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Summary — Zusammenfassung

On the Oscillations of Statically Indeterminate Beams. The problem of deter-
mining the natural frequencies and modes of a statically indeterminant, TIMOSHENKO
beam is considered. By lumping the beam properties of linear and rotary inertia
at discrete points along the length of the beam and by employing the complementary,
variational principle, an approximate solution is obtained by simple matrix iteration.

Uber die Schwingungen statisch unbestimmter Balken. Das Problem der Be-
stimmung von Eigenfrequenzen und Schwingungsformen eines statisch unbestimmten
TmmosHEENKOtrégers wird behandelt. Durch Zusammenziehung der Trigereigen-
schaften von Masse und Drehmasse an diskreten Punkten entlang des Trigers und
durch Anwendung des komplementdren Variationsprinzips wird eine Néherungs-
l6sung durch einfache Matrizeniteration erreicht.

Introduetion

In a recent paper [1], the problem of determining the natural fre-
quencies and shear and moment modes of a TIMOSHENKO beam of variable
cross section was considered. The properties of linear and rotary inertia
were considered to be lumped at discrete points along the beam. By an
application of the complementary variational principle, the problem of
determining natural frequencies was reduced to a simple matrix iteration.
In addition, straightforward bounds on the computation were derived.

In the present paper, we generalize the method of [1] to cover the
case of statically indeterminant, variable cross section, TIMOSHENKO
beams. We will also consider problems in which the beam is required
to carry point masses or rotary inertia elements. We consider only the
case in which these elements occur at the end of a beam section, but the
generalization to cases in which these elements occur along the length
of the beam will be obvious.

Formulation of the Problem

We begin by considering a general beam element; see Fig. 1. As
in [1] we consider sections of equal mass and equal rotary inertia, defining
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m’zf(wA/g) de = im, yi':fyiw Ijg)dx ~in (1)
where ’ '
L L
m=| [ 4 dzin|, n=| [ &ligdem|.
0 0

Here (y/g) is the mass density, A4 the cross sectional area, and [ the
moment of inertia of the cross section.

As in [1] we consider point masses, m, to be placed at positions, x;,
and point, rotary inertia elements, », to be placed at positions, y;. Here
we also choose x; to be the center of mass of the section from ;' -1 to z;,
and y; is analogously taken to be the center of inertia of the section from

yi'—1 to y;':

X = f (y Alg) x dx/m; y; = f (v I]g) « da[n. (2)
xi’_l yi’—‘l

We now consfruct a free body diagram for the system; Fig. 1. At
the point z;, we label the force between m and the beam by 7;, and at

Xn

_,'9\' o) o)

2

Yn

Fig. 1. Free Body Diagram

the point y; we label the torque reaction between n and the beam by o;.
We then rename the y;
Yi = Titn (3)
and scale and redefine the o;
oi = (n/m)® rica (4)

so that the kinetic energy T'

T = (1/2m) 3, r + (12 9) Y, of

t=1 i=1
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becomes
2n

T = (1/2m) Y, ret (5)

i=1

The potential coenergy, V*, can then be written as
L
vE= 4 f [(MET) + (Q¥k 4 G)] d, (6)
0
where M and @ are the moment and shear distributions in the beam:

M@E)=3 aUly—2)— Y i (z —2) U (z; — 2) —

i=1 i=1
— B (L —2) + 8y (7)
n 2n
=— Y r@— o) U@ — )+ (gm)2 Y U (@ — ) —
i=1 t=n+1

— Ry, (L — ) 4 81,
n
Q@) = Y, 1 U (@ — ) + Ri, (8)
i=1
where U is the Heaviside function
U@ =0 z<0,
=1 x = 0.
Thus inserting (7) and (8) into (6) yields
V* = V* (i), 72, . . ., Fom, Br, S1), (9)

a quadratic form.

Not all the variables in (9) are independent. The conditions of equi-
librium and any geometric constraints must be met before we employ (9)
to obtain system equations. The procedure we follow for various edge
conditions is indicated below:

(a) x = 0, Built In: Here B, = 0, S, + 0. We can assume that these
have been climated by means of equilibrium. If either Bz or §; are non-
zero, these can then be eliminated through CasTicLiaxo’s principle.

(b) z = 0, Pinned: Here R, + 0, 8, = 0. Assume R, has been elimi-
nated by equilibrium. We then eliminated cither Rj or Sr by another
equilibrium condition, presumably a moment sum about x = 0 in order
that R, will not appear. If both By and S; are non-zero, we eliminate
the remaining variable through CASTIGLIANO’S theorem.

(c) z =0, Sliding: Here B, = 0, S, + 0. Assume 8, has been elimi-
nated through one equilibrium condition and eliminate either Bz or S
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through the other equilibrium condition, presumably the sum of the
forces equals zero. If, however, Ry = 0, both equilibrium conditions will
have to actually be employed since one will need to use a moment con-
dition to determine Sz, and this will involve S,.

Once the equilibrium conditions have been met, any remaining reactions
can be determined through CasTicriano’s principle.

(d) & = 0, Free: If « = L is a free end, all end reactions are zero, and,
for example, r, and ¢; can be eliminated through equilibrium. If x = L
is either pinned or sliding, only one interior variable need be eliminated
to satisfy equilibrium. If 2 = L is built in, we have case (a).

Once Ry and Sy have been eliminated we obtain V* from (9) as a
quadratic form:

S
=

1

V= o Ay iy iy (10)

D ¢

I
-
I
—

4 7
By (5) and (10) and the complementary principle
A
6f(T— VR At — 0 S =0 atb &, ¢,
t

we obtain the following system equations:

2n

3 Ay + (m)ri =0

ji=1

and letting r; = R;sin p ¢ we get

2n
Y Ay By = (1)m p?) R (11)
j=1
The equations (11) are the same form as those obtained in [1]. Thus we
may perform an iteration which will converge on the lowest natural
frequency and then vse a sweeping technique in conjunction with iteration
to obtain the higher frequencies. Lower bounds may again be obtained.
Finally as a practical note, we can say from experience that if we
wish to determine m frequencies, we need to use n = 2 m subdivisions
as a minimum. That means the matrix [4] will be 4 m X 4 m.

Examples
To illustrate the above procedure and the degree of accuracy which
can be obtained, we consider several examples.
Example 1: Built-in-Pinned TrmosEENKO Beam. We consider a uniform
beam defined by the following parameters:
b= (y ALt p*|E L g)
vt = (I|AL?) ()
2= (BIlkAGL?).
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For this case we have
m=(y ALng), n=(yIL/nyg),

and the positions x; = y; = Zijtq-

We form M (z) and @ (z) as in (7) and (8) noting that we now have

Sz, = 0. We assume the R, and S, have been eliminated through the

equilibrium conditions. Bz, remains to be eliminated through CAsTIGLIANO’S
principle. The condition is

2V

DRL-_

(b)

Noting that in terms of (a) we have
L

* = (1/2 El)f [M? 4 s2 L2 Q%] dx,

the condition (b) becomes
é [ﬂ 82 (xg/L) — % (x/L)? + % (xi/L)3]/ (82 + —;—) +
+ 7 Z 73 [(xi/L) — % (xi/L)2]/ (32 + %)

i=n+1

(c)

Inserting (c¢) into V*, we obtain [A4] as
0<i<n 0<y<n
Ay = (B w58 Lo iy — g oo+ m a4 | — (L) i)
0<i<n n<j<2n
Ay — Ay — (1EI) rL{xk (xl _%ka — 2w w,-/f}
n<i<2n n<j<2n
Aig = (1EI) (r L) [xx — L ug ws/f]

where
e
uy = (2/L) — ‘;‘ (o L)
wy; = — 82 (/L) — % (w4 L)? + _(li_ (we/L)*.

xx = min (x;, x7).

The particular case of » = 0.02, s = 0.05 for n = 10 and 7 = 20 sub-
divisions was considered, and the first five values of (b) were compared
to the exact values of Huang [2].
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r = 0.02 s = 0.05
Mode Approximate (b) Exact (b)
n =10 n =20
1 14.88392448 14.88667536 14.88754392
2 45.63749790 45.71701574 45.74295800
3 88.39642429 88.98894596 89.17329068
4 139.24242020 140.63797569 141.36942542
5 190.46957588 197.33391953 199.38262717

The first five natural frequencies of the (a) built in-built in, (b) built
in-pinned, and (¢) pinned-pinned, uniform TiMosHENKO beams have been
determined using the technique of this paper. In each case with n = 20,
all frequencies were determined with less than 2.5% error and usually
less than 1.09%, error.

Example 2: We consider a truncated wedge built in at x = 0 and
made to slide at x = L. The width of the wedge is constant, but the height
varies linearly along the length of the beam. The beam carries at x = L

a heavy mass, M,, (see Fig. 2). In this problem, the end moment S, + 0,

Fig. 2. Example 2

and we eliminate it through CastTigLiaNo’s principle. Also Rz =+ 0, but
this is now the impulse on M, and hence becomes a variable in the final
formulation of the problem.

We use the following parameters:

I, ... Moment of inertia at x = 0,
A, . .. Cross sectional area at o — 0,
hg, by . .. Height of beam at z =0, x = L,
M, M, ... Mass of the beam and the heavy block,

o ... hylhg,

B (1= hyjho),
21,2 ... xilL, »/L,

r2 ... I A, L2,

st. .. ElJk Ay GL2,
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@t ... (nfm L3 = r* (1 + hy2hg?) | 2
. (n My M)ve,
Yop+1 - - - (1/8) RL.

The kinetic energy, 7', is

T = (1/2m) Y, v + (1/2n) Y, 02 + (1/2 My) Rp? =
(8)
= (1/2m) Y, r
i=1

The bending moment and shear force distribution are given by

M(x):SL+L[ Zn 2 —2) U (2 —2) +

+a Z 1‘@ —Z —'8;'2n+1(1"“z):|?

t=n+1

Z ry U —z)+ ¢ Ton+1- (b)

The potential coenergy, V*, becomes
1
Ve [(LREL) (0 = f2p 4 s L2 Q2 (1 — fa)ldz =
(c)
0

= P* (ry, o, . . ., ran+1, SL).

The reaction Sy, is eliminated by noting that the slope at the position
x = L is required to be zero. Thus by CASTIGLIANO’S theorem

QIr*
5 =0 (d)

Putting the expression for Sy, from (d) into (c), and writing
£

4 (&) = f [1/(1 — B2)°] dz,

0

&
- f /(1 — B 2] dz, (e)
0

&
5= [ &gz,
0
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we obtain the matrix [4] for the problem:
0<i<n 0<j<n

EL;O {ZZ Zj 4 (Zk) - (zz -+ Zj) B (Zk) -} C (zk) —

_ lmA@)— B@)]lzd () — Bl s#Ln(l — ﬁzlc)}

Ai]' =

A (1) B
n<i<2n n<<)<2n

L2 e [ A (z) — A0 A4 <zj>] _

Ay = g7 A

i=2n+1 j=2n-+1,

L? B (1)2 2 L
Ay = g7, 82[0(1)_ A((1)> —= ﬁm]'

0 <1 <n n<j<2n

L i A (z) — B ()] 4 (25
- T a{[z (Z)A(l)(Z)] (27) —ziA(zk)+B(zk)}.

0<i<n j=2n+1

L 1A (z1) — B (2:)] B (1 e Ln(l—fz
n<1i<2n j=2n+ 1.
I3 A (z) B(1
Aij:ﬂ“E[B(zi)—‘_%],
where

zp = min (zq, 25).

The first five natural frequencies computed are listed below:

r=0.02, s = 0.05, MyM;=>50, «=0.5,

Mode Approximate Frequencies (b)
1 0.94111269 0.94113062
2 13.84640980 13.84593678
3 36.33810806 36.36336756
4 67.60753536 67.73790646
5 105.10070515 105.78695011
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