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Summary — Zusammentassung

On the Approximate Determination of Natural Frequencies and Modes of Cantilever
Beams. The free oscillations of cantilever beams of variable cross-section are con-
sidered. By lumping the mass properties of the beam at discrete points, approximate
modes and upper and lower bounds to approximate natural frequencies are obtained
essentially by a simple iteration scheme. Both EuLEr-BERNOULLL and TIMOSHENEO
beams are considered. Example problems are exhibited and compared to known
results.

Zur niherungsweisen Ermittlung der Eigenfrequenzen und Schwingungsformen
von Kragtrigern. Die freien Schwingungen von einseitig eingespannten Trigern
mit variablen Querschnitt werden betrachtet. Durch Zusammenziehung der Masse
auf diskrete Punkte werden — im wesentlichen durch ein einfaches Iterations-
schema — Néherungen fiir die Schwingungsformen und fiir die oberen und unteren
Grenzen der Eigenfrequenzen gefunden. Sowohl EuLer-BeErRNoOULLI als auch
TrmosHENKO-Tréger werden betrachtet. Anhand von Beispielen wird der Vergleich
mit bekannten Resultaten gezogen.

Introduetion

The idea of determining the natural frequencies of beams by lumping
the beam properties at various points is hardly new. What we propose
here is a procedure for the analysis of the free vibrations of beams based
upon the complementary variational principle which yields an algorithm
particularly suited to modern digital computation. Such a complementary
formulation of the problem has been suggested by Pracer [1] although
from a different point view. GaiNEs and VorTErRrRA [2, 3] have worked
on the continuous problem along lines similar to those followed by PRAGER,
but in addition they have obtained lower bounds to beam frequencies
through use of a technique due to Tricomr [4]. The algorithm which we
propose utilizes ideas from all these previous papers.

Euler-Bernoulli Beams

We begin by considering sections of the beam, Fig. 1, of equal
mass, m. Let us suppose there are n such sections. Then we consider the
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following positions along the beam: 0, ', z,, . . ., ,’. The positions are
defined such that the mass from x';—1 to z;” is m. Thus

xi':f (ydAlg)dx =im t=1,2,...mn,
0

zn = L.

—

Fig. 1. Beam Configuration

We now represent the entire mass of a section by a point mass. We
will have complete freedom in our algorithm concerning the position of
the mass. In this paper we locate it at the center of mass of the section
the position of which we denote by x;:

,
Z;

xz-:[ f (yA/g)xdx]/m 1=1,2,..., n. (2)

- —>nl
R
— >

|

Fig. 2. Evrer-BERNOULLI Beam, Free Body Diagram

We denote the impulse between the beam and the mass m at x; by 7;
(see Fig. 2). The kinetic energy of the system, 7', is then [5]:

n

5 (1/m) 2 (3)



On the Approximate Determination of Natural Frequencies 111

The potential coenergy of the system, V*, is obtained from

L

VE— 4 f [MET] d, 4)
0

where M (x) is the bending moment distribution in the beam. In the
present problem it is easier to write first M (£) where £ is defined in Fig. 1.

+ o1 (EF g — LYU (E+ 291 — L) . ...
+r(E+ar— LYU (£ + 2 — L),
where U is Heaviside’s unit function:
U@)=0xz <0,
= lax = 0.

But since & + x = L, we have

(Note that U (x; — ) is 1 from z = 0 to z = x;, and is 0 for = > x;.)
From (4) and (5) we obtain

L n

. 2
V*:?f (I/EI)[ 2 ri(xi—x)U(xi—x)] dzx. (6)
0 i=1
From (6) it is clear that V* is a quadratic form in the variables 7;. Thus

we examine

2 T*

b’;'i D;'j

L
:f(I/EI)(xi——x)(acj—x)U(xi—x)U(xj—x)dx,
0

or setting this equal to 4y = Ay,
o
Ay = f (YET) (2 — @) (v — #) dw, @ = min (25, 25).  (7)
0

And we have then

VE=2 X X Ayt (8)
=1

2 j=1
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Equations of Motion

The equations of motion, or more properly, the equations of compati-
bility, are obtained from the complementary equations [5]:

d (dL* dL* .
W(bﬁ)_ Y =0 z:l,2,...,n, (9)
L*¥=T — V=
Thus from (3), (8), and (9) we obtain the system of equations:
n
Y Aij iy + (1fm) ry = 0, i=1,2 ... n (10)
i=1

or in matrix notation:
[A]7 + (1jm)r = 0.
For the case of free oscillations, we set
ri = Ry sin (pt).
And thus (10) becomes

Y Ay By = (1fm p?) Ry, (11)
i=1

or
[A] R = (1/m p*) B

We note at this point that in formulating our problem in the above

manner, we will always obtain an ordinary eigenvalue problem rather
than a generalized eigenvalue problem

[A]1 B = (1/p®) [B] B

which one would expect. We will also arrange for this when we come to
include TimMosHENKO effects in our analysis.

Natural Frequencies and Modes

We have reduced the problem of determining the lowest natural
frequencies of the beam to that of finding the eigenvalues of the matrix [4].
To obtain upper bounds on the frequencies represented by [4] (from this
point on we shall distinguish between the frequencies of [4] and the beam
frequencies), we form a complementary RaviEicH quotient, ¢*, [6]. In
the present case we have

Q* :[ é Rﬁ/m:V_" é Ay By R]-]. (12)

i=1 i=1 j=1
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In (12) if R is the k-th eigenvector of [4], then @* will equal p;2 If R
is an approximation to the lowest eigenvector, ¢* will give an upper
bound on p,2%, the square of the lowest natural frequency.

The usual procedure one follows once (12) is obtained is to apply the
Ravrreige-RiTz technique. However, the eigenvalues of [A] are essen-
tially 1/p2. Thus the largest eigenvalue of [A] corresponds to the lowest
natural frequency. Thug rather than employ a Ravrrreu-RiTz procedure
to obtain the eigenvalues, we establish an iteration scheme:

[4] Re = Re+L. (13)

It is well known that (13) will converge to the mode which corresponds
to the highest eigenvalue (hence the lowest natural frequency). With (13),
we write (12)

n n
@ =[ X (Rapim 3 (R ke, (14)
i=1 i=1

Once the lowest mode is determined to a desired accuracy (the simplest
method of which is to set some tolerance on the difference of @* from
one iteration to the next) we sweep out the lowest mode from consideration
of the R space and proceed to determine the second mode, ete. Suppose
that the first modes determined are S, S,, ..., Sy (A <n). Then our
revised iteration scheme is

[4] Rt = Ta+1,
A
Retl = Tatl — Z (Tatt . 88 - 8i) S,

i=1

(15)

where - denotes the scalar or inner product. The iteration (15) will now
converge to Spi1.

Another advantage of formulating our problem in terms of the
matrix [4] is that we can easily determine lower bounds to the computed
frequencies (if not the actual beam frequencies). Suppose that the eigen-
values of [A] are 73 and the corresponding normalized eigenvectors are
@i¥ (the ¢-th component of the k-th vector). Then

n n
Y Ai o = ek, Y @i @it = S

j=1 i=1

One can easily show that since the vectors ¢# are complete ([A] is real
and symmetric) 44 has the expansion

n

A=Y ¢ o
k=1

and further
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2 2 A= Z 7> (16)

i=1 j=1 i=1
In our particular case, we have by (11)
n n n
m: Y N A=Yy (Lp)t (17)
i=1 j=1 i=1

Suppose now that we have computed the following upper bounds to
the frequencies of [4]:

ﬁl = Py, f’z ZPas e ﬁh = pr, b <.
Then if we set
n n h
Afppyt =m2 Yy ¥ Ay =Y (1) (18)
i=1 j=1 1=

i=ig
and compare to (17), we see that

pi < Py (19)

Timoshenko Effeects

We have dealt with the EULER-BERNOULLI beam in great detail in
the above. We will now see that the TimosEENKO effects, that is the effects
of rotary inertia and shear deformation, can be included in the above
scheme with comparative ease. '

In addition to locating discrete mass elements on the beam as shown
in Tig. 2, we now consider sections of equal inertia. Thus we define
positions ;' and y; by

2

Yi L

f (v Ig) dz = (ijn) f (v Ijg)dw =i, (20)
0 0

where I = I (x) is the moment of inertia of the section and # is a param-
ster, defined by (20), which plays a role analogous to that played by m
in (1). Thus

yi,

vi=| [ wlozden]. 21)

5‘/12»1'

The position y; might be termed the center of inertia of the section
between y';—1 and ;.

At the positions y; along the beam we consider to be placed discrete
(pure) rotary inertia elements. We think of these as ideal elements which
are defined only by an angular impulse—angular velocity relation without
any associated (linear) impulse—velocity relation.
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We consider now a free body diagram of our system, Fig. 3. At each
point x; we place a mass, m. The reaction between m and the beam is r;.
At each point y; we place an inertia 7. The reaction between n and the

beam is denoted by o;, a pure couple. Thus we can write the moment
and shear distributions in the beam:

M@ =Y [6:U (g — 2) — 71 (@5 — 2) U (2 — )],
i=1

- (22)
Q@) =Y [r U (w — 2)].

t=1

Xn

Ly, o O o

Yo

Fig. 3. TimosHENEO Beam, Free Body Diagram

The functions 7' and V* [7] are now given by

=1

7 =[wm X et am g o),
i=1

i (23)

L
V*:;[ f (1/E1)M2dx+of (l/kAG)dex].

0

For the sake of future convenience, we scale and rename the variables
o; and the distances y;:

6 =aLrin Y= Ty, (24)
where a is chosen so that

1
ai? Tiyn®

= Tm thus @ = (y/m)% /L.

Thus we now have (22) as

2n

M (z) = — Zh(mi—x)U(xi—x)—l—aL Z ri U (x; — ),
i=1 i=n+1

8*
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i=1
and thus we obtain (23) '

2n
T =g (Um) Y

=1
2n 20 (25)

V* = Z Z Aiji’ﬂ"'j,

i=1 j=1

L

A@-j:f (@ —2) (wi—2) | Bl - 1k AGldz i<n j<n
0

:—aLf[(xi—x)/EI]dx i<n  j>n

* . (26)
:—aLf[(x]-—-x)/EI]dx >N j<n

0
:(a,L)2f(l/EI)dx i=n  j>n

0

where x; = min (x;, 2;).
By (9), where # is replaced by 2 n, we now obtain the system equations
for free oscillations

[A] B = (1/m p*) E.

The matrix [A4] is the 2 #» dimensional matrix from (26) which now includes
corrections for rotary inertia and shear deformation. We can now apply
the same computational scheme as developed for the EULER-BERNOULLI
beam. We note that in doing so, the first » elements of R represent the
point impulses #; and the last » the angular impulses g;.

In the determination of the modes of the TiMOSHENKG beam, we will
obtain, directly, approximations to the shear distribution @ (x) and the
moment distribution M (x) from (22). In order to obtain the deflection
distribution Y (z) and the bending slope distribution u (), we note

(see [7])
i~
P = (%) o.

Thus from a knowledge of the »; and the oy, the deflection and bending
slope modes can be plotted directly.

(27)



We consider now two examples to illustrate the use of the above theory:
a uniform TiMosHENKO beam and a truncated wedge. In the first case
we compare our eigenvalues and eigenfunctions to the exact results
obtained by Huawna {8, 9]. In the second case, we compare our frequencies
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Examples

to those obtained by VoLTERRA and GAINES [2].
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Fig. 5. Bending Moment and Shear Distributions, Mode 2
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Example 1: Uniform Beam. We have chosen a beam with the following
characteristics:

L
2

1
(I|AL¥E = (EIjkAGL2)% = 0.03.

In the approximate analysis, we have used ten subdivisions. A comparison
of the eigenvalues obtained by the approximate method and the exact
values is shown below:

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Approximate (b) 3.509 21.580 58.471 109.326 170.596
Exact 3.501 21.421 57.874 108.224 169.647
% Error 0.23 0.78 1.03 1.02 0.56

where b2 = (y AL p?/E 1 g).
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Fig. 6. Bending Moment and Shear Distributions, Mode 3

The moment and shear diagrams are compared for the first three
modes in Figs. 4, 5, and 6.

Example 2: Truncated Wedge. We consider now a beam of rectangular
cross section with a constant width. The height of the beam varies uni-
formly from H, at the fixed end to H, at the free end. In order to compare
to the results obtained by VoLrErRRA and GAINES, we have chosen the
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following values to describe the beam:
HH,=05  L/H,=30, E/G=26 k=0833.

We use ten descrete masses and ten discrete inertia elements to describe
the beam. The natural frequencies of VOLTERRA and GAINES are compared
to the approximate values for the first three modes:

Mode 1 Mode 2 Mode 3

Approximate (c) 3.588 14.112 29.623
VoLTERRA and GAINES (c¢) 3.568 13.538 26.300

where ¢2 = (y 4, LA p?/E I, g), and 4, and I, are the area and moment
of inertia at the fixed end.

In the above, we have reported only the approximate upper bounds.
The reason for this is that our lower bounds are a measure only of the
accuracy of the approximate computation. And since the approximate
frequencies may be different from the actual frequencies, the approximate
lower bounds may, for example, be higher than the actual frequencies.

Conclusions

The virtues of the above method are twofold. First it can be applied
to arbitrarily shaped beams. In practice, one may well encounter beams
which are non-uniform in shape. Thus tables of natural frequencies of
beams are of limited utility. Second, the method we propose can be
changed from » subdivisions to any other number of subdivisions with
a minimum of difficulty in the cases in which the A4;; can be evaluated
in terms of anti-derivatives.
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