensors can be interpreted as the covariant  components  
of metric tensors. Thus, in order tha t  B -1 (t) lead to a one-to-one mapping 
(2.1) at  t ime t, the I~I~,MAN~-CKUlSTO~FEL tensor based on B -1 mus t  
vanish. Similarly, in order t h a t  C t (z) lead to a one-to-one relation between 
x (~) and x (t), the RI~AN~-CHRISTOF~L tensor based on C t (v) mus t  
vanish for each desired choice of ~. An explicit s ta tement  of this condition, 
not  needed for our purposes, is given in [5]. 

4. Determination of the General Controllable Motion 

We now consider motions of is0tropic solids which are to be controllable 
at  t ime t. Such a motion must  be possible in the part icular  isotropic solid 
whose consti tutive equation is given by  (2.7). Substi tut io~ of this  con- 
s t i tut ive equation and (3.2) into (3.1) yields the following equat ion 

2 2 3 
g~N - N  + Z + 

N = 0  N = 0  M = I  

2 t 

~ - u  f l  (t ~)dT+ (4.1) + ~ - B t j  r  , . ( ~ ) ~  _ 
* J  

N = 0  t--T 
t 

{ 0 (t - -  "C) Ctij, j (~) dT  ~- ~o I31/2fi = ~o I31/2 "xi. + 

t--T 

(4.1) must  hold for arbi t rary  choices of the material  parameters  ~N, 
3~N/3IM, ~2V/3Co, % 0, and  qo- F rom the  arbitrariness of ~0 and the 
condition tha t  I~ ~-det B-~4~ 0 in a continuous motion, we conclude 
tha t  a necessary condition tha t  a motion be controllable at  t ime t is t h a t  

~ (t) = f~. (4.2) 

Continued application of this argument  implies tha t  the coefficients of 
~VN, ~ ?N/5 IM, and ~ 0 / ~  mus t  vanish, yielding the  conditions 

-~v B ~ y  ( N ~ -  0, 1 , : )  B~j,j -~ 0, IM, j ~ = 0, (4.3) 
M = 1, 2, ' 

t 

B~i f 
t--T 

,f (t - -  0 C ~ , j  (v) dv  = o, (N = 0, ~, 2), (4.4) 

t 

f o (t -- 7) Ctij, j (7:) d-c -- O. (4.5) 

t - - T  

Let t ing  N = 1 in (4.3)1 and  N = 0, M = i in (4.3)~ and using (2.8) we 
obtain as conditions on B -1 tha t  

~ . 1 .  Bij,lj (t) O, **,~ (t) ~-~ 0. (4.6) 
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Let t ing N = 0 in (4.4) we find 

t 

f ~v (t --  z) Ct~,] (3) dt =- 0. (4.7) 

t - - T  

For  a controllable motion,  the strain his tory C t (3) must  be the  same 
for all isotropic solids. (4.5) and  (4.7), wi th  Ctq, j (3) and  Ctu,j (3) fixed, 
mus t  be satisfied for each choice of the material  functions 0 and ~0. B y  
an a rgument  similar to t h a t  used to prove the Fundamen ta l  L e m m a  of 
the  Calculus of Variations [7, p. 185], this implies t ha t  any  motion which 
is to be controllable at  t ime t mus t  satisfy 

C~j,~ (3) =- O, Ct~i,j (3) ---= 0 (4.8) 

for 3 in It -- T, t]. 
In  determining the  deformations which can be main ta ined  in every  

compressible isotropic homogeneous prefectly elastic solid in equilibrium, 
ERICSSON [5] also showed tha t  the finite strain tensor B -1 mus t  sat isfy 
the system (4:6). He then  showed tha t  a strain tensor whose components  
are of the form of the  covariant  components of a metric tensor, which 
satisfies a system such as (4.6) or (4.8) and whose I~IEMA~N-CI~ISTO~FEL 
tensor vanishes, is a constant  tensor field. Thus, recalling the discussion 
at  the end of Section 3, we conclude t h a t  B -~ (t) is a constant  tensor field 
and so is t~ t (3) for each 3 in It --  T, t]. The system (4.3), (4.4), (4.5) is 
now satisfied as wou ld  any  system which would arise from a const i tut ive 
equat ion more complex t h a n  (2.7). 

A necessary and sufficient condition tha t  B -~ (t) be a constant  tensor 
field is t ha t  t ime t (2.1) have the form 

x (X, t) = F (t) X ~- b (t), det ~' (t) . 0, (4.9) 

while a necessary and sufficient condition tha t  e t (3) be a constant  tensor 
field for 3 in I t -  T, t] is t h a t  

x (x (t), 3) = F (v) x (t) ~- b (3), det F (3) . 0, (4.10) 

for 3 in [t --  T, t]. The result of combining (4.9) and (4.10) is s ta ted  in 
the following theorem. 

Theorem 1. A necessary condition t h a t  a motion be controllable at  t ime t 
in isotropic solids is t ha t  the mot ion (2.1) have the form 

x(X,  3) = F ( 3 )  X + b ( 3 ) ,  detF(3)  4= 0, (4.11) 

for 3 in [t --  T, t]. 

5. Controllable Motions in Isotropie Solids 

We now investigate the restrictions on (4.11) due to (4.2) and  various 
durat ions of memory.  For  the  present, we assume t h a t  the controllable 
motions are to be produced in solids which are initially at  rest in their  
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reference configurations. Then, (2.1) has the form 

x(X, z) = X ,  v ~<0. (5.1) 

A motion which is to be controllable in every isotropic solid must be 
controllable in those having perfect memory. For such solids, the defor- 
mations in the entire interval [0, t] determine the present stress. Hence 
the results of Section 4 must hold for T ---- t. In  particular, by  Theorem 1, 
(2.1) must have the form (4.11) for ~ in [0, t]. 

Let  t* be an arbitrary time such that  t* < t. I t  follows from (2.4), 
(2.5), and (4.11) that  B -1 (t*) and the history C t* (,) are constant tensor 
fields for v in [0, t*]. (2.7) then implies that  r (t*) = 0. Sillce (3.1) must  
hold for each choice of t* in [0, t], we conclude that  (4.2) must hold on 
the entire interval [0, t]. 

From (4.11) and the condition that  F (v) must be nonsingular in [0, t], 
we obtain the acceleration field at time ~. 

(x (4 ,  ~) = F ( 4  ~-1 (~) Ix (~) - -  b ( 4 ]  + }J (T). (5.2) 

Comparing (4.2) at time ~ with (5.2), we see that  a conservative body 
force field is compatible with this acceleration field if and only if f has 
the form 

t = G x + g (,5.3) 

where g is a vector field and G is a symmetric tensor field, both inde- 
pendent of x. Since the most physically meaningful form of (5.3) is a 
constant body force field, we take G = 0 and g = constant here and 
throughout the paper. Substituting (5.2) and (5.3) with G = 0 in (4.2), 
we conclude that  

= 0 ,  b = g  (5.4) 

for ~ in [0, t]. (4.11), (5.1), and (5.4) now imply that  a controllable motion 
must have the general form 

x ( X , ~ ) = ( F ~ + l ) X + g  *2 ~ + a T ,  ~ in [0, t], (5.5) 

where a and Fx are constant vector and tensor fields, respectively. 1~ 
represents an initial mliform velocity gradient field. I t  is clear from (2.3), 
(2.4), (2.5), (3.1), and (5.3) with G = 0, that  a motion of form (5.5) is 
possible in any simple solid. 

For some materials, it may  be possible to establish the homogeneous 
motion (5.5) with an initial uniform velocity gradient by  appropriate 
surface tractions. An example would be a pure shearing deformation 
suddenly imposed on a material with no instantaneous elasticity, a 
K~LvI~c-type material. Because the materials under consideration are 
compressible, it does not seem generally possible to produce instantaneously 
an initial uniform velocity gradient field by  the action of surface tractions 
alone. Since we are considering motions possible in all isotropic solids, 
we require that  any controllable motion begin continuously from the 
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initial s tate (5.1). Combining this requirement  wi th  the above results, 
we conclude the following theorem. 

Theorem 2. Le t  g be a constant  body  force field and let (5.1) hold for 
t ~ 0. Le t  the  class of materials  considered be isotropie solids having 
perfect memory  on [0, t]. I f  a mot ion is to be controllable at  t ime t in 
materials of this class, and  be continuously init iated, t hen  it mus t  be 
uniformly accelerated motion,  in which case (2.1) reduces to 

1 
x(X,  3 ) = X + g - 2 -  ~*' w in [0, t]. (5.6) 

B y  considering controllable motions in the narrower class of isotropic 
solids having a finite memory  of durat ion T, we can avoid the above 
restrictions arising from the condition t h a t  the mot ion be continuously 
init iated. ~or  such solids, the stress at  t ime t is determined by  the  defor- 
matiolx in the interval  [t -- T, t], for some finite T > 0. 

Suppose a mot ion is ini t iated at  t ime w- -  0 in an isotropic solid at  
rest for t ~ 0. I f  we require t h a t  this  mot ion be controllable at  a t ime 
t* < T, theft  the material  has a memory  for the entire interval  [0, t*]. 
B y  Theorem 2 the only continuous controllable mot ion  is given by  (5.6). 
Consequently,  for isotropic solids wi th  finite memory  of dura t ion  T, we 
require t h a t  a motion ini t ia ted at  ~ ~ 0 be controllable only at  t ime 
t ~ T when the details of the ini t iat ion of the  mot ion cannot  influence 
the  present stress. 

Le t  t now be the earliest t ime at  which the  motion is controllable, 
i.e., a t  which (4.1) is satisfied identically independent ly  of the part icular  
solid considered. (4.2) mus t  hold for all t imes after t. By  Theorem 1, (2.1) 
mus t  have the form (4.11) for each T in the interval  It --  T, t]. Now, let 
t* be a fixed t ime in the open interval  (t -- T, t). (2.4), (2.5), and  (4.11) 
imply t h a t  B -1 (t*) and (~t* (~) are constant  tensor fields for T in [t --  T, t*]. 
I f  the mot ion (2.1) is homogeneous during the  extended interval  
It* --  T, t*] then  (~t. (~) is a constant  tensor field for �9 in [t* --  T, t*]. 
B y  (2.3), (2.4), (2.5), tt  must  be a constant  tensor field for each ~ ia  [t*, t], 
during which the motion will have to satisfy (4.2). Therefore, the  mot ion  
is controllable at  t ime t*. Since we assumed t h a t  t is the  earliest t ime at  
which the mot ion is controllable, we conclude t h a t  (2.1) mus t  be non- 
homogeneous for ~ < t -  T. Consequently for t * ~ t ,  a (t*) is no t  a 
constant  field, and  (4.2) does not  hold. 

For  T >/ t ,  (4.2) and (4.11) hold. Assuming a constant  body  force field, 
our previous a rgument  shows t h a t  tP and  b mus t  satisfy (5.4) on this 
interval.  In tegra t ing  these conditions, we find tha t  a mot ion which is 
controllable for T > / t  must  have the form 

T 2 

x (X, -r) : (Fo + 1~1 ~) X + g - f  + b -~ + e, (5.7) 

where Fo, F1, and b, e are constant  tensor and vector fields, respectively. 
The above results are summarized in the following theorem. 
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Theorem 3. Le t  g be a constant  body force field and (5.1) hold for r >~ 0. 
Le t  the class of materials consist of isotropie solids having finite memory  
of durat ion T. In  order tha t  a motion be controllable at  t ime t and be 
nonrigid in materials of this class, it  is necessary and sufficient t ha t  t > T 
and  tha t  (2.1) be defined as follows, 

x (X, r) . . . continuous and arbitrary,  0 <~ r <~ t - -  T,  

F(3)  X d - b ( 3 ) ,  det F('c) 4= O, t - -  T ~ ' c  ~ t ,  

= (Fo + F1 3) X + g (3), de~ (F o -k F1 3) 4= O, T /> t, (5.8) 

where F 0, F1 are constant  tensors, g (~) is the rigid body mot ion par t  of  
(5.7), and F (r), b (3) are continuous tensor and vector valued functions 
of z satisfying (5.4) at  , = t. The only restriction on the motion in the 
interval  [0, t -  T] is t ha t  it  lead to an homogeneous motion during the 
interval  It -- T, t]. 

The necessity of the form (5.8) for the motion follows from the dis- 
eussion preceding (5.7). I ts  sufficiency is readily established from (2.3), 
(2.4), (2.5), (3.1), (5.4), and (5.8). An analysis of the condition 
det (F 0 + F1 3) 4= O has been given by  TRUESDELL and NOLL [3, w 28]. 

Finally,  we consider isotropic solids having fading memory.  For  these 
materials the deformations in the recent past  influence the present stress 

(t) more strongly t han  those in the dis tant  past. I n  particular,  in a 
material  with fading memory,  the manner  in which a motion is ini t iated 
has diminishing influence on t~ (t) as t increases. Thus, the material  has 
a perfect memory  for all deformations in any  finite interval  after the 
mot ion is initiated, during which the only continuous controllable motion 
is the rigid one (5.6), by  Theorem 2. However, the previous results suggest 
t ha t  i f  a homogeneous motion were to be established and maintained,  
then  it would become controllable a long t ime after its initiation, when 
the influence of the details of its init iat ion on a (t) becomes negligible. 

One formulat ion of the proper ty  of fading memory  has been given 
by  COLEMA~ and NoLI~ [8]. This formulat ion leads to an integral ap- 
proximat ion to the response funetionM in (2.3) which contains (2.7) as a 
special case when T -+ ~ and ~lv depends linearly on the invar iant  co (t) 
defined in (2.9). Fu t rhermore  the material  functions 0 (s), ~o (s) have the 
proper ty  t ha t  they  tend  to zero as s -+ oe. We assume tha t  0 and ~v tend  
to zero sufficiently rapidly so t h a t  the integrals in (4.1) converge uni- 
formly. We can then just ify interchanging differentiation and integration. 

The analysis and results of Section 4 now" apply. In  particular,  (4.11) 
holds for ~ in (-- o% t). Le t  t 1 be an arbi t rary  t ime in this interval.  I t  
follows from (2.4), (2.5), and (4.11) t ha t  B -1 (tl) and  C tl (3) are constant  
strain fields for v in (-- 0% t~). Fur thermore ,  the  general consti tutive 
equat ion (2.3), with T taken  as o% shows tha t  the stress field a (t~) is 
constant.  This, together  with (3.1) implies t ha t  (4.2) holds at  T = t v 
Since tx was chosen arbitrarily,  (4.2) must  hold on the entire interval  
(-- o9, t]. Applying (4.2) to (4.11), we conclude tha t  the mot ion has the 
form (5.7) on (-- o% t]. F rom (2.4) and (4.7) we see t ha t  C t (~) becomes 
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unbounded  as ~ - + -  m, i.e., the  distance between particles in previous 
configurations becomes arbi trar i ly large compared to this distance in the  
current configuration. Since for some solids the deformation gradients  
mus t  be bounded,  we conclude the following result. 

Theorem 4. Le t  g be a constant  body  force field. A necessary and  sufficient 
condition tha t  a motion be controllable in isotropic solids having fading 
memory  is t ha t  (2.1) have the form 

x (X, 3) = F 0X + g (~), ~ in (-- ~ ,  t] (5.9) 

where Fo is a constant  tensor, and g (3) is defined as in (5.8). 
I n  other terms, ignoring the  effects of gravi ty  the only possible con- 

trollable mot ion  in an isotropic solid wi th  fading memory  is one in which 
the material  is held in a fixed deformed state. I n  other terms the only 
test  s i tuat ion common to all isotropic solids wi th  fading memory  is a 
stress relaxat ion test.  

6. Simple Fluids 
The analysis for simple fluids is similar to t ha t  for isotropic solids. 

A mot ion  which is to be controllable at  t ime t in homogeneous compressible 
simple fluids must  be possible in the particular fluid whose const i tut ive 
equat ion is given by  (2.10). The condition tha t  a motion be controllable 
is obtained by subst i tut ing (2.10) into (3.1), 

t t 

t - - T  t - - T  

t t 

+ eh j ,  j (3) 0 (t - 3; e) d r  + e,~ e %  ('~) 

t - - T  t - - T  

dp  

In  order t ha t  a mot ion  be controllable at  t ime t, (6.1) must  hold for ar- 
b i t ra ry  choices of the  material  parameters  0, P (0), % 0, 3y/30, 30/30. 
Arguing as in Section 4, we conclude t h a t  (4.2) mus t  hold a t  t imes 
beginning with  t, while the  following system holds for , in the  interval  
[t - -  T ,  t], 

Ctii, j (3) = O, Ctij, j (3) ---- O, (6.2) 

Ctii (T) o~,j = O, Cti] (3) ~,j ~ O, o~,i ~- O. (6.3) 

The system (6.2) is the same as the system (4.8). Requiring the R I ~ M ~ -  
CHmSTOF~EL tensor based on ()t (z) to vanish for each z in [t -- T, t], 

o 

we find t h a t  (It (3) must  be a constant  strain tensor field so t ha t  on this 
interval  the mot ion has the form (4.10). 

Considering now the  system (6.3), we see t ha t  it  is satisfied if and  
only if  0,i (t) = 0. Applying this condition to the equat ion of conservat ion 
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of mass 

bxi (3) (6.4) e(t)=e(~) ~ ,  

and observing tha t  the JACOnlAX of the mapping (4.10) must  be indepen- 
dent  of the coordinates x~ (t) and nonzero, we conclude tha t  ? ~ (3)/~ xi (T) = 0 
for v in It -- T, t]. By  (4.10) and (6.4) 

e (z)  = o (t) (det F (~))-1. (6.5) 

We now turn  to the restrictions on these motions implied by the range 
of memory  involved. For  the present, we assume the fluids are ini t ia l ly  
at  rest, 

X(X(t), 3) =X(X( t ) ) ,  3 ~ 0 .  (6.6) 

Some fluids m a y  have a perfect memory  over any  finite t ime interval,  
t ha t  is, the durat ion of memory  T equals the present t ime t. Therefore, 
(4.10) must  hold on [0, t]. Let  tl be some ins tant  in this interval.  By  
arguments  similar to those used for the discussion of isotropic solids 
having perfect memory,  we conclude tha t  C tl (3) is a constant  strain tensor 
field for 3 in [0, tl]. I t  follows tha t  a (t~) is also a constant  field. Since 
tx is arbitrary,  (4.2) must  hold on [0, t]. Again allowing at  most  a constant  
body force field g, we are led to the conclusion tha t  in (4.10) 

i~ (~) = O, "b (z) = g. (6.7) 

These restrictions, along with 

x (x (t), t) = x (t), (6 . s )  

imply tha t  (4.10) must  have the form 

i 
x ( x ( t ) ,  T) = I1 - -  ( t - -  T) ]?~]x( t )  @ g ~ -  (v ~ -  t ~) @ e ( 3 - -  t), (6.9) 

where F~ is a constant  tensor. F~ represents a uniform velocity gradient  
at  t ime t. F rom (6.9) we find tha t  the initial velocity gradient  field is 
F~ [1 -- t F~] -~. Since in some compressible fluids the motion mus t  begin 
continuously, we require t ha t  this field vanish. As (6.9) is not  defined 
at  T = 0 if [1 --  t F1] -1 - :  0, we conclude tha t  F~ = 0. 

Theorem 5. Le t  g be a constant  body force field. Le t  the class of materials 
considered be simple fluids having perfect memory  on [0, t]. In  addition, 
let (6.6) hold for ~ ~< 0. Then a continuous motion is controllable at  t ime t 
in materials of this class if  and only if it  is uniformly accelerated motion,  
t ha t  is, (2.1) has the form 

x (x (t), ~) = x (t) + g ( ~ - ) .  (6.10) 

We now consider fluids having finite memory  of durat ion T. The 
determinat ion of the controllable motions for this case is similar to t ha t  
for the corresponding isotropie solid except t ha t  the appropriate reference 
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configuration is always the  current configuration. Le t  t be the present  
t ime and t 2 be an earlier t ime at  which the mot ion first becomes con- 
trollable. There will be no loss in generali ty if  t2 is in [t --  T,  t]. By the  
same a rgument  as was used for isotropic solids wi th  finite memory,  we 
conclude t h a t  the  controllable motions will be nonrigid and continuous 
if  and  only if  4 > T .  Fur thermore ,  for 3 in [0, t 1 -  T] the  mot ion is 
arbi t rary,  while for 3 in [4 - -  T ,  t2], (6.2) implies the form 

x (x (4), 3) = ~ (3) x (4) + b (3). (6.11) 

Since the motion is to be controllable at  all t imes greater t h a n  t~, we 
conclude tha t  it must  have form (4.10) on the extended interval  [4 --  T, t], 
while (4.2) holds on [4, t]. Assuming tha t  the body force field is constant ,  
this last  condition implies t ha t  x [x (t), 3] has the  form (6.9) on [4, t]. 

The following theorem combines these results. 

Theorem 6. Le t  g be a constant  body force field and (6.6) hold for v ~ 0. 
Le t  the  class of materials considered consist of simple fluids having finite 
memory  of dura t ion  T. A mot ion will become controllable at  t ime t 2 < t 
and  be nonrigid in materials of this class if and only if (i) t~ > T and  (ii) 
the motion has the s tructure 

x [x (t), 3] . . .  a rbi t rary  and continuous, 0 ~ 3 ~ 4 -- T, 

= F ( ' v )  x ( t ) + b ( v ) ,  det F(3)  * 0, t 2 -  T ~ T  ~ 4 ,  (6.12) 

----- (1 --  (t --  3) F1) X (t) "~- g (T), det [1 -- (t --  3) F1] ~: 0, t2 ~ 3 ~ t, 

where F1 is a constant  tensor and g (~) represents uniformly accelerated 
rigid motion.  The corresponding densi ty var ia t ion on [4, t] is 

(v) -~ Q (t) det [1 --  (t --  ~) F1] -~. (6.13) 

This last  result follows from (6.5) and (6.12). 
The discussion for fluids wi th  fading memory  is also analogous to 

t h a t  for solids. An analysis leads to the conclusion t h a t  both  (4.2) and 
(4.10) hold on the  interval  (-- o9, t]. The controllable motion then  has 
form (6.9) on this interval.  In  order t ha t  this mot ion be defined it is 
necessary t h a t  for ~ in (-- ~ ,  t]. 

d e t [ 1 - - ( t - -  3) F 1 ] =  1 Jr ( 3 - - t )  t r F  1-]- ( 3 - t )  ~ [(trF~) 2 - t r F 1  ~ ] +  2 

-k (3 =- t) 3 det F~ :~ 0. (6.14) 

This is possible only if the set of proper numbers  1/(~ -- t) of F~ consists 
of 0 and two complex numbers,  or 0, 0 and 0 3. The first possibility requires 
t ha t  det  F~--~ 0 and  (tr F~) ~ ~ 2 [(trF~) ~ -  t r  F12]. However,  it  ibllows 
from (6.13) and  (6.14) t h a t  as 3 --~ --  ~ ,  ~o -~ 0, which is no t  physical ly 
meaningful.  The second possibility requires t ha t  t r  Fi ----- t r  F~ 2 = det  Fx ~- 
: 0, in which case dot [1 -- (t --  ~) F1] = 1 and  0 (3) = ~ (t). An example 
of such a mot ion is s teady simple shearing flow. 

2 See [3, w 28]. 
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Theorem 7. Let g be a constant body force field and the simple fluid have 
fading memory. A necessary and sufficient condition that  a motion be 
controllable in fluids of this class is that  it have the form (6.9) on the 
interval (-- o% t] and be isochoric. 

7. A n i s o t r o p i c  S imple  Sol ids  

The results obtained in Section 5 for isotropic simple solids can be 
readily extended to include transversely isotropic solids and solids be- 
longing to one of the crystal classes. 

By  means of the polar decomposition theorem of algebra [9, w 83], 
the nonsingular deformation gradient F (t) defined in Section 2 can be 
decomposed into the product of an orthogonal transformation R (t) and 
positive definite symmetric matrices U (t), V (t) as follows, 

F (t) = R (t) U (t) = V (t) R (t) 

R (t) R ~  (t) = 1, (7 .1)  

U (t) = V ( t ) z  V (t) - -  V ( t )z .  

R represents the rigid rotation of the neighborhood of a particle at time t 
relative to its position in the reference configuration. U (t), V (t) represent 
pure deformations. 

The constitutive equation (2.2), when subjected to the restrictions of 
the Principle of Material Indifference, reduces to the form 

(t) = R ~ [R T C t ('c) R; R T B - 1 R ]  R T (7.2) 
~ = t - - T  

where R = R (t). We will use the notation 

C t (T) = 1~ T (~t (3) R, B -- R T B -1 R. (7.3) 

The symmetry properties for any simple solid are defined by  a group 
of orthogonM transformations {H}, called a material symmetry group. 
For example, for transversely isotropic materials, the group consists of 
rotations in a plane and possibly a reflection about an axis perpendicular 
to or lying in the plane. The material symmetry property for a given 
material implies that  the response functional ~ satisfies the condition 

t t 

~; [ H C  t (3) l iT;  H B  H y] = tI~: [(?-t (~:); B] H ~ (7.4) 
v = t - - T  v = t - - T  

identically in ~t (7) and B for each transformation It in the group {H} 
of symmetry transformations. A response functional satisfying (7.4) is 
said to be form-invariant under the transformations of the symmetry 
group {H}. 

The theory of representations for form invariant response funetionals 
has been developed by  RIvLIsr and his co-workers. In the present section 
we will state and use the form of the constitutive equation for a given 
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anisotropic material which is most convenient for our purposes. In  the 
next section we shall indicate its derivation. 

For transversely isotropic materials and materials of the cubic, 
tetragonal and hexagonal systems, there is no loss in generality if the 
response functional is written in the form 

t 

~;=q~(t) l +~(2) B-t-9)  (a) B ~ -  f ~ t ( 3 )  0 ( t - - 3 ) d r +  

t - - T  

(7.5) 

where 0 is a scalar function of t -  3. The tensor I~ depends on certain 
combinations of B and ~t (3) which are appropriate only to the specific 
symmetry group under consideration. ~(~) depends on the invariants 
(2.8), (2.9) and other scalar invariants appropriate to the given group. 
Substituting (7.5) into (7.2) and using (7.1) and (7.3) we see that  the con- 
stitutive equation for a typical material having one of the above-men- 
tioned symmetries has the form 

t 

r247 f C t(v) 0 ( t _ 3 ) d ~ +  
t - - T  

+ R (t) ~ R~  (t). (7.6) 

In order to determine the controllable motions for simple solids having 
the above mentioned symmetries, the system of equations (3.1) and (7.6) 
must be satisfied identically, independently of the nature of the material 
functions ~0(0, ~(2) ~(a), 0, and those contained in 6. As in Section 4, the 
application of this restriction to the system (3.1), (7.6) leads to a new 
system of equations among which are (4.2) and (4.3)--(4.5). We can thus 
now apply precisely the same analysis as was used for isotropic solids. 
Since the only controllable motions will be homogeneous motions, the 
equations in the above system arising from the terms R (t)I~ R T (t) will 
be identically satisfied. Thus, all the results of Section 5 apply to materials 
having transverse isotropy, or belonging to the cubic, tetragonal or 
hexagonal systems. 

For materials of the triclinic, monoclinc, and rhombic systems, the 
possible response flmctionals are written most usefully in the form 

----- qo 1 + ~;* (7.7) 

where ~* represents terms depending on certain combinations of B and 
~t (3) which are appropriate to the specific symmetry group under con- 
sideration. ~v is a scalar material function in which the components B~j 
or their squares (Btj)  2 appear as arguments. ~v also depends on the com- 
ponents ~t~j (3) or their squares [~t~j (3)]2 by means of a combination 
of the funetionals 

Acta  BIech. V I I ] l  8 
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t 

o~ij(1) = f Ct/j (~) w~3.(~) (t --  ~) d T, 

t - - T  
t t 

= f f (7.8) 
t - - T  t - - T  

appropriate to the group considered. 
Proceeding as before, we find tha t  a motiou will be controllable only if 

~ -  ~ ~%- (~) 
~x~ (t) -- 0, ~xlc (t) -- 0. (7.9) 

We note from (7.1) and (7.3) t ha t  B = (~-1= F-1 (F-1)T. (7.9)1 now 
implies t ha t  the r ight  CAveI~u strain tensor C = F T F is a constant  
tensor field with respect to the reference configuration, i. e., 

~x~ ~x~ ~ V ~  ~x~ ) =  o. (7.10) 

(7.10) implies t ha t  (4.9) holds, i .e . ,  the deformation field at  t ime t is 
homogeneous. (4.9) and (7.1) now imply tha t  the rotat ion field R (t) is 
also constant .  By  (7.3) and (7.9)~, C t (v) must  also be a constant  tensor 
field. We conclude, a t  last, t h a t  (4.11) must  hold; the controllable motions 
mus t  be homogeneous. I t  is easy to see now tha t  the results of Section 5 
now apply to materials of the triclinic, monoclinic and rhombic systems. 

8. Representations of Response Functionals 
In  this section we will summarize the method  of constructing repre- 

sentat ions for response functionals ~: which are form-invariant  under  the 
t ransformat ions  of an arbi t rary  material  symmet ry  group. The general 
forms (7.5) and (7.7) will then  be verified. 

Associated with each symmet ry  group is a finite set of basic tensors, 
nO), . . . ,  a(n), of orders r ( 1 ) , . . . ,  r (n), respectively, called the anisotropic 
tensors [10] for t ha t  group. Each tensor or(v) has the proper ty  t ha t  its 
components are unal tered by the t ransformations of the symmet ry  
group i. e., 

(P) . a (p) ( 8.1 ) (x i l i2"  " " i t ( p )  ~ H i l ] l  H i ~ Y 2  " " H i r ( p )  Jr(p) Yf i2"  " " Jr(p) 

for each t ransformat ion H of the symmet ry  group {H}. I f  I{' is an or- 
thogonal  t ransformat ion not  in {H}, then (8.1) fails to hold for at  least 
one of the anisotropic tensors r a(n). For  example, for the full  
isotropy group, the set of anisotropic tensors consists solely of the 
KROIV~C~EI~ delta, ~y. 

The pr imary  use of anisotropic tensors is in the construction of certain 
basic scalar invariants  and  basic form-invariant  tensor-valued functions 
in terms of which ~: will be expressed. In  [11], PIVKIlV and RIVLI~ illus- 
t ra ted  the use of the anisotropic tensors for the special case in which the  
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response functionals reduce to polynomials of, say, B -1 and a finite number 
of vectors. G ~ E ~  and RIvLI~ [12] used essentially this technique in 
obtaining the representation for response funetionals for isotropic materials 
which depend on a single second order tensor history (~t (~). 

The first step in developing the representation for ~ is to construct 
a set of basic scalar invariants. Each scalar invariant has the form 

I [• (~1), . . . ,  (~-~ (Vm); B; a (1) . . . . .  a(n)] = I [~t (re); B] 

= % h  . . .  l p J e . . ,  irks Ct~lj, (~1). �9 �9 B~pJe. �9 �9 ( ~ ) ,  (8.2) 

where aqh . . .  ir~s is an outer product formed from e(1), . . . ,  a(n). 

A complete set of basic scalar invariants, denoted by  I, is constructed 
by  using all possible combinations of a(~), . . . ,  r n) and B, l~t ( ~ ) , . . . ,  

e t (Tin) in (8.2) and then eliminating.those invariants which can be shown 
to be redundant. Each such invaria~t is considered a function of 
~t . . . .  , ~m and satisfies the following invariance condition for each trans- 
formation It of the material symmetry group {H}, 

I [~t (re); B] = I [ H g  t (re) HT; H g HT]. (8.3) 

In a similar fashion one constructs a set of basic form-invariant tensor- 
valued functions. Each has the form 

pij(,') [~-t ( ' 1 ) , . . . , ~ t  ('t'm); B; nO-) . . . .  , a(n)] = p,j(,,) [Ct (.re); g ]  = 

- . .  - t . .  . . . -  -0~,,~, ( , ~ )  (8.4) 
- -  a i J t l ]  1 �9 �9 �9 i p j q  �9 �9 �9 ~ r * s  C ~,131 (T1) B i p j q  �9 �9 �9 

where ~ . i j q h . . .  iri s is an outer product of = 0 ) . . . ,  a(n) in some order. 
P(~) is to be considered a function of ~ , . . . ,  ~m. Each tensor-vMued 
function (8.4) satisfies a condition similar to (7.4), 

p(~) [It r (~ )  l t~;  tI ~ t t ~ ]  =RI ' (~ )  [~t (~e); B I R d .  (8.5) 

For this reason the set formed by  eliminating redundancies of form (8.4) 
is called a set of basic form invariant tensors. 

WIxEsIAX and P , e m ~  [13] have shown that  any form-invariant 
response functional can be represented in a certain canonical form in 
terms of the basic scalar invariants I and the basic form invariant tensors 
p(0. Representations of g having this form and which are of most use 
for our present purposes are given by  

N t 

Z = Z Qp(v) V(v) [g]  _~ f l  0(v+l) (t - -  T; J)  ~)(v+l) [C~ (~.); B]  d~" -Jl- 
a ]  

~,=1 t - -  T 

t 

+...+flfl...flO(")[t--T1 .... , t - -  T,; I ] . ( . )  �9 (8.6) 
J , J  ! .  

t - ~  T 

�9 ~ t  ( % . . . , ~ t  (,~); B ]  4 , , . . .  g,~ 

8* 
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where tensors P(~), v = 1.2 . . . .  , N, are independent of ~t (r). 0(~+1>, 
. . . ,  0 (~) are material scalar functions of Vl , . . . ,  v~. They can also be 
taken as functions of multiple integrals of the scalar invariants I. I t  is 
readily verified that  (8.6), with (8.3) and (8.5) satisfies (7.4). 

The anisotropic tensors for 31 of the 32 crystal classes are derived 
in [14]. The anisotropic tensors for the remaining class, the gyroidM class 
of the cubic system, have not been determined. 

Cubic System 

For each crystal class of the cubic system, except the gyroidal class, 
the corresponding set of anisotropic tensors contains the KRONECKEa 
delta, d~j. The forms of the invariants for a single symmetric tenser and 
a vector which have been calculated for the gyroidal class listed in [15] 
are such that  it appears that  61j will be one of the anisotropic tensors for 
the class. We will assume this is so. The remaining anisotropic tensors 
in the set serve to distinguish the given crystal class from all the others. 

From (8.2) and the fact that  dtj is an anisotropic tensor, we see that  
the basic scalar invariants for each crystal class of the cubic system 
contains as a subset the invariants (2.8), and the kernel Ctij (v) of (2.9). 
Furthermore, from (8.4) we see that  among the basic form invariant 
tensors P(") are 

p(1) = 1, p(~) = B,  p(3) = B2, p ( , + l )  = e-t (r) .  (8 .7)  

By (8.6), (8.7) and the preceding remarks, it follows that  possible response 
functionals for materials of the cubic system have the form (7.5). 

Materials of the Tetragonal System, Hexagonal System and Having 
Transverse Isotropy. 

The anisotropic tensors for transversely isotropic materiMs are [10], 

63~, ~j' : dl~ dlj + 62~ 32j. (8.8) 

The anisotropie tensors for each class of the tetragonal and hexagonal 
systems contains among them ~-i~" and either 63g or ~a/ ~3]- The condition 
that  d3~: or ds~ 63j. satisfy (8.1) restricts the transformations H of the 
symmetry group to rotations in a plane and certain reflections. The 
condition that eli satisfy (8.1) gives no further restrictions on the trans- 
formations. Thus, there is no loss in generality if ~3" is replaced by 
~i~' @ ~a~ ~a] = ~j. By  the same discussion as was used for the cubic 
system, we see that  possible response funetionMs the present classes of 
materials also have the form (7.5). 

Triclinic, Monoclinie, and Rhombic Systems 

For each crystal class in these systems, the set of anisotropic tensors 
contains ei(~) = (}li o r  ~ i j ( l l )  : d l i  61j, gi(2) : d2 i o r  o:i] (e2) : d2i d2], ~i(3) = 
= ~3~ or o~ii(~3) = d3~ da~" and possibly other products of this form. In each 
case, upon substituting these tensors into (8.2) in all possible combinations, 



Controllable Motions of Compressible Simple Materials 117 

it is found t h a t  each componen t  B~j, Cij t (T) or the  form B~j. 1}ij, 

Ctpq (T1)Ctpq (re) (no s u m m a t i o n  intended) is one of the  basic scalar  
invar iants .  Similarly,  i t  is found t h a t  upon  subs t i tu t ing  these tenscrs  into 
(8.4) in all possible combinat ions ,  the  set of  basic fo rm- inva r i an t  tensors  
contains,  among  others,  

p ( 1 )  = a ( n ) ,  p (~ )  = r p(3)  = r 

Since these fo rm inva r i an t  tensors  are fo rmed  as outer  p roduc t s  of 
anisotropic  tensors,  t hey  au toma t i ca l ly  sat isfy (8.1). ct(22) and  ~(33) sa t i s fy  
(8.1) only for or thogonal  t r ans fo rma t ions  whose mat r ices  have  c o m p o n e n t s  
H i ~ = 0 ,  i * j  and  Hi~---- :~ 1, i - ~ j .  The  condit ion t h a t  r n) m u s t  
sabisfy (8.1) yields no fu r the r  restr ic t ions on the  t rans format ions .  Thus ,  
there  is no loss in genera l i ty  if  p(1) = ~(u) is replaced b y  p(1) _ 1, which  
satisfies (8.1) for all o r thogona l  t r ans format ions .  

I n  view of these remarks ,  we see t h a t  the  response funct ionals  for  
mater ia l s  of  the  trielinie, monocl inic  and  rhombic  sys tems  c~n a lways  
be wr i t t en  in the  fo rm (7.7). 
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