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Summary -- Zusammen~assung 

On the Approximate Determination of Natural Frequencies and Modes of Cantilever 
Beams. The free oscilIations of car~tilever beams of variable cross-section are con- 
sidered. By lumping the mass properbies of the beam at discrete points, approximate 
modes and upper and lower bounds to approximate natural frequencies are obtained 
essentially by a simple iteration scheme. Both EVLER-BER~COU~LI and TIMOSEENKO 
beams are considered. Example problems are exhibited and compared to known 
results. 

Zur n[iherungsweiscn ]~rmitflung der Eigenfrequenzen und Schwingungsformen 
yon Kragtriigern. Die freien Schwirlgunger~ vor~ einseitig eingespannten Tr/igern 
mit variablen Querschnitt werden betrachtet. Dutch Zusammenziehung der Masse 
auf diskrete Punkte werden -- im wesentlichen dutch ein einfaches Iterations- 
schema -- N/iherungen fiir die Schwingungsformen und fiir die oberen and unteren 
Grenzen der Eigenfrequenzen gefunden. Sowohl E~ER-BER~COVLLI als auch 
TI~OS~IENKo-Tr/~ger werden betrachtet. Anhand von Beispielen wird der Vergleich 
mit bekannten Resultaten gezogen. 

Introduction 
The idea of de te rmin ing  the  na tu ra l  frequencies of  beams  b y  lumping  

the  b e a m  proper t ies  a t  var ious  points  is ha rd ly  new. W h a t  we propose  
here is a procedure  for the  analysis  of  the  free v ib ra t ions  of  beams  based  
upon  the  c o m p l e m e n t a r y  var ia t iona l  pr inciple  which yields an a lgor i thm 
par t i cu la r ly  sui ted to  m ode rn  digital  computa t ion .  Such a c o m p l e m e n t a r y  
fo rmu la t i on  of  the  p rob lem has  been suggested b y  PRAGER [1] a l though  
f rom a different po in t  view. GAINES and  VOLTEI~A [2, 3] have  worked  
on the  cont inuous  p rob lem along lines s imilar  to those  followed b y  PRAG~R, 
bu t  ir~ addi t ion  t h e y  h a v e  ob ta ined  lower bounds  to  b e a m  frequencies 
t h rough  use of  a technique  due to TI~ICOMI [4]. The  a lgor i thm which we 
propose  utilizes ideas f rom all these previous  papers .  

Euler-Bernoulli Beams 
We begin b y  considering sect ioas of  the  beam,  Fig. 1, of  equal  

mass ,  m. Le t  us suppose there  are n such sections. Then  we consider the  
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following posit ions along the  beam: 0, xl', x2', . . . .  X n ' .  The posit ions are 
defined such that  the  mass from x'i-1 to x (  is m. Thus 

X~ s 

/ "  

X / / " "' : (yA/g) d x = i m  i =  1,2 , .  n, 
o J (1) 

X n  t ~ L .  

/ 
J 

L 

Fig. I. Beam Configuration 

We now represent the  entire mass of a section by a point  mass. We 
will have complete freedom in our algorithm concerning the  posit ion of 
the  mass. In this  paper we locate it at the  center of mass of the  section 
the posit ion of which we denote  by  xl: 

Xi 

11 

X n 

X 2 ) 

X l  ), 

ff 
r, r 2 

Fig. 2. EULER-BERiVOIYLLI Beam, Free Body Diagram 

We denote  the  impulse between the  beam and the  mass m at x~ by ri 
(see Fig. 2). The kinetic energy of the  system, T, is then [5]: 

T = �89 (l/m) (3) 
i = 1  
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The potential coenergy of the system, V*, is obtained from 

15 

V* =--21 f [M2 /EI  ] dx,  (4) 

0 

where M (x) is the  bending momen t  dis t r ibut ion in the  beam: In  the  
present  problem it is easier to  wri te  first M (~) where $ is defined in Fig. 1. 

M (~) = in (~ + zn  - -  L)  U (~ + x~ - -  L)  

-~- rn-1 (~ -]- Xn-1 --  L) U ($ + xn-1 --  L) . . . .  

~- ~1 (~ -}- Xl - -  L) U (~ + Xl --  L), 

where U is Heavis ide 's  uni t  funct ion:  

U (x) = O x  < 0, 

= l x ~ O .  

Bu t  since ~ + x = L, we have  

M (x) = ~ ~ (xi - -  x) U (z~ - x). (5) 

i = 1  

(Note t h a t  U ( x i - - x )  is I f rom x----- 0 to x = x i ,  and is 0 for x >  xi.) 
F r o m  (4) and (5) we obta in  

L n 

0 i = 1  

F r o m  (6) it  is clear t h a t  V* is a quadrat ic  form in the  variables }i. Thus  
we examine  

~2 V* 

or set t ing this equal  to  A~. = Aji, 

xk 

A~j = f (UE1)  (xi --  x) (xj --  x) i x ,  

0 

And we have then  

L 

- -  f ( 1 / E I )  (xi - -  x) @i - -  x) U (xi - -  x) U (xj - -  x) dx, 

0 

x~ --~ rain (xi, xj). 

fg 

1 

i = 1  ] = 1  

(7) 

(s)  
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Equations of Motion 
The equations of motion, or more properly, the equations of compati- 

bility, are obtained from the complementary equations [5]: 

d~(~L*l  ~L* - - 0  i : l , 2 , . . . , n ,  
dt [ 5ri } ~r~ (9) 

L* ---- T -  V*. 

Thus from (3), (8), and (9) we obtain the system of equations:  

n 

Aij" rs" ~- (l/m) r~ = 0, i -- 1, 2 , . . . ,  n. (10) 

i = t  

or in matr ix  nota t ion:  

[A]~ + (l/m) r = 0. 

For  the case of free oscillations, we set 

ri ---- R, sin (p t). 

And thus  (10) becomes 

or  

n 

~ At3' R t 

i=1 

= ( l imp  2) Ri, (11) 

[A] R_ = (1~rap2) R_. 

We note at  this point t ha t  in formulat ing our problem in the above 
manner,  we will always obtain an ordinary eigenvalue problem ra ther  
t han  a generalized eigenvalue problem 

[A] _R = (1/p 2) [B] R_ 

which one would expect. We will also arrange for this wheI~ we come to 
include TIMOSHE~KO effects in our analysis. 

Natural Frequencies and Modes 

We have reduced the problem of determining the lowest nat-aral 
frequencies of the beam to tha t  of finding the eigenvalues of the mat r ix  [A]. 
To obtain upper bounds on the frequencies represented by  [A] (from this 
point on we shall disting'~lish between the frequencies of [A ] and the beam 
freqtlencies), we form a complementary RAYLEIGIt quotient,  Q*, [6]. In  
the present case we have 

n n n 

i - - 1  i = 1  ] = 1  
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In (12) if R is the k-th eigenvector of [A], then Q* will equal p~2. I f  _R 
is an approximation to the lowest eigenvector, Q* will give an upper 
bound on pl ~, the square of the lowest natural frequency. 

The usual procedure one follows once (12) is obtained is to apply the 
]:~AYL:EIGI-I-~:~ITZ technique. However, the eigenvalues of [A] are essen- 
tially 1/p ~. Thus the largest eigenvalue of [A] corresponds to the lowest 
natural frequency. Thus rather than employ a RAYL~mg-RITZ procedure 
to obtain the eigenvalues, we establish an iteration scheme: 

[ A J R q  : Rq  +1. (13) 

I t  is well known that  (13) will converge to the mode which corresponds 
to the highest eigenvalue hence the lowest natural frequency). With (13), 
we write (12) 

n n 

Q * = [  Z (Riq)'/m Z (R,q R,q+l) ] .  (14) 
i=l i=l 

Once the lowest mode is determined to a desired accuracy (the simplest 
method of which is to set some tolerance on the difference of Q* from 
one iteration to the next) we sweep out the lowest mode from consideration 
of the R space and proceed to determine the second mode, etc. Suppose 
that  the first modes determined are $1, $2, . . . ,  Sh (h < n). Then our 
revised iteration scheme is 

[A]  R q  = T q+l, 

h 
(15) 

Rq+l = Tq+I - -  ~ (T~+I �9 S_~/S_i �9 S~) S_~, 

i=1 

where �9 denotes the scalar or inner product. The iteration (15) will now 
converge to Sh+l. 

Another advantage of formulating our problem in terms of the 
matrix [A ] is that  we can easily determine lower bounds to the computed 
frequencies (if not the actual beam frequencies). Suppose that  the eigen- 
values of [A] are ~ and the corresponding normalized eigenvectors are 
~ (the i-th component of the ]c-th vector). Then 

n n 
Aij ~ = ~k ~ ,  ~ ~i k ~ = ~kh- 

]=1 i=1 

One can easily show that  since the vectors ~k are complete ([A] is real 
and symmetric) A~j has the expansion 

n 

k= l  
and further 

Acta ~r IX/l-2 8 
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X Z A~'3'2= X zk~" (16) 
i = 1  ] = 1  i = 1  

In our particular case, we have by (11) 

n n n 

mZ Z Z A 'J~= Z (I/p,)L (17) 
i = 1  ] - 1  i = l  

Suppose now that  we have computed the following upper bounds to 
the frequencies of [A]: 

~ >~ p ,  ~ >/p~,..., ~h >~ ph, h ~< n. 

Then if we set 
n n h 

(1/pl)4 = m~ Z Z A'J2-- Z (l/p,) '  (18) 
i = 1  ]=I 4=i 

and compare to (17), we see that 

>J ~ Pi. (19) 

Timoshenko  Effects 

We have dealt with the EVLER-BEI~OUU.I beam in great detail in 
the above. We will now see that  the TIMOSH~KO effects, that  is the effects 
of rotary inertia and shear deformation, can be included in the above 
scheme with comparative ease. 

In  addition to locating discrete mass elements on the beam as shown 
in Fig. 2, we now consider sections of eqnal inertia. Thus we define 
positions y (  and Yi by 

Yt  t IJ 

0 0 

(20) 

where I = I (x) is the moment of inertia of the section and V is a param- 
eter, defined by (20), which plays a role analogous to that  played by m 
in (1). Thus 

y r 

Y l _ l  r 

The position y, might be termed the center of inertia of the section 
between y'~-i and y(.  

At the positions y~ along the beam we consider to be placed discrete 
(pure) rotary inertia elements. We think of these as ideal elements which 
are defined only by an angular impulse--angular velocity relation without 
any associated (linear) impulse--velocity relation. 



On the Approximate Determination of Natural Frequencies 115 

We consider now a free body diagram of our system, Fig. 3. At each 
point x~ we place a mass, m. The reaction between m and the beam is ~i. 
At each point yi we place an inertia 7. The reaction between ~ and the 
beam is denoted by 6t, a pure couple. Thus we can write the moment 
and shear distributions in the beam: 

n 

M ( x ) =  ~ [ a i U ( y i - - x ) - - r i ( x ~ - - x ) U ( x l - - x ) ] ,  
i=1 

~, (22) 

Q (x) = ~ [~l U (x~ - x)]. 

II 

Xn 
X2 

Xl 
) .  

r, r 2 ~ 

) g. 

Fig. 3. TIMOSItE/qKO Beam, Free Body Diagram 

The functions T and V* [7] are now given by 
n 

i = l  i= l  
L L (23) 

v,=}[ f ( 1 / E I )  21/i~ d x  + f 
o o 

For the sake of futv.re convenience, we scale and rename the variables 
ai and the distances Yl: 

ai  = a L r l+n y~ ---- x i+n ,  (24) 

where a is chosen so tha t  
1 

at~ - -  r'+n~ thus a = ( ~ ] / m ) ~ / L .  
m 

Thus we now have (22) as 
n 2n 

M ( x ) = - - -  ~ r l ( x t - - x )  U ( x / - - x ) + a L  ~ r t U ( x l - - x ) ,  
i=1 z=n+l  

S* 
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Q ( x ) =  ~ ~ U ( x i - x )  
i = l  

and thus we obtain (23) 

where 
x k 

2~ 
1 

T = ~ ( 1 / m )  ~2 r~ 2, 
i = l  

2n 2n 

i = 1  j = l  

A i i  = f 
o 

[ ( x j - - x ) ( x ~ - - x ) / E I ~ -  1/k A G] dx i <~ n 

(25) 

j ~ < n  

x/c 

= - - a L l  [ ( x i - - x ) / E I ] d x  i <~n j >  n 

0 % (26) 

= - - a L  f [ ( x j - - - x ) / E I ] d x  i >  n j <~n 

0 
x k 

=(aL)2 f ( 1 / E I )  dx i >  n j >  n 

0 

where xk = min (xi, xj). 
By (9), where n is replaced by 2 n, we now obtain the system equations 

for free oscillations 
[A] R = (1/mp~)R 

The matrix [A] is the 2 n dimensional matrix from (26) which now includes 
corrections for rotary inertia and shear deformation. We can now apply 
the same computationM scheme as developed for the EVLEI~-B~I~NOVLLI 
beam. We note that  in doing so, the first n elements of R represent the 
point impulses ri and the last n the angular impulses ai. 

In the determination of the modes of the TIMOSHENKO beam, we will 
obtain, directly, approximations to the shear distribution Q (x) and the 
moment distribution M (x) from (22). In order to obtain the deflection 
distribution Y (x) and the bending slope distribution ~0 (x), we note 
(see [7]) 

Thus from a knowledge of the ri and the a~, the deflection and beading 
slope modes can be plotted directly. 
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E x a m p l e s  

We consider now two examples to i l lustrate the  use of  the  above theory  : 
a uni form TIMOSHENKO beam and  a t runca ted  wedge. In  the  first case 
we compare  our  eigenvalues and eigenfunctions to the  exact  results 
obta ined  by  HUA~G [8, 9]. In  the  second case, we compare  our  frequencies 
to those obta ined  by  VOLTE~RA a n d  GAINES [2]. 

1.0 

0.8 

0.6 

0.4 

0.2 

s h e a r  force . j ( . ~ . ~  
f e •  L ~ I ~  
/ approx.--'~ - - - -  

L l\ .l l 
bending_ moment  -~ '~ ,_ /exact  

] a p p r ~  I ~ " ~ j ~  

0 0.1 

1st M O D E  

L 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Fig.  4. B e n d i n g  M o m e n t  a n d  Shear  D i s t r i bu t i ons ,  Mode 1 
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0.6 

0.4 

0.2 

-0.2 

-0.4 

-0.6 

- 0 . 8  

Fig.  5. B e n d i n g  M o m e n t  a n d  Shea r  D i s t r i bu t i ons ,  Mode 2 
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Example 1: Uniform Beam. We have chosen a beam with the following 
characteristics: 

1 1 

(SIAL2) ~ = (E ItlcA GL2) ~ ----- 0.03. 

In the approximate analysis, we have used ten subdivisions. A comparison 
of the eigenvalues obtained by the approximate method and the exact 
values is shown below: 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Approximate (b) 3.509 21.580 58.471 109.326 170.596 
Exact  3.501 21.421 57.874 108.224 169.647 
~ Error 0.23 0.78 1.03 1.02 0.56 

where b ~ ~ (~ AL4p~/EI  g). 

1.0 ~ L ~ _ _  ~__I I 

0,8 I~ N , ~ _ _ _ k ~  i 3rd M O D E -  f --.... 
~ LXJ_~ / \ 

o.o ~ , ! k ' .  , L I /  \,\,. 
\%1  I \ l  1 / /  \ ~  

o., t '  I \ I  bencllng._ / , '  F - ' ~ ' ' > '  ~ i  
V I ~ / moment" " / I / ~ \ k  i 
/ I ,1~ exact j i l t /  I /  \ ~ \  

' ! i I approx-. I o= i, I i \ ,  / 7  , 
I 

)I, 
0 1 ~ \ 0.2 0.: \ 0.4 ]1/ 0.6 r---- ~--J 0.8 C 9 ~ 1.0 

'C, \ /~' ', , [ I  
t\ ~ /ii I / 1  ,beD, f__o,<e 

-o.: k \ '. ,~ l /  V ~  "exact 
\~ i [ \  / /  I 1, _.~1 approx. 

, \ \ /  l , ~ - r  , / , J  -0.4 \ (  I \ I I  I 1 
,~ I \11 I !  
;? \  L-]X~ , F7 J 

-o.~ ~ \ \ _ / , '  ~I I / /  
\ ~.._..111 ~_.__--:SJ 

-o.8 I '--- ~---v . . . .  
Fig.  6. B e n d i n g  M o m e n t  a n d  Shear  D i s t r i bu t ions ,  Mode 3 

The moment and shear diagrams are compared for the first three 
modes in Figs. 4, 5, and 6. 

Example 2: Truncated Wedge. We consider now a beam of rectangular 
cross section with a constant width. The height of the beam varies uni- 
formly from H0 at the fixed end to H1 at the free end. In order to compare 
to the results obtained by VOLT~m~A and GAINES, we have chosen the 



On the Approximate Determination of Natural Frequencies 119 

following values to  describe the beam:  

H 1 / H  o : 0.5, L / H  o -~ 3.0, E / G  -~ 2.6, /c ~- 0.833. 

We use ten descrete masses and  ten discrete inertia elements to describe 
the beam. The natura l  frequencies of  VOLTERRA and  GAINES are compared  
to the approximate  values for the  first three modes:  

Mode I Mode 2 Mode 3 

Approx imate  (c) 3.588 14.112 29.623 
VOLTERRA and GAINES (C) 3.568 13.538 26.300 

where c ~ :  ( y A o L 4 p 2 / E I o g ) ,  and  A 0 and I 0 are the area and  momen t  
of  inertia at  the fixed end. 

In  the above, we have  repor ted  only the approximate  upper  bounds. 
The reason for this is t h a t  our lower bounds are a measure only of  the 
accuracy  of  the  approx imate  computa t ion.  And  since the approximate  
frequencies m a y  be different f rom the actual  frequencies, the  approximate  
lower bounds  may,  for example, be higher t han  the actual  frequencies. 

Conclusions 

The vir tues of  the  above me thod  are twofold. Firs t  it can be applied 
to arbi t rar i ly  shaped beams. I n  practice, one m a y  well encounter  beams 
which are non-uni form in shape. Thus tables of na tura l  frequencies of  
beams are of limited utility. Second, the me thod  we propose can be 
changed from n subdivisions to any  other  number  of subdivisions with 
a min imum of difficulty in the cases in which the All can be evaluated  
in terms of  anti-derivatives.  
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